Alkene generation using metal sulfide particles

Information

  • Patent Grant
  • 11767275
  • Patent Number
    11,767,275
  • Date Filed
    Monday, September 26, 2022
    2 years ago
  • Date Issued
    Tuesday, September 26, 2023
    a year ago
Abstract
Systems and methods include providing a gaseous alkane input stream and metal sulfide (MSx) particles that can react with an alkane in the gaseous alkane input stream to generate an alkene, a reduced metal sulfide (MSx−1) particle, and at least one of: hydrogen sulfide (H2S) and at least one sulfur containing compound selected from: S2, CS, and CS2. A product stream can be collected that includes the alkene and at least one of: hydrogen sulfide (H2S) and the at least one sulfur containing compound. A reduced metal sulfide (MSx−1) particle reacts with sulfur in a sulfur stream and can generate the metal sulfide (MSx) particle and hydrogen (H2).
Description
TECHNICAL FIELD

The present disclosure relates to systems and methods for alkene generation. More particularly, the present disclosure relates to systems and methods for alkene generation using reducible metal sulfide particles.


INTRODUCTION

Alkanes exhibit a tendency to dehydrogenate to alkenes at high temperatures through an endothermic reaction. Industrially, this is accomplished by the steam cracking process and is commonly used for non-catalytic conversion of ethane to ethylene. Thermal cracking or steam cracking relies on thermally activating the hydrocarbon feedstock to produce cracked or smaller hydrocarbons or unsaturated hydrocarbons. The cracking process takes place by gas phase radical mechanism, where the hydrocarbon radicals undergo initiation, propagation and termination steps. Typically, longer hydrocarbon chain cracking reactions to smaller hydrocarbons are preferred over unsaturated hydrocarbons. Thus, propane or higher alkanes tend to produce ethylene instead of their respective alkenes, and therefore require a catalyst to ensure that the desired alkene product is the kinetically favored product.


Taking the example of propylene production, the most common and commercially available method is propane dehydrogenation (PDH). The basic principle involves dehydrogenation of propane over a catalyst to form propylene and hydrogen, as shown in equation 1 below.











C
3



H
8





Catalyst
,
Δ





C
3



H
6


+

H
2






(
1
)







This reaction is performed at a lower temperature than in steam cracking reactions, catalyzing the C—H bond activation in propane with no or minimal C—C bond activation. These PDH processes typically are run in either fixed bed reactors or fluidized bed reactors at temperatures ranging from 500-700° C. and pressures from 0.5-3 bar. Out of the several commercially available systems, two processes have been highlighted in this section. The Catofin process, by Lummus, which uses a CrOx, on Al2O3 catalyst with Na/K as promoters and the Oleflex process, by UOP, which uses a Pt—Sn alloy on Al2O3 catalyst with Na/K promoters. Both of these processes suffer from carbon deposition on the catalyst, and subsequent gradual catalyst deactivation.


Reactivation of a deactivated catalyst either requires reducing the catalyst with hydrogen, or using chlorine gas to disperse the sintered active sites, where the carbon is typically burnt off with air oxidation. Additionally, as seen from FIG. 1, the PDH process for all alkanes is limited by the thermodynamic equilibrium of the reaction in equation 1. Thus, in order to achieve higher propane conversions, the reaction would need to be run at a higher temperature. However, higher temperatures tend to favor C—C bond activation, reducing the selectivity and limiting the operational matrix of the process.


In order to address this trade-off, several catalytic technologies have been developed which introduce an oxidizing gas into the system, thus creating a sink for hydrogen. This allows for higher conversion of the alkane in order to restore the dehydrogenation equilibrium. This process is known as oxidative dehydrogenation (ODH) and is widely used for ethane and propane dehydrogenation in the presence of molecular oxygen. This molecular oxygen assisted ODH process relies on utilizing oxygen to extract H from an alkane, such as propane, to convert it to propylene and have water and heat as by-products. Due to the electronegativity difference, this reaction, shown in equation (2), theoretically occurs at a lower temperature than PDH technology.












C
3



H
8


+

0.5

O
2





Catalyst




C
3



H
6


+


H
2


O

+
Δ





(
2
)







However, using a strong oxidant, such as O2, negatively affects the selectivity due to the formation of undesired products, such as CO and CO2. As a result, a majority of the O2-ODH catalysts fail to meet the performance of PDH catalysts, where selectivity drops sharply with an increase in propane conversion. As an alternative, sulfur or sulfur derivatives, such as H2S, are used which resemble a softer oxidant. Transition state metal sulfide catalysts have been shown to be active towards conversion of butane to iso-butene. These sulfide catalysts have a lower activation energy barrier for C—H activation than C—C bond activation, making them much more effective than the PDH catalysts. However, as these catalysts react with the alkane, some sulfur is lost as H2S, thus reducing the catalyst activity. Some sulfide catalysts have been reported for propane to propylene conversion which operate by co-feeding H2S and H2 with propane. However, these catalysts also require a regeneration step with air followed by H2S and H2 mixture to regain the active metal sulfide catalyst.


A major drawback of the catalytic ODH system is that the oxidant stream and the alkane stream must be co-fed in the reactor. This results in the formation of undesired side products, which decrease the selectivity of the desired alkene. Also, in the case of sulfur, the metal sulfide catalyst may lose its activity as the catalyst reduction reactions dominate the catalyst oxidation reactions. This imbalance results in the use of extreme catalyst regeneration steps, limiting the efficiency and turnover of the process.


SUMMARY

Generally, the instant disclosure relates to alkene generation using metal sulfide particles. In one aspect, a method can include providing a gaseous alkane input stream to a first reactor and providing a metal sulfide (MSx) particle to the first reactor, whereupon the metal sulfide (MSx) particle reacts with an alkane in the gaseous alkane input stream to generate an alkene, a reduced metal sulfide (MSx-1) particle, and at least one of: hydrogen sulfide (H2S) and a sulfur containing compound. The method can also include collecting a product stream from the first reactor including the alkene, hydrogen sulfide (H2S) and/or the sulfur containing compound, providing the reduced metal sulfide (MSx-1) particle to a second reactor, providing a sulfur stream to the second reactor, whereupon the reduced metal sulfide (MSx-1) particle reacts with sulfur in the sulfur stream to generate the metal sulfide (MSx) particle and hydrogen (H2). Then a second reactor output stream including hydrogen (H2) can be collected.


In another aspect, a method can include providing a gaseous alkane input stream to a reactor, the reactor including a metal sulfide (MSx) particle, whereupon the metal sulfide (MSx) particle reacts with an alkane in the gaseous alkane input stream to generate an alkene, a reduced metal sulfide (MSx-1) particle, and at least one of: hydrogen sulfide (H2S) and one or more sulfur containing compounds selected from: S2, CS, and CS2. The method can also include collecting a product stream from the reactor including the alkene, hydrogen sulfide (H2S) and/or the one or more sulfur containing compounds, after collecting the product stream, providing an inert gas stream to the reactor, after providing the inert gas stream to the reactor, providing a sulfur stream to the reactor, whereupon the reduced metal sulfide (MSx-1) particle reacts with sulfur in the sulfur stream to generate the metal sulfide (MSx) particle and hydrogen (H2), and collecting a reactor output stream including hydrogen (H2).


There is no specific requirement that a material, technique or method relating to alkene generation include all of the details characterized herein, in order to obtain some benefit according to the present disclosure. Thus, the specific examples characterized herein are meant to be exemplary applications of the techniques described, and alternatives are possible.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing thermodynamic equilibrium for alkane conversion to alkene via dehydrogenation.



FIG. 2 is a schematic diagram showing an exemplary two reactor system for generating alkenes.



FIG. 3 is a schematic diagram showing an exemplary single reactor system for generating alkenes.



FIG. 4 is a schematic diagram of an exemplary method for operating the two reactor system shown in FIG. 2.



FIG. 5 is a schematic diagram showing an exemplary method for operating the single reactor system shown in FIG. 3.



FIG. 6 is a graph showing experimental data for propane conversion and propylene selectivity values over time for an oxidative dehydrogenation reaction including propane, H2S, and Fe0.89S at 650° C.



FIG. 7 is a graph showing experimental data for H2S conversion over time for the sulfidation reaction of FeS to form Fe0.89S at 850° C.



FIG. 8 is a graph showing experimental data for temperature dependence of iron vacancy in Fe—S system for a sulfidation reaction.



FIG. 9 is a graph showing experimental data for temperature dependence of iron vacancy in Fe—S system for an oxidative dehydrogenation reaction, assuming H2 to be the reactive species from alkane dehydrogenation.



FIG. 10 is a graph showing experimental data for propane conversion and propylene selectivity values over time for an oxidative dehydrogenation reaction including propane, H2S, and Fe0.89S+SiO2 at 600° C.



FIG. 11 is a graph showing experimental data for H2S conversion over time for the sulfidation reaction of FeS to form Fe0.89S at 850° C.



FIG. 12 is a graph showing experimental data for moles of pyrite (FeS2) and Fe7S8 at sulfur loadings greater than 1.



FIG. 13 is a graph showing experimental data for moles of pyrrhotite phase across temperatures 200-900° C. for sulfur loading less than 1.



FIG. 14 is a graph showing experimental data for moles of pyrrhotite and trendlines for sulfur loadings 1-2 in the T350-650 zone.



FIG. 15 is a graph showing experimental data for moles of pyrite (FeS2) and trendlines for sulfur loadings 1-2 in the T350-650 zone.



FIG. 16 is a graph showing experimental data for pyrrhotite sulfidation extent for sulfur loading 0-1 and 1-2 across temperatures 200° C.-900° C.



FIG. 17 is a graph showing experimental data for H2S generation capacity for different metal sulfides.



FIG. 18 is a graph showing experimental data for regenerability with H2S for different metal sulfides.



FIG. 19 is a graph showing experimental data for H2S generation capacity of a Co—S system for different temperatures.



FIG. 20 is a graph showing experimental data for H2S generation capacity of a Pb—S system for different temperatures.





DETAILED DESCRIPTION

Systems and methods disclosed and contemplated herein relate to alkene generation. Disclosed systems and methods employ reducible metal sulfides during conversion of alkanes to alkenes, typically in a chemical looping reactor system. Some implementations can utilize two reactor systems. Some implementations can utilize single, fixed bed reactor systems.


In certain aspects, systems and methods disclosed herein address one or more drawbacks of catalytic ODH reactions by splitting an oxidant stream and an alkane stream. In some instances, those streams are provided to two reactors operating independent of each other. In some instances, those streams are sequentially provided to a single reactor. Generally, an alkane or a mixture of alkanes reacts with a metal sulfide (MSx) to form the alkene, H2S and/or a sulfur containing compound in a reactor. Here M is the metal component of the metal sulfide and S represents the sulfur in the solid lattice. Thus, the metal sulfide acts as the sulfur source that carries out the oxidation of H2 to H2S, thus improving the alkane conversion.


During exemplary operation of a two reactor system, the MSx can reduce to MSx-1, which is sent to the sulfidation reactor where a sulfur source regenerates the metal sulfide into its original form, i.e. MS2. This regeneration is different from the regeneration steps in a catalytic system, because this operation is a part of the chemical looping structure. The regeneration step in a catalytic system is carried out to address the loss of reactivity of the catalyst under non-ideal and unstable conditions. However, an ideal catalyst would portray a stable performance, without requiring a regeneration step. The chemical looping mode, however, intentionally carries out the reduction and oxidation reactions and the oxidation or regeneration reaction is performed to complete the loop. In other words, the metal sulfide can be considered as a sulfur carrier between the two reactors, where the two reactors follow very different reaction mechanisms. The regeneration reactor is also capable of producing a value-added product such as H2, which is not the case in the catalytic system. The chemical looping mode thus allows for the two reactors to be governed by different thermodynamic and kinetic factors based on their operating parameters.


I. CHEMICAL ASPECTS

Systems and methods of the present disclosure may include input streams provided to reactor systems and output streams generated by reactor systems. The sections below discuss various chemical aspects of exemplary systems and methods.


A. Input Streams


Exemplary reactor systems may receive a gaseous alkane input stream and a sulfur stream. In two reactor configurations, exemplary reactors may also receive metal sulfide particles.


Gaseous alkane input streams may include one alkane species or may be a mixture of alkane species. As implied, alkanes in gaseous alkane input streams are in a gaseous phase.


Alkanes usable in gaseous alkane input streams may be linear, branched, or cyclic. In some implementations, gaseous alkane input streams may include at least one C2-C6 alkane. In some instances, gaseous alkane input streams may include only C2 alkanes, only C3 alkanes, only C4 alkanes, only C5 alkanes, or only C6 alkanes. In some instances, gaseous alkane input streams may include a mixture of C2-C5 alkanes; a mixture of C3-C6 alkanes; a mixture of C2-C4 alkanes; a mixture of C3-C5 alkanes; a mixture of C4-C6 alkanes; a mixture of C2 and C3 alkanes; a mixture of C3 and C4 alkanes; a mixture of C4 and C5 alkanes; or a mixture of C5 and C6 alkanes. Example alkanes may include, but are not limited to, ethane, propane, n-butane, n-pentane, and n-hexane.


In some instances, gaseous alkane stream input may also contain CH4 as an alkane component. CH4 may or may not react with the metal sulfide depending on the operating conditions.


In some instances, gaseous alkane input streams may also include one or more non-alkane components, such as inert components. Example non-alkane components that may be present in gaseous alkane input streams include, but are not limited to, hydrogen (H2), nitrogen (N2) and argon (Ar).


Example sulfur streams may include one or more allotropes of sulfur. For instance, exemplary sulfur streams may include, but are not limited to, S2, S3, S4, and S8. In some instances, example sulfur streams may include hydrogen sulfide (H2S) and/or mercaptans like CH3SH. In some instances, example sulfur streams may include one or more inert carrier gases including, but not limited to, nitrogen (N2) and argon (Ar).


In single reactor configurations, example reactors may also receive inert gas streams. Example inert gas streams may include, but are not limited to, nitrogen (N2) and/or argon (Ar).


B. Output Streams


Exemplary reactor systems may generate various output streams. In two reactor configurations, one reactor may provide an output stream including one or more desired products and the other reactor may provide a second output stream.


Exemplary output streams may include one or more desired products. For instance, a metal sulfide (MSx) particle reacting with an alkane in the gaseous alkane input stream may generate an alkene, a reduced metal sulfide (MSx-1), and one or more of: hydrogen sulfide (H2S) and other sulfur containing products like S2, among other products. In single reactor and two reactor configurations, a product stream may include the generated alkene and one or more of hydrogen sulfide (H2S) and other sulfur containing products, among other products. In two reactor configurations, the reduced metal sulfide (MSx-1) may be provided to the other reactor.


As another example, a reduced metal sulfide (MSx-1) particle reacting with sulfur in a sulfur stream may generate a metal sulfide (MSx) particle. In some instances, a reactor output stream can include the generated hydrogen (H2) when the input sulfur stream to the reactor contains a hydrogen feed such as H2S. In some instances, a reactor output stream may include hydrogen sulfide (H2S). In two reactor configurations, the metal sulfide (MSx) particle may be provided to the first reactor.


C. Reactions


Various reactions may occur in exemplary reactor systems. For example, alkane(s) and metal sulfide (MSx) may be provided to a reactor. The metal sulfide MSx may be capable of donating its sulfur to H2 to form H2S and alkene(s). In this process, MSx converts to MSx-1, which may be sent to a second reactor (or which may remain in the reactor in single reactor configurations). An input stream that includes sulfur may be used to regenerate the MSx-1 to MSx, where the MSx-1 reacts with sulfur in the input stream to form MSx.


Exemplary reactions are provided below without limitation. In implementations where propane is provided as an alkane, reaction (3) may occur in a reactor that includes a metal sulfide (MSx) particle.

C3H8+MSx→C3H6+H2S+MSx-1   (3)


In implementations where a reactor includes a reduced metal sulfide (MSx-1) particle and receives a sulfur stream that includes H2S, reaction (4) may occur:

MSx-1+H2S→H2+MSx  (4)


In implementations where butane is provided as an alkane, reaction (5) may occur in a reactor that includes a metal sulfide (MSx) particle.

C4H10+MSx→C4H8+H2S+MSx-1  (5)


In implementations where a reactor includes a reduced metal sulfide (MSx-1) particle and receives a sulfur stream that includes S8, reaction (6) may occur:

MSx-1+(⅛)S8→MSx  (6)


D. Metal Sulfide Particles


Various types of metal sulfide particles may be utilized in exemplary systems and methods. Generally, metal sulfide particles used in exemplary systems and methods are either in a reduced form or in an oxidized form. The reduced or oxidized terms refer to the change in oxidation state of the metal, lattice sulfur species, or both. Oxidized metal sulfide particles can react with an alkane, dehydrogenate the alkane, and form H2S, which reduces the oxidized metal sulfide particle into a reduced metal sulfide or a metal/metal alloy. The reduced metal sulfide particle or metal/metal alloy can accept sulfur in the solid lattice from a sulfur source. Upon sulfur addition/oxidation, reduced metal sulfide particles can form oxidized metal sulfide particles.


Exemplary metal sulfide particles have an active metal capable of forming sulfides where active metal, sulfur, or both display one or more than one oxidation states. Generally, example metals (M) may be transition state, metalloid, or rare earth metals. In some instances, example metal sulfide particles may be bimetallic or trimetallic. Example metals (M) include, but are not limited to, Fe, Co, Ni, Cu, W, La, Ce, Ti, Zn, Cd, Ru, Rh, and Pb. The metals may include sulfide (S2−), persulfide (S22−), or another sulfur species.


There may be more than one active metal in a metal sulfide either in the form of a mixed metal sulfide or as a promotor or dopant. Dopants and promoters may be alkali metals, alkaline earth metals, transition state metals, metalloid metals, or rare earth metals. Supports may be inert oxides of alkali metals, sulfides of alkali metals, alkaline earth metals, transition state metals, metalloid metals, or rare earth metals. The amount of support, promotor, or dopant material may vary from 0.01 wt %, 10 wt %, 20 wt %, 30 wt % 40 wt %, 50 wt %, 60 wt %, 70 wt %, 80 wt %, 90 wt % or any value in between.


The metal sulfide may contain metal sulfides from group I or group II in the form of promotor, dopant, or to form mixed metal sulfides. Inert sulfides such as, but not limited to MoS2, Ce2S3, MgS, Na2S may be used as supports and dopants and promotors as well. Inert oxides that do not react with the metal sulfide may be used as promotor, dopant, or as a support. Examples of promotors, dopants, or supports may include, but not limited to, K2O, MgO, SiO2, and Al2O3, as well as mixed metal oxides such as Mg Al2O4.


Oxides that do react with the sulfide to form metastable structures can also be considered as a metal sulfide. Dopants, promotors, and supports, in addition to other components, may provide high surface area, highly active sulfur vacancies.


Exemplary metal sulfide particles may be synthesized by any suitable method including, but not limited to, wet milling, extrusion, pelletizing, freeze granulation, co-precipitation, wet-impregnation, sol-gel, and mechanical compression. Certain techniques may be used to increase the strength and/or reactivity of exemplary metal sulfide particles, such as sintering synthesized particles or adding a binder or sacrificial agent with synthesis methods such as sol-gel combustion.


Exemplary metal sulfide particles may be provided as powders or pellets. Example powders may include metal sulfide particles having a size of about 100 μm. Example pellets may include metal sulfide particles having a size of about 2 mm.


Example metal sulfide particles may be bulk structures or mesoporous supported nanoparticles. Example bulk structures may have random orientations of large grains, cage-like structures for added physical strength, layered structure, or similar configurations. Example mesoporous supported metal sulfide particles may have a mesoporous support such as Santa Barbara Amorphous-15 silica (SBA-15), Santa Barbara Amorphous-16 silica (SBA-16), and other SBA variants, Mesoporous-Al2O3, Mesoporous CeO2, etc., which have micro and meso pores, in which metal sulfide nanoparticles may be embedded.


Example metal sulfide particles may have various densities. For instance, example metal sulfide particles may have a density of from 1.5 g/cm3 to 6 g/cm3. In various implementations, example metal sulfide particles may have a density of from 1.5 g/cm3 to 3 g/cm3; 3 g/cm3 to 6 g/cm3; 2 g/cm3 to 4 g/cm3; 4 g/cm3 to 6 g/cm3; 1.5 g/cm3 to 2 g/cm3; 2 g/cm3 to 3 g/cm3; 3 g/cm3 to 4 g/cm3; 4 g/cm3 to 5 g/cm3; or 5 g/cm3 to 6 g/cm3.


II. REACTOR CONFIGURATIONS AND OPERATING CONDITIONS

Exemplary reactor systems may be single reactor system configurations or two reactor system configurations. In single reactor system configurations, example reactors may be configured to be fixed bed reactors. In two reactor system configurations, example reactors may be configured to be moving beds, ebullated beds, fluidized beds, or combinations thereof.


Exemplary reactor systems disclosed and characterized herein can operate under temperatures and pressures sufficient for alkene generation and metal sulfide regeneration.


Temperatures within exemplary reactors during oxidative dehydrogenation (performed in the first reactor in two reactor systems) are typically between 200° C. and 1200° C. In various implementations, a temperature of an exemplary reactor during oxidative dehydrogenation can be between 300° C. to 1100° C.; 400° C. to 1000° C.; 200° C. to 500° C.; 500° C. to 800° C.; 800° C. to 1100° C.; 400° C. to 800° C.; 800° C. to 1200° C.; 500° C. to 700° C.; 700° C. to 900° C.; 900° C. to 1100° C.; 600° C. to 800° C.; 400° C. to 500° C.; 500° C. to 600° C.; 600° C. to 700° C.; 700° C. to 800° C.; 800° C. to 900° C.; or 900° C. to 1000° C.


Temperatures within exemplary reactors during sulfidation (performed in the second reactor in two reactor systems) are typically between 200° C. and 1000° C. In various implementations, a temperature of an exemplary reactor during sulfidation can be between 300° C. to 900° C.; 400° C. to 800° C.; 200° C. to 600° C.; 600° C. to 1000° C.; 300° C. to 500° C.; 500° C. to 700° C.; 700° C. to 925° C.; 300° C. to 400° C.; 400° C. to 500° C.; 500° C. to 600° C.; 600° C. to 700° C.; 700° C. to 800° C.; or 800° C. to 1000° C.


Pressures within exemplary reactors during oxidative dehydrogenation (performed in the first reactor in two reactor systems) are typically between 1 atm and 30 atm. In various implementations, a pressure of an exemplary reactor during oxidative dehydrogenation can be between 1 atm and 15 atm; 15 atm and 30 atm; 2 atm and 25 atm; 5 atm and 20 atm; 1 atm and 5 atm; 5 atm and 10 atm; 10 atm and 15 atm; 15 atm and 20 atm; 20 atm and 25 atm; 25 atm and 30 atm; 1 atm and 3 atm; 3 atm and 6 atm; 6 atm and 9 atm; 9 atm and 12 atm; 1 atm and 2 atm; 2 atm and 3 atm; 3 atm and 4 atm; 4 atm and 5 atm; 5 atm and 6 atm; 6 atm and 7 atm; 7 atm and 8 atm; 8 atm and 9 atm; or 9 atm and 10 atm.


Pressures within exemplary reactors during sulfidation (performed in the second reactor in two reactor systems) are typically between 1 atm and 30 atm. In various implementations, a pressure of an exemplary reactor during sulfidation can be between 1 atm and 15 atm; 15 atm and 30 atm; 2 atm and 25 atm; 5 atm and 20 atm; 1 atm and 5 atm; 5 atm and 10 atm; 10 atm and 15 atm; 15 atm and 20 atm; 20 atm and 25 atm; 25 atm and 30 atm; 1 atm and 3 atm; 3 atm and 6 atm; 6 atm and 9 atm; 9 atm and 12 atm; 1 atm and 2 atm; 2 atm and 3 atm; 3 atm and 4 atm; 4 atm and 5 atm; 5 atm and 6 atm; 6 atm and 7 atm; 7 atm and 8 atm; 8 atm and 9 atm; or 9 atm and 10 atm.


Various flow rates may be used within exemplary reactors during oxidative dehydrogenation (performed in the first reactor in two reactor systems) and sulfidation (performed in the second reactor in two reactor systems). Specific flow rates can vary, particularly depending upon the scale of the operation, based on the stoichiometry and reaction kinetics of particular alkane and MSx pairs or sulfur-containing MS pairs. For illustration, example gas hourly space velocities can vary from 1 ml/g·hr to 5000 ml/g·hr.


For the single reactor configuration, the temperature, pressure and gas hourly space velocities mentioned for the two-reactor system are applicable.


For the single reactor configuration, the outlet gas composition may be measured or estimated to determine the segment times of the alkane dehydrogenation step or the sulfidation step.


The threshold value for the alkane dehydrogenation step may be determined by the conversion of the alkane, selectivity of the desired alkene, H2S/Sulfur containing compounds produced or a combination of these parameters.


The threshold value for the inert purging step may be determined by the volume of the reactor. The time for this segment can be determined by sending the inert gas into the reactor where the volume of the gas inside the reactor is replaced by anywhere between 2 to 10 times to ensure the gas has been purged.


The threshold value for the sulfidation step is determined by the amount of sulfur that reacted with the reduced metal sulfide. This may be estimated by measuring the difference between the sulfur in the inlet and outlet streams through gas analyzers.


III. SYSTEM ARRANGEMENTS


FIG. 2 shows a schematic diagram of an exemplary reactor system 100. As shown, reactor system 100 includes reactor 102, reactor 104, alkane source 106, and sulfur source 114. Reactor system 100 is an example embodiment of a two reactor system that may be used for alkene generation using metal sulfides. Reactor system 100 may be configured for continuous operation. Other embodiments may include more or fewer components.


Reactor 102 receives gaseous alkane input stream 108 and metal sulfide (MSx) particles via input 118. The metal sulfide (MSx) particles react with alkane from gaseous alkane input stream 108 to generate an alkene, a reduced metal sulfide (MSx-1) particle, hydrogen sulfide (H2S) and other sulfur containing streams formed during the reaction. The reduced metal sulfide (MSx-1) particles are provided to reactor 104 via input 110.


Alkane source 106 provides one or more alkanes to reactor 102 in gaseous alkane input stream 108. Alkane source 106 may be configured to adjust a flow rate of gaseous alkane input stream 108. In some instances, the flow rate of gaseous alkane input stream 108 may be adjusted based on conversion data for an output stream 112 of reactor 102.


Reactor 102 provides a product stream 112 that includes alkene and hydrogen sulfide (H2S). Product stream 112 can also include one or more sulfur-containing compounds. In some instances, product stream 112 includes one or more monitoring units to monitor conversion rates in reactor 102. Based on measured conversion rates, flow rates of the gaseous alkane input stream 108 and/or metal sulfide particles (MSx) may be adjusted to achieve desired conversion rates.


Reactor 104 may receive a sulfur stream 116 from sulfur source 114 and reduced metal sulfide (MSx-1) particles 110 from reactor 110. In reactor 104, the reduced metal sulfide (MSx-1) particles may react with sulfur in the sulfur stream to generate the metal sulfide (MSx) particle and hydrogen (H2). One or more additional components may be generated depending upon constituents in sulfur stream 116.


Sulfur source 114 provides a sulfur stream 116 to reactor 104. Sulfur source 114 may be configured to adjust a flow rate of sulfur stream 116. In some instances, the flow rate of sulfur stream 116 may be adjusted based on conversion data for an output stream 120 of reactor 104. In various implementations, and as discussed in greater detail above, sulfur stream 116 may include one or more allotrope of sulfur and/or hydrogen sulfide (H2S).


Reactor 104 provides metal sulfide (MSx) particles to reactor 102. Reactor 104 also provides an output stream 120 that includes one or more gaseous components. For instance, output stream 120 can include hydrogen (H2).


Output stream 120 may include hydrogen sulfide (H2S). In some instances, reactor system 100 may also include one or more separation units (not shown in FIG. 2) that can separate hydrogen sulfide (H2S) from output stream 120. Then, the separated hydrogen sulfide (H2S) may be recycled to reactor 104.


In some instances, reactor system 100 may include one or more separation units (not shown in FIG. 2) that can separate hydrogen sulfide (H2S) from product stream 112 generated by reactor 102. Then, the separated hydrogen sulfide (H2S) may be recycled to reactor 104.



FIG. 3 shows a schematic diagram of example reactor system 200. As shown, reactor system 200 includes reactor 208, alkane source 202, inert gas source 212, and sulfur source 218. Reactor system 200 is an exemplary embodiment of a single reactor system that may be used for alkene generation using metal sulfides. Reactor system 200 may be configured for batch operation. Other embodiments may include more or fewer components.


Alkane source 202 may provide a gaseous alkane input stream 204 to reactor 208. One or more flow regulation units 206 may be used to selectively provide gaseous alkane input stream 204 to reactor 208 and/or control a flow rate of gaseous alkane input stream 204. Exemplary components that may be included in gaseous alkane input stream 204 are discussed in greater detail above.


Reactor 208 may be configured as a fixed bed reactor including metal sulfide (MSx) particles. In reactor 208, the metal sulfide (MSx) particles may react with alkane in gaseous alkane input stream 204 to generate an alkene, a reduced metal sulfide (MSx-1) particle, and hydrogen sulfide (H2S).


Reactor 208 may generate a product stream 224 that includes alkene and hydrogen sulfide (H2S), and, in some instances, sulfur-containing compounds. Gas analyzer unit 211 may monitor alkane conversion and/or alkene selectivity. One or both of those values can be compared to a threshold value and, upon reaching the value, flow regulation unit 206 may stop the flow of gaseous alkane input stream 204 to reactor 208.


Inert gas source 212 may provide an inert gas stream 214 to reactor 208. One or more flow regulation units 216 may be used to selectively provide inert gas stream 214 to reactor 208 and/or control a flow rate of inert gas stream 214. Exemplary components of inert gas stream 214 are discussed in greater detail above. Generally, inert gas stream 214 can purge alkane(s), H2S, and alkene gas from reactor 208.


Gas analyzer unit 211 may monitor alkane(s), H2S, and alkene gas content in output stream 224. Upon detecting that most or all of those components are not present in output stream 224, flow regulation unit 216 may be configured to stop a flow of inert gas stream 214.


Sulfur source 218 may provide a sulfur stream 220 to reactor 208. One or more flow regulation units 222 may be used to selectively provide sulfur stream 220 to reactor 208 and/or control a flow rate of sulfur stream 220. Example components of sulfur stream 220 are discussed in greater detail above.


Gas analyzer unit 211 may be used to monitor hydrogen (H2) content in output stream 224. Upon detecting a desired conversion of metal sulfide, flow regulation unit 222 may be configured to stop a flow of sulfur stream 220. Another purge of reactor 208 can be subsequently run by providing the inert gas stream 214 to reactor 208.


Usually, reactor 208 receives only one of gaseous alkane input stream 204, inert gas stream 214, and sulfur stream 220 at a time. That is, those streams are usually not mixed together and provided to reactor 208.


IV. METHODS OF OPERATION


FIG. 4 shows example method 300 for operating a reactor system. In some instances, method 300 may be used to operate example two reactor system 100 discussed above with reference to FIG. 2. Other embodiments of method 300 may include more or fewer operations.


Method 300 may begin by providing a gaseous alkane input stream (operation 302) to a first reactor. The alkane in the gaseous alkane input stream may include at least one C2-C6 alkane. Other aspects of the gaseous alkane input stream are discussed in greater detail above.


Metal sulfide (MSx) particles also may be provided (operation 304) to the first reactor. Various aspects of exemplary metal sulfide (MSx) particles are discussed in greater detail above. In the first reactor, the metal sulfide (MSx) particles may react with alkane in the gaseous alkane input stream to generate an alkene, reduced metal sulfide (MSx-1) particles, and hydrogen sulfide (H2S) and/or one or more other sulfur containing compounds.


In some instances, during operation, a temperature of the first reactor may be maintained to be between 200° C. and 1200° C. In some instances, during operation, a pressure of the first reactor may be maintained to be between 1 atm and 30 atm.


During operation, a product stream may be collected (operation 306) from the first reactor. Typically, the product stream includes the alkene generated in the first reactor and hydrogen sulfide (H2S). In some instances, exemplary method 300 may also include separating the hydrogen sulfide (H2S) from the product stream and recycling the separated hydrogen sulfide (H2S) to the second reactor.


The reduced metal sulfide (MSx-1) particles may be provided (operation 308) to the second reactor. A sulfur stream also may be provided to the second reactor (operation 310). Various aspects of example sulfur streams, including example components, are discussed above in greater detail. In the second reactor, the reduced metal sulfide (MSx-1) particle reacts with sulfur in the sulfur stream to generate the metal sulfide (MSx) particle and hydrogen (H2).


A second reactor output stream may be collected (operation 312). The second reactor output stream may include, at least, hydrogen (H2). In some instances, the second reactor output stream may include hydrogen sulfide (H2S). Optionally, example method 300 may include separating the hydrogen sulfide (H2S) from the second reactor output stream and recycling the separated hydrogen sulfide (H2S) to the second reactor.



FIG. 5 shows exemplary method 400 for operating a reactor system. In some instances, method 400 can be used to operate a single reactor system 200 discussed above with reference to FIG. 3. Typically, exemplary method 400 is performed with a fixed bed reactor that includes metal sulfide (MSx) particles. Other embodiments of method 400 may include more or fewer operations.


Method 400 may begin by providing a gaseous alkane input stream (operation 402) to the reactor. The alkane in the gaseous alkane input stream may include at least one C2-C6 alkane. Other aspects of the gaseous alkane input stream are discussed in greater detail above. The metal sulfide (MSx) particles react with alkane in the gaseous alkane input stream to generate an alkene, a reduced metal sulfide (MSx-1) particle, and hydrogen sulfide (H2S). A product stream is collected (operation 404) that includes, at least, the alkene and hydrogen sulfide (H2S) and/or one or more other sulfur-containing compounds.


While providing the gaseous alkane input stream, the product stream can be monitored for whether alkane conversion is below a predetermined threshold (operation 406). If alkane conversion is above the predetermined threshold, the gaseous alkane input stream may be continually provided (operation 402) to the reactor. In some instances, while providing the gaseous alkane input stream (operation 402), a temperature of the reactor may be maintained to be between 200° C. and 1200° C. and a pressure of the reactor can be maintained to be between 1 atm and 30 atm.


If alkane conversion is below the predetermined threshold, then the gaseous alkane input stream may be stopped, and an inert gas stream is provided (operation 408) to the reactor. Providing the inert gas stream can purge alkane, alkene, and H2S from the reactor. In some instances, a reactor output stream may be monitored, and inert gas may be provided until alkane, alkene, and/or H2S content drops below a predetermined threshold. In some instances, the hydrogen sulfide (H2S) may be separated from the reactor output stream and recycled back to the reactor.


After providing the inert gas stream, a sulfur stream may be provided (operation 410) to the reactor. The sulfur stream may include one or more sulfur-containing components, such as an allotrope of sulfur or hydrogen sulfide (H2S). Additional details about the sulfur stream are provided above. In some instances, while providing the sulfur stream (operation 410), a temperature of the reactor may be maintained to be between 200° C. and 1000° C. and a pressure of the reactor may be maintained to be between 1 atm and 30 atm.


After providing the sulfur stream (operation 410), the reduced metal sulfide (MSx-1) particle may react with sulfur in the sulfur stream to generate the metal sulfide (MSx) particle and hydrogen (H2). The reactor output stream may be collected (operation 412), which includes, at least, hydrogen (H2).


The reactor output stream may be monitored (operation 414) for whether metal sulfide conversion in the reactor is above a predetermined threshold. If the metal sulfide conversion is below the predetermined threshold, the sulfur stream may be continued to be provided (operation 410) to the reactor.


If the metal sulfide conversion is above the predetermined threshold, then sulfur stream may be stopped. Then, the inert gas stream may be provided (operation 416) to the reactor. Providing the inert gas stream can purge the reactor of gaseous species generated while sulfur was provided to the reactor. Then, method 400 may return to operation 402 and gaseous alkane input stream can be provided to the reactor.


V. EXPERIMENTAL EXAMPLES

Experimental examples were conducted, and various aspects are discussed below. In particular, two experiments were conducted where metal sulfide particles were iron (Fe)-based, propane was the alkane, and H2S was the sulfur source.


A. Exemplary Fe—S System


An example first reactor was operated at 650° C. with a propane space velocity of 300 ml/g·hr and Fe0.89S metal sulfide particles. An example second reactor was operated at 800° C. with an H2S space velocity of 15 ml/g·hr. The reaction was carried out in a u-tube reactor and a mass spectrometer was used to measure the gas composition for the alkane dehydrogenation step. For the sulfidation step, a H2S gas analyzer was used. The mass spectrometer and the H2S analyzer were calibrated with known concentrations of gas mixtures. These continuous gas analyzers analyzed a slip stream of the product gas. Results for this example system are shown in FIG. 6 and FIG. 7. FIG. 6 shows data for the oxidative dehydrogenation reaction in the first reactor, and FIG. 7 shows an H2S sulfidation reaction of FeS to Fe0.89S.


A characteristic trend seen in FIG. 6 for propylene selectivity and propane conversion can be attributed to the change in the surface species with the reaction time. A maximum yield of propylene was calculated to be 17.2%. A loss in sulfur from the iron sulfide in the first reactor is seen in the form of H2S production in gas phase along with the propylene produced. The sulfidation reaction converts H2S into H2, re-sulfating the iron sulfide into the original state of Fe0.89S.


To measure the performance of metal sulfides, thermodynamic studies were conducted using H2 as reactant gas. There are two ways in which alkanes can interact with metal sulfides in S-ODH reactor, alkanes react directly with metal sulfides to form alkenes and H2S or alkanes can thermochemically crack over metal sulfide surface forming alkenes and H2. This H2 then reacts with metal sulfide to form H2S. In both these ways, formation of H2S drives the reaction and pushes dehydrogenation equilibrium forward. Hence, to asses metal sulfides for the proposed process, its ability to convert H2 to H2S should be measured as it is the equilibrium determining reaction. In view of this, all thermodynamic calculations on metal sulfides are performed with H2 as reactant rather than any alkanes.


Generally, FIG. 8 and FIG. 9 show thermodynamic data for the Fe—S system. FIG. 8 shows temperature dependence of iron (Fe) vacancy in the Fe—S system for the sulfidation reaction. FIG. 9 shows temperature dependence of iron (Fe) vacancy in the Fe—S system for the oxidative dehydrogenation reaction, assuming H2 to be the reactive species from alkane dehydrogenation. Under the current reaction conditions and temperatures, the system favorably forms Fe(1-x)S or pyrrhotite phase, where x varies between 0 and 0.2. The vacancy ‘x’ directly correlates to the amount of sulfidation of a particular phase.


B. Exemplary Fe—S—SiO2 System


An example first reactor was operated at 600° C. with a propane space velocity of 60 ml/g·hr and Fe0.89S+SiO2 metal sulfide particles (SiO2 present in the particles at 20 wt %). An example second reactor was operated at 800° C. with an H2S space velocity of 15 ml/g·hr. The instruments and methodology used are similar to Example A. Results for this example system are shown in FIG. 10 and FIG. 11. FIG. 10 shows data for the first reactor, and FIG. 11 shows an H2S sulfidation reaction of FeS to Fe0.89S.


It appears that the added SiO2, which played the role of a support, improved the surface area and the dispersion of active sites. The lower temperature and lower space velocity in the first reactor (compared to the experimental example above), appears to improve the overall selectivity and conversion of the system. The highest yield for propylene with this system is 39%, which the sulfidation reaction showing a similar trend as compared to the example above. The volcano trend of the yield depicts a strong dependence of the performance parameters with sulfur vacancies in the solid lattice. This provides insight into a mechanism of the first reactor (where the oxidative dehydrogenation occurs), which can be leveraged to synthesize sulfides that yield higher propylene selectivity.


C. Exemplary Fe—S System at Various Conditions


Following the example depicted in FIG. 8 and FIG. 9, several configurations of the MSx-MSx-1 pair could be envisioned. In this example, thermodynamic studies using FactSage 7.3 were done on Fe—S system to validate regenerability across a temperature range of 200° C.-1000° C. for both the reactors. 1 mol of Fe was sulfidized using 10 mols of H2S at a given temperature and the subsequent formed metal sulfide was reacted with 1 mol of H2 to simulate system performance. Further, MSx has been dubbed as FeSx and MSx-1 has been dubbed as FeSy. In the following reactions (7)-(9), x is the sulfur present in the most sulfidized metal phase, y is sulfur present in metal sulfide post reaction with H2, and m is the H2S required to regenerate FeSy.


Reaction (7) shows a sulfidation step to set up the calculation.

Fe+10H2S→FeSx+xH2+(10−x)H2S  (7)


Reaction (8) shows a reaction of metal sulfide with H2 (S-ODH).

FeSx+H2→FeSy+(x−y)H2S+(1−(x−y))H2  (8)


The reduced metal sulfide was reacted with H2S in incremental steps till it was completely regenerated, as shown in reaction (9).

FeSy+mH2S→FeSx+(x−y)H2+(m−(x−y))H2S  (9)


The results for this example are given below in table 1.









TABLE 1







Regenerability of Fe—S System












Initial
Amount of S





amount
remaining in
Amount
Amount



of S in
sulfide post
of S to be
of H2S



sulfide
reaction
regenerated
required



(mol of
with H2
(mol of
(mol of


Temperature
S/mol
(mol of S/mol
S/mol
H2S/mol


(° C.)
of Fe) [x]
of Fe) [y]
of Fe)
of Fe) [m]














200
2
1.901
0.099
0.11


300
2
1.454
0.546
1.2


400
2
1.128
0.872
7.4


500
1.4
1.073
0.327
9


600
1.167
1.050
0.117
6


700
1.149
1.041
0.108
3.5


800
1.131
1.033
0.098
3.5


900
1.114
1.026
0.088
2


1000
1.098
1.021
0.077
1.5









In this experiment, it was observed that in the temperature range of 200° C.-1000° C., iron metal sulfides swing between three phases: FeS2, Fe7S8 and FeSz (pyrrhotite z=1-1.25). Fe7S8 is not formed at 400° C. and above and FeS2 is not formed at 600° C. and beyond. [x] and [y] values are calculated based on these phases. At lower temperatures of 200° C. and 300° C., metal sulfide swings only between FeS2 and Fe7S8. As the temperature reaches 400° C. metal sulfide swings between FeS2 and FeSz. At 500° C., Fe is no longer sulfidized completely to FeS2, and swing occurs between mixture of FeS2 and FeSz and pure FeSz. Beyond 500° C., swing occurs only in pyrrhotite phase with change in [z] value, for instance at 600° C. [z] value changes from 1.167 to 1.1050 as indicated from [x] and [y] values in Table 1.


It appears from Table 1 that regenerability is achieved for entire temperature spectrum under different x and y values. Regeneration requires high partial pressure of H2S and hence, higher amount of H2S is needed even if all of it does not get converted.


D. Exemplary Fe—S System with S as the Sulfur in the Sulfur Stream


In all the following experimental examples, the iron loading was kept constant at 1 mole and sulfur was used as the sulfur stream. The temperatures studied were divided into three zones based on the formation of iron sulfide phases. The temperature zones are 200-300° C., 300-650° C. and 650-900° C. In all the temperature zones, sulfur loading was varied to understand the product distribution and sulfidation extent.


1. Zone 200° C.-300° C. (T200-300)


In this temperature zone, when the sulfur loading is less than 1, it was observed that the product consists predominantly of the pyrrhotite phase. As the temperature was increased, the pyrrhotite phase decreased (FIG. 12) at a fixed sulfur loading. At these low loadings, there was no unreacted sulfur left in the solution (S-MATT) phase since it was the limiting reactant. Limiting reactant is defined with respect to a mole of stoichiometric pyrrhotite (FeS).


Upon increasing the sulfur loading beyond 1 until 2, it was observed that the pyrrhotite phase decomposed completely into two phases of constant molar quantities of pyrite (FeS2) and Fe7S8 without any unreacted sulfur across the entire temperature range. However, it is worth noting that with an increased sulfur loading (from 1 towards 2), the molar quantities of pyrite increased and pyrrhotite decreased across the entire temperature range as illustrated in FIG. 12. This suggests a higher sulfide product (pyrite) is favored over Fe7S8 on increasing temperature when the sulfur is in excess with respect to iron.


Upon further increasing the sulfur loading beyond 2, it was observed the pyrrhotite fully decomposed into pyrite and the excess unreacted sulfur was left in the solution (MATT) phase. There was also no formation of pyrrhotite or Fe7S8 phase at these sulfur loadings. The trend is consistent across the entire temperature range.


2. Zone 350° C.-650° C. (T350-650)


In this temperature zone, when the sulfur loading is less than 1, the trends are similar to the T200-300 zone's sulfur loading<1. The product consisted of only pyrrhotite which decreased as the temperature is increased from 350° C. to 650° C. illustrated in FIG. 13.


When the sulfur loading is increased beyond 1 till 2, the product consisted of two phases here i.e. pyrrhotite and pyrite (FeS2). There is no formation of Fe7S8 in this zone unlike previous case. The molar quantities of pyrrhotite increased while the pyrite decreased as illustrated in FIG. 14 which is attributed to the pyrite decomposition into pyrrhotite phase upon increasing the temperature. It is worth noting that in this temperature zone, for the sulfur loadings of 1 to 1.5 the dominant phase is pyrrhotite while from 1.5 to 2 it is pyrite as shown in FIG. 14. In addition, the pyrite decreases and pyrrhotite increases for sulfur loadings (1-2) with increase in temperature. This is illustrated through the trendlines in the FIG. 15.


For sulfur loadings beyond 2, no pyrrhotite is observed furthermore across the entire zone. The products obtained at excessive sulfur is a mole of pyrite and the excess unreacted sulfur in found in the solution (S-MATT) phase till 450° C. While beyond 450° C. the unreacted sulfur is present in the gas phase in the form of S2 since the temperature is well beyond the boiling point of sulfur.


3. Zone 700° C.-900° C. (T700-900)


In this temperature zone, the only phase is pyrrhottite across all ranges of sulfur loading. Herein too the pyrrhottite phase decreased with increasing the temperature up until sulfur loading equals 1. For sulfur loadings beyond 1, the product consists of 1 mole of pyrrhotite and the excess unreacted sulfur is found in the gaseous phase in form of S2.


4. Zone 950° C.-1000° C. (T950-1000)


In this temperature range, to avoid the MATT phase, the sulfur loading was kept at excess with respect to iron (>1). The pyrrhotite phase was formed and any unreacted sulfur was found in the gas phase in form of S2.


5. Extent of Sulfidation


The sulfidation extent is measured in the pyrrhotite phase across the entire temperature range (200° C.-900° C.). It was observed that the sulfidation increased with an increase of the temperature for sulfur loadings up till 1 while the sulfidation extent is peaked at 700° C. for sulfur loadings beyond 1. This is shown in FIG. 16.


E. Experimental Example with Mixed Metal Sulfides


In this example, thermodynamic analysis using FactSage 7.3 was done on Fe—Ni—S and Fe—Cu—S system to determine improvement over Fe—S system. 1 mol of Fe along with 1 mol of Ni/Cu was sulfidized using 10 mols of H2S at 600° C. The formed bimetallic sulfide was reacted with 1 mol of H2 at 600° C. The reactions were similar to those given in Fe—S section. Comparison based on H2S generation for different metal sulfides is depicted in FIG. 17. H2S generation is normalized with respect to sulfur present in metal sulfide.


Fe—Cu—S system shows a 53% improvement in H2S formation over an Fe—S system. This means that Fe—Cu—S can push the equilibrium of alkane dehydrogenation using less amount of material. To confirm the regenerability of these bimetallic sulfides, sulfides post H2 reaction were reacted with incremental amounts of H2S. As an amount of Fe remains constant, H2S addition and sulfur content was normalized based on Fe to keep consistent with Fe—S single sulfide system. Both the Fe—Cu—S and Fe—Ni—S sulfides show complete regenerability at 600° C. as indicated by FIG. 18.


Like the pyrrhotite phase of Fe, bimetallic sulfides form phase of FeMSz where M is either Cu or Ni. The swing occurs between different [z] values. The change of [z] value for each sulfide can be calculated from FIG. 18 by subtracting sulfur content at zero addition of H2S with constant sulfur content achieved after addition of enough H2S.


F. Experimental Example with Co—S System


Metals other than Fe can exhibit multiple sulfidation states which can be exploited for alkane dehydrogenation. In this example, thermodynamic study on another transition metal Co is performed to estimate its overall performance. Co cannot be sulfidized with H2S, but it reacts with pure sulfur to form sulfides. 1 mol of Co was reacted with 10 mols of S at various temperatures. At every temperature, CoS2 was obtained as the most sulfidized phase which was reacted with 1 mol of H2. Based on the temperature, mixture of CoS and CoS2 is obtained with generation of H2S and S.


Reaction (10) below shows sulfidation.

Co+10S→CoS 2+8S  (10)


Reaction (11) below shows reaction with H2.

COS2+H2→aCoS+(1−a)CoS2+bH2S+(1−a−b)S  (11)


Results for H2S and S generation are shown in FIG. 19. At low temperatures, entire conversion of CoS2 is not obtained which results in poor H2S generation. Sulfur is also emitted in very low quantities at 700° C. and 800° C.


At 600° C., Co—S system is better than Fe—S system by a factor of 3.76. This huge enhancement is possible because CoS2 is very easily reduced to CoS by H2. CoS can be regenerated back to CoS2 using sulfur for temperature range of 200° C.-800° C. as shown in Table 2.









TABLE 2







Regenerability of Co—S System













Amount of S





Initial
remaining in





amount of
sulfide post
Amount
Amount of S



S in sulfide
reaction with
of S to be
required



(mol of
H2 (mol of
regenerated
(mol of


Temperature
S/mol of
S/mol of
(mol of S/mol
S/mol of


(° C.)
Co) [x]
Co) [y]
of Co)
Co) [m]














200
2
1.612
0.388
0.388


300
2
1.266
0.734
0.734


400
2
1.118
0.882
0.882


500
2
1.062
0.938
0.938


600
2
1.031
0.969
0.969


700
2
1
1
1


800
2
1
1.1
1.1









As CoS2 is always achieved as the most sulfidized phase, [x] value is always 2. [y] value is calculated based on amount of CoS and CoS2 present, shown below:

[y]=mols of CoS+2*mols of CoS2


As stated above, the table clearly shows low sulfide conversion at lower temperatures. In contrast to Fe—S system, excess amount of sulfidizing agent (S) is not required to fully regenerate the sulfide.


G. Experimental Example with Pb—S System


Similar to transition metals, even metalloids such as Pb can display multiple oxidation states. Using H2S, Pb can be sulfidized only until PbS. PbS is a stable phase and does not react with H2 in temperature range of 200° C.-700° C. and shows little reactivity at temperatures above 700° C. Hence, to achieve greater sulfidation, S is used to sulfidize and regenerate Pb metal sulfide. 1 mol of Pb was reacted with 10 mols of S at various temperatures. A mixture of PbS and PbSz (z>1) is obtained which is then further reacted with 1 mol of H2. The reaction scheme is similar to Co. The result for H2S formation is depicted in FIG. 20.


The sulfided form of Pb tends to lose a lot of sulfur. However, as the analysis was restricted to 1 mol of H2, entire potential of this metal sulfide is not captured in the above figure. Above 800° C., some Pb evaporates in form of PbS and hence temperatures only up till 700° C. are considered. PbS phase is formed only till temperatures below 400° C. while PbSz is formed in entire temperature range. The reduced metal sulfide can be regenerated using stoichiometric amount of S as seen in Table 3.









TABLE 3







Regenerability of Pb—S System












Initial
Amount of S





amount
remaining in
Amount of
Amount



of S in
sulfide post
S to be
of S



sulfide
reaction with
regenerated
required



(mol of
H2 (mol of
(mol of
(mol of


Temperature
S/mol of
S/mol of
S/mol
S/mol of


(° C.)
Pb) [x]
Pb) [y]
of Pb)
Pb) [m]














200
10
8.981
1.019
1.019


300
10
8.819
1.181
1.181


400
10
8.084
1.916
1.916


500
10
6.146
3.854
3.854


600
5.292
2.656
2.636
2.636


700
2.792
1
1.792
1.792









The tendency of Pb to retain S decreases as temperature increases and as almost complete conversion of H2 to H2S is obtained, the H2S produced/S input parameter increases with temperature as seen in FIG. 20. However, as mentioned earlier, metal sulfides at lower temperatures are capable of processing more H2, which is not studied to keep the study consistent with other metal systems. This can be seen by the difference in sulfur content between initial and reduced sulfided form (amount to be regenerated) which is being emitted as pure sulfur in this experimental example.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present document, including definitions, will control. Example methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in practice or testing of the present disclosure. The materials, methods, and examples disclosed herein are illustrative only and not intended to be limiting.


The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that do not preclude the possibility of additional acts or structures. The singular forms “a,” “an” and “the” include plural references unless the context clearly dictates otherwise. The present disclosure also contemplates other embodiments “comprising,” “consisting of” and “consisting essentially of,” the embodiments or elements presented herein, whether explicitly set forth or not.


The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (for example, it includes at least the degree of error associated with the measurement of the particular quantity). The modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression “from about 2 to about 4” also discloses the range “from 2 to 4.” The term “about” may refer to plus or minus 10% of the indicated number. For example, “about 10%” may indicate a range of 9% to 11%, and “about 1” may mean from 0.9-1.1. Other meanings of “about” may be apparent from the context, such as rounding off, so, for example “about 1” may also mean from 0.5 to 1.4.


Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of this disclosure, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed., inside cover, and specific functional groups are generally defined as described therein.


For the recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range of 6-9, the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the number 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0 are explicitly contemplated. For example, when a pressure range is described as being between ambient pressure and another pressure, a pressure that is ambient pressure is expressly contemplated.

Claims
  • 1. A system, comprising: an alkane source;a first reactor comprising: an alkane inlet in fluid communication with the alkane source;an oxidized particle inlet configured to receive a metal sulfide (MSx) particle;a reduced particle outlet configured to discharge a reduced metal sulfide (MSx-1) particle; anda first reactor product outlet configured to provide an alkene and hydrogen sulfide (H2S);a sulfur source;a second reactor comprising: a sulfur inlet in fluid communication with the sulfur source;a reduced particle inlet in fluid communication with the reduced particle outlet of the first reactor;an oxidized particle outlet in fluid communication with the oxidized particle inlet of the first reactor; anda second reactor product outlet configured to provide hydrogen (H2); anda separation unit in fluid communication with the first reactor product outlet, the separation unit comprising: a hydrogen sulfide (H2S) outlet in fluid communication with the sulfur inlet of the second reactor; andan alkene outlet configured to provide an alkene stream.
  • 2. The system according to claim 1, wherein the second reactor product outlet is configured to provide hydrogen sulfide (H2S); and further comprising a second separation unit in fluid communication with the second reactor product outlet, the second separation unit comprising:a hydrogen sulfide (H2S) outlet in fluid communication with the sulfur inlet of the second reactor; anda hydrogen (H2) outlet.
  • 3. The system according to claim 1, wherein the first reactor is configured as a moving bed.
  • 4. The system according to claim 1, wherein the second reactor is configured as a moving bed.
  • 5. The system according to claim 1, wherein the first reactor is configured as a fluidized bed.
  • 6. The system according to claim 1, wherein the second reactor is configured as a fluidized bed.
  • 7. The system according to claim 1, wherein a metal (M) in the metal sulfide (MSx) particle includes iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), tungsten (W), lanthanum (La), cerium (Ce), titanium (Ti), zinc (Zn), cadmium (Cd), ruthenium (Ru), rhodium (Rh) or lead (Pb).
  • 8. The system according to claim 7, wherein the metal sulfide (MSx) particle comprises at least two metals.
  • 9. The system according to claim 7, wherein the metal sulfide (MSx) particle has a size of 100 μm to 2 mm; and wherein the metal sulfide (MSx) particle has density of 1.5 g/cm3 to 6 g/cm3.
  • 10. The system according to claim 1, further comprising a monitoring unit in fluid communication with the first reactor product outlet, the monitoring unit being configured to: determine a conversion rate of alkanes in the first reactor; andadjust a flow rate from the alkane source based on the determined conversion rate.
  • 11. The system according to claim 10, wherein the sulfur source is configured to adjust a flow rate of sulfur to the second reactor based on conversion data for the second reactor product outlet.
  • 12. The system according to claim 1, wherein the metal sulfide (MSx) particle includes a promotor, dopant, or support selected from: MoS2, Ce2S3, MgS, Na2S, K2O, MgO, SiO2, Al2O3, and MgAl2O4.
  • 13. The system according to claim 1, wherein the metal sulfide (MSx) particle includes a mesoporous support selected from: Santa Barbara Amorphous-15 silica (SBA-15), Santa Barbara Amorphous-16 silica (SBA-16), Mesoporous Al2O3, and Mesoporous CeO2.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application is a continuation of U.S. patent application Ser. No. 17/602,889, filed on Oct. 11, 2021, which is a U.S. national stage entry of International Patent Application No. PCT/US2020/027324, filed on Apr. 8, 2020, which claims priority to U.S. Provisional Patent Application No. 62/831,617, filed on Apr. 9, 2019, the entire contents of each of which are fully incorporated herein by reference.

US Referenced Citations (240)
Number Name Date Kind
971206 Messerschmitt Sep 1910 A
1078686 Lane Nov 1913 A
1658939 Parsons Feb 1928 A
2182747 Marshall, Jr. Dec 1939 A
2198560 Marshall, Jr. Apr 1940 A
2449635 Barr Sep 1948 A
2614067 Reed et al. Oct 1952 A
2635947 Reed et al. Apr 1953 A
2686819 Johnson Aug 1954 A
2694622 Reed et al. Nov 1954 A
2697686 Leffer Dec 1954 A
2899374 Gomory Aug 1959 A
2979384 Weiner et al. Apr 1961 A
3027238 Watkins Mar 1962 A
3031287 Benson et al. Apr 1962 A
3338667 Pundsack Aug 1967 A
3353925 Baumann et al. Nov 1967 A
3382033 Kitagawa May 1968 A
3421869 Benson Jan 1969 A
3442613 Grotz, Jr. May 1969 A
3442619 Huebler et al. May 1969 A
3442620 Huebler et al. May 1969 A
3494858 Luckenbach Feb 1970 A
3523821 Bryce et al. Aug 1970 A
3573224 Strelzoff et al. Mar 1971 A
3619142 Johnson et al. Nov 1971 A
3726966 Johnston Apr 1973 A
3801661 Hart et al. Apr 1974 A
3879514 Dahl Apr 1975 A
3962409 Kotera et al. Jun 1976 A
4017270 Funk et al. Apr 1977 A
4039613 Kotera et al. Aug 1977 A
4057402 Patel et al. Nov 1977 A
4075079 Lang Feb 1978 A
4108732 Nuttall, Jr. Aug 1978 A
4151124 Gidaspow et al. Apr 1979 A
4155832 Cox et al. May 1979 A
4272399 Davis et al. Jun 1981 A
4318711 Smith Mar 1982 A
4325833 Scott Apr 1982 A
4334959 Green Jun 1982 A
4343624 Belke et al. Aug 1982 A
4348487 Goldstein et al. Sep 1982 A
4404086 Oltrogge Sep 1983 A
4420332 Mori et al. Dec 1983 A
4439412 Behie et al. Mar 1984 A
4521117 Ouwerkerk et al. Jun 1985 A
4594140 Cheng Jun 1986 A
4778585 Graff Oct 1988 A
4842777 Lamort Jun 1989 A
4861165 Fredriksson et al. Aug 1989 A
4869207 Engstrom et al. Sep 1989 A
4902586 Wertheim Feb 1990 A
4895821 Kainer et al. Jun 1990 A
4957523 Zarate et al. Sep 1990 A
5130106 Koves et al. Jul 1992 A
5227351 Gasper-galvin et al. Jul 1993 A
5244641 Khare Sep 1993 A
5365560 Tam Nov 1994 A
5447024 Ishida et al. Sep 1995 A
5456807 Wachsman Oct 1995 A
5509362 Lyon Apr 1996 A
5518187 Bruno et al. May 1996 A
5529599 Calderon Jun 1996 A
5538703 Flytzani-stephanopoulos Jul 1996 A
5584615 Micklich Dec 1996 A
5630368 Wagoner May 1997 A
5700438 Miller Dec 1997 A
5730763 Manulescu et al. Mar 1998 A
5762681 Lee et al. Jun 1998 A
5770310 Nogochi et al. Jun 1998 A
5827496 Lyon Oct 1998 A
5858210 Richardson Jan 1999 A
5891415 Alkhazov et al. Apr 1999 A
5965098 Boegner et al. Oct 1999 A
6007699 Cole Dec 1999 A
6030589 Hartweg et al. Feb 2000 A
6143203 Zeng et al. Nov 2000 A
6143253 Radcliffe et al. Nov 2000 A
6180354 Singh et al. Jan 2001 B1
6187465 Galloway Feb 2001 B1
6361757 Shikada et al. Mar 2002 B1
6395944 Griffiths May 2002 B1
6412559 Gunter et al. Jul 2002 B1
6444712 Janda Sep 2002 B1
6494153 Lyon Dec 2002 B1
6506351 Jain et al. Jan 2003 B1
6509000 Choudhary et al. Jan 2003 B1
6517631 Bland Feb 2003 B2
6607704 Guttridge et al. Aug 2003 B2
6631698 Hyppanen et al. Oct 2003 B1
6642174 Gaffney et al. Nov 2003 B2
6663681 Kinding et al. Dec 2003 B2
6667022 Cole Dec 2003 B2
6669917 Lyon Dec 2003 B2
6682714 Kindig et al. Jan 2004 B2
6685754 Kindig et al. Feb 2004 B2
6703343 Park Mar 2004 B2
6797253 Lyon Sep 2004 B2
6834623 Cheng Dec 2004 B2
6875411 Sanfilippo et al. Apr 2005 B2
6880635 Vinegar et al. Apr 2005 B2
6936363 Kordesch et al. Aug 2005 B2
7001579 Metzger et al. Feb 2006 B2
7067456 Fan et al. Feb 2006 B2
7244399 Myohanen et al. Jul 2007 B2
7404942 Sanfilippo et al. Jul 2008 B2
7496450 Ortiz Aleman et al. Feb 2009 B2
7749626 Take Jul 2010 B2
7767191 Thomas et al. Aug 2010 B2
7837975 Iyer et al. Nov 2010 B2
7840053 Liao Nov 2010 B2
8116430 Shapiro et al. Feb 2012 B1
8192706 Grochowski Jun 2012 B2
8202349 Molaison Jun 2012 B2
8419813 Hoteit et al. Apr 2013 B2
8435920 White et al. May 2013 B2
8508238 Mahalingam et al. Aug 2013 B2
8562928 Gupta Oct 2013 B2
8761943 Lou et al. Jun 2014 B2
8771549 Gauthier et al. Jul 2014 B2
8814963 Apanel et al. Aug 2014 B2
8877147 Fan et al. Nov 2014 B2
8877150 Fan et al. Nov 2014 B1
9017627 Gupta Apr 2015 B2
9290386 Wasas Mar 2016 B2
9376318 Fan et al. Jun 2016 B2
9382359 Kanellopoulos et al. Jul 2016 B2
9518236 Fan et al. Dec 2016 B2
9573118 Colozzi et al. Feb 2017 B2
9616403 Fan et al. Apr 2017 B2
9777920 Fan et al. Oct 2017 B2
9790605 Sheehan et al. Oct 2017 B2
9903584 Fan et al. Feb 2018 B2
10010847 Fan et al. Jul 2018 B2
10081772 Fan et al. Sep 2018 B2
11413574 Fan et al. Aug 2022 B2
20010055559 Sanfilippo et al. Dec 2001 A1
20020011428 Scheuerman Jan 2002 A1
20020059864 Janssen et al. May 2002 A1
20020179887 Zeng et al. Dec 2002 A1
20030006026 Matsumoto et al. Jan 2003 A1
20030024388 Scharpf Feb 2003 A1
20030031291 Yamamoto et al. Feb 2003 A1
20030102254 Eijsbouts et al. Jun 2003 A1
20030119658 Allison et al. Jun 2003 A1
20030124041 Neumann et al. Jul 2003 A1
20030130360 Kindig et al. Jul 2003 A1
20030153632 Wang et al. Aug 2003 A1
20030180215 Niu et al. Sep 2003 A1
20030188668 Bland Oct 2003 A1
20040028181 Charles, Jr. et al. Feb 2004 A1
20040030214 Schindler et al. Feb 2004 A1
20040092784 Legendre May 2004 A1
20040109800 Pahlman et al. Jun 2004 A1
20040126293 Geerlings et al. Jul 2004 A1
20040131531 Geerlings et al. Jul 2004 A1
20040132833 Espinoza et al. Jul 2004 A1
20040138060 Rapier et al. Jul 2004 A1
20040152790 Cornaro et al. Aug 2004 A1
20040154223 Powell et al. Aug 2004 A1
20040197612 Keefer et al. Oct 2004 A1
20040213705 Blencoe et al. Oct 2004 A1
20040233191 Mukherjee et al. Nov 2004 A1
20040244289 Morozumi et al. Dec 2004 A1
20040265224 Papavassiliou et al. Dec 2004 A1
20050002847 Maroto-Valer et al. Jan 2005 A1
20050054880 Dubois et al. Mar 2005 A1
20050175533 Thomas et al. Aug 2005 A1
20050255037 Otsuka et al. Nov 2005 A1
20050265912 Alvarez, Jr. et al. Dec 2005 A1
20050274648 Goldstein et al. Dec 2005 A1
20060021308 Merkel Feb 2006 A1
20060042565 Hu Mar 2006 A1
20060094593 Beech, Jr. et al. May 2006 A1
20070010588 Pearson Jan 2007 A1
20070049489 Becue et al. Mar 2007 A1
20070117714 Geyer et al. May 2007 A1
20070157517 Tsay et al. Jul 2007 A1
20070258878 Sanfilippo et al. Nov 2007 A1
20080031809 Norbeck et al. Feb 2008 A1
20080161624 Glover et al. Jul 2008 A1
20080164443 White et al. Jul 2008 A1
20080209807 Tsangaris et al. Sep 2008 A1
20080314838 Becker et al. Dec 2008 A1
20090000194 Fan et al. Jan 2009 A1
20090042070 Brown et al. Feb 2009 A1
20090160461 Zangl et al. Jun 2009 A1
20100071262 Robinson et al. Mar 2010 A1
20100119419 Sprouse et al. May 2010 A1
20100184589 Miyairi et al. Jul 2010 A1
20100187159 Naunheimer Jul 2010 A1
20100258429 Ugolin Oct 2010 A1
20100293845 Zeman et al. Nov 2010 A1
20100332170 Gao et al. Dec 2010 A1
20110005395 Vimalchand et al. Jan 2011 A1
20110011720 Rinker Jan 2011 A1
20110024687 White et al. Feb 2011 A1
20110054049 Lambert et al. Mar 2011 A1
20110094226 McHugh et al. Apr 2011 A1
20110100274 Kuske et al. May 2011 A1
20110138788 Kanda et al. Jun 2011 A1
20110146152 Vimalchand et al. Jun 2011 A1
20110176968 Fan et al. Jul 2011 A1
20110176988 Okamura et al. Jul 2011 A1
20110206469 Furuyama et al. Aug 2011 A1
20110289845 Davis et al. Dec 2011 A1
20110291051 Hershkowitz et al. Dec 2011 A1
20110300060 Guillou et al. Dec 2011 A1
20110303875 Hoteit et al. Dec 2011 A1
20120167585 Wormser Jul 2012 A1
20120171588 Fan et al. Jul 2012 A1
20120214106 Sit et al. Aug 2012 A1
20130071314 Gupta Mar 2013 A1
20130085365 Marashdeh et al. Apr 2013 A1
20130125462 Greiner et al. May 2013 A1
20130149650 Gauthier et al. Jun 2013 A1
20130255272 Ajhar et al. Oct 2013 A1
20130261355 Stamires Oct 2013 A1
20140021028 Paganessi et al. Jan 2014 A1
20140134096 Angelini et al. May 2014 A1
20140144082 Fan et al. May 2014 A1
20140275297 Velazquez-Vargas et al. Sep 2014 A1
20150238915 Fan et al. Aug 2015 A1
20150291420 Colozzi et al. Oct 2015 A1
20150343416 Fadhel et al. Dec 2015 A1
20160002034 Fan et al. Jan 2016 A1
20160016800 Noyes Jan 2016 A1
20160023190 Fan et al. Jan 2016 A1
20160030904 Fan et al. Feb 2016 A1
20160115026 Angelini et al. Apr 2016 A1
20160268616 Fan et al. Sep 2016 A1
20170015554 Siengchum et al. Jan 2017 A1
20170106355 Colozzi et al. Apr 2017 A1
20180296978 Peck et al. Oct 2018 A1
20180353933 Wendland et al. Dec 2018 A1
20190003704 Aranda et al. Jan 2019 A1
20190152778 Fan et al. May 2019 A1
20190232220 Fan et al. Aug 2019 A1
20200156032 Fan et al. May 2020 A1
Foreign Referenced Citations (77)
Number Date Country
1329761 Jan 2001 CN
1325319 Dec 2001 CN
1454711 Nov 2003 CN
1501534 Jun 2004 CN
101389734 Mar 2009 CN
101426885 May 2009 CN
102187153 Sep 2011 CN
102388005 Mar 2012 CN
102612625 Jul 2012 CN
102639213 Aug 2012 CN
102686301 Sep 2012 CN
103468322 Dec 2013 CN
102010028816 Nov 2011 DE
0161970 Nov 1985 EP
1134187 Sep 2001 EP
1445018 Aug 2004 EP
1580162 Sep 2005 EP
1845579 Oct 2007 EP
1933087 Jun 2008 EP
2279785 Feb 2011 EP
2441816 Apr 2012 EP
2450420 May 2012 EP
2495030 Sep 2012 EP
2515038 Oct 2012 EP
2601443 Jun 2013 EP
1976633 Mar 2014 EP
2924035 May 2009 FR
H03-68898 Mar 1991 JP
H10249153 Sep 1998 JP
2006-502957 Jan 2006 JP
20060096609 Sep 2006 KR
101364823 Feb 2014 KR
2725636 Jul 2020 RU
406055 Sep 2000 TW
426728 Mar 2001 TW
WO1990013773 Nov 1990 WO
WO1999065097 Dec 1999 WO
WO2000022690 Apr 2000 WO
WO2000068339 Nov 2000 WO
WO2001042132 Jun 2001 WO
WO2003070629 Aug 2003 WO
WO2007082089 Jul 2007 WO
WO2007122498 Nov 2007 WO
WO2007134075 Nov 2007 WO
WO2008019079 Feb 2008 WO
WO2008071215 Jun 2008 WO
WO2008082312 Jul 2008 WO
WO2008115076 Sep 2008 WO
WO2009007200 Jan 2009 WO
WO2009008565 Jan 2009 WO
WO2009009388 Jan 2009 WO
WO2009021258 Feb 2009 WO
WO2009023515 Feb 2009 WO
WO2009114309 Sep 2009 WO
WO2010037011 Apr 2010 WO
WO2010063923 Jun 2010 WO
WO2010126617 Nov 2010 WO
WO2011021161 Feb 2011 WO
WO2011031752 Mar 2011 WO
WO2011031755 Mar 2011 WO
WO2011084734 Jul 2011 WO
WO2012064712 May 2012 WO
WO2012077978 Jun 2012 WO
WO2012144899 Oct 2012 WO
WO2012155054 Nov 2012 WO
WO2012155059 Nov 2012 WO
WO2013040645 Mar 2013 WO
2014072600 May 2014 WO
WO2014085243 Jun 2014 WO
WO2014091024 Jun 2014 WO
WO2014152814 Sep 2014 WO
WO2011153568 Dec 2014 WO
WO2014195904 Dec 2014 WO
WO2016053941 Apr 2016 WO
2017065749 Apr 2017 WO
WO2017162427 Sep 2017 WO
WO2020210865 Oct 2020 WO
Non-Patent Literature Citations (171)
Entry
European Patent Office Extended Search Report for Application No. 20787599.8 dated Dec. 22, 2022 (7 pages).
Abad et al., “Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier,” Fuel, 2006, vol. 85, Issue 9, pp. 1174-1185.
Abad et al., “Reduction Kinetics of CU-, Ni-, and Fe- Based Oxygen Carriers Using Syngas (CO + H2) for Chemical-Looping Combustion,” Energy Fuels, 2007, 21 (4), pp. 1843-1853.
Abad et al., “The use of iron oxide as oxygen carrier in a chemical-looping reactor,” Fuel, 2007, vol. 86, Issues 7-8, pp. 1021-1035.
Abdallah et al., “Comparison of mesoporous silicate supports for the immobilisation and activity of cytochrome c and lipase,” J. Mol. Catal. B: Enzym., 2014, 108, 82-88.
Adanez et al., “Progress in Chemical-Looping Combustion and Reforming technologies,” Progress in Energy and Combustion Science, 2012, vol. 38, Issue 2, pp. 215-282.
Adanez et al., “Selection of oxygen carriers for chemical-looping combustion,” Energy & Fuels, American Chemical Society, 2004, vol. 18, No. 2, pp. 371-377.
Ahern et al., “Comparison of fenofibratemesoporous silica drug-loading processes for enhanced drug delivery,” Eur. J. Pharm. Sci., 2013, 50, 400-409.
Alalwan et al., “Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: A materials characterization approach to understanding oxygen carrier performance,” Chemical Engineering Journal, 2017, 319, 279-287.
Alalwan et al., “α-Fe2O3 Nanoparticles as Oxygen Carriers for Chemical Looping Combustion: An Integrated Materials Characterization Approach to Understanding Oxygen Carrier Performance, Reduction Mechanism, and Particle Size Effects,” Energy Fuels, 2018, 32, 7959-7970.
Anisimov et al., “Density-functional calculation of effective Coulomb interactions in metals,” Phys. Rev. B, 1991, 43, 7570.
Azis et al., “On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC),” Chemical Engineering Research and Design, 2010, vol. 88, Issue 11, pp. 1505-1514.
Balasubramanian et al., “Hydrogen from methane in a single-step process,” Chem Engr Science, 1999, 54(15-16), 3543.
Barreca et al., “Methanolysis of styrene oxide catalysed by a highly efficient zirconium-doped mesoporous silica,” Appl. Catal. A, 2006, 304, 14-20.
Bell et al., “H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review,” Top Catal, 2016, 59, 1438-1457.
Burke et al., “Large pore bi-functionalised mesoporous silica for metal ion pollution treatment,” J. Hazard. Mater., 2009, 164, 229-234.
Cao et al., “Investigation of Chemical Looping Combustion by Solid Fuels. 1. Process Analysis,” Energy Fuels, 2006, 20(5), pp. 1836-1844.
Carrero et al., “A critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts,” ACS Catalysis, 2014, 4: 3357-3380.
Cavani et al., “Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?” Catalysis Today, 2007, 127(1): 113-131.
Cheng et al., “Carbon Dioxide Adsorption and Activation on Ceria (110): A density functional theory study,” J. Chem. Phys. 2013, 138, 014702.
Cheng et al., “Methane Adsorption and Dissociation on Iron Oxide Oxygen Carrier: Role of Oxygen Vacancy,” Phys. Chem. Chem. Phys. 2016, 18, 16423-16435.
Cheng et al., “Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carrier in chemical looping process,” Phys. Chem. Chem. Phys., 2016, 18, 32418-32428.
Cheng et al., “Propagation of Olefin Metathesis to Propene on WO3 Catalysts: A Mechanistic and Kinetic Study,” ACS Catal. 2015, 5, 59-72.
Cho et al., “Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion,” Fuel, 2004, vol. 83, Issue 9, pp. 1215-1225.
Chung et al., “Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications,” Energy Environ. Sci., 2017, 10, 2318-2323.
Coleman et al., “Synthesis and characterization of dimensionally ordered semiconductor nanowires within mesoporous silica,” J. Am. Chem. Soc., 2001, 123, 7010-7016.
Connell et al., “Process Simulation of Iron-Based Chemical Looping Schemes with CO2 Capture for Hydrogen and Electricity Production from Coal,” Presented at 29th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, Oct. 15-18, 2012, pp. 1274-1281.
De Diego et al., “Development of Cu-based oxygen carriers for chemical-looping combustion,” Fuel, 2004, vol. 83, Issue 13, pp. 1749-1757.
De Klerk, “Gas-to-Liquid Conversion.” Natural Gas Conversion Technologies Workshop of ARPA-E. U.S. Department of Energy, Houston, TX. vol. 13 (2012).
Delaney et al., “Development of chemically engineered porous metal oxides for phosphate removal,” J. Hazard. Mater., 2011, 185, 382-391.
Delaney et al., “Porous silica spheres as indoor air pollutant scavengers,” J. Environ. Monit., 2010, 12, 2244-2251.
Denton et al., “Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO2 from Syngas,” 2003.
EIA—Independent Statistics and Analysis. U.S. Department of Energy, U.S. Energy Information Administration “Annual Energy Outlook 2015 with Projections to 2040,” Apr. 2015.
EIA—Independent Statistics and Analysis. U.S. Department of Energy, U.S. Energy Information Administration, “How Much Petroleum Does the United States Import and from Where?” <https://www.eia.gov/tools/faqs/faq.php?id=727&t=6> webpage available as early as Mar. 22, 2017.
EIA—Independent Statistics and Analysis. U.S. Department of Energy, U.S. Energy Information Administration, “Natural Gas Vented and Flared.” <https://www.eia.gov/dnav/ng/NG_PROD_SUM_A_EPGO_VGV_MMCF_A.htm> webpage available as early as Feb. 29, 2016.
EIA—Independent Statistics and Analysis. U.S. Department of Energy, U.S. Energy Information Administration, “Natural Gas Weekly Update.” <https://www.eia.gov/naturalgas/weekly/> webpage available as early as Dec. 4, 2011.
Environmental Protection Agency, “Geological CO2 Sequestration Technology and Cost Analysis,” Technical Support Document, pp. i-vi & pp. 1-61, Jun. 2008.
Faezad Othman et al., “Utilization of Low-Grade Iron Ore in Ammonia Decomposition,” Procedia Chemistry, 2016, 19:119-124.
Faezad Othman et al., “Utilization of Malaysian Low Grade Iron Ore as Medium for Ammonia Decomposition,” ARPN Journal of Engineering and Applied Sciences, 2015, 10(22):17286-17288.
Fan et al., “Chemical looping processes for CO2 capture and carbonaceous fuel conversion prospect and opportunity,” Energy Environmental Science, 2012, p. 7254-7280.
Fan et al., “Utilization of chemical looping strategy in coal gasification processes,” Particuology, 2008, vol. 6, Issue 3, pp. 131-142.
Fan et al., “Chemical-Looping Technology Platform,” AIChE Journal, 61(1), 2-22 (2015).
Fan, “Chemical Looping Systems for Fossil Energy Conversions,” Wiley-AIChE: Hoboken, NJ, U.S.A.; 2010.
Flynn et al., “Pervaporation performance enhancement through the incorporation of mesoporous silica spheres into PVA membranes,” Sep. Purif. Technol., 2013, 118, 73-80.
Forero et al., “Syngas combustion in a 500 Wth Chemical-Looping Combustion system using an impregnated Cu-based oxygen carrier,” Fuel Processing Technology, 2009, vol. 90, Issue 12, pp. 1471-1479.
Forzatti, “Present status and perspectives in de-NOx SCR catalysis.” Appl. Catal. A: Gen., 222(1-2), 2001, 221-236.
Gao et al., “Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2—ZrO2/SiO2 supported Ni catalysts,” International Journal of Hydrogen Energy, 2008, vol. 33, p. 5493-5500.
Garcia-Labiano et al., “Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system,” Chemical Engineering Science, 2005, vol. 60, No. 3, pp. 851-862.
Geldart, “Types of Gas Fluidization,” Power Technology, vol. 7, pp. 285-292, 1973.
Ghanapragasam et al., “Hydrogen production from coal direct chemical looping and syngas chemical looping combustion systems: Assessment of system operation and resource requirements,” International Journal of Hydrogen Energy, 2009, vol. 34, Issue 6, pp. 2606-2615.
Ghoneim et al., “Review on innovative catalytic reforming of natural gas to syngas,” World J. Eng. Technol, 2016, 4(1):116-139.
Go et al., “Hydrogen production from two-step steam methane reforming in a fluidized bed reactor,” International Journal of Hydrogen Energy, 2009, vol. 34, p. 1301-1309.
Goellner et al., “Baseline analysis of crude methanol production from coal and natural gas,” National Energy Technology Laboratory (NETL), US Department of Energy, 2014, 83 pages.
Goellner, J. F., V. Shah, M. J. Turner, N. J. Kuehn, J. Littlefield, G. Cooney, and J. Marriott, “Analysis of Natural Gas-to Liquid Transportation Fuels via Fischer-Tropsch,” United States Department of Energy/NETL, DOE/NETL-2013/1597, Pittsburgh, PA (2013).
Grimme et al., “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys., 2010, 132, 19.
Grimme et al., “Effect of the damping function in dispersion corrected density functional theory,” J. Comput. Chem., 2011, 32, 1456-1465.
Haque, “Microwave energy for mineral treatment processes—a brief review,” International Journal of Mineral Processing, vol. 57, pp. 1-24, 1999.
Henkelman et al., “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” J. Chem. Phys., 2000, 113, 9901-9904.
Herbst et al., “Relativistic calculations of 4f excitation energies in the rare-earth metals: Further results,” Phys. Rev. B, 1978, 17, 3089.
Herzog, “Carbon Sequestration via Mineral Carbonation: Overview and Assessment,” MIT Laboratory for Energy and the Environmental, http://sequestration.mit.edu/pfd/carbonates.pdf, Mar. 14, 2002.
Hildebrandt et al., “Producing Transportation Fuels with Less Work,” Science, Mar. 27, 2009, vol. 323, pp. 1680-1681.
Hossain et al., “Chemical-looping combustion (CLC) for inherent CO2 separations—a review,” Chemical Engineering Science, 2008, vol. 63, Issue 18, pp. 4433-4451.
Hua et al., “Three Dimensional Analysis of Electrical Capacitance Tomography Sensing Fields,” 1999 IOP Publishing LTD, vol. 10, pp. 717-725.
Huijgen et al., “Carbon dioxide sequestration by mineral carbonation,” ECN-C—03-016, www.ecn.nl/docs/library/report/200e/c03016.pdf, Feb. 2003.
Hung et al., “Zeolite ZSM-5 Supported Bimetallic Fe-Based Catalysts for Selective Catalytic Reduction of No: Effects of Acidity and Metal Loading,” Advanced Porous Materials, 2016, 4(3): 189-199(11).
Imanaka et al., “Advances in Direct NOx Decomposition Catalysts,” Appl. Catal. A: Gen., 431-432, 2012, 1-8.
Ishida et al., “Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis,” Energy, 12(2), 147-154 (1987).
Iwamoto et al., “Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 Zeolite.” Appl. Catal., 69(2), 1991, 15-19.
Izquierdo et al., “Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition,” Catalysts, 2018, 8(12): 19 pages.
Jadhav et al., “Carbonation of Mg-Bearing Minerals: Kinetic and Mechanistic Studies,” Ohio Coal Research Consortium/Ohio State University Project C3.12, www.ohiocoal.org/projects/year3/c3.12, Jul. 3, 2002.
Jin et al., “Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of Co0—NiO,” Energy & Fuels, 1998, vol. 12, 1272-1277.
Johansson et al., “Combustion of Syngas and Natural Gas in a 300 W Chemical-Looping Combustor,” Chemical Engineering Research and Design vol. 2006, vol. 84, Issue 9, pp. 819-827.
Kaiser et al., “Precombustion and Postcombustion Decarbonization,” IEEE, Power Engineering Review, Apr. 2001, pp. 15-17.
Kathe et al., “Modularization strategy for syngas generation in chemical ,” AIChE Journal, 2017, 63(8):3343-3360.
Kathe et al., “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with in-situ CO2 Capture,” United States Department of Energy, OSTI: 1185194, (2015).
Kiuchi et al., “Recovery of hydrogen from hydrogen sulfide with metals or metal sulfides,” Int. J. Hydrogen Energy, 1982, 7: 477-482.
Koulialias et al., “Ordered defects in Fe 1- x S generate additional magnetic anisotropy symmetries,” Journal of Applied Physics, 2018, 123(3): 033902, 10 pages.
Kresse et al., “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 1993, 47, 558.
Kresse et al., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 1996, 6, 15-50.
Kresse et al., “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, 1996, 54, 11169.
Kumar et al., “Direct air capture of CO2 by physisorbent materials,” Angew. Chem., Int. Ed., 2015, 54, 14372-14377.
Leion et al., “Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers,” Fuel, 2009, vol. 88, Issue 10, pp. 1945-1954.
Leion et al., “Solid fuels in chemical-looping combustion,” International Journal of Greenhouse Gas Control, 2008, vol. 2, Issue 2, pp. 180-193.
Leion et al., “The use of petroleum coke as fuel in chemical-looping combustion,” Fuel, 2007, vol. 86, Issue 12-13, pp. 1947-1958.
Li et al., “Clean coal conversion processes—progress and challenges,” The Royal Society of Chemistry, Energy & Environmental Science, Jul. 30, 2008, vol. 1, pp. 248-267.
Li et al., “Ionic Diffusion in the Oxidation of Iron-effect of Support and Its Implications to Chemical Looping Applications,” Energy Environ. Sci. 2011, 4, 876-880.
Li et al., “Role of Metal Oxide Support in Redox Reactions of Iron Oxide for Chemical Looping Applications: Experiments and Density Functional Theory Calculations,” Energy Environmental Science, 2011, vol. 4, p. 3661-3667.
Li et al., “Syngas chemical looping gasification process: Bench-scale studies and reactor simulations,” AICHE Journal, 2010, vol. 56, Issue 8, pp. 2186-2199.
Li et al., “Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance,” Energy Fuels, 2009, 23(8), pp. 4182-4189.
Lin et al., “Novel Magnetically Separable Mesoporous Fe2O3@SBA-15 Nanocomposite with Fully Open Mesochannels for Protein Immobilization,” Chemistry of Materials, 2008, vol. 20, pp. 6617-6622.
Liu et al., “Enhanced Performance of Alkali Metal Doped Fe2O3 and Fe2O3/Al2O3 Composites as Oxygen Carrier Material in Chemical Looping Combustion,” Energy Fuels. 2013, 27, 4977-4983.
Liu et al., “Recent Advances in Catalytic DeNOx Science and Technology,” Catalysis Reviews, 48(1), 2006, 43-89.
Lockwood Greene, “Ironmaking Process Alternative Screening Study, vol. I: Summary Report,” Department of Energy United States of America, Oct. 2000, 153 pages.
Luo et al., “Shale Gas-to-Syngas Chemical Looping Process for Stable Shale Gas Conversion to High Purity Syngas with H2:CO Ratio of 2:1,” Energy and Environmental Science, 7(12), 4104-4117, (2014).
Lyngfelt, “Chemical Looping Combustion of Solid Fuels—Status of Development,” Applied Energy, 2014, vol. 113, p. 1869-1873.
Lyngfelt, “Oxygen Carriers for Chemical Looping Combustion Operational Experience,” 1st International Conference on Chemical Looping, Mar. 2010.
Makepeace et al., “Ammonia decomposition catalysis using non-stoichiometric lithium imide,” Chem. Sci., 2015, 6, 3805.
Mamman et al., “Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen,” Applied Catalysis A, 1998, vol. 168, p. 33-46.
Mao et al., “Facile synthesis of phase-pure FeCr2Se4 and FeCr2S4 nanocrystals via a wet chemistry method,” J. Mater. Chem. C, 2014, 2: 3744-3749.
Marashdeh, Q. et al., “A Multimodal Tomography System Based on ECT Sensors,” IEEE Sensors Journal, vol. 7, No. 3, 2007, 426-433.
Marashdeh, Q., Advances in Electrical Capacitance Tomography, Dissertation, The Ohio State University, 2006.
Masui et al.,“Direct Decomposition of NO into N2 and O2 Over C-type Cubic Y2O3—Tb4O7—ZrO2,” Materials Sciences and Applications, 3(10), 2012, 733-738.
Mattisson et al., “Application of chemical-looping combustion with capture of CO2,” Second Nordic Minisymposium on Carbon Dioxide Capture and Storage, Goeteborg, Oct. 26, 2001, pp. 46-51.
Mattisson et al., “Chemical-looping combustion using syngas as fuel,” International Journal of Greenhouse Gas control, 2007, vol. 1, Issue 2, pp. 158-169.
Mattisson et al., “CO 2 capture from coal combustion using chemical-looping combustion—Reactivity investigation of Fe, Ni and Mn based oxygen carriers using syngas,” Department of Energy and Environment, Division of Energy Technology and Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, 2007.
Mattisson et al., “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen—Application for Chemical-Looping Combustion,” Energy & Fuels, 2003, vol. 17, pp. 643-651.
Mattisson et al., “The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2,” Fuel, 2001, vol. 80, pp. 1953-1962.
Mattisson et al., “Use of Ores and Industrial Products as Oxygen Carriers in Chemical-Looping Combustion,” Energy & Fuels, 2009, vol. 23, pp. 2307-2315.
Mihai et al., “Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3,” Journal of Catalysis, 2012, 293: 175-185.
Miller et al., “Toward Transformational Carbon Capture,” AIChE Journal, 62, 1-10 (2016).
Moreira, “Steam Cracking: Kinetics and Feed Characterization,” Dissertation, 2015, 10 pages.
NETL, National Energy Technology Laboratory. U.S. Department of Energy, “Quality Guidelines for Energy System Studies—Specification for Selected Feedstocks.” Jan. 2012.
NETL, National Energy Technology Laboratory. U.S. Department of Energy, “Syngas Contaminant Removal and Conditioning,” webpage accessed on Jul. 8, 2018.
Nipattummakul et al., “Hydrogen and syngas production from sewage sludge via steam gasification,” Fuel and Energy Abstracts, 2010, 35 (21), 11738-11745.
Ockwig et al., “Membranes for Hydrogen Separation,” American Chemical Society, Chem. Rev., Oct. 10, 2007, vol. 107, pp. 4078-4110.
O'Connor et al., “Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Currents Status,” Abstract, USDOE Office of Fossil Energy, 2001.
Ohio Coal Development Office of the Ohio Air Quality Development Authority, “Ohio Coal Research Consortium (OCRC)—IV, Year 3 Proposal Solicitation,” http://www.ohioquality.org/ocdo/other_pdf/Consortium_IV_Year_3_RFP.pdf (2006).
Ortiz et al., “Hydrogen Production by Auto-Thermal Chemical-Looping Reforming in a Pressurized Fluidized Bed Reactor Using Ni-based Oxygen Carriers,” International Journal of Hydrogen Energy, 2010, vol. 35, p. 151-160.
Osha, “Hydrogen Sulfide in Workplaces,” <https://www.osha.gov/SLTC/hydrogensulfide/hydrogensulfide_found.html> webpage accessed Jul. 8, 2018.
Pans et al., “Optimization of H2 production with CO2 capture by steam reforming of methane integrated with a chemical-looping combustion system,” International Journal of Hydrogen Energy, 2013, 38(27): 11878-11892.
Park et al., “CO2 Mineral Sequestration: Chemically Enhanced Aqueous Carbonation of Serpentine,” The Canadian Journal of Chemical Engineering, 2003, vol. 81, pp. 885-890.
Park et al., “CO2 Mineral Sequestration: physically activated dissolution of serpentine and pH swing process,” Chemical Engineering Science, 2004, vol. 59, pp. 5241-5247.
Perdew et al., “Generalized gradient approximation made simple,” Phys. Rev. Lett., 1996, 77, 3865.
Pfeifer, “Industrial furnaces-status and research challenges,” Energy Procedia, 2017, 120: 28-40.
Pröll et al., “Syngas and a separate nitrogen/argon stream via chemical looping reforming—A 140 KW pilot plant study,” Fuel, 2010, vol. 89, Issue 6, pp. 1249-1256.
Qin et al., “Enhanced methane monversion in mhemical looping partial oxidation systems using a copper doping modification,” Appl. Catal. B, 2018, 235, 143-149.
Qin et al., “Evolution of Nanoscale Morphology in Single and Binary Metal Oxide Microparticles During Reduction and Oxidation Processes,” J. Mater. Chem. A. 2014, 2, 17511-17520.
Qin et al., “Impact of 1% Lathanum Dopant on Carbonaceous Fuel Redox Reactions with an Iron-Based Oxygen Carrier in Chemical Looping Processes,” ACS Energy Letters, 2017, 2, 70-74.
Qin et al., “Nanostructure Formation Mechanism and Ion Diffusion in Iron-Titanium Composite Materials with Chemical Looping Redox Reactions,” J. Mater. Chem. A. 2015, 3, 11302-11312.
Quin et al., “Improved Cyclic redox reactivity of lanthanum modified iron-based oxygen carriers in carbon monoxide chemical looping combustion,” Journal of Materials Chemistry A, 2017, 8 pages.
Rollmann et al., “First-principles calculation of the structure and magnetic phases of hematite,” Phys. Rev. B, 2004, 69, 165107.
Rostrup-Nielsen, “Syngas in Perspective,” Catalysis Today, 2002, 71(3-4), 243-247.
Ruchenstein et al., “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts,” Applied Catalysis A, 1995, vol. 133, p. 149-161.
Russo et al., “Impact of Process Design of on the Multiplicity Behavior of a Jacketed Exothermic CSTR,” AICHE Journal, Jan. 1995, vol. 41, No. 1, pp. 135-147.
Ryden et al., “Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor,” Fuel, 2006, vol. 85, p. 1631-1641.
Ryden et al., “Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion,” International Journal of Hydrogen Energy, 2006, 31(10): 1271-1283.
Sassi et al., “Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion ( HiTAC ) Technology,” Am. J. Environ. Sci., 2008, 4, 502-511.
Sattler et al., “Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides,” Chem Rev, 2014, 114(20): 10613-10653.
Scott et al., “In situ gasification of a solid fuel and CO2 separation using chemical looping,” AICHE Journal, 2006, vol. 52, Issue 9, pp. 3325-3328.
Shen et al., “Chemical-Looping Combustion of Biomass in a 10kWth Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, 2009, vol. 23, pp. 2498-2505.
Shen et al., “Experiments on chemical looping combustion of coal with a NiO based oxygen carrier,” Combustion and Flame, 2009, vol. 156, Issue 3, pp. 721-728.
Sheppard et al., “Paths to which the nudged elastic band converges,” J. Comput. Chem., 2011, 32, 1769-1771.
Shick et al., “Single crystal growth of CoCr2S4 and FeCr2S4,” Journal of Crystal Growth, 1969, 5(4): 313-314.
Speight, “Gasification processes for syngas and hydrogen production,” Gasification for Synthetic Fuel Production, Woodhead Publishing, 2015, 119-146.
Sridhar et al., “Syngas Chemical Looping Process: Design and Construction of a 25 kWth Subpilot Unit,” Energy Fuels, 2012, 26(4), pp. 2292-2302.
Steinfeld et al., “Design Aspects of Solar Thermochemical Engineering—A case Study: Two-Step Water-Splitting Cycle Using the Fe3O4/FeO Redox System,” Solar Energy, 1999, pp. 43-53.
Steinfeld, “Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions,” International Journal of Hydrogen Energy, 2002, vol. 27, pp. 611-619.
Sun et al., “Review: Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials,” Chem, 2017, 3, 560-587.
Takanabe, “Catalytic Conversion of Methane: Carbon Dioxide Reforming and Oxidative Coupling,” Journal of the Japan Petroleum Institute, 2012, 55, 1-12.
Thiollier et al., “Preparation and Catalytic Properties of Chromium-Containing Mixed Sulfides,” Journal of Catalysis, 2011, 197(1): 58-67.
Tian et al., “Thermodynamic investigation into carbon deposition and sulfur evolution in a Ca-based chemical-looping combustion system,” Chemical Engineering Research & Design, 2011, vol. 89, Issue 9, p. 1524.
Trout et al., “Analysis of the Thermochemistry of NOx Decomposition over CuZSM-5 Based on Quantum Chemical and Statistical Mechanical Calculations,” J. Phys. Chem, 100(44), 1996, 17582-17592.
U.S. Department of Energy, NCCTI Energy Technologies Group, Office of Fossil Energy, “CO2 Capture and Storage in Geologic Formations,” pp. 34, Revised Jan. 8, 2002.
United States Environmental Protection Agency. “Air Pollution Control Technology Fact Sheet: Selective Catalytic Reforming,” <https://www3.epa.gov/ttncatc1/cica/files/fscr.pdf> (2003).
Usachev et al., “Conversion of Hydrocarbons to Synthesis Gas: Problems and Prospects,” Petroleum Chemistry, 2011, vol. 51, p. 96-106.
Velazquez-Vargas et al., “Atmospheric Iron-based Coal Direct Chemical Looping (CDCL) Process for Power Generation”, presented in Power-Gen International 2012, Orlando, FL, Dec. 11-13, 2012, BR-1892, 1-5.
Vernon et al., “Partial Oxidation of Methane to Synthesis Gas,” Catalysis Letters, 1990, vol. 6, p. 181-186.
Wang et al., “Highly efficient metal sulfide catalysts for selective dehydrogenation of isobutane to isobutene,” ACS Catalysis, 2014, 4: 1139-1143.
Wang et al., “Isobutane Dehydrogenation over Metal (Fe, Co, and Ni) Oxide and Sulfide Catalysts: Reactivity and Reaction Mechanism,” ChemCatChem, Jul. 2014, vol. 6, pp. 2305-2314.
Wang et al., “Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer—Tropsch synthesis catalysts,” Journal of Molecular Catalysis A: Chemical, 2010, 326:29-40.
Warsito, W. et al., Electrical Capacitance Volume Tomography, 2007, pp. 1-9.
Watanabe, “Electrical properties of FeCr2S4 and CoCr2S4,” Solid State Communications, 1973, 12(5): 355-358.
Xu et al., “A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas,” Applied Energy, 2018, 222:119-131.
Yamazaki et al., “Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio,” Applied Catalyst A, 1996, vol. 136, p. 49-56.
Yin et al., “A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications,” Applied Catalysis A: General, 2004, 277, 1-9.
Zafar et al., “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping ReformingRedox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a Support,” Ind. Eng. Chem. Res., 2005, 44(10), pp. 3485-3496.
Zeng et al., “Metal oxide redox chemistry for chemical looping processe,” Nat Rev Chem., 2018, 2, 349-364.
International Search Report and Written Opinion for Application No. PCT/US2020/027324 dated Jul. 9, 2020 (10 pages).
United States Patent Office Action for U.S. Appl. No. 17/251,998 dated Mar. 18, 2022 (11 pages).
United States Patent Office Notice of Allowance for U.S. Appl. No. 17/602,889 dated Mar. 17, 2022 (8 pages).
United States Patent Office Notice of Allowance for U.S. Appl. No. 17/602,889 dated Jul. 7, 2022 (7 pages).
Related Publications (1)
Number Date Country
20230009840 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
62831617 Apr 2019 US
Continuations (1)
Number Date Country
Parent 17602889 US
Child 17952748 US