Alkaline metal cleaner

Abstract
The present invention is directed to cleaning compositions for metal surfaces, including both concentrates and ready-to-use solutions. These compositions include a source of calcium ion, a source of alkalinity, a chelating agent, and a surfactant. In some embodiments, a water-soluble or water-dispersible acid-substituted polymer is also included. Additionally, in some embodiments, specific surfactants or chelating agents are used to enhance the performance of the composition.
Description


FIELD OF THE INVENTION

[0001] The invention relates to cleaning compositions and methods of cleaning surfaces with non-corrosive cleaning compositions. In particular, the invention relates to metal cleaning compositions useful in the cleaning articles or surfaces, including soft metal articles or surfaces.



BACKGROUND OF THE INVENTION

[0002] Many commercial and domestic articles include surface layers comprising alkaline-sensative metals, for example aluminum or aluminum containing alloys. Such articles are known to those skilled in a variety of occupations or domestic activities, particularly those working in industrial plants, maintenance and repair services, manufacturing facilities, kitchens, restaurants and the like. The types of equipment which can have surface layers including aluminum include, without limitation, sinks, cookware, utensils, surfaces, for example, machine parts, vehicles, tanker trucks, vehicle wheels, work surfaces, tanks, for example soak tanks, hot tanks, immersion vessels (with or without agitators), spray washers (continuous or batch), and ultrasonic baths.


[0003] Aqueous alkali cleaners are known as effective cleaning agents. However, many such alkali cleaners have disadvantages when used on alkaline-sensative metals, for example aluminum. One particular disadvantage of using aqueous alkali systems to clean metal surfaces is the potential to corrode or discolor the surfaces. It is difficult to obtain an aqueous detergent solution at an effective pH to remove the soils, such as greases and oils, which often contaminate metal surfaces, and which would not be corrosive to the metal substrate. While aqueous cleaning solutions having a high pH are often more corrosive than aqueous solutions having a relatively low pH, corrosion and discoloration can still be problematic with the more mild solutions.


[0004] Various corrosion inhibitors are known and have been used to prevent corrosion of surfaces that come into contact with aqueous alkaline solutions. Some known corrosive inhibitors include the silicates, such as sodium silicate. Unfortunately, the sodium silicates begin to precipitate from aqueous solution at pHs below 11, thus, greatly reducing the effectiveness of these materials to prevent corrosion of the contacted surfaces when used in aqueous cleaning solutions having a lower pH. Additionally, when the silicate-containing compositions or their residues are allowed to dry on the surface to be cleaned, films or spots are often formed, which are visible and which are themselves very difficult to remove. The presence of these silicon-containing deposits can affect the texture of the cleaned surface, the appearance of the surface, and on cooking or storage surfaces, can affect the taste of the materials that come into contact with the cleaned surfaces.


[0005] It is also known to include calcium ions within cleaning composition to inhibit the attack of hydroxide ion on alkali sensitive metals. However, it has proven to be difficult to introduce calcium ions into alkaline cleaners without inducing precipitation of hydroxides of the calcium. This is especially true for highly alkaline solutions, such as concentrated solutions that are intended for dilution into use solutions. Theoretically, the protection against corrosion in such systems is based on the presence of the calcium ion in solution, so precipitation of the calcium ions adversely affects the corrosion inhibiting effectiveness of the system. Additionally, the formulations could not include strong chelating agents that could bind with the calcium ion, and again reduce the effectiveness of the calcium ion as a corrosion inhibiter.


[0006] Another problem that has been encountered with some such systems is that concentrates, which are formulated to be diluted into use solutions, tend to be sensitive to the use of dilution water with varying amounts of hardness. It has been found that when certain hard water is added, the additional level of calcium added to the cleaning solution can adversely affect the performance of the solution.



SUMMARY OF THE INVENTION

[0007] In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention, in a first aspect, relates to a cleaning composition that includes at least one source of calcium ion; a source of alkalinity; a sequestering agent capable of complexing with calcium ion in an alkaline environment; a surfactant; and a water-soluble or water-dispersible acid-substituted polymer.


[0008] In a second aspect, the present application relates to a cleaning composition that includes a source of calcium ion; a source of alkalinity; a sequestering agent capable of at least partially complexing with calcium ion; and a surfactant selected from primary or secondary alcohol ethoxylate, secondary alkane sulfonate, alpha olefin sulfonate, linear alkyl benzene sulfonate, primary alcohol ethoxy carboxylate, sarcosinates, or mixtures thereof.


[0009] In a third aspect, the present invention relates to a cleaning composition that includes a source of calcium ion; a source of alkalinity; a sequestering agent capable of at least partially complexing with calcium ion; and a silicone-containing surfactant.


[0010] Another aspect of the present invention includes the cleaning composition of the first, second and third aspects described herein, such that the compositions are made by admixing the components with a solvent.


[0011] A further aspect of the present invention relates to a method of treating a metal surface with the cleaning compositions described in the first, second and third aspects, wherein the method includes applying the composition to the metal surface and removing the solution from the metal surface.


[0012] Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.



DETAILED DESCRIPTION OF THE INVENTION

[0013] The present invention may be understood more readily by reference to the drawings and the following detailed description of the invention and their previous and following description.


[0014] While the present invention will be described in combination with a particular sequence in the methods, it will be understood that various configurations could be designed within the spirit and scope of this invention to accomplish the methods. Further, the steps of the inventive methods of the present invention may be performed in any order including simultaneously, unless performance of a step requires the product of a previous step. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.


[0015] In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:


[0016] Reference in the specification and concluding claims to parts by weight of a particular element or component in a composition denotes the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed.


[0017] The aqueous cleaning solutions of this invention may be used at any temperature, including an elevated temperature of from about 90-180° F. After contact with the cleaning solution, the solution is removed from the metal surface. The contact time of the aqueous cleaning solution with the metal substrates will vary depending upon the degree of contamination but broadly will range between a few seconds or about 1 minute to 30 minutes with 3 minutes to 15 minutes being more typical.


[0018] By “alkaline-sensitive metal” as used herein is meant metals including, but not limited to, soft metals such as aluminum, nickel, tin, zinc, copper, brass, bronze and mixtures thereof.


[0019] Cleaning compositions for metal surfaces, including both concentrates and ready-to-use solutions, can be provided as compositions including at least one source of calcium ion, at least one source of alkalinity, at least one sequestering agent capable of complexing with calcium ion in an alkaline environment, and at least one surfactant. In some embodiments, at least one water-soluble or water-dispersible acid-substituted polymer is also included. Additionally, in some embodiments, specific surfactants or chelating agents are used to enhance the performance of the composition.


[0020] Additional optional additives that are commonly used in moderate to high pH metal cleaning solutions can also be present within the composition. In some embodiments, the composition is an aqueous solution, and an aqueous concentrate system would be diluted prior to application to surfaces. The system can have low levels of silicates or be entirely free of silicates to reduce, avoid or completely eliminate silicon containing deposits from the solution onto the metal surface.


[0021] Source of Calcium Ion


[0022] The source of calcium ion in the composition can be any source of calcium ion generally known in the art that is compatible with the other components of the composition being used. For example, the source of calcium ion can include calcium salts, calcium oxides, and the like. Some specific examples of sources of calcium ion include calcium acetate and other non-corrosive calcium salts, calcium oxide, calcium chloride, calcium gluconate, and the like.


[0023] Source of Alkalinity


[0024] The source of alkalinity in the composition can be any source of alkalinity known that is compatible with the other components of the composition being used. Suitable alkaline sources or mixtures thereof useful in the present invention are those capable of providing the desired pH. Alkalinity sources can comprise, for example, inorganic alkalinity sources, such as an alkali metal hydroxide, an alkali metal salt, or the like, or mixtures thereof.


[0025] Suitable alkali metal hydroxides include those generally known that are compatible with the other components of the composition being used. Some examples include sodium hydroxide or potassium hydroxide, and the like. An alkali metal hydroxide may be added to the composition in a variety of forms, including for example in the form of solid beads, dissolved in an aqueous solution, or a combination thereof. Alkali metal hydroxides are commercially available as a solid in the form of pilled solids or beads having a mix of particle sizes ranging from about 12-100 U.S. mesh, or as an aqueous solution, as for example, as a 45 wt %, 50 wt % and a 73 wt % solution.


[0026] Suitable alkali metal salts include those generally known that are compatible with the other components of the composition being used. Some examples of alkali metal salts include alkali metal silicates, sulfates, borates, acetates, citrates, tartrates, succinates, edates, and the like, and mixtures thereof. Other examples of sources of alkalinity can include ethanolamines and amines; and other like alkaline sources.


[0027] Sequestering Agent


[0028] The sequestering agent in the composition can be any sequestering agent, including any chelating agent, known that is capable of complexing with the calcium ion in the solution in the desired manner, and that is compatible with the other components of the composition. The sequestering agent is preferably capable of complexing with the calcium ion in an alkaline environment, and is capable of keeping the calcium ions in solution. However, the sequestering agent must not be a strong sequestering agent that would bind with the calcium ion and substantially reduce the effectiveness of the calcium ion to act as a corrosion inhibitor. Therefore, moderately weak calcium chelating agents are preferred. For example, preferred chelating agents include those that are capable of complexing with the calcium ion in concentrated solutions at a pH of 13 and above, with reduced complexing with calcium ion in diluted or use solutions at a pH of below 13.


[0029] Exemplary sequestering agents include hydroxymonocarboxylic acid compounds and hydroxypolycarboxylic acid compounds. Suitable hydroxymonocarboxylic acid compounds include, but are not limited to, gluconic acid; glycolic acid; glucoheptanoic acid; lactic acid; methyllactic acid; 2-hydroxybutanoic acid; mandelic acid; phenyllactic acid; glyceric acid; 2,3,4-trihydroxybutanoic acid; and alpha hydroxylauric acid. Preferred hydroxymonocarboxylic acid compounds include gluconic acid and glucoheptanoic acid. Suitable hydroxypolycarboxylic acid compounds include, but are not limited to, citric acid, isocitric acid, tartronic acid; malic acid; tartaric acid; glucaric acid; galactaric acid; mannaric acid; and gularic acid. Preferred hydroxypolycarboxylic acid compounds include citric acid.


[0030] Surfactant


[0031] The surfactant of the present invention may be any surfactant generally known in the art, such as an anionic surfactant, non-ionic surfactant, cationic surfactant, amphoteric surfactant, or zwitterionic surfactant. In one embodiment, the surfactant has only one surfactant functional group. In a preferred composition of such an embodiment, the surfactant is primary or secondary alcohol ethoxylate, secondary alkane sulfonate, linear alkyl benzene sulfonate, primary alcohol ethoxy carboxylate, sarcosinates, or mixtures thereof.


[0032] Anionic surfactants are well known in the detergent, polymer, solution, emulsion and other material arts, and are usually defined by the fact that the hydrophilic segment of the molecule is anionic. The anionic surfactant is usually in the form of a salt, but may also be zwitterionic or an internal salt. Examples include, but are not limited to dimmers, trimers, oligomers, polymers (copolymers, graft polymers, block polymers, etc.) having anionic surfactant groups thereon, such as amine groups, phosphate groups, or other polar charge centers with hydrophilic and/or hydrophobic contribution segments. Further examples of suitable anionic surfactants include alkali metal salts of alkyl sulfates and alkyl ether sulfates where alkyl is at least C10 and the number of alkylene oxide groups is from 2 to 4.


[0033] Specific examples of suitable anionic surfactants are water-soluble salts of the higher alkyl sulfates, such as sodium lauroyl sulfate or other suitable alkyl sulfates having 8 to 18 carbon atoms in the alkyl group, alcohol ethoxy carboxylates, secondary alkane sulfonates, linear alkyl benzene sulfonates such as sodium dodecyl benzene sulfonate, and the substantially saturated higher aliphatic acyl amides of lower aliphatic amino carboxylic acid compounds, such as those having 12 to 16 carbons in the fatty acid, alkyl or acyl radicals, and the like. Examples of the last mentioned amides are N-lauroyl sarcosinate, and the sodium, potassium, and ethanolamine salts of N-lauroyl, N-myristoyl, or N-palmitoyl sarcosinate.


[0034] Other surfactants can be used in the compositions of this invention other than or in addition to the above-described surfactants. For example, Applicants have surprisingly discovered that silicone-containing surfacants are desirable surfactants due to their corrosion inhibiting properties. Silicone surfacants, for the purpose of this invention, are defined as those surfacants that have a polydimethyl siloxane backbone with functional groups including one or more of quaternary ammonium, carboxyl, betaine, copolyol, and the like. One preferred silicone-containing surfactant is silicone poly-betaine.


[0035] Suitable non-ionic surfactants include ethoxylated long chain alcohols such as those sold by Tomah Chemical Co. under the trade name “Tomadol.” Further exemplary non-ionic surfactants include alcohol alkoxylates and amine oxides such as alkyl dimethylamine oxide.


[0036] Acid Substituted Polymer


[0037] The acid-group substituted polymer must be at least water-dispersible and preferably water-soluble, such as acid-substituted acrylic polymers (both acrylic and some methacrylic polymers and copolymers). The acid-substituted polymer may comprise a dispersing agent for aqueous alkaline solutions, and acts to both reduce the corrosion effects of the solution on metal (specifically on aluminum) and to stabilize the tolerance of the solution to hard water addition. Polymers may have a wide range of molecular weights, exemplified, but not limited by the range of 250 to 50,000, or 400 to 25,000, or 400 to 5,000, or 400 to 1,500.


[0038] In one embodiment, the acid-substituted polymer contains an acrylic polymer. The acrylic polymer may have acid groups such as sulfonic acid, sulfinic acid, phosphoric acid, phosphonic acid, and carboxylic acid substituted on the polymer. Moreover, the acrylic polymer may contain a sulphonated-hydrophobically modified polyacrylate, or a hydrophobically modified copolymer. Such a hydrophobically modified polyacrylate or copolymer may be modified with styrene or a C3-C22 alkyl group.


[0039] Other Additives


[0040] Other additives may be included in the present metal cleaning compositions and solutions. Other additives may include, but are not limited to, additional surfactants, hydrotropes, additional corrosion inhibitors, antimicrobials, fungicides, fragrances, dyes, antistatic agents, UV absorbers, reducing agents, buffering compounds, corrosion inhibitors, viscosity modifying (thickening or thinning) agents, and the like.


[0041] Hydrotopes


[0042] Examples of the hydrotropes useful in this invention include the sodium, potassium, ammonium and alkanol ammonium salts of xylene, toluene, ethylbenzoate, isopropylbenzene, naphthalene, alkyl naphthalene sulfonates, phosphate esters of alkoxylated alkyl phenols, phosphate esters of alkoxylated alcohols, short chain (C6 or less) alkyl polyglycoside, and sodium, potassium and ammonium salts of the alkyl sarcosinates. The hydrotropes are useful in maintaining the organic materials including the surfactant readily dispersed in the aqueous cleaning solution and, in particular, in an aqueous concentrate which is an especially preferred form of packaging the compositions of the invention and allow the user of the compositions to accurately provide the desired amount of cleaning composition into the aqueous wash solution. A particularly preferred hydrotrope is one that does not foam.


[0043] Additional Corrosion Inhibitors


[0044] Additional corrosion inhibitors which may be optionally added to the aqueous metal cleaning compositions of this invention include magnesium and/or zinc ions and Ca(NO2)2. Preferably, the metal ions are provided in water soluble form. Examples of useful water soluble forms of magnesium and zinc ions are the water soluble salts thereof including the chlorides, nitrates and sulfates of the respective metals. If any of the alkalinity providing agents are the alkali metal carbonates, bicarbonates or mixtures of such agents, magnesium oxide can be used to provide the Mg ion. The magnesium oxide is water soluble in such solutions and is a preferred source of Mg ions. In order to maintain the dispersibility of the magnesium and/or zinc corrosion inhibitors in aqueous solution, and in the presence of agents which would otherwise cause precipitation of the zinc or magnesium ions, e.g., carbonates, phosphates, etc., it might be advantageous to include a carboxylated polymer to the solution. The useful carboxylated polymers may be generically categorized as water-soluble carboxylic acid polymers such as polyacrylic and polymethacrylic acids or vinyl addition polymers, in addition to the acid-substituted polymers used in the present invention. Of the vinyl addition polymers contemplated, maleic anhydride copolymers as with vinyl acetate, styrene, ethylene, isobutylene, acrylic acid and vinyl ethers are examples. The polymers tend to be water-soluble or at least colloidally dispersible in water. The molecular weight of these polymers may vary over a broad range although it is preferred to use polymers having average molecular weights ranging between 1,000 up to 1,000,000. These polymers have a molecular weight of 100,000 or less and between 1,000 and 10,000.


[0045] The polymers or copolymers (either the acid-substituted polymers or other added polymers) may be prepared by either addition or hydrolytic techniques. Thus, maleic anhydride copolymers are prepared by the addition polymerization of maleic anhydride and another comonomer such as styrene. The low molecular weight acrylic acid polymers may be prepared by addition polymerization of acrylic acid or its salts either with itself or other vinyl comonomers. Alternatively, such polymers may be prepared by the alkaline hydrolysis of low molecular weight acrylonitrile homopolymers or copolymers. For such a preparative technique see Newman U.S. Pat. No. 3,419,502.


[0046] The metal cleaning compositions of the present invention are useful for removing any type of contaminant from a metal surface including greases, cutting fluids, drawing fluids, machine oils, antirust oils such as cosmoline, carbonaceous soils, sebaceous soils, particulate matter, waxes, paraffins, used motor oil, fuels, etc. Any metal surface can be cleaned including iron-based metals such as iron, iron alloys, e.g., steel, tin, aluminum, copper, tungsten, titanium, molybdenum, etc., for example. The structure of the metal surface to be cleaned can vary widely and is unlimited. Thus, the metal surface can be as a metal part of complex configuration, sheeting, coils, rolls, bars, rods, plates, disks, etc. Such metal components can be derived from any source including for home use, for industrial use such as from the aerospace industry, electronics industry, etc., wherein the metal surfaces have to be cleaned. Treatment of aluminum surfaces with the compositions of this invention has been found particularly effective.


[0047] The aqueous alkaline metal cleaning solutions of this invention comprising the cleaning composition in water have a pH above 7.5, above 9.0, above 10.0, above 11.0, and even up to 13.5. Most preferably, the aqueous alkaline cleaning solutions have a pH which is effective to remove the dirt, grease, oil and other contaminants from the metal surface without causing tarnishing or discoloration of the metal substrate.


[0048] It is preferred that the solution have reduced silicate, and more preferred that the compositions of the invention are free of silicates. For example, the concentrate and/or the solution may have less than 0.2 wt. % silicates, less than 0.15 wt. % silicates, less than 0.1 wt. % silicates, less than 0.05 wt. % silicate and less than 0.1 wt. % silicate (down to and preferably including 0 wt. % silicate) and perform in accordance with the teachings of this invention. The addition of larger amounts of silicate is not believed to add benefit to the residue reducing aspects of the present invention, but may not otherwise destroy the cleaning function of the compositions and solutions of this invention. Additionally, in some embodiments, it is preferred to maintain the compositions of this invention substantially silicate-free due to silicate film formation and difficulty in formulating a composition which will remain soluble in aqueous solution at a pH of 11.0 or less when silicates are present. Note, however that this reduced silicate preference does not limit the amount of silicone in the solution as silicone is not included in this definition of silicate.


[0049] The composition may be prepared by admixing the components with a solvent, such as an aqueous solution, to form a solution. Commonly, the aqueous solution is water. In general, when the concentration of the composition in the solution is above about 25 wt. %, the solution is considered to be a concentrated solution; and when the concentration of the composition in the solution is below about 25 wt. %, the solution is considered to be a use solution. In either the concentrated or use solution, it is preferred that the ingredients of the composition do not precipitate out when the water has a hardness of 14 grains per gallon or less. In particular, it is preferred that salts of the calcuim do not precipitate out of the composition when the water has a hardness of 14 grains per gallon or less.


[0050] Some examples of representative constituent concentrations for concentrate compositions embodying the invention can be found in Table 1.
1TABLE 1ComponentPreferred RangeMore Preferred RangeCalcium Ionabout 0.001 mole per literabout 0.001 mole per liter toto about 1 moles per literabout 0.05 mole per literSource ofabout 0.1 wt. % to about 20about 1 wt. % to about 10 wt.Alkalinitywt. %%Chelatingabout one mole or more perabout one to two moles perAgentmole of calcium ionmole of calcium ionSurfactantabout 0.05 wt. % to aboutabout 0.25 wt. % to about 1020 wt. %wt. %Acid-0 wt. % to about 10 wt. %about 0.25 wt. % to about 10substitutedwt. %polymer


[0051] Some examples of representative constituent concentrations for use solution compositions embodying the invention can be found in Table 2.
2TABLE 2ComponentPreferred RangeMore Preferred RangeCalcium Ionabout 0.00001 mole perabout 0.0001 mole per liter toliter to about 0.1 mole perabout 0.0005 mole per literliterSource ofabout 0.01 wt. % to aboutabout 0.05 wt. % to about 5Alkalinity10 wt. %wt. %Chelatingabout one mole or more perabout one to two moles orAgentmole of calcium ionmore per mole of calcium ionSurfactantabout 0.001 wt. % to aboutabout 0.005 wt. % to about 210 wt. %wt. %Acid-0 wt. % to about 1 wt. %about 0.01 wt. % to about 1substitutedwt. %polymer


[0052] The cleaners of the invention may exist in a use solution or concentrated solution that is in any form including liquid, gel, paste, solids, slurry, and foam. The cleaning solutions are suitable to treat any metal surface contaminated with a wide variety of contaminants. Exemplary contaminants include grease, clay, dirt, and oxide by-products The present solutions may be used by contacting the contaminated metal parts with an effective amount of the aqueous solution. Preferred contact methods include immersion or some type of impingement in which the cleaning solution is circulated or continuously agitated against the metal part or is sprayed thereon. Alternatively, agitation can be provided as ultrasonic waves.


[0053] Experimental


[0054] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, percent is percent by weight given the component and the total weight of the composition, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric.


[0055] The following chemicals were used as exemplary embodiments or as ingredients in the formulations of the examples:
3Chemical NameChemical ContentAlcosperse 725Sulphonated hydrophobically modified polymersolution 35%SASSecondary alkane sulphonate 30%SXSSodium xylene sulphonate 40%Hamposil OOleoyl sarcosine 94%Gerapon TC-42Sodium N-methyl-N-cocoyl taurate 24%Stepanol CS-460Sodium lauroyl ether sulphate 60%Glucopon 625C12-16 alkyl polyglycoside 50%Supra 2Cocamine oxide 30%Gafac RA-600Linear alcohol ethoxylate phosphate ester 99%Chemax AC 5144Complex amine carboxylateBioterge AS-40C14-16 Alpha olefin sulphonate 40%Mirataine CBSCocamidopropyl hydroxy sultaine 50%LASLinear alkyl benzene sulphonic acid 97%Hampshire LED3N-Lauroyl N,N′,N′ ethylenediaminetetraacetateAbil B9950Dimethicone propyl PG betaine 30%Variquat CC42PPG Diethylmonium chloride 99%







EXAMPLE 1

[0056]

4
















Base formula reference
FORMULA 1



Ingredients
Weight %



















Water
66.596



Alcosperese 725
6.25



Calcium Oxide
0.954



Gluconic Acid (50%)
13.35



NaOH (50%)
12.85











[0057] Calcium oxide and gluconic acid react in situ to form calcium gluconate. To the above base formula, we add an anionic surfactant that further enhances the base formula's corrosion inhibition. Hydrotrope can be added as needed. The following is an example:
5IngredientsWeight %Base Formula66.67SAS 30%6.93SXS 40%26.40


[0058] That the combination of the alkalinity source, calcium gluconate, sulphonated polyacrylate copolymer, and the anionic surfactant produce a concentrate which, on dilution to a use solution concentration of 2.5%, forms an effective aluminum cleaner. The cleaner is silicate free, non-corrosive to aluminum, and can produce clear 2.5% use solution in a range of water hardness of up to 15 grains per gallon.


[0059] The synergistic aluminum corrosion reduction performance of the combination of specific anionic surfactants and calcium when combined in a highly alkaline solution is unusual.


[0060] The addition of gluconic acid to form calcium gluconate was necessary for concentrate stability and use solution stability in certain combinations.


[0061] The addition of Alcosperese 725 provides further enhancement of the corrosion reduction and also increases the levels of water hardness which the use solutions can be prepared.


[0062] The combination of these elements surprisingly allows for the preparation of stable non-silicated alkaline concentrates from which use solutions that are non-corrosive to aluminum can be made. It is also unusual that the use solutions of the above concentrate can be prepared with water having a range of hardness from softened to fifteen grain well water and remain precipitate free.
6FORMULA1-11-21-31-4Raw MaterialWt %Wt %Wt %Wt %Hamposil O2.5Gerapon TC-428.68NaOH 50%0.57Stepanol CS-4604.15SAS 30%6.94Base Formula79.9566.6579.1166.66SXS 40%16.9824.677.9126.40Soft Water08.83Total100.00100.00100.00100.00Panel AppearanceUntouchedWhitened allWhitened allWhitened aoveroverlittle onthe bottomCorrosion (mil/yr)1.571.2103.22.1@20.5%Std Deviation1.827.29.21.0(mil/year)(mil = 0.001 in.)


[0063]

7











Corrosion Testing With Al 6061





















10234









Panel


Surface
Conc.
Time
Initial
Final
Wt
Adjusted


Product
#
Mat'l
Density
Area
(%)
(hours)
Wt
Wt
Loss
Wt Loss




















1.1
1
Al
2.81
6.5000
2.5
6.0
8.1900
8.0786
0.0304
0.0298



2
Al
2.81
6.5000
2.5
6.0
8.0859
8.0542
0.0317
0.0311



3
Al
2.81
6.5000
2.5
6.0
8.2185
8.1924
0.0216
0.0255


1.2
4
Al
2.81
6.5000
2.5
6.0
8.1459
8.1428
0.0031
0.0025



5
Al
2.81
6.5000
2.5
6.0
8.2160
8.2133
0.0027
0.0021



6
Al
2.81
6.5000
2.5
6.0
8.2453
8.2421
0.0032
0.0026


1.3
7
Al
2.81
6.5000
2.5
6.0
8.2238
8.2019
0.0219
0.0213



8
Al
2.81
6.5000
2.5
6.0
8.1015
8.0735
0.0280
0.0274



9
Al
2.81
6.5000
2.5
6.0
8.0266
8.0021
0.0245
0.0239


1.4
10
Al
2.81
6.5000
2.5
6.0
8.0810
8.0782
0.0028
0.0022



11
Al
2.81
6.5000
2.5
6.0
7.9927
7.9891
0.0036
0.0030



12
Al
2.81
6.5000
2.5
6.0
8.1039
8.1020
0.0019
0.0013


Control
13
Al
2.81
6.5000
na
6.0
8.0757
8.0757
0.0000
−0.0006



14
Al
2.81
6.5000
na
6.0
8.0427
8.0427
0.0000
−0.0006



15
Al
2.81
6.5000
na
6.0
8.1789
8.1783
0.0006
0.0000










[0064] The testing performed for this research effort consisted of immersing the test panels of aluminum 6061 grade alloy in a 2.5% formula test solution for six hours at room temperature. The panels were then removed and the panels' appearance was evaluated and results recorded. Post-treatment cleaning was then performed and the resulting MPY (thousands of an inch per year) corrosion rate was calculated.


[0065] A variation of Ecolab Food & Beverage Test # 6B Chelation Test For Liquid Alkaline Products consists of heating natural well water with 14-15 grains of hardness in a microwave to greater than 140 degree Fahrenheit and mixing this hot water with room temperature well water from the same source to obtain 135 degree Fahrenheit well water. The correct amount of water and test formula are then combined and mixed well. The test solution is then allowed to cool while sitting at room temperature and the solution is observed for reaction and appearances are recorded.



EXAMPLE 2

[0066] The procedure of Example 1 was followed by preparing Formula 1 (base formula), described in Example 1, with various surfactants, as shown for formulas 19-1, 19-2, 19-3 and 19-4 below:
8FORMULA19-119-219-319-4Raw MaterialWt %Wt %Wt %Wt %Gafac FA6000.85Chemax AC51443.332.20NaOH 50%0.50.22Bioterge AS401.25LAS 97%2.06Mirataine CBS5.75Base Formula80.0080.0080.0080.00SXS 40%14.2516.6716.73Soft Water16.19Total100100100100


[0067] All solutions are diluted to 2.5% with soft water to 1000 g. The soft water was allowed to sit in a 5 L pitcher. Three panels are preweighed and placed into the solution with 7-10 minutes between immersion sets. Pre- and post-weights are displayed in the following table. Sample #19-4 was diluted to 27.5 g to 1000 g with soft water instead of 25 g to 1000 g total weight as with the other three samples.


[0068] Results: All four samples were found to provide below 250 mil/year corrosion.
9Corrosion Testing With A1 6061PanelAverageStandardPercentProduct#Mil per YearMil per YearDeviationStandard19.1 1145.36140.4814.3010% 2151.70 3124.3919.2 412.1911.711.2911% 510.24 612.6819.3 7103.90118.0514.9313% 8133.65 9116.5819.41010.7310.574.1539%1114.63126.34Control13−2.93−1.951.69−87%  (water)14−2.93150.00



EXAMPLE 3

[0069] Alkaline Cleaning Composition


[0070] The following solution was prepared as a base formula to check the reaction of a 3% solution of the base formula with Aluminum 6061.
10Formula 1.5Raw MaterialWt %A.Soft Water69.60B.APG-Glucopan 62510.00C.Supra 26.67D.NaOH 50%13.00E.CaCl2.2H2O0.73


[0071] The above composition was fairly viscous and opaque.


[0072] Preparing the following A and B solutions examined the effect of addition of Alcosperse 725 to the base formula.


[0073] Solutions A and B were prepared as follows:


[0074] A. A 3% solution of formula 1.5 was prepared by diluting 15.0 g of formula 1.5 to 500.0 g with soft water.


[0075] B. A 3% solution of formula 1.5 with the equivalent of the base formula containing 1.0% Alcosperse 725 was prepared by adding 15.0 G formula 1.5 to 470.0 g soft water and mixing. To this solution was added 3% of a 1% Alcosperses 725 solution −15.0 g 1% Alcosperese 725.


[0076] An untreated 3″×1″ (7.6 cm by 2.5 cm) aluminum panel of alloy 6061 was immersed in each solution A and B for one hour.


[0077] At this time, the aluminum panel from solution A had a small amount of bubbles evolving from the surface, indicating some reaction was occurring. The aluminum panel in solution B had no bubbles on the surface indicating no reation was occurring.


[0078] Further observations were made to the effect that after 19 hours, 24 minutes: the panel in solution A showed a slight haze in the solution and the panels appeared uncorroded; there were a small amount of bubbles visible on the panel's surface. The panel in solution B remained as a clear solution, the panel looked very good with no negative appearance, no bubbles, and no indication of any reaction.



EXAMPLE 4

[0079] Silicone-Containing Surfactant Formulas


[0080] Silicone-containing surfactant formulas were prepared with the ingredients described below:
11IngredientsRM#1314151634Water10001648.844.039.334.643.8Gluconic Acid 50%8300708.813.217.622.08.8Calcium Oxide0.60.91.31.80.6NaOH 50%1141328.58.58.58.58.5SAS1807616.936.936.936.936.93SXS26.4026.4026.4026.4026.40Hampshire LED35.00Total100.0100.0100.0100.0100.0IngredientsRM#3839404142Water10001643.3941.3928.8826.8841.39Gluconic Acid 50%8300708.908.9022.2522.258.90Calcium Oxide0.640.641.801.800.64NaOH 50%1141328.578.578.578.578.57SAS1807616.936.936.936.936.93SXS26.4026.4026.4026.4026.40Alcospere 7254.174.174.174.174.17Abil B 99501.003.001.003.00Variquat CC-42-5NS3.00Total100.0100.0100.0100.0100.0


[0081] The formulas were tested for corrosion as described in example 3, and the following results were obtained:
12CouponInitialFinalTotalWt LossAverageAdjustedCorrosion RateFinal%#Wt (g)Wt (g)Wt Loss (g)(mg)Wt Loss (mg)Wt Loss (mg)mils/yearAppearanceFormula #13Control012.811512.81080.00070.70.7000WaterA1 6061Degreaser112.814612.81180.00282.82.80002.10009.8246Shiny silver@ 2%A1 6061Degreaser212.832912.75830.074674.674.600073.9000345.7319Dull silver@ 4%A1 6061Degreaser312.838512.45520.3833383.3383.3000382.60001789.9462Dull silver; some white@ 8%markingsA1 6061Degreaser412.837412.02140.816816816.0000815.30003814.2790Dull silver; some@ 16%pitting & brown tintingA1 6061Degreaser512.810411.13771.67271672.71672.70001672.00007822.2428Dull silver; heavy@ 32%pitting.A1 6061Formula #14Degreaser612.787412.78590.00151.51.50000.80003.7427Shiny silver; white@ 2%depositsA1 6061Degreaser712.879412.85160.027827.827.800027.1000126.7840Dull silver; heavy white@ 4%streaksA1 6061Degreaser812.838412.46940.369369369.0000368.30001723.0455Dull white with little pit@ 8%& tan markingsA1 6061Degreaser912.826412.01680.8096809.6809.6000808.90003784.3374Dull with pitting & tan@ 16%markingsA1 6061Degreaser1012.887011.27921.60781607.81607.80001607.10007518.6163Heavy deep pitting@ 32%A1 6061Formula #15Degreaser1112.958412.94870.00979.79.70009.000042.1054Shiny with white@ 2%streaksA1 6061Degreaser1212.840112.81760.022522.522.500021.8000101.9886Dull with white & tan@ 4%streaksA1 6061Degreaser1312.841012.49740.3436343.6343.6000342.90001604.2147Slight pitting & tan@ 8%coloringA1 6061Degreaser1412.875112.10460.7705770.5770.5000769.80003601.4130Pitting with tan@ 16%coloringA1 6061Degreaser1512.811911.23051.58141581.41581.40001580.70007395.1072Heavy deep pitting@ 32%A1 6061Formula #16Degreaser1612.839712.83090.00888.88.80008.100037.8948Shiny with white@ 2%streaksA1 6061Degreaser1712.859912.84620.013713.713.700013.000060.8189Shiny with white@ 4%streaksA1 6061Degreaser1812.825812.51160.3142314.2314.2000313.50001466.6705Dull slight pitting & tan@ 8%markingsA1 6061Degreaser1912.704911.99280.7121712.1712.1000711.40003328.1959Lots of tiny pitting;@ 16%some tan markingsA1 6061Degreaser2012.895111.45671.43871438.71438.70001438.00006727.5031Heavy pitting@ 32%A1 6061Formula #34Degreaser2112.845112.84480.00030.30.30000.30001.4035Shiny@ 2%A1 6061Degreaser2212.838612.80490.033733.733.700033.7000157.6612Dull; covered with@ 4%white depositsA1 6061Degreaser2312.798012.61770.1803180.3180.3000180.3000843.5110Shiny with white@ 8%markings & a few tanA1 6061Degreaser2412.854312.34440.5099509.9509.9000509.90002385.5033Very tiny pitting@ 16%A1 6061Degreaser2512.845711.87850.9672967.2967.2000967.20004524.9242Some pitting@ 32%A1 6061Formula #38Control012.832112.8326−0.0005−0.5−0.5000Shiny silver(Water)A1 6061Degreaser112.755312.75480.00050.50.50001.00004.6784Shiny with white@ 2%streaksA1 6061Degreaser212.814012.76720.046846.846.800047.3000221.2871White dull finish@ 4%A1 6061Degreaser312.848112.50810.34340340.0000340.50001592.9866White dull finish with@ 8%some grooves markingA1 6061Degreaser412.834312.05630.778778778.0000778.50003642.1148Silver with heavy small@ 16%pit markingsA1 6061Degreaser512.843111.26851.57461574.61574.60001575.10007368.9083Coupon is thinner with@ 32%heavy deep pittingA1 6061Formula #39Degreaser612.876012.8761−1E−04−0.1−0.10000.40001.8713Shiny with white@ 2%streaksA1 6061Degreaser712.754612.74170.012912.912.900013.400062.6902Heavy white streaks@ 4%A1 6061Degreaser812.862712.57900.2837283.7283.7000284.20001329.5941White dull finish with@ 8%some grooves markingsA1 6061Degreaser912.866012.10740.7586758.6758.6000759.10003551.3544Silver with heavy small@ 16%pit markingsA1 6061Degreaser1012.841511.28721.55431554.31554.30001554.80007273.9372Coupon is thinner with@ 32%heavy deep pittingA1 6061Formula #40Degreaser1112.833312.8336−0.0003−0.3−0.30000.20000.9357Shiny with very little@ 2%white markingsA1 6061Degreaser1212.870512.86930.00121.21.20001.70007.9532Shiny with little@ 4%groovesA1 6061Degreaser1312.834412.82590.00858.58.50009.000042.1054Shiny with little@ 8%grooves and 2 whiteA1 6061marksDegreaser1412.828812.35090.4779477.9477.9000478.40002238.1345Dull with very tiny@ 16%pitting markingsA1 6061Degreaser@ 32%1512.862111.80311.05910591059.00001059.50004956.7382Dull with very tinyA1 6061pitting markingsFormula #41Degreaser1612.531412.5317−0.0003−0.3−0.30000.20000.9357Shiny with very little@ 2%white markingsA1 6061Degreaser1712.875612.8740.00161.61.60002.10009.8246Shiny with little@ 4%groovesA1 6061Degreaser1812.825112.81750.00767.67.60008.100037.8948Shiny with little@ 8%groovesA1 6061Degreaser1912.771912.39030.3816381.6381.6000382.10001787.6070Shiny with little@ 16%grooves and 2 whiteA1 6061marksDegreaser2012.832811.83181.00110011001.00001001.50004685.3924Shiny with little@ 32%grooves and 2 whiteA1 6061marksFormula #42Degreaser2112.826712.82350.00323.23.20003.200014.9708⅓ of coupon covered@ 2%with white filmA1 6061Degreaser2212.838612.66820.1704170.4170.4000170.4000797.1951Dull with white film@ 4%A1 6061Degreaser2312.798012.49240.3056305.6305.6000305.60001429.7114Dull with small pit@ 8%markingsA1 6061Degreaser2412.854312.04980.8045804.5804.5000804.50003763.7526Heavy pitting@ 16%A1 6061Degreaser2512.845711.4291.41671416.71416.70001416.70006627.8537Larger deep pit@ 32%markingsA1 6061


[0082] Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.


[0083] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.


Claims
  • 1. A cleaning composition comprising: a) a source of calcium ion; b) a source of alkalinity; c) a sequestering agent capable of complexing with calcium ion in an alkaline environment; d) a surfactant; and e) a water-soluble or water-dispersible acid-substituted polymer.
  • 2. The composition of claim 1, wherein the acid-substituted polymer comprises an acid-substituted acrylic polymer.
  • 3. The composition of claim 2, wherein the acid-substituted acrylic polymer is substituted with sulfonic acid, sulfinic acid, phosphoric acid, phosphonic acid, or carboxylic acid on the acid group.
  • 4. The composition of claim 2, wherein the acid-substituted acrylic polymer comprises a sulphonated-hydrophobically modified polyacrylate.
  • 5. The composition of claim 2, wherein the acid-substituted acrylic polymer comprises a hydrophobically modified copolymer.
  • 6. The composition of claim 5, wherein the hydrophobically modified copolymer is modified with styrene or a C3-C22 alkyl group.
  • 7. The composition of claim 1, wherein the composition further comprises a solvent to form a use solution, and the concentration of the composition in the use solution is from about 0.5 wt. % to about 20 wt. % of the total use solution.
  • 8. The composition of claim 1, wherein the composition has less than about 0.5 wt. % by total weight of the composition as silicate.
  • 9. The composition of claim 1, wherein the composition is prepared by admixing the components a, b, c, d, and e with a solvent.
  • 10. The composition of claim 1, wherein the composition has a molar concentration of calcium ion from about 0.001 to about 1 moles per liter of composition.
  • 11. The composition of claim 10, wherein the composition has about one or more moles of sequestering agent for every mole of calcium ion in the concentrated composition.
  • 12. The composition of claim 1, wherein the composition comprises a concentrated cleaning solution comprising: a) from about 0.001 mole to about 1 mole of calcium ion per liter of solution; b) from about 0.1 wt. % to about 20 wt. % source of alkalinity; c) about one mole or more of sequestering agent for each mole of calcium ion; d) from about 0.05 wt. % to about 20 wt. % surfactant; and e) from about 0.25 wt. % to about 10 wt. % water-soluble or water-dispersible acid-substituted polymer.
  • 13. The composition of claim 1, wherein the composition comprises a use solution comprising: a) from about 0.00001 mole to about 0.1 mole of calcium ion per liter of solution; b) from about 0.01 wt. % to about 10 wt. % source of alkalinity; c) about one mole or more of sequestering agent for each mole of calcium ion; d) from about 0.001 wt. % to about 10 wt. % surfactant; and e) from about 0.01 wt. % to about 1 wt. % water-soluble or water-dispersible acid-substituted polymer.
  • 14. A cleaning composition comprising: a) a source of calcium ion; b) a source of alkalinity; c) a sequestering agent capable of at least partially complexing with calcium ion; and d) a surfactant selected from the group consisting of: primary or secondary alcohol ethoxylate, secondary alkane sulfonate, secondary alcohol sulfonate, alpha olefin sulfonate, linear alkyl benzene sulfonate, primary alcohol ethoxy carboxylate, sarcosinates, or mixtures thereof.
  • 15. The composition of claim 14, wherein the surfactant is N-acylsarcosinate, secondary alcohol sulfonate, or linear alkyl benzene sulfonate.
  • 16. The composition of claim 14, wherein the surfactant is secondary alcohol sulfonate.
  • 17. The composition of claim 14, wherein the composition further comprises a solvent to form a use solution, and the concentration of the composition in the use solution is from about 0.5 wt. % to about 20 wt. % of the total use solution.
  • 18. The composition of claim 14, wherein the composition has less than about 0.5 wt. % by total weight of the composition as silicate.
  • 19. The composition of claim 14, wherein the composition is prepared by admixing the components a, b, c, and d with a solvent.
  • 20. The composition of claim 14, wherein the composition has a molar concentration of calcium ion from about 0.001 to about 1 moles per liter of composition.
  • 21. The composition of claim 14, wherein the composition has about one or more moles of sequestering agent for every mole of calcium ion in the concentrated composition.
  • 22. The composition of claim 14, wherein the composition comprises a concentrated cleaning solution comprising: a) from about 0.001 mole to about 1 mole of calcium ion per liter of solution; b) from about 0.1 wt. % to about 20 wt. % source of alkalinity; c) about one mole or more of sequestering agent for each mole of calcium ion; and d) from about 0.05 wt. % to about 20 wt. % surfactant.
  • 23. The composition of claim 14, wherein the composition comprises a use solution comprising: a) from about 0.00001 mole to about 0.1 mole of calcium ion per liter of solution; b) from about 0.01 wt. % to about 10 wt. % source of alkalinity; c) about one mole or more of sequestering agent for each mole of calcium ion; and d) from about 0.001 wt. % to about 10 wt. % surfactant.
  • 24. A cleaning composition comprising: a) a source of calcium ion; b) a source of alkalinity; c) a sequestering agent capable of at least partially complexing with calcium ion; and d) a silicone-containing surfactant.
  • 25. The composition of claim 24, wherein the surfactant is dimethicone propyl PG betaine.
  • 26. The composition of claim 24, wherein the composition further comprises a solvent to form a use solution, and the concentration of the composition in the use solution is from about 0.5 wt. % to about 20 wt. % of the total use solution.
  • 27. The composition of claim 24, wherein the composition has less than about 0.5 wt. % by total weight of the composition as silicate.
  • 28. The composition of claim 24, wherein the composition is prepared by admixing the components a, b, c, and d with a solvent.
  • 29. The composition of claim 24, wherein the composition has a molar concentration of calcium ion from about 0.001 to about 1 moles per liter of composition.
  • 30. The composition of claim 24, wherein the composition has about one or more moles of sequestering agent for every mole of calcium ion in the concentrated composition.
  • 31. The composition of claim 24, wherein the composition comprises a concentrated cleaning solution comprising: a) from about 0.001 mole to about 1 mole of calcium ion per liter of solution; b) from about 0.1 wt. % to about 20 wt. % source of alkalinity; c) about one mole or more of sequestering agent for each mole of calcium ion; and d) from about 0.05 wt. % to about 20 wt. % surfactant.
  • 32. The composition of claim 24, wherein the composition comprises a use solution comprising: a) from about 0.00001 mole to about 0.1 mole of calcium ion per liter of solution; b) from about 0.01 wt. % to about 10 wt. % source of alkalinity; c) about one mole or more of sequestering agent for each mole of calcium ion; and d) from about 0.001 wt. % to about 10 wt. % surfactant.
  • 33. A method of treating a metal surface, the method comprising: contacting a metal surface with an aqueous cleaning solution comprising the composition of claim 1, 14, or 24; and removing the solution from the metal surface.
  • 34. The method of claim 33 wherein said metal surface comprises an aluminum surface.