This invention relates to a process for producing ring alkylated aromatic amines. In the process an aromatic amine is reacted with an olefin using an acidic crystalline molecular sieve as a catalyst. Under the conditions of the process the catalyst is extremely active and with amines that are capable of alkylation at the ortho and para positions, high selectivity to the ortho alkylated isomer can be achieved.
Description
TECHNICAL FIELD This invention pertains to an improved process for alkylating aromatic amines in the presence of crystalline molecular sieves. In a preferred embodiment the process provides for the production of a reaction product wherein the ratio of ortho-alkylated aromatic amine to para-alkylated aromatic amine is high. BACKGROUND OF THE INVENTION Processes for alkylating a variety of alkylatable aromatic compounds by contacting such compounds with a hydrocarbon radical providing source such as an olefin or alcohol are widely known. Typically, alkylatable aromatic compounds are mononuclear aromatic compounds themselves or those substituted with a hydroxyl, amine or an ether group. The alkylation has been carried out in the presence of homogeneous and heterogeneous catalyst systems. Ring alkylated aromatic amines have been some of the products produced by alkylation procedures. Ring alkylated aromatic amines have a variety of uses in chemical synthesis. Some of the early uses were intermediates for substituted isocyanates, herbicidal compositions, dyestuffs and textile auxiliary agents. More recently aromatic amines have been utilized as chain lengthening or cross-linking components in polyurethane systems. These are commonly referred to as chain extenders. Representative references which illustrate some of the early processes in forming ring alkylated aromatic amines are: British Pat. No. 414,574 discloses the reaction of aniline with various olefins, e.g., cyclohexene and alcohols, e.g., butanol in the presence of a neutral or weakly acidic catalyst system commonly referred to as hydrosilicates at temperatures from 200.degree.-270.degree. C. Ortho and para-cyclohexylaniline, N-cyclohexylaniline, N-butylaniline and para-methyl-ortho-cyclohexylaniline and N-cyclohexyl-para-toluidine are listed as representative products. British Pat. No. 846,226 discloses ring alkylation of aromatic amines with olefins using active, substantially neutral bleaching earths of the montmorillonite type as a catalyst. AS Pat. No. 1,051,271 discloses the ring alkylation of aniline with an olefin, e.g., ethylene, in the presence of kaolin or in the presence of aluminum and aluminum alloys. Alkylation with higher olefins, e.g., propylene, butylene, etc., was carried out in the presence of Friedel-Crafts catalysts or bleaching earths under liquid phase conditions at temperatures from 150.degree.-350.degree. C. Examples of catalytic systems included aluminum chloride, zinc chloride, boron trifluoride, sulfuric acid, phosphoric acid and bleaching earth. Ring alkylation at the ortho-position was predominant, although other products such as the di and tri-alkylated aniline product were produced. In an article by Zollner and Marton, Acta Chim. Hung. Tomus 20, 1959 (Pages 321-329) the vapor phase alkylation of aniline with ethanol was effected in the presence of aluminum oxide. U.S. Pat. No. 3,649,693 and U.S. Pat. No. 3,923,892 discloses the preparation of ring alkylated aromatic amines by reacting an aromatic amine with an olefin in the presence of aluminum anilide, optionally including a Friedel-Crafts promoter. Reaction products included 2-ethylaniline, and 2,6-diethylaniline. Stroh, et al., in U.S. Pat. Nos. 3,275,690; 2,762,845, Japanese No. Sho 56-110652, and, as mentioned previously, AS Pat. No. 1,051,271, disclose various processes for preparing alkylated aromatic amines by reacting an aromatic amine with an olefin in the presence of Friedel-Crafts catalysts as well as a combination of the Friedel-Crafts catalysts in the presence of halogen compounds combined with aluminum. Representative reaction products included 2-cyclohexylaniline, diethyltoluenediamine, diethylaniline, diisopropylaniline and mono-tert-butylaniline. The art, e.g., Netherlands Application No. 6,407,636 has recognized that alkylation of various aromatic and heterocyclic compounds can be carried out in the presence of an zeolite having a pore size from 6-15 Angstroms wherein active cationic sites are obtained with an exchangeable metal or hydrogen cations in their ordered internal structure. Alkylating agents include olefins having from 2 to 12 carbon atoms, alkyl halides such as propylbromide and ethylchloride; and alkanols, such as, methanol, ethanol, and propanol. Various compounds were suggested as being suited for alkylation and these include both the heterocyclic and aromatic ring compounds. For aromatic amine alkylation it was suggested that a zeolite with a disperse distribution of acidic sites should be utilized. It was believed the highly acidic zeolite catalysts which have a high density of acidic sites may bind the amine to the catalyst and block the pore structures. In Example 1 aniline was alkylated with propylene using sodium zeolite X having a pore size of 13 Angstroms and numerous alkylated amines were produced. Example 3 shows alkylation of diphenylamine with cyclohexene using a rare earth exchanged 13X zeolite. Again, numerous ring alkylated products were produced and high temperatures, e.g. 300.degree. C. and above apparently being required to weaken the amine-acid bond. French Pat. No. 1,406,739, which is equivalent to Netherlands Application No. 6,407,636, discloses the preparation of alkylated aromatic compounds having polar substitutions thereon utilizing alumino-silicates having a pore size of at least 6 Angstroms as a catalyst. Cations of low valence were deemed to have been particularly effective for the ring alkylation of aromatic compounds having weakly basic substituents such as aromatic amines. The examples show the alkylation of aniline with propylene in the presence of a sodium zeolite X and alkylation of diphenylamine with propylene in the presence of a molecular sieve 13X which has undergone a partial exchange with rare earths and having a pore size of 13.ANG.. U.S. Pat. No. 3,201,486 discloses prior art processes for alkylating various aromatic hydrocarbons with an olefin using sulfuric acid and hydrogen fluoride as a catalyst. In the particular reference solid phosphoric acid was used as the catalyst. U.S. Pat. Nos. 3,178,365; 3,281,483; 4,259,537; 4,395,372 and 4,393,262 disclose the alkylation of aromatic hydrocarbon compounds with an olefin in the presence of various crystalline alumino-silicates, such as crystalline alumino-silicates having undergone previous transformation by reaction with a nitrogen oxide containing compound, a hydrogen mordenite, a ZSM catalyst exchanged with a VIa metal; crystalline alumino-silicates promoted with sulfur dioxide and dealuminated zeolites. The dealuminated, high silica zeolites are disclosed as having particular activity for the alkylation of benzene. Although the prior art has disclosed that a variety of catalytic systems can be utilized in the alkylation of aromatic hydrocarbons and aromatic amines, the art also teaches that a variety of reaction products are produced, including both ortho and para-isomers of mononuclear aromatic amines as well as, mono, di and tri alkyl substituted amines. In addition the prior art teaches that neutral to weakly acidic catalysts are preferred for effecting ring alkylation of the aromatic amines. Even though the prior art has suggested preferred catalytic systems such systems also involve batch, liquid phase operation which may be difficult to operate over an extended period of time, and tend to give more para product. In addition, many of the processes suffer from poor conversion, poor reaction rate and an inability to produce high ortho to para isomer ratios at high conversion. SUMMARY OF THE INVENTION This invention pertains to a process for effecting alkylation of aromatic amines typically represented by the formulas: ##STR1## where R is hydrogen, C.sub.1-10 alkyl, halogen, phenyl, alkoxy, ester or nitrile; R.sub.1 is hydrogen or C.sub.1-10 alkyl, x is 1 or 2; A is C.sub.0-4 alkylene or NH, y is 1 or 2 except one y in formula I can be zero. Some of the advantages associated with this invention include: an ability to selectively produce alkylated aromatic amines where the alkyl groups is in the ortho position, i.e., ortho relative to the amine group, as opposed to the para position, and the alkylation is effected at high conversion; an ability to effect ring alkylation at high rates; an ability to utilize a fixed bed catalytic reactor lending itself to continuous vapor or liquid phase operation; an ability to form ortho alkylates in high selectivity relative to N-alkylates; and an ability to initiate alkylation at low temperatures thus avoiding by-product oligomers and polymers.
THE DRAWINGS FIG. 1 is a plot of activity of the catalyst system versus its acidity. FIG. 2 is a plot of activity in producing ortho-alkylated aromatic amine versus acidity. FIG. 3 is a plot of conversion as a function of temperature for several catalysts used in the alkylation of aniline with propylene.
DETAILED DESCRIPTION OF THE INVENTION As stated above ring alkylation of aromatic amines of this invention are represented by the formulas: ##STR2## where R is hydrogen, C.sub.1-10 alkyl or halogen, phenyl, alkoxy, ester, nitrile; R.sub.1 is hydrogen or C.sub.1-10 alkyl; X is 1 or 2, A is C.sub.0-4 alkylene or NH, y is 1 or 2 except one y in formula I can be zero. As shown in the above formulas, the aromatic amine can be monoamino or diamino substituted on the aromatic ring. Further, the aromatic amine can be substituted with a variety of substituents which are nonreactive with the olefin in the alkylation reaction. Examples of nonreactive substituents include alkylamino where the alkyl portion has from 1-6 carbon atoms, such as N-ethyl, N-propyl and N-tert-butyl, alkyl where the alkyl substituent has from 1-6 carbon atoms, e.g. ethyl, propyl, tert-butyl and cyclohexyl, methylcyclohexyl; alkoxy where the carbon content is from 2-6 carbon atoms, and ester, where the carbon content is from 2-6 carbon atoms. Many of the amines included within the formulas I and II have hydrogen atoms which are reactive in both the ortho and para positions to the amino group. When both of these hydrogens are reactive to alkylation, one has the ability to selectively produce one isomer in favor of another. In the case of aromatic amines having hydrogen atoms which are reactive in both positions, but the para position is more thermodynamically stable. In most of the prior art systems, one could not simultaneously obtain high conversion of aromatic amine and high selectivity to an ortho-alkylated amine. If one went to high conversion of aromatic amine, one obtained higher percentages of the more stable para-isomer. Typically, low conversions, e.g., 20% to 30% were required to achieve a high production of ortho-isomer, e.g., an ortho-para isomer molar ratio of 3 or greater to 1. Aromatic amine compositions which have active hydrogen atoms, ortho and para to the amine group, are represented by the formulas: ##STR3## where R is hydrogen, C.sub.1-10 alkyl, phenyl, alkoxy, ester or nitrile; R.sub.1 is hydrogen or C.sub.1-10 alkyl, x is 1 or 2; A is C.sub.0-4 alkylene or NH, y is 1 or 2 except one y in formula I can be zero. Specific examples of aromatic amines suited for alkylation, which include those with active hydrogens in positions ortho and para to the amino group, are aniline, toluidine, xylidene, toluenediamine, xylidenediamine, diphenylamine, methylenedianiline, N-ethyl aniline, N-propyl aniline, (N-propylamino)aminotoluene, isobutylaniline, phenyl aniline, phenylenediamine and methylbenzylaniline. Those aromatics amines suited for alkylation having active hydrogen atoms in positions ortho and para to an amino group include aniline and diphenylamine. Alkylating agents used for practicing the invention are mono aliphatic, acyclic and cyclic olefins such as ethylene, propylene, butene isobutylene, isoamylene, cyclohexene, 1-methylcyclohexene, 1-methylcyclopentene and halogenated derivatives. Typically, these olefins will have from 2 to 8 carbon atoms in the structure. Although in many reactions other materials are commonly used as alkylating agents; e.g., paraffin alcohols such as methanol, ethanol, propanol. While alkyl halides such as ethyl chloride, propyl bromide, etc. can be used, they generally are not suited for the ortho-alkylation of aromatic amines because the acid from the alkylation tends to interfere with the selectivity of the reaction. In the case where paraffin alcohols are employed, the water from the reaction system tends to reduce the ability of the aromatic amine to ring alkylate and when useful alkylation conditions, e.g., temperature, are achieved the product formed contains a high proportion of the para-isomer. In the alkylation of aromatic amines, the molar ratio of olefin to aromatic amine influences the selectivity of the reaction. In those cases where the aromatic amine can be alkylated in the ortho and para positions, the molar ratio of olefin to aromatic amine influences, to some degree, whether the ring alkylation is ortho to the amine or para to the amine. Typically olefin to amine molar ratios will range from about 1 to 20 moles olefin per mole of aromatic amine and preferably 2-8 moles olefin per mole of aromatic amine. The utilization of higher mole ratios of olefin to aromatic amine tends to increase the amount of ortho-alkylated product produced. The catalysts used in the reaction of the present invention are those crystalline molecular sieves which are solid phase and have an acidity factor of at least 0.30 and preferably at least 1. As a result these highly acidic molecular sieves have sufficient catalytic activity to effect ring-alkylation of the aromatic amine in high conversion (based upon amine) and in high selectivity. The crystalline molecular sieves include crystalline alumino-silicates, commonly referred to as zeolites, and they can be of both natural and synthetic material. Some of the zeolites are X, Y, K, L faujasite, mordenite, offretite, beta, omega, gmelinite, chabazite, clinoptilolite, heulandite, dachiarite, ferrierite, brewsterite, stilbite, epistilbite and the ZSM family. When initially prepared, the cation in the crystalline alumino-silicate usually is an alkali metal, typically sodium. This ion must be exchanged in sufficient proportion, generally in excess of 60%, with an acidic ion such as a rare earth metal, e.g. lanthanum, cerium, praseodymium; hydrogen or some of the transition metals such as nickel, copper, chromium and the like for the practice of this invention. The substitution of various ions for the sodium ion alters the acidity of the zeolite thus making it more reactive and catalytically effective for ring alkylation of the aromatic amine. The naturally occurring and synthetic zeolites normally have a silica to alumina molar ratio of from 2 to 15:1. The acidity of the zeolite may be altered by a technique called dealumination. In effect, the practice of dealumination decreases the alumina content in the zeolite thereby increasing the silica to alumina ratio. The removal of alumina from the internal structure can also enlarge the cage structure or pore size of the zeolite to permit entry of and diffusion of larger molecules into its internal structure. It can also have tendency to increase catalyst acidity. Thus, one may be able to utilize a particular cation in a dealuminated zeolite but not use the same cation in its non-dealuminated counterpart since that catalyst would not meet the acidic requirements of this invention. Some of the techniques for dealumination include chelation, dehydration or acidification, the latter which entails the treatment of the zeolite with an inorganic acid. Such techniques for dealumination of zeolite are well known. The zeolites are porous materials with the pores having generally uniform molecular dimensions. Cavities or cages are formed in the zeolite and are connected by channels of generally defined diameter. For the practice of this invention the cage diameter should be sufficiently large to permit the molecules to effectively enter the interior of the alumino-silicate for reaction and to exit as final product. Typically the pore size will range from about 6 to 15 Angstroms but the size of the pore required can vary depending upon the product being produced. An ethyl substituent can be prepared from a smaller pore zeolite than can a tert-butyl or cyclohexyl substituent. It also follows that a mononuclear aromatic amine can be produced with a smaller pore size zeolite than can a polynucleararomaticamine. If the pore size is too small or tortuous to permit entry of the reactants, conversion will be low at low temperatures and catalytic activity will be limited to surface catalysis. Higher temperatures may be required to enhance molecular diffusion as in the case of H-mordenite in propylene alkylation. Molecular sieves have been developed which have been defined as nonzeolites but perform similarly in some reactions to zeolitic materials. They have a cage structure and typically contain alumina and silica in combination with other components, e.g., phosphorus, titania, etc. Representative crystalline molecular sieves are described in U.S. Pat. No. 4,440,871, European Pat. No. 124119 and European Pat. No. 121232 and are incorporated by reference. For purposes of this invention, these molecular sieves are deemed equivalent to and are to be included within the term crystalline molecular sieves. Other nonalumino-silicate zeolites which can be used in the practice of the invention are the boron containing zeolites, e.g., borosilicates and borogermanates. Sufficient alkali metal must be exchanged with appropriate acidic cations to render the crystalline molecular sieve acidic as defined by an acidity factor. This factor is determined by an ammonia absorption/desorption technique which involves treating the catalyst with ammonia at room temperature and then desorbing by heating to a temperature from ambient to 200.degree. C. at 10.degree./minute, then holding at 200.degree. C. for 2 hours. The amount of ammonia irreversibly adsorbed at 200.degree. C. is indicative of acidity and indicative of the strength of the amine/acid bond. An acidity factor of 0.30 millimoles ammonia irreversibly adsorbed per gram of catalyst at 200.degree. C. is necessary to obtain high catalytic activity and to obtain a high ortho to para isomer ratio at high conversion with those aromatic amines having hydrogen atoms which are reactive in both the ortho or para positions. Although not intending to be bound by theory, it is believed that the high acidity of the zeolites is responsible for their high ortho-selectivity. The acid-catalyzed alkylation of aromatic amines involves competitive reaction at three active positions: N, o, and p (see Scheme 1). SCHEME 1 ##STR4## N-alkylates are formed at low temperatures and are the most thermodynamically unstable of the three alkylated isomers while the para-alkylates are the most stable and tend to be formed at higher temperatures. The high acidity of zeolites imparts high activity for ring alkylation relative to N-alkylation even at low temperatures. Since zeolites make it possible to form ring alkylates at relatively low temperatures, the ring alkylation step has high selectivity for the ortho-position rather than for the more thermodynamically stable para-position. Experiments utilizing appropriately deuterium labeled olefins indicate that the likely mechanism for acid-catalyzed ortho-alkylation occurs via a concerted reaction between aromatic amine and olefin as shown in path A of scheme 2. In other words, the concerted mechanism allows the amino functionality to direct the alkylation to the ortho-position. Catalysts that tend to form high amounts of N-alkylates and require higher temperatures for ring alkylation, e.g. silica-alumina and montmorillonite, tend to decrease the concertedness required for selective ortho-alkylation and tend to form comparatively more para-alkylates by paths D and C of scheme 2. Even higher temperatures will cause para-alkylates to form by path E. SCHEME 2 Mechanism of Aniline Alkylation with Olefin ##STR5## It has also been observed that olefins which have difficulty in meeting the steric requirements for the concerted reaction (i.e. path A, scheme 2) for ortho-alkylation are especially sensitive to temperature. Olefins such as isobutylene and cyclohexene have a certain amount of steric resistance to the concerted pathway leading to selective ortho-alkylation. Consequently, obtaining an ortho-selective reaction with these olefins requires the lowest possible temperatures at which reaction proceeds. From FIG. 3 it can be seen that zeolites catalyze the olefin alkylation of aromatic amines at lower temperatures than other common heterogeneous acid catalysts. Our experimental results indicate that the relative ease of N-alkylation vis-a-vis ring alkylation is also dependent on the substituents on the ring of the aromatic amine. Aromatic amines which have electron withdrawing groups on the ring (e.g. 2-fluoroaniline) tend to favor N-alkylation while aromatic amines having electron donating groups on the ring (e.g. o-toluidine) favor ring alkylation. From a mechanistic point of view, electron denating groups will stabilize the positively charged concerted pathway (i.e. path A, scheme 2) while electron withdrawing groups will have the opposite affect. The alkylation of aromatic amines to effect ring alkylation of the aromatic amine can be carried out in a fixed bed reactor with the reactants being fed downflow or upflow through the reactor. The reaction can also be carried out in a stirred autoclave. Temperatures from 50.degree. to 425.degree. C. and pressures of from 50 to 3000 psig are utilized. Although conversion of an aromatic amine to a ring alkylated product may be greater at temperatures near the upper end of the range specified, the degree of alkylation in the ortho-position as opposed to the para-position may be greatly reduced and olefin polymerization may occur. Higher conversions obtained at high temperatures tend to form higher concentrations of the para-isomer. Thus, to obtain a reaction product with the highest ortho to para-isomer ratio the reaction temperature is controlled to produce a conversion range that will give the highest ortho to para-isomer ratio. For ethylene that temperature will probably be greater than the reaction temperature for propylene, the propylene temperature will be greater than for isobutylene. When an alkali metal or weakly acidic zeolite is used to effect ring alkylation of an alkylatable aromatic amine, the temperature required to achieve modest conversion is so high that substantially only para product is obtained. The advantage of an acidic catalyst as determined by the acidity factor permits one to achieve high conversion at lower temperature and these lower temperatures for ortho-alkylation permit high selectivity for ortho-isomer away from para-products and polymer. In those systems employing an amine having hydrogen atoms which are active in both positions, ortho and para to the amine, the temperature of reaction should be sufficient to effect reaction but not exceed 375.degree. C. for ethylene, 300.degree. C. for propylene, 240.degree. C. for isobutylene and 250.degree. C. for cyclohexene. Pressure has some effect on the selectivity to ortho-alkylated product but its effect is much less significant than temperature. Typically pressures used in the operation will range from 500 to 3000 psig for ethylene while pressures of from 50 to 1500 psig will be used for isobutylene. Reaction time is an important factor in achieving high selectivity to an ortho-alkylated product as opposed to a para-alkylated product. Broadly, the reaction time can be expressed as liquid hourly space velocity (LHSV) of feed components to the reactor and typical values for liquid hourly space velocity are from 0.05 to 6 hours.sup.-1. If one is operating at relatively high temperatures for the alkylation reaction, the LHSV should be increased somewhat as longer reaction times at high temperatures permit increased formation of the para-products. In contrast lower LHSV permit one to obtain high conversion at lower temperatures, low temperatures permitting ring alkylation at the ortho-position. Thus, by using a combination of an appropriate lower temperature range for a specific olefin and low LHSV one can obtain high conversion at high ortho to para ratios. Liquid phase or vapor phase conditions may be utilized in the practice of the invention and the process may be carried out on a batch or continuous basis. When a batch process is utilized the proportion of aromatic amine is from about 5 to 100 weight parts per weight part catalyst. The following examples are provided to illustrate various embodiments of the invention and are not intended to restrict the scope thereof. EXAMPLE 1 Catalyst Preparation A variety of catalysts were prepared and analyzed for acidity by the ammonia absorption/readsorption technique. The candidate zeolites used were sodium Y (code LZY-52), sodium X (LINDE 13X), and a thermally stabilized HY (LZY-82) supplied by the Linde Division of Union Carbide Corporation. A mordenite catalyst sold under the designation Z-900H was supplied by the Norton Company. Rare earth salt solutions were utilized to partially exchange the sodium Y and X zeolites with rare earth metals and the salt solutions were obtained from Moly Corporation. These rare earth salt solutions were primarily rare earth chlorides and contain 19.4% lanthanum, 5.25% cerium, 2.65% praseodymium and 7.64% neodymium. Another rare earth salt solution used to exchange the zeolite consisted essentially of lanthanum trichloride hydrate and was obtained from Alpha Corporation. Catalyst A: To fully exchange an X zeolite with a rare earth ion, 150 grams of sodium X zeolite were charged to a vessel and slurried with the rare earth chloride solution described above which had been diluted in a ratio of 1 to 1 on a parts by weight. A total of 900 cc of rare earth chloride solution was utilized. After slurrying, the mixture was heated under reflux for 2.5 hours, cooled and filtered. The previously treated zeolite was then recharged to the rare earth chloride solution heated, and refluxed for about 12 hours. After filtration, an additional exchange was carried out with 900 cc of solution at reflux temperatures for about 3 hours. The zeolite was then washed with water until the liquid was free of chloride solution. At that time it was dried in air at room temperature. Catalyst B. A partially exchanged (70%) sodium X zeolite was prepared by charging 50 grams of sodium X zeolite to a vessel and slurrying with 46.62 grams of rare earth nitrate solution and diluting with 750 cc of water (pH=3.66). The mixture was then heated to reflux with stirring and held for 3.5 hours. The zeolite was then recovered from the solution by filtering and washed three times by stirring in 1 liter of distilled water for 30 minutes. The resulting catalyst was dried in air at room temperature. Catalyst C. A partially exchanged (43%) sodium X zeolite was prepared by taking 13.98 grams of LaCl.sub.3 .times.H.sub.2 O (32.5% H.sub.2 O) and dissolving in 750 cc's of water. The 50.08 grams of sodium X powder was added to the lanthanum chloride solution and the mixture heated under reflux for 16 hours. The zeolite was filtered and washed free of chloride ions with 3 successive washings in water. The catalyst was then dried in air. Catalyst D. A partially exchanged (75%) rare earth Y zeolite was prepared by charging a 164 gram portion of sodium Y (LZY-52) zeolite catalyst into a vessel and stirring with 900 cc of dilute rare earth chloride solution (1:1 dilution) and the mixture refluxed for 3 hours. The second exchange was conducted with 900 cc of the rear earth chloride at reflux temperatures overnight. After filtration a third rare earth exchange was carried out by the same procedure utilized before. After such treatment the zeolite was filtered and washed until free of chloride ions. It was dried in air at room temperature. Catalyst E. A partially dealuminated hydrogen-mordenite catalyst system was prepared by charging 199.2 grams of Zeolon 900H to a vessel and slurrying in a solution consisting of 172.2 ml of concentrated (37%) HCL, 317.5 grams of ammonium chloride and 2828 milliliters of distilled water. The mixture of catalyst and solution was stirred and heated to reflux for 5.5 hours. The acid solution was then removed and 3 liters of pure distilled water added and stirred with the zeolite. After several days this was replaced with fresh water and the mixture heated under reflux. This was repeated a total of three times until the pH of the wash solution was 4.5. The zeolite was then dried under vacuum at 150.degree. C. for 3 hours. Acidity measurements were performed on catalysts A through E using a duPont 1090 thermogravometric analysis system. In this procedure catalysts were first heated from ambient to 500.degree. C. with the temperature being increased at a rate of 3.degree. C. per minute. The temperature was held at 500.degree. C. for 4 hours and the catalyst cooled to room temperature. A continuous helium flow of 100 cc per minute was maintained over the catalyst system. The desorption baseline as briefly described earlier involved heating from ambient to 200.degree. C. from room temperature with an increase of 10.degree. C. per minute and holding at 200.degree. C. for 2 hours. The ammonia adsorption was effected by passing ammonia over the catalyst at room temperature until a constant weight was established. At that time the ammonia was turned off and 100 cc's per minute flow of helium established and the desorption temperature program recited above was repeated with the weight of the ammonia remaining on the catalyst at the end of the isothermal portions of the program being measured. Table 1 is an elemental analysis of the starting catalyst system and Table 2 sets forth the amount of irreversibly adsorbed ammonia remaining after the 200.degree. C. desorption and is a measurement of the acidity factor. TABLE 1__________________________________________________________________________Elemental Analyses for Zeolite Catalysts Elemental AnalysisCatalyst SiO2 Al2O3 Na2O RE2O3 Si/Al Formula__________________________________________________________________________LZY52 64.9 22.7 13.43 0 2.39 Na.sub.56 (Al.sub.2 O.sub.3).sub.28 (SiO.sub.2 ).sub.136LZY82 74.5 22.3 <0.31 0 2.78 H.sub.34 (NH.sub.4).sub.17 (Al.sub.2 O.sub.3). sub.25.5 (SiO.sub.2).sub.141NaX 46.9 32.8 19.7 0 1.19 Na.sub.88 (Al.sub.2 O.sub.3).sub.44 (SiO.sub.2 ).sub.104Catalyst E 88.3 10.5 <0.31 0 14.0 H.sub.3.2 (Al.sub.2 O.sub.3).sub.1.6 (SiO.sub. 2).sub.44.8H--MordeniteCatalyst A 40.1 26.3 <1.0 28.97 1.27 Na.sub.3 (RE).sub.27 (Al.sub.2 O.sub.3).sub.42 (SiO.sub.2).sub.107REX(fully exchanged)Catalyst B 45.3 30.4 5.7 21.44 1.24 Na.sub.26 (RE).sub.20 (Al.sub.2 O.sub.3).sub.4 3 (SiO.sub.2).sub.106REX(70% exchanged)Catalyst C 45.2 29.1 10.4 11.91 1.29 Na.sub.48 (RE).sub.12 (Al.sub.2 O.sub.3).sub.4 2 (SiO.sub.2).sub.108REX(43% exchanged)Catalyst D 62.8 21.6 2.9 16.7 2.42 Na.sub.14 RE.sub. 14 (Al.sub.2 O.sub.3).sub.28 (SiO.sub.2).sub.136REY(75% exchanged)__________________________________________________________________________ TABLE 2______________________________________Amount of Irreversibly Adsorbed NH.sub.3 for Zeolite CatalystsAcidity Factor (200.degree. C.)Irreversibly Adsorbed NH.sub.3 (mmol/g)Catalyst 200.degree. C.______________________________________LZY52 (NaY) 0.17LZY82 (HY) 1.12NaX 0.16Catalyst E 1.05H--Mordenite (dealuminated)REX 1.00Catalyst A(fully exchanged)REX 0.76Catalyst B(70% exchanged)REX 0.21Catalyst C(43% exchanged)REX 1.28Catalyst D(75% exchanged)H--mordenite (commercial) 0.89______________________________________ EXAMPLE 2 Alkylation of Aniline with Propylene Using Zeolite Catalysts Alkylation of aniline with propylene was effected in a continuous flow reactor. In the process the catalyst bed was first saturated with aniline at 900 psig and then the propylene was introduced into the reactor to provide a preselected mole ratio of aniline to propylene (N/R) over the bed. The reaction temperature then was raised slowly to a preselected temperature, typically 250.degree. C. The products were recovered from the reactor and analyzed. Table 3 provides reactor data in terms of LHSV, mole ratio of aniline to propylene, (N/R), and reactor temperature in degrees Centigrade, Conversion was measured on the basis of amine converted to alkylated reaction product, and selectivity was defined as the moles of the specific product obtained divided by the total moles of product produced times 100. Catalyst activity (k.sub.1) was defined as a psuedo-first order rate constant, the equation being ln (1-X) times LHSV=-k.sub.1 where LHSV is expressed as cc aniline/cc cat-hr and X is the functional conversion of aniline reported. TABLE 3__________________________________________________________________________Reactor Data for Alkylation of Aniline with Propylene over ZeoliteCatalysts T Conv k.sub.1 .times. SelectivitiesRun Catalyst LHSV N/R (.degree.C.) (%) 10.sup.3 N--Alkylate o-Alkylate p-Alkylate__________________________________________________________________________1 REY 0.250 0.2 250 50 1.89 24 71 52 REY 0.350 0.5 250 47 1.73 26 70 43 REY 0.350 0.5 250 41 2.02 26 70 44 REX (fully 0.250 0.2 250 45 1.63 36 57 7 exchanged)5 REX (fully 0.250 0.5 250 40 1.39 37 56 7 exchanged)6 REX (fully 0.350 0.5 250 38 1.83 38 56 6 exchanged)7 HY 0.350 0.2 250 77 5.61 23 69 88 HY 0.350 0.5 250 70 4.60 24 69 79 H--Mordenite 0.250 0.5 250 32 1.05 15 84 410 H--Mordenite 0.350 0.5 250 21 0.90 16 84 411 H--Mordenite 0.350 0.5 330 89 8.46 15 84 112 NaX 0.250 0.2 250 3 0.08 31 18 313 NaX 0.350 0.5 250 1 0.04 49 29 414 NaX 0.350 0.5 330 18 0.76 41 47 1115 REX (70% 0.350 0.2 250 33 1.53 53 40 7 exchanged)16 REX (70% 0.350 0.5 250 31 1.39 55 39 6 exchanged)17 NaY 0.350 0.5 250 2 0.07 45 51 418 REX (43% 0.350 0.2 250 9 0.39 61 35 4 exchanged)19 REX (43% 0.350 0.5 250 10 0.42 61 34 4 exchanged)__________________________________________________________________________ Comparison of the total acidity, defined as the amount of irreversibly adsorbed NH.sub.3 at 200.degree. C. and the activity (k.sub.1) for aniline alkylation with propylene is shown in FIG. 1. Although no simple linear correlation of the data exists, there is a clear distinction between the activity of the catalysts of the present invention, i.e., those with an acidity factor of at least 0.3 and catalysts utilized in the prior art. For example, compare the behavior of NaX, a preferred catalyst of French Pat. No. 1,406,739 having an acidity factor of 0.16 and a partially exchanged (43%) rare earth X having an acidity factor of 0.21 against H-Y having an acidity factor of 1.12 or H-mordenite having an acidity factor of 1.05. At temperatures of 250.degree. C., the conversion of aniline over NaX was only 1-2% while the conversion over HY was 60-80%. To obtain higher conversions of aniline over NaX temperatures of 300+.degree. C. were required. At 330.degree. C., a conversion of 18% was obtained with fairly poor selectivity to ortho-alkylates (47%). H-Y Zeolite on the otherhand gave 70% selectivity to ortho-alkylates at 250.degree. C. and 70-77% conversion. H-mordenite was extremely effective at higher temperatures effecting ring alkylation of aniline. At low temperatures, e.g., 200.degree.-250.degree. C. low conversions were recorded and this was believed due to cage structure restraint of molecular diffusion. A partially exchanged (43%) rare earth exchanged zeolite having an acidity factor of 0.21 gave conversions of only 10% under conditions where the more acidic catalysts gave 30-70% conversion. Although the exchange of rare earth metals for sodium in the catalyst gave some improvement over NaX, it is still significantly less active than the fully exchanged, more acidic REX, a catalyst having an acidity factor of 1.00. FIG. 2 displays the relationship between acidity and selectivity for ortho-alkylation. The log of the activity for ortho-alkylation vs. acidity is plotted in FIG. 1. It shows clearly that the use of strong, acidic catalysts are also more effective at ring alkylation than the basic catalytic materials of the prior art. Analyzing the runs in the tables the following is noted. Runs 1-3 show that rare earth Y zeolite having an acidity factor of 1.28 gave better conversion and selectivity to ortho-alkylated product than the fully exchanged rare earth x zeolite runs 3-6) and the 70% and 43% rare earth exchanged zeolite (runs 15-19). Sodium which had the lowest acidity factor gave the poorest results in terms of conversion (note runs 12-14). H-Y on the other hand, which had a high acidity factor, e.g., 1.12, showed conversions of 70 to 77% (runs 7-8) at 250.degree. C. while sodium Y which had an acidity factor of 0.17 gave low conversions at 250.degree. C. EXAMPLE 3 Alkylation of Toluenediamine with Isobutylene over Zeolite Isobutylene was reacted with toluenediamine in a stirred batch reactor. In this process approximately 200 grams of 2,4-toluenediamine was charged to the reactor along with 20 grams of catalyst. The reactor was then brought to reaction temperature and isobutylene pumped into the reactor to provide a molar ratio of isobutylene to toluenediamine of approximately 2:1. The reaction was carried out at a temperature of 180.degree. C. for 4 hours. The reaction product was analyzed by gas chromotography. Selectivity was defined in accordance with Example 2. The table summarizes the results: N-alkylate=2N-t-butyl-2,4-toluenediamine plus 4N-t-butyl-2,4-toluenediamine. Mixed=Mixed ring/N-alkylates=N,N'-di-t-butyl-2,4-toluenediamine plus 2N-5-di-t-butyl-toluenediamine. ______________________________________ Con- 5- -t-butylCatalyst version N--alkylate toluenediamine Mixed______________________________________HY(LZY82) 48 24 74 2NaX 2 22 24 0______________________________________ The results show excellent activity for the acidic HY zeolite while the sodium X zeolite was practically inactive at that reaction temperature. Selectivity to ring alkylate was high e.g. 3:1 ring to N-alkylate while selectivity to ring alkylate was low with NaX, e.g. 1:1 ring to N-alkylate. EXAMPLE 4 Preparation of 5-isopropyl-2,4-toluenediamine and 3-isopropyl-2,6-toluenediamine over H-Y Zeolite (A) A 40 gram portion of powdered HY-faujasite catalyst and 20 grams (1.64 moles) of 2,4-toluenediamine were charged to 1,000 cc pressure vessel equipped with a mechanical stirrer. A vessel was sealed and purged with nitrogen, and then pressurized to leave a residual 214 psig nitrogen blanket. The contents in the reactor were heated to 300.degree. C. with stirring. At that time, 206 grams or 4.92 moles propylene were added to the reactor over a 30 minute period. On addition of the propylene the initial reaction pressure increased to 2,565 psig. The reaction mixture was maintained at 300.degree. C. for twenty hours with constant stirring. During reaction, the pressure fell but no additional propylene was added. The reaction product was recovered by first cooling the contents in the reactor to 150.degree. C. and then discontinuing stirring. Residual propylene in the reactor was vented and the catalyst removed by a hot filtration technique. Analysis of the product by gas chromatographic techniques revealed the following products: ______________________________________ Gas ChromotographCompound area percent______________________________________2,4-toluenediamine 43.95-isopropyl-2,4-toluenediamine 54.113,5-diisopropyl-2,4-toluenediamine 20.16other alkylated products 21.34______________________________________ (B) The above (A) procedure was repeated except that 2,6-toluenediamine was substituted for the 2,4-toluenediamine reactant. On addition of propylene, the initial reaction pressure was 2,934 psig. Analysis of the reaction product, after isolation, showed the following: ______________________________________ Gas ChromotographCompound area percent______________________________________2,6-toluenediamine 4.643-isopropyl-2,6-toluenediamine 45.173,5-diisopropyl-2,6-toluenediamine 30.70Other alkylated products 19.49______________________________________ The above example shows the excellent activity of the H-Y zeolite in the ring propylation of toluenediamine. Higher temperatures are generally required to effect high conversion to ring alkylated product, at least as compared to ring alkylation to toluenediamine with isobutylene. A homogeneous catalyst system using triethylaluminum and aniline of the type generally described in U.S. Pat. No. 3,275,690 gave much poorer results in terms of conversion. EXAMPLE 5 Alkylation of a 80:20 Mixture with Isobutylene over H-Y zeolite A 15.00 g. portion of H-Y zeolite (powder) having a pore size of 7.4 Angstroms, 120.0 g. (0.98 mol) of 2,4-toluenediamine, and 30.0 g. (0.25 mol) of 2,6-toluenediamine were charged to a 1000 cc Hastalloy C pressure vessel equipped with a mechanical stirrer. The vessel was sealed and purged with nitrogen, leaving a 217 psig nitrogen blanket. The contents were heated to 180.degree. C. with stirring. Isobutylene (280 g., 4.98 mol) was then added over 15 minutes, resulting in an initial reaction pressure of 1271 psig. The reaction mixture was maintained at 180.degree. C. for 18 hours with constant stirring and then cooled to 150.degree. C. Stirring was discontinued at this time and the residual pressure was vented. The catalyst was removed by hot filtration, a product mixture of the following composition was obtained: ______________________________________ Mole % H--Y______________________________________2,4-toluenediamine 19.092,6-toluenediamine 6.32-(tert-butylamino)-4-aminotoluene 2.032-amino-4-(tert-butylamino)toluene 8.115-tert-butyl-2,4-toluenediamine 48.793-tert-butyl-2,6-toluenediamine 12.732-(tert-butylamino)-5-tert-butyl- 1.604-toluenediamine2-amino-5-tert-butyl-4-(tert- 0.55butylamino) toluene2-(tert-butylamino)-5-tert-butyl- Trace6-aminotoluene3,5-di-tert-butyl-2,6- 0.81toluenediamine______________________________________ These results show that the highly acidic H-Y zeolite was extremely effective in producing a mono-tert-butylated toluenediamine. There was a minor amount of N-butylated toluenediamine produced but this product is suited for recycle and conversion to ring alkylated product. Only a small percent, e.g., about 3% of ditertiary butyltoluenediamine products (including ring and N-alkylated) were produced while conversion was about 70%. EXAMPLE 6 Preparation of 5-tert-butyl-2,4-toluenediamine over H-Y Zeolite A 15.0 g. portion of powdered H-Y zeolite having a pore size of about 7.4 Angstroms and 150.0 g. (1.23 mol) of 2,4-toluenediamine were charged to a 1000 cc. Hastalloy C pressure vessel equipped with a mechanical stirrer. The vessel was sealed and purged with nitrogen leaving a residual 225 psig nitrogen blanket. The vessel contents were heated to 180.degree. C. with stirring at 500 rpm. Isobutylene (279.0 g., 4.98 mol) was then added over 2 hours, resulting in 1225 psig vessel pressure. This provided a mole ratio of 4.05 isobutylene to 1 mole toluenediamine. The reaction mixture was maintained at 180.degree. C. for 16 hours with constant stirring. The contents were cooled to 150.degree. C. and then stirring was discontinued and the residual pressure vented. Removal of the catalyst by hot filtration afforded the following product mixture: ______________________________________ Mole %______________________________________2,4-toluenediamine 15.592-(tert-butylamino)-4-aminotoluene 1.662-amino-4-(tert-butylamino)toluene 8.025-tert-butyl-2,4-toluenediamine 71.602,4-di(tert-butylamino)toluene 0.202-tert-butylamino-5-tert-butyl-4-amino- 1.38toluene2-amino-5-tert-butyl-4-(tert-butylamino) 0.55toluene______________________________________ The above results show that highly acidic H-Y zeolite is effective for producing an tert-butylated toluenediamine with high selectivity to the mon-ring-tert-butyl-toluenediamine isomer and modest selectivity to the N-tert-butyltoluenediamine derivatives. Lesser quantities of di-tert-butylated products can be produced by operating at slightly lower temperature and thus at slightly lower conversion. Even so conversion was above 80% and less than 4% ditertiary product was produced. EXAMPLE 7 Preparation of 3-tert-butyl-2,6-toluenediamine over H-Y Zeolite A 15.0 g. portion of powdered H-Y zeolite catalyst and 140.0 g. (1.15 mol) of 2,6-toluenediamine were charged to a 1000 cc Hastalloy C pressure vessel equipped with a mechanical stirrer as was done in Example 2. The vessel was sealed and purged with nitrogen leaving a residual 200 psig nitrogen blanket at room temperature. The contents were heated to 180.degree. C. with stirring. Isobutylene (267 g., 4.76 mol) was then added to the reaction mixture over 20 minutes, resulting in an initial reaction pressure of 1100 psig. This provided a molar ratio of 4.1:1 isobutylene to toluenediamine. The reaction mixture was maintained at 180.degree. C. for 39 hours with constant stirring. The reaction product was isolated by the procedure used in Example 6 and consisted of the following composition: ______________________________________ Mole %______________________________________2,6-toluenediamine 30.482-(tert-butylamino)-6-aminotoluene 9.793-tert-butyl-2,6-toluenediamine 56.132-(tert-butylamino)-5-tert-butyl-6- 1.19aminotoluene3,5-di-tert-butyl-2,6-toluenediamine 1.28 100.00%______________________________________ The results in terms of conversion and selectivity were similar to those obtained for the conversion of the 2,4-isomer in Example 2. A lesser quantity of di-tert-butylated product can be produced at slightly lower conversion. Conversion was in excess of 70% and selectivity to ditertiary butyl isomers was less than 4%. EXAMPLE 8 Synthesis of 3-tert-butyl-2,6-toluenediamine over silica-alumina Synthesis of the above recited ortho-tert-butyltoluenediamine was carried out in a 1 gallon stainless steel pressure vessel equipped with a mechanical stirrer. The vessel was charged with a 150 gram portion of a powdered commercially available silica-alumina catalyst containing 13% alumina and 1500 grams (12.24 moles) of 2,6-toluenediamine. The autoclave was sealed and purged with nitrogen. A residual blanket of nitrogen was left in the autoclave, leaving the pressure at 16 psig. The contents of the reactor were heated to a temperature of 200.degree. C. with constant agitation. Isobutylene was then introduced into the reactor and 870 grams or 15.5 moles were added over a 30 minute period resulting in an initial reaction pressure of 970 psig. This provided a mole ratio of 1.26:1 isobutylene to toluenediamine. The reaction mixture was maintained at 200.degree. C. for about 45 hours with constant agitation. At the end of the 45 hour reaction time the contents were cooled to about 150.degree. C. and agitation discontinued. The reactor then was vented and the contents removed from the reactor. The catalyst was removed from the reaction mixture by filtration. The reaction product was analyzed by gas chromatographic techniques and the following analysis was obtained: ______________________________________ Mole Percent______________________________________2,6-toluenediamine 43.342-(tert-butylamino)-6-aminotoluene 3.303-tert-butyl-2,6-toluenediamine 42.363,5-di-tert-butyl-2,6-toluenediamine 8.62-(tert-butylamino)-5-tert-butyl-6- 1.82aminotoluene______________________________________ Both the mono and di-tert-butyltoluenediamine products were produced. Conversion was somewhat lower than obtained with the H-Y Zeolite in Example 7. EXAMPLE 9 Synthesis of 5-t-butyl-2,4-toluenediamine over HCl A 300 cc Hastalloy C pressure vessel equipped with a mechanical stirrer was used for producing t-butyltoluenediamine. Approximately 100 grams or 0.819 moles of 2,4-toluenediamine were charged to the vessel along with 5 grams of 36% aqueous hydrochloric acid. The vessel was sealed and purged with nitrogen, leaving a 33 psig nitrogen blanket. The vessel contents then were heated to 180.degree. C. with continuous stirring. Isobutylene then was introduced into the reactor and 53.4 grams or 0.96 moles was added over 15 minutes. On addition of the isobutylene, the pressure in the reactor increased to 766 psig. The reaction mixture was maintained at 180.degree. C. for 24 hours with constant stirring. At the end of the 24 hour period the pressure had dropped to 524 psig. The contents were then cooled to 160.degree. C. and stirring discontinued. At that time the reactor was vented and the reaction product analyzed for composition. ______________________________________ Mole Percent______________________________________2,4-toluenediamine 50.702-(tert-butylamino)-4-aminotoluene 1.842-amino-4-(tert-butylamino)toluene 12.715-tert-butyl-2,4-toluenediamine 26.712,4-di(tert-butylamino)toluene 1.312-(tert-butylamino)-5-tert-butyl-4- 5.28aminotoluene2-amino-5-tert-butyl-4-(tert-butyl- 1.45amino)toluene______________________________________ Conversion is lower than in Example 6. EXAMPLE 10 Synthesis of 5-tert-butyl-2,4-toluenediamine over montmorillonite Synthesis of the above described t-butyltoluenediamine was accomplished using the procedure of Example 6 except that 15 grams of powdered montmorillonite clay were used in place of the silica-alumina catalyst and 150 g (1.23 moles) of the 2,4-toluenediamine isomer were used as opposed to the 2,6-isomer. As in Example 6, the reactor contents were purged with nitrogen and then the contents were heated to 180.degree. C. with stirring. Approximately 278 grams or 4.95 moles of isobutylene were then added to the reaction mixture over 20 minutes. The initial reaction pressure increased to 1210 psig and the contents maintained at 180.degree. C. for 23 hours. At that time the contents were cooled to 150.degree. C. and the reactor vented. The catalyst then was removed by hot filtration. The reaction product was analyzed and contained the following: ______________________________________ Mole Percent______________________________________2,4-toluenediamine 57.822-(tert-butylamino)-4-aminotoluene 5.492-amino-4-(tert-butylamino)toluene 18.275-tert-butyl-2,4-toluenediamine 16.852,4-di(tert-butylamino)toluene 0.422-(tert-butylamino)-5-tert-butyl-4- 0.47aminotoluene2-amino-5-tert-butyl-4-(tert-butyl- 0.27amino)toluene______________________________________ Conversion of the toluenediamines was less than in Example 6 when H-Y Zeolite was used. EXAMPLE 11 2-methyl-6-isopropyl aniline 2-Methyl-6-isopropyl aniline was prepared by the method of Example 2 using an H-Y zeolite catalyst for the condensation of aniline and propylene. The ortho-toluidine and propylene were fed to the reactor in a 1:5 molar ratio and at an LHSV of 0.25 based on o-toluidine. The reaction was conducted at 250.degree. C. and 861 psig. The effluent product stream was analyzed by gas chromatography. Conversion of o-toluidine was 81.5%. ______________________________________ Wt. %______________________________________ortho-toluidine 19.55N--isopropyl-2-methylaniline 14.966-isopropyl-2-methylaniline 57.104-isopropyl-2-methylaniline 3.10other alkylation products 10.58 105.29______________________________________ This example shows the effectiveness of a highly acidic catalyst to effect alkylation of an alkyl substituted aromatic amine. A high selectivity to the ortho-alkylated aromatic amine was achieved and the ratio of ring alkylate to N-alkylate was high, e.g., 4:1. EXAMPLE 12 2-fluoro-6-isopropyl aniline 2-fluoro-6-isopropyl aniline was prepared by the method of Example 2 using an H-Y zeolite catalyst for the condensation of 2-aniline and propylene. In this reaction 2-fluoroaniline and propylene were fed to a reactor in a 1:5 mole ratio and LHSV of 0.25 based on 2-fluoroaniline. The reaction was conducted at 255.degree. C. and 879 psig. The effluent product stream was analyzed by gas chromatography. Conversion of 2-fluoroaniline was 71.2%. ______________________________________ Wt. %______________________________________2-fluoroaniline 28.80N--isopropyl-2-fluoroaniline 31.362-fluoro-6-isopropylaniline 26.122-fluoro-4-isopropylaniline 5.66other alkylated products 6.80 98.74______________________________________ As in Example 11 the catalyst was effective for alkylating a substituted aromatic composition but one substituted with a halogen atom instead of alkyl group and in relatively high yield. Good selectivity to the ortho-alkylated aniline derivative was achieved. Because of the electron withdrawing character of the fluorine atom, a little higher temperature could be utilized to obtain higher ring alkylation and reduced N-alkylation. EXAMPLE 13 2-chloro-6-isopropyl aniline 2-chloro-6-isopropyl aniline was prepared by the method of Example 2 using an H-Y zeolite catalyst for the condensation of aniline and propylene. 2-chloroaniline and propylene were fed to the reactor in a 1:5 mole ratio and LHSV of 0.25 based on 2-chloroaniline. The reaction was conducted at 250.degree. C. and 1343 psig. The effluent product stream was analyzed by gas chromatography. Conversion of 2-chloroaniline was 72%. ______________________________________ Wt. %______________________________________2-chloroaniline 18.08N--isopropyl-2-chloroaniline 38.112-chloro-6-isopropylaniline 18.592-chloro-4-isopropylaniline 5.88other alkylation products 22.16 102.82______________________________________ As in Example 12 good yields to alkylated aromatic amine were achieved, although a higher than usual N/ring ratio was formed due to the electron withdrawing properties of chlorine. Perhaps a higher temperature, e.g., to 275.degree. C. would reduce N-alkylation. EXAMPLE 14 Alkylation of ortho-phenylenediamine with propylene over H-Y zeolite catalyst A 100.0 g (0.92 mol) portion of ortho-phenylenediamine and 20.0 g of H-Y zeolite were charged to a 1000 cc pressure vessel equipped with a mechanical stirrer. The vessel was sealed and purged with nitrogen, leaving a 212 psig nitrogen blanket. The vessel contents were heated to 277.degree. C. with stirring. Propylene (155. g, 3.70 mol) was then added over 15 min., resulting in an initial reaction pressure of 1990 psig; the mixture was maintained at 277.degree. C. for 21 hr. with constant stirring, after which time, the pressure dropped to 1514 psig. The contents were then cooled to 150.degree. C., and a catalyst free sample was obtained by hot filtration. The sample gave the following olefin free analysis by gas chromatography: ______________________________________Composition GC Area %______________________________________1,2-benzenediamine 0.682N--isopropyl-1,2 benzenediamine 0.636-isopropyl-1,2-benzenediamine 20.905-isopropyl 1,2-benzenediamine 0.532N--isopropyl-6-isopropyl-1,2-benzenediamine 6.213,6-diisopropy1-1,2-benzenediamine 31.803,5-diisopropyl-1,2-benzenediamine 9.21Other Alkylated Products 30.04 100%______________________________________ EXAMPLE 15 Alkylation of Aniline with Olefins A series of alkylation reactions was run using aniline as a model reactant since it has active sites at both the ortho-and-para positions tot the amino group. The reactions were carried out in a fixed bed catalytic reactor, the reactor consisting of a 0.5 inch ID, 304 stainless steel tube which was jacketed with a single-element heater. A 5 cc Vicor preheating bed was used to vaporize the reactants as they were passed downflow through the stainless steel tube jacketed reactor. The reactor was of sufficient length to accommodate from about 12 to 25 cubic centimeters of a solid phase catalyst system. The reactants were charged to the preheater, vaporzied and then reacted in the presence of a catalyst. The reaction product was collected and by product olefin was removed via vaporization. The reaction product then was analyzed (free of olefin) by gas chromotography using an internal standard technique. Tables 4-24 below are the results of alkylation runs listing reactants, process conditions, e.g. temperature in .degree.C., pressure in psig, liquid hourly space velocity (LHSV), catalyst, moles of aromatic amine (N), moles olefin (R), conversion, and ortho-para isomer ratios (O-P). OBS is a line number for each table to aid in quick identification for results on that table. The term ortho to para ratio is the ratio of combined wt% of product 2, and 2,6-isomers divided by the combined weight % of the 4; 2,4-; and 2,4,6-isomers. Run is an arbitrary run number and is provided to facilitate quick review of results in other tables where there has been a sorting of the data as for example ascending pressure, ascending conversion or ascending ortho-para ratio. The various sorting of the data affords an ability to observe trends and make determinations as to the effect of temperature, pressure and space velocity, on conversion and e.g., ortho-para selectivity in the alkylation with specific olefinic reactants. In the analytical portion of the table the following abbreviated codes have been utilized to identify the following products. N-IPA refers to N-isopropyl aniline. 2-IPA refers to 2-isopropyl aniline or ortho-isopropyl aniline. 4-IPA refers to 4-isopropyl aniline or para-isopropyl aniline. N,2-DIPA refers to N,2-diisopropyl aniline. 2,4-DIPA refers to 2,4-diisopropyl aniline. 2,6-DIPA refers to 2,6-diisopropyl aniline; and 2,4,6-TIPA refers to 2,4,6-triisopropyl aniline. N-t-butyl aniline refers to N-tert-butyl aniline. O-t-butyl aniline refers to ortho-tert-butyl aniline. P-t-butyl aniline refers to para-tert-butyl aniline. N,2-dibut aniline refers to N,2-di-tert-butyl aniline. 2,4-dibut aniline refers to 2,4-di-tert-butyl aniline. N-cylohexaniline refers to N-cyclohexyl-aniline. O-cyclohexaniline refers to ortho-cyclohexyl-aniline. P-cyclohexaniline refers to para-cyclohexyl-aniline. N,2-dihexaniline refers to N,2-dicyclohexyl-aniline. 2,4-dihexaniline refers to 2,4-dicyclohexyl-aniline. 2,6-dihexaniline refers to 2,6-dicyclohexyl-aniline. TABLE 4__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by TemperatureOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O -- P__________________________________________________________________________ 1 7171-41-03 1 154 930 1.00 10.00 H--MORDENITE 0.25 2.46 . 2 7644-96-13 2 201 769 1.00 1.00 H--MORDENITE 0.13 0.61 . 3 7171-41-06 3 201 950 1.00 10.00 H--MORDENITE 0.25 4.40 . 4 7644-96-14 4 202 927 1.00 2.00 H--MORDENITE 0.13 0.63 . 5 7644-53-03 5 204 840 1.00 1.00 H--MORDENITE 0.13 4.73 . 6 7723-54-19 6 208 967 1.00 2.00 H--MORDENITE 0.13 0.31 . 7 7723-54-20 7 208 963 1.00 2.00 H--MORDENITE 0.13 0.21 . 8 7644-96-15 8 227 917 1.00 2.00 H--MORDENITE 0.13 2.83 24.29 9 7171-43-09 9 227 949 1.00 10.00 H--MORDENITE 0.25 5.07 .10 7723-56-24 10 228 985 1.00 2.00 H--MORDENITE 0.13 6.62 .11 7723-56-25 11 228 978 1.00 2.00 H--MORDENITE 0.13 7.10 .12 7723-49-04 12 228 957 1.00 2.00 H--MORDENITE 0.13 3.10 .13 7723-49-05 13 228 990 1.00 2.00 H--MORDENITE 0.13 2.68 .14 7171-43-17 14 228 956 1.00 10.00 H--MORDENITE 0.25 2.61 .15 7723-57-26 15 247 990 1.00 2.00 H--MORDENITE 0.13 6.98 .16 7644-97-16 16 252 919 1.00 2.00 H--MORDENITE 0.13 9.65 20.4017 7644-97-17 17 252 914 1.00 2.00 H--MORDENITE 0.13 9.90 20.3818 7644-54-04 18 252 836 1.00 1.00 H--MORDENITE 0.13 7.92 .19 7644-54-05 19 252 834 1.00 1.00 H--MORDENITE 0.13 9.79 15.0820 7644-54-06 20 252 847 1.00 2.00 H--MORDENITE 0.13 9.78 15.0021 7644-55-07 21 252 840 1.00 2.00 H--MORDENITE 0.13 12.84 15.5122 7171-43-11 22 252 956 1.00 10.00 H--MORDENITE 0.25 9.00 .23 7723-62-45 23 261 1008 1.00 2.00 H--MORDENITE 0.13 12.05 15.2224 7723-62-46 24 261 1006 1.00 2.00 H--MORDENITE 0.13 14.18 14.9225 7723-64-51 25 262 910 1.00 2.00 H--MORDENITE 0.03 47.35 14.5726 7723-64-53 26 262 1000 1.00 2.00 H--MORDENITE 0.03 45.95 14.5127 7723-65-56 27 262 1002 1.00 2.00 H--MORDENITE 0.03 48.15 14.5128 7723-57-28 28 271 1000 1.00 2.00 H--MORDENITE 0.13 23.38 14.1429 7723-57-30 29 271 1005 1.00 2.00 H--MORDENITE 0.13 25.95 14.8530 7723-58-34 30 271 1000 1.00 2.00 H--MORDENITE 0.13 44.47 12.2631 7723-58-36 31 271 1004 1.00 2.00 H--MORDENITE 0.13 47.80 12.3832 7723-59-37 32 271 1004 1.00 2.00 H--MORDENITE 0.13 46.04 12.1233 7723-59-38 33 271 1000 1.00 2.00 H--MORDENITE 0.13 48.61 12.1734 7644-74-10 34 274 834 1.00 2.00 H--MORDENITE 0.06 32.32 9.7635 7723-66-61 35 275 997 1.00 2.00 H--MORDENITE 0.03 58.95 12.1236 7723-66-62 36 275 927 1.00 2.00 H--MORDENITE 0.03 56.41 12.0537 7723-67-67 37 276 1020 1.00 10.00 H--MORDENITE 0.12 19.80 12.5038 7723-67-69 38 276 1020 1.00 10.00 H--MORDENITE 0.12 19.09 12.7039 7723-68-74 39 276 1013 1.00 10.00 H--MORDENITE 0.03 62.56 10.5240 7723-69-77 40 276 1015 1.00 10.00 H--MORDENITE 0.03 52.60 11.4641 7723-69-78 41 276 1011 1.00 10.00 H--MORDENITE 0.03 53.99 11.8642 7644-97-18 42 277 920 1.00 2.00 H--MORDENITE 0.13 18.08 13.7543 7171-43-14 43 277 956 1.00 10.00 H--MORDENITE 0.25 16.85 12.9244 7644-97-19 44 301 918 1.00 2.00 H--MORDENITE 0.13 25.10 9.4445 7644-98-20 45 301 915 1.00 2.00 H--MORDENITE 0.06 33.15 13.5846 7432-08-05 46 150 883 1.00 1.00 H--Y 0.13 9.89 .47 7432-09-06 47 150 883 1.00 1.00 H--Y 0.13 6.07 .48 7171-37-02 48 154 960 1.00 11.80 H--Y 0.25 1.56 .49 7171-37-03 49 154 962 1.00 10.00 H--Y 0.25 1.65 .50 7432-11-11 50 167 910 1.00 2.00 H--Y 0.06 19.08 .51 7432-11-12 51 167 910 1.00 2.00 H--Y 0.06 17.97 .52 7432-12-12 52 167 913 1.00 1.00 H--Y 0.06 18.03 .53 7432-12-13 53 167 911 1.00 1.00 H--Y 0.06 18.00 .54 7432-10-09 54 182 911 1.00 2.00 H--Y 0.13 22.46 34.1755 7432-10-10 55 182 918 1.00 2.00 H--Y 0.13 21.39 .56 7171-38-05 56 202 972 1.00 10.00 H--Y 0.25 24.12 17.1157 7171-38-16 57 202 972 1.00 10.00 H--Y 0.25 24.85 17.3558 7432-09-07 58 203 907 1.00 10.00 H--Y 0.25 29.58 22.5759 7432-09-08 59 203 910 1.00 10.00 H--Y 0.25 29.21 28.9160 7432-15-19 60 226 918 2.00 1.00 H-- Y 0.06 50.12 10.5161 7432-15-20 61 226 918 2.00 1.00 H--Y 0.06 51.76 10.3462 7432-23-22 62 226 928 4.00 1.00 H--Y 0.06 18.19 14.4263 7432-14-16 63 227 928 1.00 1.00 H--Y 0.06 53.55 9.5464 7432-14-18 64 227 930 1.00 1.00 H--Y 0.06 50.67 9.4065 7432-23-23 65 227 931 4.00 1.00 H--Y 0.06 20.78 13.5966 7171-38-18 66 228 990 1.00 10.00 H--Y 0.25 48.76 10.8067 7171-39-09 67 228 985 1.00 10.00 H--Y 0.25 49.47 10.8068 7171-40-17 68 228 913 1.00 10.00 H--Y 0.25 44.31 11.3469 7171-40-18 69 228 913 1.00 10.00 H--Y 0.25 44.20 11.3170 7723-19-33 70 228 1021 1.00 10.00 H--Y 0.06 80.68 11.2171 7723-19-34 71 228 1024 1.00 10.00 H--Y 0.06 81.03 11.1572 7171-39-11 72 253 988 1.00 10.00 H--Y 0.25 78.53 5.6273 7171-39-12 73 253 988 1.00 10.00 H--Y 0.25 79.72 5.5574 7171-39-14 74 277 985 1.00 10.00 H--Y 0.25 100.00 0.7875 7171-39-15 75 277 986 1.00 10.00 H--Y 0.25 100.00 0.76__________________________________________________________________________ TABLE 5__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by Temperature ANI- N-- LINE IPA 2-IPA MOLE MOLE MOLE 4-IPA N,2-DIPA 2,4-DIPA 2,6-DIPA 2,4,6-TIPAOBS RUN PCT PCT PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O__________________________________________________________________________ --P 1 1 96.65 0.88 1.45 0.00 0.00 0.00 0.00 0.00 2.46 2 2 99.39 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.61 . 3 3 94.37 1.23 2.77 0.00 0.00 0.00 0.00 0.00 4.40 . 4 4 99.24 0.13 0.30 0.00 0.00 0.00 0.00 0.00 0.63 . 5 5 95.27 0.00 0.42 0.00 0.00 0.00 0.00 0.00 4.73 . 6 6 99.69 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.31 . 7 7 99.79 0.00 1.12 0.00 0.00 0.00 0.00 0.00 0.21 . 8 8 96.22 0.95 2.39 0.10 0.00 0.00 0.00 0.00 2.83 24.29 9 9 92.71 2.22 5.53 0.00 0.00 0.00 0.00 0.00 5.07 .10 10 92.04 1.33 4.13 0.00 0.00 0.00 0.00 0.00 6.62 .11 11 91.42 1.48 4.52 0.00 0.00 0.00 0.00 0.00 7.10 .12 12 94.09 2.82 2.77 0.00 0.00 0.00 0.00 0.00 3.10 .13 13 95.80 1.52 2.68 0.00 0.00 0.00 0.00 0.00 2.68 .14 14 95.94 1.45 3.66 0.00 0.00 0.00 0.00 0.00 2.61 .15 15 91.64 1.38 4.27 0.00 0.00 0.00 0.00 0.00 6.98 .16 16 87.11 3.25 8.44 0.43 0.09 0.00 0.14 0.00 9.65 20.4017 17 86.75 3.35 8.73 0.44 0.10 0.00 0.15 0.00 9.90 20.3818 18 90.27 1.81 5.10 0.00 0.00 0.00 0.00 0.00 7.92 .19 19 86.82 3.40 9.54 0.63 0.00 0.00 0.00 0.00 9.79 15.0820 20 87.84 2.38 6.79 0.45 0.00 0.00 0.00 0.00 9.78 15.0021 21 83.83 3.33 9.80 0.65 0.00 0.00 0.25 0.00 12.84 15.5122 22 87.04 3.96 10.22 0.00 0.00 0.00 0.00 0.00 9.00 .23 23 84.47 3.48 10.79 0.68 0.11 0.05 0.15 0.00 12.05 15.2224 24 81.91 3.91 12.38 0.77 0.17 0.09 0.25 0.00 14.18 14.9225 25 42.53 10.12 38.30 1.93 2.02 0.96 2.91 0.08 47.35 14.5726 26 44.14 9.91 37.44 1.91 1.86 0.91 2.72 0.08 45.95 14.5127 27 41.66 10.19 38.88 1.96 2.07 0.99 3.02 0.08 48.15 14.5128 28 70.77 5.85 19.62 1.43 0.00 0.00 0.65 0.00 23.38 14.1429 29 67.77 6.29 22.05 1.53 0.00 0.00 0.70 0.00 25.95 14.8530 30 46.53 9.00 36.93 2.17 0.00 1.06 2.77 0.00 44.47 12.2631 31 42.64 9.56 39.78 2.26 0.00 1.21 3.20 0.00 47.80 12.3832 32 44.94 9.02 37.57 2.21 0.00 1.14 2.96 0.00 46.04 12.1233 33 41.81 9.58 40.18 2.32 0.00 1.25 3.20 0.00 48.61 12.1734 34 60.21 7.47 25.88 1.50 0.00 1.16 4.30 0.44 32.32 9.7635 35 31.96 9.09 44.42 2.19 3.55 1.94 5.90 0.32 58.95 12.1236 36 34.88 8.71 42.30 2.14 3.22 1.79 5.46 0.30 56.41 12.0537 37 75.59 4.60 16.80 1.13 0.41 0.28 0.74 0.02 19.80 12.5038 38 76.39 4.52 16.42 1.12 0.35 0.25 0.60 0.00 19.09 12.7039 39 29.07 8.36 41.80 1.65 4.57 2.46 9.86 1.24 62.56 10.5240 40 39.17 8.23 38.06 1.75 3.05 1.78 6.14 0.59 52.60 11.4641 41 37.21 8.80 40.10 1.83 3.08 1.84 5.95 0.47 53.99 11.8642 42 76.73 5.19 15.18 0.82 0.46 0.35 1.01 0.04 18.08 13.7543 43 77.11 6.04 17.01 1.11 0.51 0.32 1.03 0.00 16.85 12.9244 44 69.03 5.87 18.44 1.29 1.00 0.80 2.19 0.20 25.10 9.4445 45 60.19 6.66 22.30 1.52 1.64 0.00 3.98 0.54 33.15 13.5846 46 88.76 1.35 2.26 0.00 0.00 0.00 0.00 0.00 9.89 .47 47 92.55 1.38 2.97 0.00 0.00 0.00 0.00 0.00 6.07 .48 48 97.46 0.98 1.56 0.00 0.00 0.00 0.00 0.00 1.56 .49 49 97.32 1.03 1.65 0.00 0.00 0.00 0.00 0.00 1.65 .50 50 74.75 6.17 13.73 0.00 0.00 0.00 0.64 0.00 19.08 .51 51 75.69 6.34 13.95 0.00 0.00 0.00 0.64 0.00 17.97 .52 52 75.82 6.15 13.80 0.00 0.00 0.00 0.65 0.00 18.03 .53 53 75.86 6.14 13.75 0.00 0.00 0.00 0.63 0.00 18.00 .54 54 70.69 6.85 16.65 0.54 0.52 0.00 1.31 0.00 22.46 34.1755 55 71.62 6.99 16.66 0.00 0.51 0.00 1.22 0.00 21.39 .56 56 66.95 8.93 18.68 1.18 0.44 0.00 1.05 0.00 24.12 17.1157 57 66.18 8.97 19.00 1.17 0.26 0.00 1.06 0.00 24.85 17.3558 58 62.16 8.26 22.57 1.16 0.90 0.00 2.80 0.00 29.58 22.5759 59 62.37 8.42 22.98 0.93 0.90 0.00 2.90 0.00 29.21 28.9160 60 39.05 10.83 29.68 1.71 2.73 2.03 15.38 0.80 50.12 10.5161 61 37.39 10.86 33.64 1.82 2.74 2.50 15.65 0.70 51.76 10.3462 62 78.98 2.84 11.66 0.84 0.00 0.00 0.49 0.00 18.19 14.4263 63 35.03 11.42 28.13 1.63 3.23 2.46 20.27 1.32 53.55 9.5464 64 37.86 11.47 29.16 1.65 2.83 2.46 17.89 1.20 50.67 9.4065 65 76.10 3.12 12.97 1.00 0.00 0.00 0.58 0.00 20.78 13.5966 66 35.13 16.11 34.45 2.31 3.93 2.09 9.20 0.00 48.76 10.8067 67 34.12 16.41 35.09 2.35 4.00 2.15 9.51 0.00 49.47 10.8068 68 40.26 15.43 32.69 2.18 2.77 1.55 6.92 0.01 44.31 11.3469 69 40.36 15.45 32.77 2.22 2.78 1.53 6.82 0.01 44.20 11.3170 70 6.78 12.54 15.14 0.00 13.14 2.64 41.32 3.57 80.68 11.2171 71 6.46 12.50 14.70 0.00 13.30 2.58 41.95 3.69 81.03 11.1572 72 8.12 13.34 24.42 1.22 13.49 6.12 36.28 5.87 78.53 5.6273 73 7.31 12.98 23.09 1.14 13.28 5.98 35.78 5.87 79.72 5.5574 74 0.00 0.00 3.98 0.00 2.91 8.12 37.70 49.39 100.00 0.7875 75 0.00 0.00 3.60 0.00 2.86 8.06 37.90 50.55 100.00 0.76__________________________________________________________________________ TABLE 6__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by PressureOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O__________________________________________________________________________ --P 1 7644-96-13 2 201 769 1.00 1.00 H--MORDENITE 0.13 0.61 . 2 7644-54-05 19 252 834 1.00 1.00 H--MORDENITE 0.13 9.79 15.08 3 7644-74-10 34 274 834 1.00 2.00 H--MORDENITE 0.06 32.32 9.76 4 7644-54-04 18 252 836 1.00 1.00 H--MORDENITE 0.13 7.92 . 5 7644-53-03 5 204 840 1.00 1.00 H--MORDENITE 0.13 4.73 . 6 7644-55-07 21 252 840 1.00 2.00 H--MORDENITE 0.13 12.84 15.51 7 7644-54-06 20 252 847 1.00 2.00 H--MORDENITE 0.13 9.78 15.00 8 7723-64-51 25 262 910 1.00 2.00 H--MORDENITE 0.03 47.35 14.57 9 7644-97-17 17 252 914 1.00 2.00 H--MORDENITE 0.13 9.90 20.3810 7644-98-20 45 301 915 1.00 2.00 H--MORDENITE 0.06 33.15 13.5811 7644-96-15 8 227 917 1.00 2.00 H--MORDENITE 0.13 2.83 24.2912 7644-97-19 44 301 918 1.00 2.00 H--MORDENITE 0.13 25.10 9.4413 7644-97-16 16 252 919 1.00 2.00 H--MORDENITE 0.13 9.65 20.4014 7644-97-18 42 277 920 1.00 2.00 H--MORDENITE 0.13 18.08 13.7515 7644-96-14 4 202 927 1.00 2.00 H--MORDENITE 0.13 0.63 .16 7723-66-62 36 275 927 1.00 2.00 H--MORDENITE 0.03 56.41 12.0517 7171-41-03 1 154 930 1.00 10.00 H--MORDENITE 0.25 2.46 .18 7171-43-09 9 227 949 1.00 10.00 H--MORDENITE 0.25 5.07 .19 7171-41-06 3 201 950 1.00 10.00 H--MORDENITE 0.25 4.40 .20 7171-43-17 14 228 956 1.00 10.00 H--MORDENITE 0.25 2.61 .21 7171-43-11 22 252 956 1.00 10.00 H--MORDENITE 0.25 9.00 .22 7171-43-14 43 277 956 1.00 10.00 H--MORDENITE 0.25 16.85 12.9223 7723-49-04 12 228 957 1.00 2.00 H--MORDENITE 0.13 3.10 .24 7723-54-20 7 208 963 1.00 2.00 H--MORDENITE 0.13 0.21 .25 7723-54-19 6 208 967 1.00 2.00 H--MORDENITE 0.13 0.31 .26 7723-56-25 11 228 978 1.00 2.00 H--MORDENITE 0.13 7.10 .27 7723-56-24 10 228 985 1.00 2.00 H--MORDENITE 0.13 6.62 .28 7723-49-05 13 228 990 1.00 2.00 H--MORDENITE 0.13 2.68 .29 7723-57-26 15 247 990 1.00 2.00 H--MORDENITE 0.13 6.98 .30 7723-66-61 35 275 997 1.00 2.00 H--MORDENITE 0.03 58.95 12.1231 7723-57-28 28 271 1000 1.00 2.00 H--MORDENITE 0.13 23.38 14.1432 7723-58-34 30 271 1000 1.00 2.00 H--MORDENITE 0.13 44.47 12.2633 7723-64-53 26 262 1000 1.00 2.00 H--MORDENITE 0.03 45.95 14.5134 7723-59-38 33 271 1000 1.00 2.00 H--MORDENITE 0.13 48.61 12.1735 7723-65-56 27 262 1002 1.00 2.00 H--MORDENITE 0.03 48.15 14.5136 7723-59-37 32 271 1004 1.00 2.00 H--MORDENITE 0.13 46.04 12.1237 7723-58-36 31 271 1004 1.00 2.00 H--MORDENITE 0.13 47.80 12.3838 7723-57-30 29 271 1005 1.00 2.00 H--MORDENITE 0.13 25.95 14.8539 7723-62-46 24 261 1006 1.00 2.00 H--MORDENITE 0.13 14.18 14.9240 7723-62-45 23 261 1008 1.00 2.00 H--MORDENITE 0.13 12.05 15.2241 7723-69-78 41 276 1011 1.00 10.00 H--MORDENITE 0.03 53.99 11.8642 7723-68-74 39 276 1013 1.00 10.00 H--MORDENITE 0.03 62.56 10.5243 7723-69-77 40 276 1015 1.00 10.00 H--MORDENITE 0.03 52.60 11.4644 7723-67-69 38 276 1020 1.00 10.00 H--MORDENITE 0.12 19.09 12.7045 7723-67-67 37 276 1020 1.00 10.00 H--MORDENITE 0.12 19.80 12.5046 7432-09-06 47 150 883 1.00 1.00 H--Y 0.13 6.07 .47 7432-08-05 46 150 883 1.00 1.00 H--Y 0.13 9.89 .48 7432-09-07 58 203 907 1.00 10.00 H--Y 0.25 29.58 22.5749 7432-11-12 51 167 910 1.00 2.00 H--Y 0.06 17.97 .50 7432-11-11 50 167 910 1.00 2.00 H--Y 0.06 19.08 .51 7432-09-08 59 203 910 1.00 10.00 H--Y 0.25 29.21 28.9152 7432-12-13 53 167 911 1.00 1.00 H--Y 0.06 18.00 .53 7432-10-09 64 182 911 1.00 2.00 H--Y 0.13 22.46 34.1754 7432-12-12 52 167 913 1.00 1.00 H--Y 0.06 18.03 .55 7171-40-18 69 228 913 1.00 10.00 H--Y 0.25 44.20 11.3156 7171-40-17 68 228 913 1.00 10.00 H--Y 0.25 44.31 11.3457 7432-10-10 55 182 918 1.00 2.00 H--Y 0.13 21.39 .58 7432-15-19 60 226 918 2.00 1.00 H--Y 0.06 50.12 10.5159 7432-15-20 61 226 918 2.00 1.00 H--Y 0.06 51.76 10.3460 7432-23-22 62 226 928 4.00 1.00 H--Y 0.06 18.19 14.4261 7432-14-16 63 227 928 1.00 1.00 H--Y 0.06 53.55 9.5462 7432-14-18 64 227 930 1.00 1.00 H--Y 0.06 50.67 9.4063 7432-23-23 65 227 931 4.00 1.00 H--Y 0.06 20.78 13.5964 7171-37-02 48 154 960 1.00 11.80 H--Y 0.25 1.56 .65 7171-37-03 49 154 962 1.00 10.00 H--Y 0.25 1.65 .66 7171-38-05 56 202 972 1.00 10.00 H--Y 0.25 24.12 17.1167 7171-28-16 57 202 972 1.00 10.00 H--Y 0.25 24.85 17.3568 7171-39-09 67 228 985 1.00 10.00 H--Y 0.25 49.47 10.8069 7171-39-14 74 277 985 1.00 10.00 H--Y 0.25 100.00 0.7870 7171-39-15 75 277 986 1.00 10.00 H--Y 0.25 100.00 0.7671 7171-39-11 72 253 988 1.00 10.00 H--Y 0.25 78.53 5.6272 7171-39-12 73 253 988 1.00 10.00 H--Y 0.25 79.72 5.5573 7171-38-18 66 228 990 1.00 10.00 H--Y 0.25 48.76 10.8074 7723-19-33 70 228 1021 1.00 10.00 H--Y 0.06 80.68 11.2175 7723-19-34 71 228 1024 1.00 10.00 H--Y 0.06 81.03 11.15__________________________________________________________________________ TABLE 7__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by Pressure ANI- LINE N--IPA 2-IPA MOLE MOLE MOLE 4-IPA N,2-DIPA 2,4-DIPA 2,6-DIPA 2,4-TIPAOBS RUN PCT PCT PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O__________________________________________________________________________ --P 1 2 99.39 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.61 . 2 19 86.82 3.40 9.54 0.63 0.00 0.00 0.00 0.00 9.79 15.08 3 34 60.21 7.47 25.88 1.50 0.00 1.16 4.30 0.44 32.32 9.76 4 18 90.27 1.81 5.10 0.00 0.00 0.00 0.00 0.00 7.92 . 5 5 95.27 0.00 0.42 0.00 0.00 0.00 0.00 0.00 4.73 . 6 21 83.83 3.33 9.80 0.65 0.00 0.00 0.25 0.00 12.84 15.51 7 20 87.84 2.38 6.79 0.45 0.00 0.00 0.00 0.00 9.78 15.00 8 25 42.53 10.12 38.30 1.93 2.02 0.96 2.91 0.08 47.35 14.57 9 17 86.75 3.35 8.73 0.44 0.10 0.00 0.15 0.00 9.90 20.3810 45 60.19 6.66 22.30 1.52 1.64 0.00 3.98 0.54 33.15 13.5811 8 96.22 0.95 2.39 0.10 0.00 0.00 0.00 0.00 2.83 24.2912 44 69.03 5.87 18.44 1.29 1.00 0.80 2.19 0.20 25.10 9.4413 16 87.11 3.25 8.44 0.43 0.09 0.00 0.14 0.00 9.65 20.4014 42 76.73 5.19 15.18 0.82 0.46 0.35 1.01 0.04 18.08 13.7515 4 99.24 0.13 0.30 0.00 0.00 0.00 0.00 0.00 0.63 .16 36 34.88 8.71 42.30 2.14 3.22 1.79 5.46 0.30 56.41 12.0517 1 96.65 0.88 1.45 0.00 0.00 0.00 0.00 0.00 2.46 .18 9 92.71 2.22 5.53 0.00 0.00 0.00 0.00 0.00 5.07 .19 3 94.37 1.23 2.77 0.00 0.00 0.00 0.00 0.00 4.40 .20 14 95.94 1.45 3.66 0.00 0.00 0.00 0.00 0.00 2.61 .21 22 87.04 3.96 10.22 0.00 0.00 0.00 0.00 0.00 9.00 .22 43 77.11 6.04 17.01 1.11 0.51 0.32 1.03 0.00 16.85 12.9223 12 94.09 2.82 2.77 0.00 0.00 0.00 0.00 0.00 3.10 .24 7 99.79 0.00 1.12 0.00 0.00 0.00 0.00 0.00 0.21 .25 6 99.69 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.31 .26 11 91.42 1.48 4.52 0.00 0.00 0.00 0.00 0.00 7.10 .27 10 97.04 1.33 4.13 0.00 0.00 0.00 0.00 0.00 6.62 .28 13 95.80 1.52 2.68 0.00 0.00 0.00 0.00 0.00 2.68 .29 15 91.64 1.38 4.27 0.00 0.00 0.00 0.00 0.00 6.98 .30 35 31.96 9.09 44.42 2.19 3.55 1.94 5.90 0.32 58.95 12.1231 28 70.77 5.85 19.62 1.43 0.00 0.00 0.65 0.00 23.38 14.1432 30 46.53 9.00 36.93 2.17 0.00 1.06 2.77 0.00 44.47 12.2633 26 44.14 9.91 37.44 1.91 1.86 0.91 2.72 0.08 45.95 14.5134 33 41.81 9.58 40.18 2.32 0.00 1.25 3.20 0.00 48.61 12.1735 27 41.66 10.19 38.88 1.96 2.07 0.99 3.02 0.08 48.15 14.5136 32 44.94 9.02 37.57 2.21 0.00 1.14 2.96 0.00 46.04 12.1237 31 42.64 9.56 39.78 2.26 0.00 1.21 3.20 0.00 47.80 12.3838 29 67.77 6.29 22.05 1.53 0.00 0.00 0.70 0.00 25.95 14.8539 24 81.91 3.91 12.38 0.77 0.17 0.09 0.25 0.00 14.18 14.9240 23 84.47 3.48 10.79 0.68 0.11 0.05 0.15 0.00 12.05 15.2241 41 37.21 8.80 40.10 1.83 3.08 1.84 5.95 0.47 53.99 11.8642 39 29.07 8.36 41.80 1.65 4.57 2.46 9.86 1.24 62.56 10.5243 40 39.17 8.23 38.06 1.75 3.05 1.78 6.14 0.59 52.60 11.4644 38 76.39 4.52 16.42 1.12 0.35 0.25 0.60 0.00 19.09 12.7045 37 75.59 4.60 16.80 1.13 0.41 0.28 0.74 0.02 19.80 12.5046 47 92.55 1.38 2.97 0.00 0.00 0.00 0.00 0.00 6.07 .47 46 88.76 1.35 2.26 0.00 0.00 0.00 0.00 0.00 9.89 .48 58 62.16 8.26 22.57 1.16 0.90 0.00 2.80 0.00 29.58 22.5749 51 75.69 6.34 13.95 0.00 0.00 0.00 0.64 0.00 17.97 .50 50 74.75 6.17 13.73 0.00 0.00 0.00 0.64 0.00 19.08 .51 59 62.37 8.42 22.98 0.93 0.90 0.00 2.90 0.00 29.21 28.9152 53 75.86 6.14 13.75 0.00 0.00 0.00 0.63 0.00 18.00 .53 54 70.69 6.85 16.65 0.54 0.52 0.00 1.31 0.00 22.46 34.1754 52 75.82 6.15 13.80 0.00 0.00 0.00 0.65 0.00 18.03 .55 69 40.36 15.45 32.77 2.22 2.78 1.53 6.82 0.01 44.20 11.3156 68 40.26 15.43 32.69 2.18 2.77 1.55 6.92 0.01 44.31 11.3457 55 71.62 6.99 16.66 0.00 0.51 0.00 1.22 0.00 21.39 .58 60 39.05 10.83 29.68 1.71 2.73 2.03 15.38 0.80 50.12 10.5159 61 37.39 10.86 33.64 1.82 2.74 2.50 15.65 0.70 51.76 10.3460 62 78.98 2.84 11.66 0.84 0.00 0.00 0.49 0.00 18.19 14.4261 63 35.03 11.42 28.13 1.63 3.23 2.46 20.27 1.32 53.55 9.5462 64 37.86 11.47 29.16 1.65 2.83 2.46 17.89 1.20 50.67 9.4063 65 76.10 3.12 12.97 1.00 0.00 0.00 0.58 0.00 20.78 13.5964 48 97.46 0.98 1.56 0.00 0.00 0.00 0.00 0.00 1.56 .65 49 97.32 1.03 1.65 0.00 0.00 0.00 0.00 0.00 1.65 .66 56 66.95 8.93 18.68 1.18 0.44 0.00 1.05 0.00 24.12 17.1167 57 66.18 8.97 19.00 1.17 0.26 0.00 1.06 0.00 24.85 17.3568 67 34.12 16.41 35.09 2.35 4.00 2.15 9.51 0.00 49.47 10.8069 74 0.00 0.00 3.98 0.00 2.91 8.12 37.70 49.39 100.00 0.7870 75 0.00 0.00 3.60 0.00 2.86 8.06 37.90 50.55 100.00 0.7671 72 8.12 13.34 24.42 1.22 13.49 6.12 36.28 5.87 78.53 5.6272 73 7.31 12.98 23.09 1.14 13.28 5.98 35.78 5.87 79.72 5.5573 66 35.13 16.11 34.45 2.31 3.93 2.09 9.20 0.00 48.76 10.8074 70 6.78 12.54 15.14 0.00 13.14 2.64 41.32 3.57 80.68 11.2175 71 6.46 12.50 14.70 0.00 13.30 2.58 41.95 3.69 81.03 11.15__________________________________________________________________________ TABLE 8__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by ConversionOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________ 1 7723-54-20 7 208 963 1.00 2.00 H--MORDENITE 0.13 0.21 . 2 7723-54-19 6 208 967 1.00 2.00 H--MORDENITE 0.13 0.31 . 3 7644-96-13 2 201 769 1.00 1.00 H--MORDENITE 0.13 0.61 . 4 7644-96-14 4 202 927 1.00 2.00 H--MORDENITE 0.13 0.63 . 5 7171-41-03 1 154 930 1.00 10.00 H--MORDENITE 0.25 2.46 . 6 7171-43-17 14 228 956 1.00 10.00 H--MORDENITE 0.25 2.61 . 7 7723-49-05 13 228 990 1.00 2.00 H--MORDENITE 0.13 2.68 . 8 7644-96-15 8 227 917 1.00 2.00 H--MORDENITE 0.13 2.83 24.29 9 7723-49-04 12 228 957 1.00 2.00 H--MORDENITE 0.13 3.10 .10 7171-41-06 3 201 950 1.00 10.00 H--MORDENITE 0.25 4.40 .11 7644-53-03 5 204 840 1.00 1.00 H--MORDENITE 0.13 4.73 .12 7171-43-09 9 227 949 1.00 10.00 H--MORDENITE 0.25 5.07 .13 7723-56-24 10 228 985 1.00 2.00 H--MORDENITE 0.13 6.62 .14 7723-57-26 15 247 990 1.00 2.00 H--MORDENITE 0.13 6.98 .15 7723-56-25 11 228 978 1.00 2.00 H--MORDENITE 0.13 7.10 .16 7644-54-04 18 252 836 1.00 1.00 H--MORDENITE 0.13 7.92 .17 7171-43-11 22 252 956 1.00 10.00 H--MORDENITE 0.25 9.00 .18 7644-97-16 16 252 919 1.00 2.00 H--MORDENITE 0.13 9.65 20.4019 7644-54-06 20 252 847 1.00 2.00 H--MORDENITE 0.13 9.78 15.0020 7644-54-05 19 252 834 1.00 1.00 H--MORDENITE 0.13 9.79 15.0821 7644-97-17 17 252 914 1.00 2.00 H--MORDENITE 0.13 9.90 20.3822 7723-62-45 23 261 1008 1.00 2.00 H--MORDENITE 0.13 12.05 15.2223 7644-55-07 21 252 840 1.00 2.00 H--MORDENITE 0.13 12.84 15.5124 7723-62-46 24 261 1006 1.00 2.00 H--MORDENITE 0.13 14.18 14.9225 7171-43-14 43 277 956 1.00 10.00 H--MORDENITE 0.25 16.85 12.9226 7644-97-18 42 277 920 1.00 2.00 H--MORDENITE 0.13 18.08 13.7527 7723-67-69 38 276 1020 1.00 10.00 H--MORDENITE 0.12 19.09 12.7028 7723-67-67 37 276 1020 1.00 10.00 H--MORDENITE 0.12 19.80 12.5029 7723-57-28 28 271 1000 1.00 2.00 H--MORDENITE 0.13 23.38 14.1430 7644-97-19 44 301 918 1.00 2.00 H--MORDENITE 0.13 25.10 9.4431 7723-57-30 29 271 1005 1.00 2.00 H--MORDENITE 0.13 25.95 14.8532 7644-74-10 34 274 834 1.00 2.00 H--MORDENITE 0.06 32.32 9.7633 7644-98-20 45 301 915 1.00 2.00 H--MORDENITE 0.06 33.15 13.5834 7723-58-34 30 271 1000 1.00 2.00 H--MORDENITE 0.13 44.47 12.2635 7723-64-53 26 262 1000 1.00 2.00 H--MORDENITE 0.03 45.95 14.5136 7723-59-37 32 271 1004 1.00 2.00 H--MORDENITE 0.13 46.04 12.1237 7723-64-51 25 262 910 1.00 2.00 H--MORDENITE 0.03 47.35 14.5738 7723-58-36 31 271 1004 1.00 2.00 H--MORDENITE 0.13 47.80 12.3839 7723-65-56 27 262 1002 1.00 2.00 H--MORDENITE 0.03 48.15 14.5140 7723-59-38 33 271 1000 1.00 2.00 H--MORDENITE 0.13 48.61 12.1741 7723-69-77 40 276 1015 1.00 10.00 H--MORDENITE 0.03 52.60 11.4642 7723-69-78 41 276 1011 1.00 10.00 H--MORDENITE 0.03 53.99 11.8643 7723-66-62 36 275 927 1.00 2.00 H--MORDENITE 0.03 56.41 12.0544 7723-66-61 35 275 997 1.00 2.00 H--MORDENITE 0.03 58.95 12.1245 7723-68-74 39 276 1013 1.00 10.00 H--MORDENITE 0.03 62.56 10.5246 7171-37-02 48 154 960 1.00 11.80 H--Y 0.25 1.56 .47 7171-37-03 49 154 962 1.00 10.00 H--Y 0.25 1.65 .48 7432-09-06 47 150 883 1.00 1.00 H--Y 0.13 6.07 .49 7432-08-05 46 150 883 1.00 1.00 H--Y 0.13 9.89 .50 7432-11-12 51 167 910 1.00 2.00 H--Y 0.06 17.97 .51 7432-12-13 53 167 911 1.00 1.00 H--Y 0.06 18.00 .52 7432-12-12 52 167 913 1.00 1.00 H--Y 0.06 18.03 .53 7432-23-22 62 226 928 4.00 1.00 H--Y 0.06 18.19 14.4254 7432-11-11 50 167 910 1.00 2.00 H--Y 0.06 19.08 .55 7432-23-23 65 227 931 4.00 1.00 H--Y 0.06 20.78 13.5956 7432-10-10 55 182 918 1.00 2.00 H--Y 0.13 21.39 .57 7432-10-09 54 182 911 1.00 2.00 H--Y 0.13 22.46 34.1758 7171-38-05 56 202 972 1.00 10.00 H--Y 0.25 24.12 17.1159 7171-38-16 57 202 972 1.00 10.00 H--Y 0.25 24.85 17.3560 7432-09-08 59 203 910 1.00 10.00 H--Y 0.25 29.21 28.9161 7432-09-07 58 203 907 1.00 10.00 H--Y 0.25 29.58 22.5762 7171-40-18 69 228 913 1.00 10.00 H--Y 0.25 44.20 11.3163 7171-40-17 68 228 913 1.00 10.00 H--Y 0.25 44.31 11.3464 7171-38-18 66 228 990 1.00 10.00 H--Y 0.25 48.76 10.8065 7171-39-09 67 228 985 1.00 10.00 H--Y 0.25 49.47 10.8066 7432-15-19 60 226 918 2.00 1.00 H--Y 0.06 50.12 10.5167 7432-14-18 64 227 930 1.00 1.00 H--Y 0.06 50.67 9.4068 7432-15-20 61 226 918 2.00 1.00 H--Y 0.06 51.76 10.3469 7432-14-16 63 227 928 1.00 1.00 H--Y 0.06 53.55 9.5470 7171-39-11 72 253 988 1.00 10.00 H--Y 0.25 78.53 5.6271 7171-39-12 73 253 988 1.00 10.00 H--Y 0.25 79.72 5.5572 7723-19-33 70 228 1021 1.00 10.00 H--Y 0.06 80.68 11.2173 7723-19-34 71 228 1024 1.00 10.00 H--Y 0.06 81.03 11.1574 7171-39-15 75 277 986 1.00 10.00 H--Y 0.25 100.00 0.7675 7171-39-14 74 277 985 1.00 10.00 H--Y 0.25 100.00 0.78__________________________________________________________________________ TABLE 9__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by Conversion N--IPA 2-IPA 4-IPA 2,4-DIPA 2,6-DIPA 2,4,6-TIPA ANILINE MOLE MOLE MOLE N,2-DIPA MOLE MOLE MOLEOBS RUN MOLE PCT PCT PCT PCT MOLE PCT PCT PCT PCT CONV O --P__________________________________________________________________________ 1 7 99.79 0.00 1.12 0.00 0.00 0.00 0.00 0.00 0.21 . 2 6 99.69 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.31 . 3 2 99.39 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.61 . 4 4 99.24 0.13 0.30 0.00 0.00 0.00 0.00 0.00 0.63 . 5 1 96.65 0.88 1.45 0.00 0.00 0.00 0.00 0.00 2.46 . 6 14 95.94 1.45 3.66 0.00 0.00 0.00 0.00 0.00 2.61 . 7 13 95.80 1.52 2.68 0.00 0.00 0.00 0.00 0.00 2.68 . 8 8 96.22 0.95 2.39 0.10 0.00 0.00 0.00 0.00 2.83 24.29 9 12 94.09 2.82 2.77 0.00 0.00 0.00 0.00 0.00 3.10 .10 3 94.37 1.23 2.77 0.00 0.00 0.00 0.00 0.00 4.40 .11 5 95.27 0.00 0.42 0.00 0.00 0.00 0.00 0.00 4.73 .12 9 92.71 2.22 5.53 0.00 0.00 0.00 0.00 0.00 5.07 .13 10 92.04 1.33 4.13 0.00 0.00 0.00 0.00 0.00 6.62 .14 15 91.64 1.38 4.27 0.00 0.00 0.00 0.00 0.00 6.98 .15 11 91.42 1.48 4.52 0.00 0.00 0.00 0.00 0.00 7.10 .16 18 90.27 1.81 5.10 0.00 0.00 0.00 0.00 0.00 7.92 .17 22 87.04 3.96 10.22 0.00 0.00 0.00 0.00 0.00 9.00 .18 16 87.11 3.25 8.44 0.43 0.09 0.00 0.14 0.00 9.65 20.4019 20 87.84 2.38 6.79 0.45 0.00 0.00 0.00 0.00 9.78 15.0020 19 86.82 3.40 9.54 0.63 0.00 0.00 0.00 0.00 9.79 15.0821 17 86.75 3.35 8.73 0.44 0.10 0.00 0.15 0.00 9.90 20.3822 23 84.47 3.48 10.79 0.68 0.11 0.05 0.15 0.00 12.05 15.2223 21 83.83 3.33 9.80 0.65 0.00 0.00 0.25 0.00 12.84 15.5124 24 81.91 3.91 12.38 0.77 0.17 0.09 0.25 0.00 14.18 14.9225 43 77.11 6.04 17.01 1.11 0.51 0.32 1.03 0.00 16.85 12.9226 42 76.73 5.19 15.18 0.82 0.46 0.35 1.01 0.04 18.08 13.7527 38 76.39 4.52 16.42 1.12 0.35 0.25 0.60 0.00 19.09 12.7028 37 75.59 4.60 16.80 1.13 0.41 0.28 0.74 0.02 19.80 12.5029 28 70.77 5.85 19.62 1.43 0.00 0.00 0.65 0.00 23.38 14.1430 44 69.03 5.87 18.44 1.29 1.00 0.80 2.19 0.20 25.10 9.4431 29 67.77 6.29 22.05 1.53 0.00 0.00 0.70 0.00 25.95 14.8532 34 60.21 7.47 25.88 1.50 0.00 1.16 4.30 0.44 32.32 9.7633 45 60.19 6.66 22.30 1.52 1.64 0.00 3.98 0.54 33.15 13.5834 30 46.53 9.00 6.93 2.17 0.00 1.06 2.77 0.00 44.47 12.2635 26 44.14 9.91 7.44 1.91 1.86 0.91 2.72 0.08 45.95 14.5136 32 44.94 9.02 37.57 2.21 0.00 1.14 2.96 0.00 46.04 12.1237 25 42.53 10.12 38.30 1.93 2.02 0.96 2.91 0.08 47.35 14.5738 31 42.64 9.56 39.78 2.26 0.00 1.21 3.20 0.00 47.80 12.3839 27 41.66 10.19 38.88 1.96 2.07 0.99 3.02 0.08 48.15 14.5140 33 41.81 9.58 40.18 2.32 0.00 1.25 3.20 0.00 48.61 12.1741 40 39.17 8.23 38.06 1.75 3.05 1.78 6.14 0.59 52.60 11.4642 41 37.21 8.80 40.10 1.83 3.08 1.84 5.95 0.47 53.99 11.8643 36 34.88 8.71 42.30 2.14 3.22 1.79 5.46 0.30 56.41 12.0544 35 31.96 9.09 44.42 2.19 3.55 1.94 5.90 0.32 58.95 12.1245 39 29.07 8.36 41.80 1.65 4.57 2.46 9.86 1.24 62.56 10.5246 48 97.46 0.98 1.56 0.00 0.00 0.00 0.00 0.00 1.56 .47 49 97.32 1.03 1.65 0.00 0.00 0.00 0.00 0.00 1.65 .48 47 92.55 1.38 2.97 0.00 0.00 0.00 0.00 0.00 6.07 .49 46 88.76 1.35 2.26 0.00 0.00 0.00 0.00 0.00 9.89 .50 51 75.69 6.34 13.95 0.00 0.00 0.00 0.64 0.00 17.97 .51 53 75.86 6.14 13.75 0.00 0.00 0.00 0.63 0.00 18.00 .52 52 75.82 6.15 13.80 0.00 0.00 0.00 0.65 0.00 18.03 .53 62 78.98 2.84 11.66 0.84 0.00 0.00 0.49 0.00 18.19 14.4254 50 74.75 6.17 13.73 0.00 0.00 0.00 0.64 0.00 19.08 .55 65 76.10 3.12 12.97 1.00 0.00 0.00 0.58 0.00 20.78 13.5956 55 71.62 6.99 16.66 0.00 0.51 0.00 1.22 0.00 21.39 .57 54 70.69 6.85 16.65 0.54 0.52 0.00 1.31 0.00 22.46 34.1758 56 66.95 8.93 18.68 1.18 0.44 0.00 1.05 0.00 24.12 17.1159 57 66.18 8.97 19.00 1.17 0.26 0.00 1.06 0.00 24.85 17.3560 59 62.37 8.42 22.98 0.93 0.90 0.00 2.90 0.00 29.21 28.9161 58 62.16 8.26 22.57 1.16 0.90 0.00 2.80 0.00 29.58 22.5762 69 40.36 15.45 32.77 2.22 2.78 1.53 6.82 0.01 44.20 11.3163 68 40.26 15.43 32.69 2.18 2.77 1.55 6.92 0.01 44.31 11.3464 66 35.13 16.11 34.45 2.31 3.93 2.09 9.20 0.00 48.76 10.8065 67 34.12 16.41 35.09 2.35 4.00 2.15 9.51 0.00 49.47 10.8066 60 39.05 10.83 29.68 1.71 2.73 2.03 15.38 0.80 50.12 10.5167 64 37.86 11.47 29.16 1.65 2.83 2.46 17.89 1.20 50.67 9.4068 61 37.39 10.86 33.64 1.82 2.74 2.50 15.65 0.70 51.76 10.3469 63 35.03 11.42 28.13 1.63 3.23 2.46 20.27 1.32 53.55 9.5470 72 8.12 13.34 24.42 1.22 13.49 6.12 36.28 5.87 78.53 5.6271 73 7.31 12.98 23.09 1.14 13.28 5.98 35.78 5.87 79.72 5.5572 70 6.78 12.54 15.14 0.00 13.14 2.64 41.32 3.57 80.68 11.2173 71 6.46 12.50 14.70 0.00 13.30 2.58 41.95 3.69 81.03 11.1574 75 0.00 0.00 3.60 0.00 2.86 8.06 37.90 50.55 100.00 0.7675 74 0.00 0.00 3.98 0.00 2.91 8.12 37.70 49.39 100.00__________________________________________________________________________ 0.78 TABLE 10__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by O --POBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________ 1 7171-41-03 1 154 930 1.00 10.00 H--MORDENITE 0.25 2.46 . 2 7644-96-13 2 201 769 1.00 1.00 H--MORDENITE 0.13 0.61 . 3 7171-41-06 3 201 950 1.00 10.00 H--MORDENITE 0.25 4.40 . 4 7644-96-14 4 202 927 1.00 2.00 H--MORDENITE 0.13 0.63 . 5 7644-53-03 5 204 840 1.00 1.00 H--MORDENITE 0.13 4.73 . 6 7723-54-19 6 208 967 1.00 2.00 H--MORDENITE 0.13 0.31 . 7 7723-54-20 7 208 963 1.00 2.00 H--MORDENITE 0.13 0.21 . 8 7171-43-09 9 227 949 1.00 10.00 H--MORDENITE 0.25 5.07 . 9 7723-56-24 10 228 985 1.00 2.00 H--MORDENITE 0.13 6.62 .10 7723-56-25 11 228 978 1.00 2.00 H--MORDENITE 0.13 7.10 .11 7723-49-04 12 228 957 1.00 2.00 H--MORDENITE 0.13 3.10 .12 7723-49-05 13 228 990 1.00 2.00 H--MORDENITE 0.13 2.68 .13 7171-43-17 14 228 956 1.00 10.00 H--MORDENITE 0.25 2.61 .14 7723-57-26 15 247 990 1.00 2.00 H--MORDENITE 0.13 6.98 .15 7644-54-04 18 252 836 1.00 1.00 H--MORDENITE 0.13 7.92 .16 7171-43-11 22 252 956 1.00 10.00 H--MORDENITE 0.25 9.00 .17 7644-97-19 44 301 918 1.00 2.00 H--MORDENITE 0.13 25.10 9.4418 7644-74-10 34 274 834 1.00 2.00 H--MORDENITE 0.06 32.32 9.7619 7723-68-74 39 276 1013 1.00 10.00 H--MORDENITE 0.03 62.56 10.5220 7723-69-77 40 276 1015 1.00 10.00 H--MORDENITE 0.03 52.60 11.4621 7723-69-78 41 276 1011 1.00 10.00 H--MORDENITE 0.03 53.99 11.8622 7723-66-62 36 275 927 1.00 2.00 H--MORDENITE 0.03 56.41 12.0523 7723-66-61 35 275 997 1.00 2.00 H--MORDENITE 0.03 58.95 12.1224 7723-59-37 32 271 1004 1.00 2.00 H--MORDENITE 0.13 46.04 12.1225 7723-59-38 33 271 1000 1.00 2.00 H--MORDENITE 0.13 48.61 12.1726 7723-58-34 30 271 1000 1.00 2.00 H--MORDENITE 0.13 44.47 12.2627 7723-58-36 31 271 1004 1.00 2.00 H--MORDENITE 0.13 47.80 12.3828 7723-67-67 37 276 1020 1.00 10.00 H--MORDENITE 0.12 19.80 12.5029 7723-67-69 38 276 1020 1.00 10.00 H--MORDENITE 0.12 19.09 12.7030 7171-43-14 43 277 956 1.00 10.00 H--MORDENITE 0.25 16.85 12.9231 7644-98-20 45 301 915 1.00 2.00 H--MORDENITE 0.06 33.15 13.5832 7644-97-18 42 277 920 1.00 2.00 H--MORDENITE 0.13 18.08 13.7533 7723-57-28 28 271 1000 1.00 2.00 H--MORDENITE 0.13 23.38 14.1434 7723-65-56 27 262 1002 1.00 2.00 H--MORDENITE 0.03 48.15 14.5135 7723-64-53 26 262 1000 1.00 2.00 H--MORDENITE 0.03 45.95 14.5136 7723-64-51 25 262 910 1.00 2.00 H--MORDENITE 0.03 47.35 14.5737 7723-57-30 29 271 1005 1.00 2.00 H--MORDENITE 0.13 25.95 14.8538 7723-62-46 24 261 1006 1.00 2.00 H--MORDENITE 0.13 14.18 14.9239 7644-54-06 20 252 847 1.00 2.00 H--MORDENITE 0.13 9.78 15.0040 7644-54-05 19 252 834 1.00 1.00 H--MORDENITE 0.13 9.79 15.0841 7723-62-45 23 261 1008 1.00 2.00 H--MORDENITE 0.13 12.05 15.2242 7644-55-07 21 252 840 1.00 2.00 H--MORDENITE 0.13 12.84 15.5143 7644-97-17 17 252 914 1.00 2.00 H--MORDENITE 0.13 9.90 20.3844 7644-97-16 16 252 919 1.00 2.00 H--MORDENITE 0.13 9.65 20.4045 7644-96-15 8 227 917 1.00 2.00 H--MORDENITE 0.13 2.83 24.2946 7432-08-05 46 150 883 1.00 1.00 H--Y 0.13 9.89 .47 7432-09-06 47 150 883 1.00 1.00 H--Y 0.13 6.07 .48 7171-37-02 48 154 960 1.00 11.80 H--Y 0.25 1.56 .49 7171-37-03 49 154 962 1.00 10.00 H--Y 0.25 1.65 .50 7432-11-11 50 167 910 1.00 2.00 H--Y 0.06 19.08 .51 7432-11-12 51 167 910 1.00 2.00 H--Y 0.06 17.97 .52 7432-12-12 52 167 913 1.00 1.00 H--Y 0.06 18.03 .53 7432-12-13 53 167 911 1.00 1.00 H--Y 0.06 18.00 .54 7432-10-10 55 182 918 1.00 2.00 H--Y 0.13 21.39 .55 7171-39-15 75 277 986 1.00 10.00 H--Y 0.25 100.00 0.7656 7171-39-14 74 277 985 1.00 10.00 H--Y 0.25 100.00 0.7857 7171-39-12 73 253 988 1.00 10.00 H--Y 0.25 79.72 5.5558 7171-39-11 72 253 988 1.00 10.00 H--Y 0.25 78.53 5.6259 7432-14-18 64 227 930 1.00 1.00 H--Y 0.06 50.67 9.4060 7432-14-16 63 227 928 1.00 1.00 H--Y 0.06 53.55 9.5461 7432-15-20 61 226 918 2.00 1.00 H--Y 0.06 51.76 10.3462 7432-15-19 60 226 918 2.00 1.00 H--Y 0.06 50.12 10.5163 7171-38-18 66 228 990 1.00 10.00 H--Y 0.25 48.76 10.8064 7171-39-09 67 228 985 1.00 10.00 H--Y 0.25 49.47 10.8065 7723-19-34 71 228 1024 1.00 10.00 H--Y 0.06 81.03 11.1566 7723-19-33 70 228 1021 1.00 10.00 H--Y 0.06 80.68 11.2167 7171-40-18 69 228 913 1.00 10.00 H--Y 0.25 44.20 11.3168 7171-40-17 68 228 913 1.00 10.00 H--Y 0.25 44.31 11.3469 7432-23-23 65 227 931 4.00 1.00 H--Y 0.06 20.78 13.5970 7432-23-22 62 226 928 4.00 1.00 H--Y 0.06 18.19 14.4271 7171-38-05 56 202 972 1.00 10.00 H--Y 0.25 24.12 17.1172 7171-38-16 57 202 972 1.00 10.00 H--Y 0.25 24.85 17.3573 7432-09-07 58 203 907 1.00 10.00 H--Y 0.25 29.58 22.5774 7432-09-08 59 203 910 1.00 10.00 H--Y 0.25 29.21 28.9175 7432-10-09 54 182 911 1.00 2.00 H--Y 0.13 22.46 34.17__________________________________________________________________________ TABLE 11__________________________________________________________________________ANILINE/PROPYLENE/ZEOLITESSorted by O --P N--IPA 2-IPA 4-IPA N,2-DIPA 2,4-DIPA 2,6-DIPA 2,4,6-TIPA ANILINE MOLE MOLE MOLE MOLE MOLE MOLE MOLEOBS RUN MOLE PCT PCT PCT PCT PCT PCT PCT PCT CONV O --P__________________________________________________________________________ 1 1 96.65 0.88 1.45 0.00 0.00 0.00 0.00 0.00 2.46 . 2 2 99.39 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.61 . 3 3 94.37 1.23 2.77 0.00 0.00 0.00 0.00 0.00 4.40 . 4 4 99.24 0.13 0.30 0.00 0.00 0.00 0.00 0.00 0.63 . 5 5 95.27 0.00 0.42 0.00 0.00 0.00 0.00 0.00 4.73 . 6 6 99.69 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.31 . 7 7 99.79 0.00 1.12 0.00 0.00 0.00 0.00 0.00 0.21 . 8 9 92.71 2.22 5.53 0.00 0.00 0.00 0.00 0.00 5.07 . 9 10 92.04 1.33 4.13 0.00 0.00 0.00 0.00 0.00 6.62 .10 11 91.42 1.48 4.52 0.00 0.00 0.00 0.00 0.00 7.10 .11 12 94.09 2.82 2.77 0.00 0.00 0.00 0.00 0.00 3.10 .12 13 95.80 1.52 2.68 0.00 0.00 0.00 0.00 0.00 2.68 .13 14 95.94 1.45 3.66 0.00 0.00 0.00 0.00 0.00 2.61 .14 15 91.64 1.38 4.27 0.00 0.00 0.00 0.00 0.00 6.98 .15 18 90.27 1.81 5.10 0.00 0.00 0.00 0.00 0.00 7.92 .16 22 87.04 3.96 10.22 0.00 0.00 0.00 0.00 0.00 9.00 .17 44 69.03 5.87 18.44 1.29 1.00 0.80 2.19 0.20 25.10 9.4418 34 60.21 7.47 25.88 1.50 0.00 1.16 4.30 0.44 32.32 9.7619 39 29.07 8.36 41.80 1.65 4.57 2.46 9.86 1.24 62.56 10.5220 40 39.17 8.23 38.06 1.75 3.05 1.78 6.14 0.59 52.60 11.4621 41 37.21 8.80 40.10 1.83 3.08 1.84 5.95 0.47 53.99 11.8622 36 34.88 8.71 42.30 2.14 3.22 1.79 5.46 0.30 56.41 12.0523 35 31.96 9.09 44.42 2.19 3.55 1.94 5.90 0.32 58.95 12.1224 32 44.94 9.02 37.57 2.21 0.00 1.14 2.96 0.00 46.04 12.1225 33 41.81 9.58 40.18 2.32 0.00 1.25 3.20 0.00 48.61 12.1726 30 46.53 9.00 36.93 2.17 0.00 1.06 2.77 0.00 44.47 12.2627 31 42.64 9.56 39.78 2.26 0.00 1.21 3.20 0.00 47.80 12.3828 37 75.59 4.60 16.80 1.13 0.41 0.28 0.74 0.02 19.80 12.5029 38 76.39 4.52 16.42 1.12 0.35 0.25 0.60 0.00 19.09 12.7030 43 77.11 6.04 17.01 1.11 0.51 0.32 1.03 0.00 16.85 12.9231 45 60.19 6.66 22.30 1.52 1.64 0.00 3.98 0.54 33.15 13.5832 42 76.73 5.19 15.18 0.82 0.46 0.35 1.01 0.04 18.08 13.7533 28 70.77 5.85 19.62 1.43 0.00 0.00 0.65 0.00 22.38 14.1434 27 41.66 10.19 38.88 1.96 2.07 0.99 3.02 0.08 48.15 14.5135 26 44.14 9.91 37.44 1.91 1.86 0.91 2.72 0.08 45.95 14.5136 25 42.53 10.12 38.30 1.93 2.02 0.96 2.91 0.08 47.35 14.5737 29 67.77 6.29 22.05 1.53 0.00 0.00 0.70 0.00 25.95 14.8538 24 81.91 3.91 12.38 0.77 0.17 0.09 0.25 0.00 14.18 14.9239 20 87.84 2.38 6.79 0.45 0.00 0.00 0.00 0.00 9.78 15.0040 19 86.82 3.40 9.54 0.63 0.00 0.00 0.00 0.00 9.79 15.0841 23 84.47 3.48 10.79 0.68 0.11 0.05 0.15 0.00 12.05 15.2242 21 83.83 3.33 9.80 0.65 0.00 0.00 0.25 0.00 12.84 15.5143 17 86.75 3.35 8.73 0.44 0.10 0.00 0.15 0.00 9.90 20.3844 16 87.11 3.25 8.44 0.43 0.09 0.00 0.14 0.00 9.65 20.4045 8 96.22 0.95 2.39 0.10 0.00 0.00 0.00 0.00 2.83 24.2946 46 88.76 1.35 2.26 0.00 0.00 0.00 0.00 0.00 9.89 .47 47 92.55 1.38 2.97 0.00 0.00 0.00 0.00 0.00 6.07 .48 48 97.46 0.98 1.56 0.00 0.00 0.00 0.00 0.00 1.56 .49 49 97.32 1.03 1.65 0.00 0.00 0.00 0.00 0.00 1.65 .50 50 74.75 6.17 13.73 0.00 0.00 0.00 0.64 0.00 19.08 .51 51 75.69 6.34 13.95 0.00 0.00 0.00 0.64 0.00 17.97 .52 52 75.82 6.15 13.80 0.00 0.00 0.00 0.65 0.00 18.03 .53 53 75.86 6.14 13.75 0.00 0.00 0.00 0.63 0.00 18.00 .54 55 71.62 6.99 16.66 0.00 0.51 0.00 1.22 0.00 21.39 .55 75 0.00 0.00 3.60 0.00 2.86 8.06 37.90 50.55 100.00 0.7656 74 0.00 0.00 3.98 0.00 2.91 8.12 37.70 49.39 100.00 0.7857 73 7.31 12.98 23.09 1.14 13.28 5.98 35.78 5.87 79.72 5.5558 72 8.12 13.34 24.42 1.22 13.49 6.12 36.28 5.87 78.53 5.6259 64 37.86 11.47 29.16 1.65 2.83 2.46 17.89 1.20 50.67 9.4060 63 35.03 11.42 28.13 1.63 3.23 2.46 20.27 1.32 53.55 9.5461 61 37.39 10.86 33.64 1.82 2.74 2.50 15.65 0.70 51.76 10.3462 60 39.05 10.83 29.68 1.71 2.73 2.03 15.38 0.80 50.12 10.5163 66 35.13 16.11 34.45 2.31 3.93 2.09 9.20 0.00 48.76 10.8064 67 34.12 16.41 35.09 2.35 4.00 2.15 9.51 0.00 49.47 10.8065 71 6.46 12.50 14.70 0.00 13.30 2.58 41.95 3.69 81.03 11.1566 70 6.78 12.54 15.14 0.00 13.14 2.64 41.32 3.57 80.68 11.2167 69 40.36 15.45 32.77 2.22 2.78 1.53 6.82 0.01 44.20 11.3168 68 40.26 15.43 32.69 2.18 2.77 1.55 6.92 0.01 44.31 11.3469 65 76.10 3.12 12.97 1.00 0.00 0.00 0.58 0.00 20.78 13.5970 62 78.98 2.84 11.66 0.84 0.00 0.00 0.49 0.00 18.19 14.4271 56 66.95 8.93 18.68 1.18 0.44 0.00 1.05 0.00 24.12 17.1172 57 66.18 8.97 19.00 1.17 0.26 0.00 1.06 0.00 24.85 17.3573 58 62.16 8.26 22.57 1.16 0.90 0.00 2.80 0.00 29.58 22.5774 59 62.37 8.42 22.98 0.93 0.90 0.00 2.90 0.00 29.21 28.9175 54 70.69 6.85 16.65 0.54 0.52 0.00 1.31 0.00 22.46 34.17__________________________________________________________________________ In reviewing the data in the tables, one should focus on trends within the tables rather than on specific runs since, as with most reactions, there may be excursions. Tables 8 and 9 and tables 10 and 11 are arranged in ascending conversion and ortho-para ratios respectively and these tables can be used in combination with others to observe the effect of temperature and pressure along with space velocity. As is generally noted from tables 4 and 5 conversion increases with increasing temperature at a constant LHSV and constant N/R ratio. The results also show that propylene alkylation of aniline, in the presence of H-mordenite, is not as temperature sensitive, in terms of ortho-para ratio, as H-Y zeolite. Conversions at comparable pressures at 250.degree. C. range from about 9 to 15% while conversions with H-Y range about 80%. On the other hand at 250.degree. C. levels the ortho-para ratio decreases from about 14 l for H-mordenite to about 5 for the H-Y. Although temperature did increase the conversion for H-mordenite, generally lower LHSV values were required to achieve high conversions, note run 35, 36, 38-40, while higher LHSV resulted in lower conversion at similar temperature, e.g. run 42. In contrast to Exaample 2, runs 9-11 which utilize a larger pore size H-mordenite than the H-mordenite of these runs, conversion was higher and selectivity was higher. It is believed the major difference in the runs between H-mordenite and H-Y as compared to the H-mordenite of Example 2, is the molecular diffusion resistance of the smaller pore sized H-mordenite. The data does show that for H-Y zeolite, namely runs 66-71 (obs 66-71), that propylene alkylates can be achieved in high conversion and high ortho-para ratios at temperature from about 215.degree.-230.degree. C. at space velocities of 0.06-0.25 hours.sup.-1 while temperatures as high as 250.degree. C. reduce the ortho-para isomer ratio by a factor of 2 in runs 72 and 73 (obs 72 and 73). Good selectivity may be obtained with HY at 250.degree. C. if higher space velocities are used and less 2,4,6-trialkylate product is formed. One important observation with all runs using the highly active acidic zeolites is that ring alkylation, as opposed to N-alkylation, was always greater than 2 even at low conversion. TABLE 12__________________________________________________________________________ANILINE/ISOBUTYLENESorted by TemperatureOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________14 7432-81-01 14 103 887 1.00 4.00 H--Y 0.13 12.76 9.2815 7432-82-06 15 127 907 1.00 1.00 H--Y 0.06 50.77 6.5116 7432-81-02 16 128 894 1.00 4.00 H--Y 0.13 42.69 7.0017 7432-81-03 17 128 898 1.00 4.00 H--Y 0.13 43.40 7.0418 7432-82-04 18 128 899 1.00 4.00 H--Y 0.06 59.42 6.7819 7432-82-05 19 128 900 1.00 4.00 H--Y 0.06 57.43 6.7220 7432-82-07 20 129 886 1.00 1.00 H--Y 0.06 12.05 7.3521 7432-84-14 21 152 888 1.00 1.00 H--Y 0.06 64.39 4.8622 7432-84-15 22 152 896 1.00 1.00 H--Y 0.06 65.49 4.8323 7432-86-19 23 178 898 1.00 1.00 H--Y 0.06 73.07 0.99__________________________________________________________________________ TABLE 13__________________________________________________________________________ANILINE/ISOBUTYLENESorted by Temperature 2,4-DIBUT ANILINE N--T-BUTYL O--T-BUTYL P-T-BUTYL N,2-DIBUT ANILINE DIPHENYL MOLE ANILINE ANILINE ANILINE ANILINE MOLE AMINEOBS RUN PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT PCT MOLE PCT CONV O --P__________________________________________________________________________14 14 87.24 6.10 5.21 0.56 0.00 0.00 0.00 12.76 9.2815 15 49.23 25.30 20.09 2.69 0.08 0.40 0.00 50.77 6.5116 16 57.31 23.01 16.14 2.19 0.00 0.11 0.00 42.69 7.0017 17 56.60 23.50 16.73 2.26 0.00 0.12 0.00 43.40 7.0418 18 40.58 29.76 22.00 2.95 0.06 0.31 0.00 59.42 6.7819 19 42.57 30.31 22.78 3.08 0.06 0.32 0.00 57.43 6.7220 20 87.95 5.40 5.53 0.75 0.00 0.00 0.00 12.05 7.3521 21 35.61 18.39 36.71 6.02 0.34 1.60 0.00 64.39 4.8622 22 34.51 18.25 36.51 5.96 0.37 1.68 0.00 65.49 4.8323 23 26.93 2.18 33.33 20.89 1.43 14.24 0.00 73.07 0.99__________________________________________________________________________ TABLE 14__________________________________________________________________________ANILINE/ISOBUTYLENESorted by PressureOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________14 7432-82-07 20 129 886 1.00 1.00 H--Y 0.06 12.05 7.3515 7432-81-01 14 103 887 1.00 4.00 H--Y 0.13 12.76 9.2816 7432-84-14 21 152 888 1.00 1.00 H--Y 0.06 64.39 4.8617 7432-81-02 16 128 894 1.00 4.00 H--Y 0.13 42.69 7.0018 7432-84-15 22 152 896 1.00 1.00 H--Y 0.06 65.49 4.8319 7432-81-03 17 128 898 1.00 4.00 H--Y 0.13 43.40 7.0420 7432-86-19 23 178 898 1.00 1.00 H--Y 0.06 73.07 0.9921 7432-82-04 18 128 899 1.00 4.00 H--Y 0.06 59.42 6.7822 7432-82-05 19 128 900 1.00 4.00 H--Y 0.06 57.43 6.7223 7432-82-06 15 127 907 1.00 1.00 H--Y 0.06 50.77 6.51__________________________________________________________________________ TABLE 15__________________________________________________________________________ANILINE/ISOBUTYLENESorted by Pressure ANILINE N-T-BUTYL O-T-BUTYL P-T-BUTYL N,2-DIBUT 2,4-DIBUT DIPHENYL MOLE ANILINE ANILINE ANILINE ANILINE ANILINE AMINEOBS RUN PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O --P__________________________________________________________________________14 20 87.95 5.40 5.53 0.75 0.00 0.00 0.00 12.05 7.3515 14 87.24 6.10 5.21 0.56 0.00 0.00 0.00 12.76 9.2816 21 35.61 18.39 36.71 6.02 0.34 1.60 0.00 64.39 4.8617 16 57.31 23.01 16.14 2.19 0.00 0.11 0.00 42.69 7.0018 22 34.51 18.25 36.51 5.96 0.37 1.68 0.00 65.49 4.8319 17 56.60 23.50 16.73 2.26 0.00 0.12 0.00 43.40 7.0420 23 26.93 2.18 33.33 20.89 1.43 14.24 0.00 73.07 0.9921 18 40.58 29.76 22.00 2.95 0.06 0.31 0.00 59.42 6.7822 19 42.57 30.31 22.78 3.08 0.06 0.32 0.00 57.43 6.7223 15 49.23 25.30 20.09 2.69 0.08 0.40 0.00 50.77 6.51__________________________________________________________________________ TABLE 16__________________________________________________________________________ANILINE/ISOBUTYLENESorted by ConversionOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________14 7432-82-07 20 129 886 1.00 1.00 H--Y 0.06 12.05 7.3515 7432-81-01 14 103 887 1.00 4.00 H--Y 0.13 12.76 9.2816 7432-81-02 16 128 894 1.00 4.00 H--Y 0.13 42.69 7.0017 7432-81-03 17 128 898 1.00 4.00 H--Y 0.13 43.40 7.0418 7432-82-06 15 127 907 1.00 1.00 H--Y 0.06 50.77 6.5119 7432-82-05 19 128 900 1.00 4.00 H--Y 0.06 57.43 6.7220 7432-82-04 18 128 899 1.00 4.00 H--Y 0.06 59.42 6.7821 7432-84-14 21 152 888 1.00 1.00 H--Y 0.06 64.39 4.8622 7432-84-15 22 152 896 1.00 1.00 H--Y 0.06 65.49 4.8323 7432-86-19 23 178 898 1.00 1.00 H--Y 0.06 73.07 0.99__________________________________________________________________________ TABLE 17__________________________________________________________________________ANILINE/ISOBUTYLENESorted by Pressure ANILINE N-T-BUTYL O-T-BUTYL P-T-BUTYL N,2-DIBUT 2,4-DIBUT DIPHENYL MOLE ANILINE ANILINE ANILINE ANILINE ANILINE AMINEOBS RUN PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O --P__________________________________________________________________________14 20 87.95 5.40 5.53 0.75 0.00 0.00 0.00 12.05 7.3515 14 87.24 6.10 5.21 0.56 0.00 0.00 0.00 12.76 9.2816 16 57.31 23.01 16.14 2.19 0.00 0.11 0.00 42.69 7.0017 17 56.60 23.50 16.73 2.26 0.00 0.12 0.00 43.40 7.0418 15 49.23 25.30 20.09 2.69 0.08 0.40 0.00 50.77 6.5119 19 42.57 30.31 22.78 3.08 0.06 0.32 0.00 57.43 6.7220 18 40.58 29.76 22.00 2.95 0.06 0.31 0.00 59.42 6.7821 21 35.61 18.39 36.71 6.02 0.34 1.60 0.00 64.39 4.8622 22 34.51 18.25 36.51 5.96 0.37 1.68 0.00 65.49 4.8323 23 26.93 2.18 33.33 20.89 1.43 14.24 0.00 73.07 0.99__________________________________________________________________________ TABLE 18__________________________________________________________________________ANILINE/ISOBUTYLENESorted by O --POBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________14 7432-86-19 23 178 898 1.00 1.00 H--Y 0.06 73.07 0.9915 7432-84-15 22 152 896 1.00 1.00 H--Y 0.06 65.49 4.8316 7432-84-14 21 152 888 1.00 1.00 H--Y 0.06 64.39 4.8617 7432-82-06 15 127 907 1.00 1.00 H--Y 0.06 50.77 6.5118 7432-82-05 19 128 900 1.00 4.00 H--Y 0.06 57.43 6.7219 7432-82-04 18 128 899 1.00 4.00 H--Y 0.06 59.42 6.7820 7432-81-02 16 128 894 1.00 4.00 H--Y 0.13 42.69 7.0021 7432-81-03 17 128 898 1.00 4.00 H--Y 0.13 43.40 7.0422 7432-82-07 20 129 886 1.00 1.00 H--Y 0.06 12.05 7.3523 7432-81-01 14 103 887 1.00 4.00 H--Y 0.13 12.76 9.28__________________________________________________________________________ TABLE 19__________________________________________________________________________ANILINE/ISOBUTYLENESorted by O --P ANILINE N-T-BUTYL O-T-BUTYL P-T-BUTYL N,2-DIBUT 2,4-DIBUT DIPHENYL MOLE ANILINE ANILINE ANILINE ANILINE ANILINE AMINEOBS RUN PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O --P__________________________________________________________________________14 23 26.93 2.18 33.33 20.89 1.43 14.24 0.00 73.07 0.9915 22 34.51 18.25 36.51 5.96 0.37 1.68 0.00 65.49 4.8316 21 35.61 18.39 36.71 6.02 0.34 1.60 0.00 64.39 4.8617 15 49.23 25.30 20.09 2.69 0.08 0.40 0.00 50.77 6.5118 19 42.57 30.31 22.78 3.08 0.06 0.32 0.00 57.43 6.7219 18 40.58 29.76 22.00 2.95 0.06 0.31 0.00 59.42 6.7820 16 57.31 23.01 16.14 2.19 0.00 0.11 0.00 42.69 7.0021 17 56.60 23.50 16.73 2.26 0.00 0.12 0.00 43.40 7.0422 20 87.95 5.40 5.53 0.75 0.00 0.00 0.00 12.05 7.3523 14 87.24 6.10 5.21 0.56 0.00 0.00 0.00 12.76 9.28__________________________________________________________________________ From the data in tables 12-19 it is shown that the alkylation of aniline with isobutylene is much more sensitive than the alkylation of aniline with propylene to reaction temperature. For example at temperatures of about 125.degree.-130.degree. C. conversions ranged from about 42 to 60% with an ortho-para ratio of 6-7. When temperatures increased to 150.degree. C., although the N/R ratio was 1:1, the ortho-para ratio decreased to about 5. At a temperature of 180.degree. C. the ortho-para ratio had decreased to less than 1. TABLE 20__________________________________________________________________________ANILINE/CYCLOHEXENE/ACID CATALYST -Sorted by TemperatureOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________1 7893-34-24 1 150 922 1.00 3.00 H--Y 0.13 1.02 .2 7893-34-25 2 150 920 1.00 3.00 H--Y 0.13 1.06 .3 7893-35-26 3 174 934 1.00 3.00 H--Y 0.13 5.59 7.804 7893-35-28 4 174 934 1.00 3.00 H--Y 0.13 5.29 8.095 7893-35-30 5 200 940 1.00 3.00 H--Y 0.13 36.25 7.176 7893-36-31 6 200 940 1.00 3.00 H--Y 0.13 38.33 7.057 7893-48-41 7 224 940 1.00 3.00 H--Y 0.13 75.05 5.198 7893-48-42 8 224 948 1.00 3.00 H--Y 0.13 75.19 5.269 7893-49-44 9 224 936 1.00 3.00 H--Y 0.06 87.38 5.2110 7893-49-45 10 224 933 1.00 3.00 H--Y 0.06 89.43 5.1811 7893-36-32 11 225 940 1.00 3.00 H--Y 0.13 80.36 5.2812 7893-37-34 12 225 937 1.00 3.00 H--Y 0.13 84.42 5.2613 7893-38-36 13 250 950 1.00 3.00 H--Y 0.13 95.15 3.7414 7893-38-38 14 250 955 1.00 3.00 H--Y 0.13 96.26 3.63__________________________________________________________________________ TABLE 21__________________________________________________________________________ANILINE/CYCLOHEXENE ACID CATSorted by Temperature N- O- P- ANILINE CYCLOHEX CYCLOHEX CYCLOHEX N,2-DIHEX 2,4-DIHEX 2,6-DIHEX MOLE ANILINE ANILINE ANILINE ANILINE ANILINE ANILINEOBS RUN PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O --P__________________________________________________________________________1 1 98.98 0.09 0.20 0.00 0.10 0.00 0.00 1.02 .2 2 98.94 0.13 0.28 0.00 0.08 0.00 0.00 1.06 .3 3 94.41 1.69 3.29 0.44 0.10 0.00 0.00 5.59 7.804 4 94.71 1.77 3.63 0.46 0.09 0.00 0.00 5.29 8.095 5 63.75 12.73 21.34 2.95 0.28 0.08 0.09 36.25 7.176 6 61.67 13.10 21.90 3.08 0.29 0.08 0.09 38.33 7.057 7 24.95 25.79 38.27 7.08 2.03 1.04 1.84 75.05 5.198 8 24.81 25.88 37.82 6.96 1.86 0.89 1.58 75.19 5.269 9 12.62 27.03 41.63 7.45 4.62 2.19 3.99 87.38 5.2110 10 10.57 27.50 43.13 7.66 5.76 2.75 5.05 89.43 5.1811 11 19.64 26.76 39.63 7.13 3.23 1.53 2.83 80.36 5.2812 12 15.58 27.12 40.55 7.25 3.98 1.89 3.50 84.42 5.2613 13 4.85 9.28 39.55 7.31 11.56 11.08 17.75 95.15 3.7414 14 3.74 7.23 37.72 6.79 12.13 12.42 19.92 96.26 3.63__________________________________________________________________________ TABLE 22__________________________________________________________________________ANILINE/CYCLOHEXENESorted by PressureOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________1 7893-34-25 2 150 920 1.00 3.00 H--Y 0.13 1.06 .2 7893-34-24 1 150 922 1.00 3.00 H--Y 0.13 1.02 .3 7893-49-45 10 224 933 1.00 3.00 H--Y 0.06 89.43 5.184 7893-35-28 4 174 934 1.00 3.00 H--Y 0.13 5.29 8.095 7893-35-26 3 174 934 1.00 3.00 H--Y 0.13 5.59 7.806 7893-49-44 9 224 936 1.00 3.00 H--Y 0.06 87.38 5.217 7893-37-34 12 225 937 1.00 3.00 H--Y 0.13 84.42 5.268 7893-35-30 5 200 940 1.00 3.00 H--Y 0.13 36.25 7.179 7893-36-31 6 200 940 1.00 3.00 H--Y 0.13 38.33 7.0510 7893-48-41 7 224 940 1.00 3.00 H--Y 0.13 75.05 5.1911 7893-36-32 11 225 940 1.00 3.00 H--Y 0.13 80.36 5.2812 7893-48-42 8 224 948 1.00 3.00 H--Y 0.13 75.19 5.2613 7893-38-36 13 250 950 1.00 3.00 H-- Y 0.13 95.15 3.7414 7893-38-38 14 250 955 1.00 3.00 H--Y 0.13 96.26 3.63__________________________________________________________________________ TABLE 23__________________________________________________________________________ANILINE/CYCLOHEXENE ACID CATSorted by Pressure N- O- P- ANILINE CYCLOHEX CYCLOHEX CYCLOHEX N,2-DIHEX 2,4-DIHEX 2,6-DIHEX MOLE ANILINE ANILINE ANILINE ANILINE ANILINE ANILINEOBS RUN PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O --P__________________________________________________________________________1 2 98.94 0.13 0.28 0.00 0.08 0.00 0.00 1.06 .2 1 98.98 0.09 0.20 0.00 0.10 0.00 0.00 1.02 .3 10 10.57 27.50 43.13 7.66 5.76 2.75 5.05 89.43 5.184 4 94.71 1.77 3.63 0.46 0.09 0.00 0.00 5.29 8.095 3 94.41 1.69 3.29 0.44 0.10 0.00 0.00 5.59 7.806 9 12.62 27.03 41.63 7.45 4.62 2.19 3.99 87.38 5.217 12 15.58 27.12 40.55 7.25 3.98 1.89 3.50 84.42 5.268 5 63.75 12.73 21.34 2.95 0.28 0.08 0.09 36.25 7.179 6 61.67 13.10 21.90 3.08 0.29 0.08 0.09 38.33 7.0510 7 24.95 25.79 38.72 7.08 2.03 1.04 1.84 75.05 5.1911 11 19.64 26.76 39.63 7.13 3.23 1.53 2.83 80.36 5.2812 8 24.81 25.88 37.82 6.96 1.86 0.89 1.58 75.19 5.2613 13 4.85 9.28 39.55 7.31 11.56 11.08 17.75 95.15 3.7414 14 3.74 7.23 37.72 6.79 12.13 12.42 19.92 96.26 3.63__________________________________________________________________________ TABLE 24__________________________________________________________________________ANILINE/CYCLOHEXENE -Sorted by ConversionOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________1 7893-34-24 1 150 922 1.00 3.00 H--Y 0.13 1.02 .2 7893-34-25 2 150 920 1.00 3.00 H--Y 0.13 1.06 .3 7893-35-28 4 174 934 1.00 3.00 H--Y 0.13 5.29 8.094 7893-35-26 3 174 934 1.00 3.00 H--Y 0.13 5.29 7.805 7893-35-30 5 200 940 1.00 3.00 H--Y 0.13 36.25 7.176 7893-36-31 6 200 940 1.00 3.00 H--Y 0.13 38.33 7.057 7893-48-41 7 224 940 1.00 3.00 H--Y 0.13 75.05 5.198 7893-48-42 8 224 948 1.00 3.00 H--Y 0.13 75.19 5.269 7893-36-32 11 225 940 1.00 3.00 H--Y 0.13 80.36 5.2810 7893-37-34 12 225 937 1.00 3.00 H--Y 0.13 84.42 5.2611 7893-49-44 9 224 936 1.00 3.00 H--Y 0.06 87.38 5.2112 7893-49-45 10 224 933 1.00 3.00 H--Y 0.06 89.43 5.1813 7893-38-36 13 250 950 1.00 3.00 H-- Y 0.13 95.15 3.7414 7893-38-38 14 250 955 1.00 3.00 H--Y 0.13 96.26 3.63__________________________________________________________________________ TABLE 25__________________________________________________________________________ANILINE/CYCLOHEXENE ACID CATSorted by Conversion N--CYCLO- O--CYCLO- P--CYCLO- HEX HEX HEX N,2-DIHEX 2,4-DIHEX 2,6-DEHEX ANILINE ANILINE ANILINE ANILINE ANILINE ANILINE ANILINEOBS RUN MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O --P__________________________________________________________________________1 1 98.98 0.09 0.20 0.00 0.10 0.00 0.00 1.02 .2 2 98.94 0.13 0.28 0.00 0.08 0.00 0.00 1.06 .3 4 94.71 1.77 3.63 0.46 0.09 0.00 0.00 5.29 8.094 3 94.41 1.69 3.29 0.44 0.10 0.00 0.00 5.59 7.805 5 63.75 12.73 21.34 2.95 0.28 0.08 0.09 36.25 7.176 6 61.67 13.10 21.90 3.08 0.29 0.08 0.09 38.33 7.057 7 24.95 25.79 38.27 7.08 2.03 1.04 1.84 75.05 5.198 8 24.81 25.88 37.82 6.96 1.86 0.89 1.58 75.19 5.269 11 19.64 26.76 39.63 7.13 3.23 1.53 2.83 80.36 5.2810 12 15.58 27.12 40.55 7.25 3.98 1.89 3.50 84.42 5.2611 9 12.62 27.03 41.63 7.45 4.62 2.19 3.99 87.38 5.2112 10 10.57 27.50 43.13 7.66 5.76 2.75 5.05 89.43 5.1813 13 4.85 9.28 39.55 7.31 11.56 11.08 17.75 95.15 3.7414 14 3.74 7.23 37.72 6.79 12.13 12.42 19.92 96.26 3.63__________________________________________________________________________ TABLE 26__________________________________________________________________________ANILINE/CYCLOHEXENESorted by O --POBS SAMPLE ID RUN TEMPERATURE PRESSURE N R CATALYST TYPE LHSV CONV O --P__________________________________________________________________________1 7893-34-24 1 150 922 1.00 3.00 H-Y 0.13 1.02 .2 7893-34-25 2 150 920 1.00 3.00 H-Y 0.13 1.06 .3 7893-38-38 14 250 955 1.00 3.00 H-Y 0.13 96.26 3.634 7893-38-36 13 250 950 1.00 3.00 H-Y 0.13 95.15 3.745 7893-49-45 10 224 933 1.00 3.00 H-Y 0.06 89.43 5.186 7893-48-41 7 224 940 1.00 3.00 H-Y 0.13 75.05 5.197 7893-49-44 9 224 936 1.00 3.00 H-Y 0.06 87.38 5.218 7893-48-42 8 224 948 1.00 3.00 H-Y 0.13 75.19 5.269 7893-37-34 12 225 937 1.00 3.00 H-Y 0.13 84.42 5.2610 7893-36-32 11 225 940 1.00 3.00 H-Y 0.13 80.36 5.2811 7893-36-31 6 200 940 1.00 3.00 H-Y 0.13 38.33 7.0512 7893-35-30 5 200 940 1.00 3.00 H-Y 0.13 36.25 7.1713 7893-35-26 3 174 934 1.00 3.00 H-Y 0.13 5.59 7.8014 7893-35-28 4 174 934 1.00 3.00 H-Y 0.13 5.29 8.09__________________________________________________________________________ TABLE 27__________________________________________________________________________ANILINE/CYCLOHEXENE ACID CATSorted by O --P N--CYCLO- O--CYCLO- P--CYCLO- HEX HEX HEX N,2-DIHEX 2,4-DIHEX 2,6-DIHEX ANILINE ANILINE ANILINE ANILINE ANILINE ANILINE ANILINEOBS RUN MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O --P__________________________________________________________________________1 1 98.98 0.09 0.20 0.00 0.10 0.00 0.00 1.02 .2 2 98.94 0.13 0.28 0.00 0.08 0.00 0.00 1.06 .3 14 3.74 7.23 37.72 6.79 12.13 12.42 19.92 96.26 3.634 13 4.85 9.28 39.55 7.31 11.56 11.08 17.75 95.15 3.745 10 10.57 27.50 43.13 7.66 5.76 2.75 5.05 89.43 5.186 7 24.95 25.79 38.27 7.08 2.03 1.04 1.84 75.05 5.197 9 12.62 27.03 41.63 7.45 4.62 2.19 3.99 87.38 5.218 8 24.81 25.88 37.82 6.96 1.86 0.89 1.58 75.19 5.269 12 15.58 27.12 40.55 7.25 3.98 1.89 3.50 84.42 5.2610 11 19.64 26.76 39.63 7.13 3.23 1.53 2.83 80.36 5.2811 6 61.67 13.10 21.90 3.08 0.29 0.08 0.09 38.33 7.0512 5 63.75 12.73 21.34 2.95 0.28 0.08 0.09 36.25 7.1713 3 94.41 1.69 3.29 0.44 0.10 0.00 0.00 5.59 7.8014 4 94.17 1.77 3.63 0.46 0.09 0.00 0.00 5.29 8.09__________________________________________________________________________ Tables 20-27 show the alkylation of aniline with cyclohexene. As the data shows, alkylation of aniline with cyclohexene is more sensitive to temperature than propylene but less than isobutylene. Temperatures from about 200.degree. to 225.degree. C. result in conversions greater then 75% with an ortho-para ratio of 5 and greater. EXAMPLE 16 Alkylation of N-Isopropyl Aniline A series of alkylation reactions was carried out in a fixed bed catalytic reactor, the reactor consisting of a 0.5" ID, 304 stainless steel tube which was jacketed with single-element heater. A 5 cc Vicor preheating bed was used to vaporize the reactants as they were passed downflow through the stainless steel tube jacketed reactor. The reactor was of sufficient length to accomodate from about 12-25 cubic centimeters of a solid phase catalyst system, having a particle size of from about 12-18 mesh (U.S. standard size). The reactions were conducted at temperatures ranging from about 100.degree.-400.degree. C. and pressures of from about 50-1000 psig and an LHSV based upon total aromatic amine liquid feed to the vaporizer of from 0.05 to 4.0 hr..sup.-1. The reaction product was collected and byproduct olefin was removed via vaporization. The reaction product then was analyzed (free of olefin) by gas chromatography using an internal standard technique. Results are provided in Tables 28-31. Temperatures, pressures, catalysts, moles, olefin and amine reactant, and other variables are recited in Table 28 and 30. Tables 29 and 31 provide analytical results with respect to the run conditions described in Table 28 and 30 respectively. In Tables 28 and 30 OBS is the sequential line observation for the particular table (there may be some skips); run is an arbitrary run number to permit rapid identification of that data set in other Tables; temperatures is in .degree.C., pressure is in psig, G-Al.sub.2 O.sub.3 refers to gamma-alumina, H-Y is a hydrogen exchanged Y zeolite, 13% Al.sub.2 O.sub.3 /SiO.sub.2 refers to a silica-alumina catalyst containing 13% by weight of Al.sub.2 O.sub.3. N refers to aromatic amine, i.e., aniline, R refers to olefin, i.e., propylene, X refers to N-alkylate, i.e., N-isopropylaniline, conversion (conv.) is expressed as % and is based upon the total moles ring alkylated product produced divided by the total moles of aromatic amine and N-alkylated amine feed times 100; and o-p, refers to the ortho-para ratio which is the moles of 2+2,6-isomers divided by the moles of 4-isomer+2,4-isomer+2,4,6-isomer. In some cases an ortho to para ratio of >40 has been written in, otherwise one would be dividing by zero. Tables 28 and 29 are arranged in ascending conversion. Tables 30 and 31 are duplicates of Tables 28 and 29 are arranged in ascending ortho para ratio. Tables 28-31 illustrate the effect of various process parameters such as including catalyst activity on conversion. Other variables such as the mole ratio of olefin to total aromatic amine as well as the molar ratios of aniline to N-alkylate are shown. They are to be used in combination to observe trends; e.g., O-P ratios vs. conversion based upon reaction parameters. No one specific value is to be considered as controlling but rather is to be considered in combination with another value. The table product legends are as follows: 1. Aniline--aniline 2. N-IPA--N-isopropylaniline 3. 2-IPA--ortho-isopropylaniline 4. 4-IPA--para-isopropylaniline 5. N-2-DIPA--N,2-diisopropylaniline 6. 2,4-DIPA--2,4-diisopropylaniline 7. 2,6-DIPA--2,6-diisopropylaniline 8. 2,4,6-TIPA--2,4,6-triisopropylaniline TABLE 28__________________________________________________________________________CONVERSION OF N--ISOPROPYLANILINEARRANGED IN ASCENDING CONVERSION BY CATALYST TYPE Molar Feed RatioOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R X CATALYST TYPE LHSV CONV O--P__________________________________________________________________________ 1 7893-73-86 5 348 900 0.50 0.00 0.50 G-AL2O3 0.13 6.97 >40 2 7893-73-87 20 349 905 0.50 0.00 0.50 G-AL2O3 0.13 7.09 >40 3 7893-75-93 22 349 910 0.75 2.00 0.25 G-AL2O3 0.13 9.66 14.55 4 7893-75-92 9 348 900 0.75 2.00 0.25 G-AL2O3 0.13 12.38 14.27 5 7893-75-94 23 349 910 0.75 2.00 0.25 G-AL2O3 0.13 12.61 >40 6 7893-73-88 6 348 30 0.50 0.00 0.50 G-AL2O3 0.13 13.92 8.13 7 7893-73-89 7 348 30 0.50 0.00 0.50 G-AL2O3 0.13 14.38 7.93 8 7893-74-90 21 349 930 0.50 2.00 0.50 G-AL2O3 0.13 19.52 35.08 9 7893-72-83 2 348 30 0.00 0.00 1.00 G-AL2O3 0.13 23.58 6.4010 7893-72-82 1 348 30 0.00 0.00 1.00 G-AL2O3 0.13 24.16 6.3711 7893-72-84 3 348 955 0.00 2.00 1.00 G-AL2O3 0.13 28.76 24.8312 7893-71-79 18 349 960 0.00 0.00 1.00 G-AL2O3 0.13 30.29 8.2913 7893-71-80 19 349 960 0.00 0.00 1.00 G-AL2O3 0.13 30.70 8.6114 7893-74-91 8 348 925 0.50 2.00 0.50 G-AL2O3 0.13 32.98 31.8215 7893-72-85 4 348 960 0.00 2.00 1.00 G-AL2O3 0.13 40.66 19.4520 7893-53-50 10 348 980 0.00 6.90 1.00 G-AL2O3 0.18 62.28 14.1921 7893-58-52 11 348 860 0.00 10.00 1.00 G-AL2O3 0.13 76.80 13.7422 7893-59-54 12 348 990 0.00 10.00 1.00 G-AL2O3 0.13 77.63 14.3523 7893-59-56 13 348 990 0.00 10.00 1.00 G-AL2O3 0.13 78.01 15.8224 7893-60-61 15 348 980 0.40 10.00 0.60 G-AL2O3 0.13 80.42 19.3525 7893-60-59 14 348 990 0.40 10.00 0.60 G-AL2O3 0.13 81.81 15.3926 7893-61-65 17 348 1000 0.40 10.00 0.60 G-AL2O3 0.13 83.85 14.5727 7893-61-63 16 348 1000 0.40 10.00 0.60 G-AL2O3 0.13 84.02 14.4728 7723-31-60 38 248 1073 0.00 2.00 1.00 H-Y 1.50 4.48 >4029 7723-31-59 37 248 1076 0.00 2.00 1.00 H-Y 1.50 4.57 >4030 7723-31-58 36 248 1071 0.00 2.00 1.00 H-Y 1.50 4.91 74731 7723-32-64 48 249 1014 0.50 2.00 0.50 H-Y 1.83 5.01 3.4332 7723-38-89 35 247 1013 0.00 0.00 1.00 H-Y 0.18 5.95 3.1033 7723-38-88 34 247 1014 0.00 0.00 1.00 H-Y 0.18 8.22 4.8734 7723-29-52 30 247 1067 0.50 0.00 0.50 H-Y 0.18 8.40 1.6635 7723-30-54 32 247 50 0.00 0.00 1.00 H-Y 0.18 8.76 2.7236 7723-32-65 49 249 1015 0.50 2.00 0.50 H-Y 1.83 8.97 7.3637 7723-29-50 28 247 40 0.50 0.00 0.50 H-Y 0.18 9.44 1.0838 7723-29-51 29 247 40 0.50 0.00 0.50 H-Y 0.18 9.51 1.1539 7723-30-53 31 247 1068 0.50 0.00 0.50 H-Y 0.18 9.60 1.8240 7723-30-56 33 247 50 0.00 0.00 1.00 H-Y 0.18 10.01 3.4941 7723-34-74 43 248 999 0.75 2.00 0.25 H-Y 0.75 10.40 9.4342 7723-33-70 40 248 999 0.50 2.00 0.50 H-Y 0.75 12.16 7.3643 7723-32-66 39 248 1038 0.50 2.00 0.50 H-Y 1.83 13.22 9.0944 7723-34-71 41 248 997 0.50 2.00 0.50 H-Y 0.75 19.50 8.2945 7723-34-72 42 248 994 0.50 2.00 0.50 H-Y 0.75 21.23 8.5846 7723-34-75 52 249 1003 0.75 2.00 0.25 H-Y 0.75 22.19 8.8847 7723-36-81 45 248 1035 0.50 2.00 0.50 H-Y 0.25 25.98 8.8448 7723-36-79 44 248 1033 0.50 2.00 0.50 H-Y 0.25 27.49 7.5349 7723-33-67 50 249 1060 0.00 2.00 1.00 H-Y 0.75 31.75 12.2750 7723-33-68 51 249 1054 0.00 2.00 1.00 H-Y 0.75 32.77 12.3451 7723-37-85 46 248 1013 0.75 2.00 0.25 H-Y 0.25 34.81 7.3152 7723-37-87 47 248 1026 0.75 2.00 0.25 H-Y 0.256 55.48 7.4153 7893-85-12 62 288 30 0.50 0.00 0.50 13% AL2O3/SIO2 0.18 15.53 2.6354 7893-93-15 67 290 930 0.75 2.00 0.25 13% AL2O3/SIO2 2.20 16.97 13.3955 7893-85-11 54 287 30 0.50 0.00 0.50 13% AL2O3/SIO2 0.18 17.16 2.6357 7893-93-16 68 290 930 0.75 2.00 0.25 13% AL2O3/SIO2 2.20 18.73 9.1259 7893-83-06 53 287 30 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 25.08 2.3460 7893-85-13 63 288 890 0.50 2.00 0.50 13% AL2O3/SIO2 1.17 26.69 9.2661 7893-83-05 57 288 30 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 27.87 2.3062 7893-85-14 64 289 890 0.50 2.00 0.50 13% AL2O3/SIO2 1.17 28.99 9.1763 7893-93-17 65 289 930 0.75 2.00 0.25 13% AL2O3/SIO2 1.10 32.45 8.4464 7893-93-18 66 289 930 0.75 2.00 0.25 13% AL2O3/SIO2 1.10 33.83 8.2865 7893-82-04 56 288 975 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 50.67 3.8366 7893-82-03 55 288 970 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 52.45 3.64__________________________________________________________________________ TABLE 29__________________________________________________________________________CONVERSION OF N--ISOPROPYLANILINE N--IPA 2-IPA 4-IPA ANILINE MOLE MOLE MOLE N,2-DIPA 2,4-DIPA 2,6-DIPA 2,4,6-TIPAOBS RUN MOLE PCT PCT PCT PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O--P__________________________________________________________________________ 1 5 56.66 36.36 3.78 0.00 0.00 0.00 0.00 0.00 6.97 >40 2 20 57.32 35.59 3.42 0.00 0.00 0.00 0.00 0.00 7.09 >40 3 22 72.59 17.75 7.42 0.51 0.00 0.00 0.00 0.00 9.66 14.55 4 9 72.33 15.29 10.08 0.71 0.00 0.00 0.00 0.00 12.38 14.27 5 23 69.12 18.27 10.10 0.00 0.42 0.00 0.54 0.00 12.61 >40 6 6 83.98 2.10 9.21 1.13 0.00 0.00 0.00 0.00 13.92 8.13 7 7 84.89 0.72 9.06 1.14 0.00 0.00 0.00 0.00 14.38 7.93 8 21 53.39 27.10 13.61 0.00 1.10 0.46 1.43 0.00 19.52 35.08 9 2 74.80 1.62 13.78 1.67 0.00 0.55 0.45 0.00 23.58 6.4010 1 72.91 2.93 14.07 1.69 0.00 0.60 0.51 0.00 24.16 6.3711 3 41.85 29.38 18.16 0.00 2.52 0.99 3.87 0.00 28.76 24.8312 18 53.34 15.37 20.75 1.66 1.78 1.23 1.47 0.00 30.29 8.2913 19 53.72 15.58 21.45 1.69 1.75 1.17 1.42 0.00 30.70 8.6114 8 47.84 19.18 23.67 0.00 2.36 0.98 5.23 0.00 32.98 31.8215 4 40.71 18.62 26.44 0.00 3.67 1.50 7.96 0.45 40.66 19.4520 10 29.42 8.30 39.30 0.73 3.60 2.02 14.30 1.28 62.28 14.1921 11 17.81 5.39 43.65 1.20 4.08 2.16 19.66 1.54 76.80 13.7422 12 16.97 5.39 48.76 1.17 4.68 2.20 18.99 1.68 77.63 14.3523 13 16.68 5.31 48.24 1.07 4.88 2.15 18.78 1.32 78.01 15.8224 15 14.89 4.69 51.33 1.16 5.15 1.27 20.54 1.56 80.42 19.3525 14 13.79 4.40 50.27 1.20 5.08 2.18 21.78 1.63 81.81 15.3926 17 12.25 3.90 50.03 1.28 5.16 2.31 23.94 1.84 83.85 14.5727 16 12.11 3.88 49.54 1.30 5.11 2.29 24.18 1.87 84.02 14.4728 38 40.17 55.34 1.80 0.00 1.53 0.00 0.00 0.00 4.48 >4029 37 40.23 55.20 1.75 0.00 1.60 0.00 0.00 0.00 4.57 >4030 36 38.39 56.70 1.80 0.48 1.79 0.00 0.00 0.00 4.91 7.4731 48 73.31 21.68 1.82 0.64 0.39 0.00 0.00 0.00 5.01 3.4332 35 62.97 31.08 2.70 1.19 0.57 0.00 0.41 0.00 5.95 3.1033 34 61.14 30.63 3.57 1.15 1.03 0.00 0.99 0.00 8.22 4.8734 30 52.21 39.39 2.97 2.32 0.88 0.00 0.00 0.00 8.40 1.6635 32 31.18 60.06 2.80 1.40 1.63 0.42 0.54 0.00 8.76 2.7236 49 68.30 22.72 5.50 0.90 1.15 0.00 0.00 0.00 8.97 7.3637 28 63.97 26.59 2.77 3.21 0.56 0.16 0.30 0.00 9.44 1.0838 29 62.85 27.64 2.91 3.30 0.56 0.00 0.33 0.00 9.51 1.1539 31 53.29 37.12 3.63 2.72 1.00 0.00 0.32 0.00 9.60 1.8240 33 30.02 59.97 3.48 1.44 2.27 0.37 0.57 0.00 10.01 3.4941 43 76.47 13.13 6.68 0.81 0.60 0.00 0.34 0.00 10.40 9.4342 40 66.21 21.64 7.20 1.23 1.49 0.00 0.38 0.00 12.16 7.3643 39 63.70 23.09 7.96 1.11 1.75 0.00 0.38 0.00 13.22 9.0944 41 57.77 22.74 13.02 1.65 2.53 0.35 1.04 0.00 19.50 8.2945 42 55.54 23.23 14.47 1.76 2.94 0.41 1.25 0.00 21.23 8.5846 52 62.87 14.94 14.48 1.51 2.16 0.62 2.33 0.00 22.19 8.8847 45 51.09 22.93 14.94 1.64 3.79 0.91 3.84 0.00 25.98 8.8448 44 50.34 22.18 18.56 2.41 3.66 0.85 2.33 0.00 27.49 7.5349 50 31.37 36.88 16.46 1.44 8.87 0.97 4.22 0.00 31.75 12.2750 51 30.32 36.91 16.18 1.46 10.00 1.03 4.49 0.00 32.77 12.3451 46 49.36 15.83 19.23 1.99 3.78 1.67 6.88 0.42 34.81 7.3152 47 25.90 18.62 28.29 2.62 7.13 3.21 13.11 0.73 55.48 7.4153 62 76.44 8.03 11.61 3.30 0.63 1.72 0.97 0.00 15.53 2.6354 67 63.67 19.35 11.48 1.16 3.04 0.00 1.00 0.00 16.97 13.3955 54 76.09 6.75 12.67 3.51 0.61 1.96 1.12 0.00 17.16 2.6356 68 61.67 19.61 12.21 1.23 3.29 0.60 1.18 0.00 18.73 9.1259 53 60.45 14.47 14.47 3.86 2.00 3.39 2.15 0.71 25.08 2.3460 63 42.05 31.26 11.34 1.22 6.76 0.93 1.80 0.00 26.69 9.2661 57 58.88 13.25 14.40 3.73 1.95 3.57 2.29 0.80 27.87 2.3062 64 40.48 30.52 13.14 1.38 7.61 1.13 2.21 0.00 28.99 9.1763 65 48.47 19.08 19.44 1.58 5.41 1.53 3.56 0.26 32.45 8.4464 66 46.95 19.22 19.74 1.56 5.74 1.68 3.81 0.29 33.83 8.2865 56 33.28 16.05 24.31 2.95 7.35 5.49 6.86 1.63 50.67 3.8366 55 33.23 14.33 24.96 2.80 6.47 5.92 7.15 1.88 52.45 3.64__________________________________________________________________________ TABLE 30__________________________________________________________________________CONVERSION OF N--ISOPROPYLANILINEARRANGED IN ASCENDING ORTHO-PARA RATIO BY CATALYST TYPE Molar Feed RatioOBS SAMPLE ID RUN TEMPERATURE PRESSURE N R X CATALYST TYPE LHSV CONV O--P__________________________________________________________________________ 1 7893-73-86 5 348 900 0.50 0.00 0.50 G-AL2O3 0.13 6.97 >40 2 7893-73-87 20 349 905 0.50 0.00 0.50 G-AL2O3 0.13 7.09 >40 3 7893-75-94 23 349 910 0.75 2.00 0.25 G-AL2O3 0.13 12.61 >40 4 7893-72-82 1 348 30 0.00 0.00 1.00 G-AL2O3 0.13 24.16 6.37 5 7893-72-83 2 348 30 0.00 0.00 1.00 G-AL2O3 0.13 23.58 6.40 8 7893-73-89 7 348 30 0.50 0.00 0.50 G-AL2O3 0.13 14.38 7.93 9 7893-73-88 6 348 30 0.50 0.00 0.50 G-AL2O3 0.13 13.92 8.1310 7893-71-79 18 349 960 0.00 0.00 1.00 G-AL2O3 0.13 30.29 8.2912 7893-71-80 19 349 960 0.00 0.00 1.00 G-AL2O3 0.13 30.70 8.6114 7893-58-52 11 348 860 0.00 10.00 1.00 G-AL2O3 0.13 76.80 13.7415 7893-53-50 10 348 980 0.00 6.90 1.00 G-AL2O3 0.18 62.28 14.1916 7893-75-92 9 348 900 0.75 2.00 0.25 G-AL2O3 0.13 12.38 14.2717 7893-59-54 12 348 990 0.00 10.00 1.00 G-AL2O3 0.13 77.63 14.3518 7893-61-63 16 348 1000 0.40 10.00 0.60 G-AL2O3 0.13 84.02 14.4719 7893-75-93 22 349 910 0.75 2.00 0.25 G-AL2O3 0.13 9.66 14.5520 7893-61-65 17 348 1000 0.40 10.00 0.60 G-AL2O3 0.13 83.85 14.5721 7893-60-59 14 348 990 0.40 10.00 0.60 G-AL2O3 0.13 81.81 15.3922 7893-59-56 13 348 990 0.00 10.00 1.00 G-AL2O3 0.13 78.01 15.8223 7893-60-61 15 348 980 0.40 10.00 0.60 G-AL2O3 0.13 80.42 19.3524 7893-72-85 4 348 960 0.00 2.00 1.00 G-AL2O3 0.13 40.66 19.4525 7893-72-84 3 348 955 0.00 2.00 1.00 G-AL2O3 0.13 28.76 24.8326 7893-74-91 8 348 925 0.50 2.00 0.50 G-AL2O3 0.13 32.98 31.8227 7893-74-90 21 349 930 0.50 2.00 0.50 G-AL2O3 0.13 19.52 35.0828 7723-31-59 37 248 1076 0.00 2.00 1.00 H-y 1.50 4.57 >4029 7723-31-60 38 248 1073 0.00 2.00 1.00 H-Y 1.50 4.48 >4030 7723-29-50 28 247 40 0.50 0.00 0.50 H-Y 0.18 9.44 1.0831 7723-29-51 29 247 40 0.50 0.00 0.50 H-Y 0.18 9.51 1.1532 7723-29-52 30 247 1067 0.50 0.00 0.50 H-Y 0.18 8.40 1.6633 7723-30-53 31 247 1068 0.50 0.00 0.50 H-Y 0.18 9.60 1.8234 7723-30-54 32 247 50 0.00 0.00 1.00 H-Y 0.18 8.76 2.7235 7723-38-89 35 247 1013 0.00 0.00 1.00 H-Y 0.18 5.95 3.1036 7723-32-64 48 249 1014 0.50 2.00 0.50 H-Y 1.83 5.01 3.4337 7723-30-56 33 247 50 0.00 0.00 1.00 H-Y 0.18 10.01 3.4938 7723-38-88 34 247 1014 0.00 0.00 1.00 H-Y 0.18 8.22 4.8739 7723-37-85 46 248 1013 0.75 2.00 0.25 H-Y 0.25 34.81 7.3140 7723-33-70 40 248 999 0.50 2.00 0.50 H-Y 0.75 12.16 7.3641 7723-32-65 49 249 1015 0.50 2.00 0.50 H-Y 1.83 8.97 7.3642 7723-37-87 47 248 1026 0.75 2.00 0.25 H-Y 0.25 55.48 7.4143 7723-31-58 36 248 1071 0.00 2.00 1.00 H-Y 1.50 4.91 7.4744 7723-36-79 44 248 1033 0.50 2.00 0.50 H-Y 0.25 27.49 7.5345 7723-34-71 41 248 997 0.50 2.00 0.50 H-Y 0.75 19.50 8.2946 7723-34-72 42 248 994 0.50 2.00 0.50 H-Y 0.75 21.23 8.5847 7723-36-81 45 248 1035 0.50 2.00 0.50 H-Y 0.25 25.98 8.8448 7723-34-75 52 249 1003 0.75 2.00 0.25 H-Y 0.75 22.19 8.8849 7723-32-66 39 248 1038 0.50 2.00 0.50 H-Y 1.83 13.22 9.0950 7723-34-74 43 248 999 0.75 2.00 0.25 H-Y 0.75 10.40 9.4351 7723-33-67 50 249 1060 0.00 2.00 1.00 H-Y 0.75 31.75 12.2752 7723-33-68 51 249 1054 0.00 2.00 1.00 H-Y 0.75 32.77 12.3453 7893-83-05 57 288 30 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 27.87 2.3054 7893-83-06 53 287 30 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 25.08 2.3455 7893-85-12 62 288 30 0.50 0.00 0.50 13% AL2O3/SIO2 0.18 15.53 2.6356 7893-85-11 54 287 30 0.50 0.00 0.50 13% AL2O3/SIO2 0.18 17.16 2.6357 7893-82-03 55 288 970 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 52.45 3.6458 7893-82-04 56 288 975 0.00 0.00 1.00 13% AL2O3/SIO2 0.18 50.67 3.8363 7893-93-18 66 289 930 0.75 2.00 0.25 13% AL2O3/SIO2 1.10 33.83 8.2864 7893-93-17 65 289 930 0.75 2.00 0.25 13% AL2O3/SIO2 1.10 32.45 8.4465 7893-93-16 68 290 930 0.75 2.00 0.25 13% AL2O3/SIO2 2.20 18.73 9.1266 7893-85-14 64 289 890 0.50 2.00 0.50 13% AL2O3/SIO2 1.17 28.99 9.1767 7893-85-13 63 288 890 0.50 2.00 0.50 13% AL2O3/SIO2 1.17 26.69 9.2668 7893-93-15 67 290 930 0.75 2.00 0.25 13% AL2O3/SIO2 2.20 16.97 13.39__________________________________________________________________________ TABLE 31__________________________________________________________________________CONVERSION OF N--ISOPROPYLANILINE N--IPA 2-IPA 4-IPA ANILINE MOLE MOLE MOLE N,2-DIPA W,4-DIPA 2,6-DIPA 2,4,6-TIPAOBS RUN MOLE PCT PCT PCT PCT MOLE PCT MOLE PCT MOLE PCT MOLE PCT CONV O--P__________________________________________________________________________ 1 5 56.66 36.36 3.78 0.00 0.00 0.00 0.00 0.00 6.97 >40 2 20 57.32 35.59 3.42 0.00 0.00 0.00 0.00 0.00 7.09 >40 3 23 69.12 18.27 10.10 0.00 0.42 0.00 0.54 0.00 12.61 >61 4 1 72.91 2.93 14.07 1.69 0.00 0.60 0.51 0.00 24.16 6.37 5 2 74.80 1.62 13.78 1.67 0.00 0.55 0.45 0.00 23.58 6.40 8 7 84.89 0.72 9.06 1.14 0.00 0.00 0.00 0.00 14.38 7.93 9 6 83.98 2.10 9.21 1.13 0.00 0.00 0.00 0.00 13.92 8.1310 18 53.34 16.37 20.75 1.66 1.78 1.23 1.47 0.00 30.29 8.2912 19 53.72 15.58 21.45 1.69 1.75 1.17 1.42 0.00 30.70 8.6114 11 17.81 5.39 43.65 1.20 4.08 2.16 19.66 1.54 76.80 13.7415 10 29.42 8.30 39.30 0.73 3.60 2.02 14.30 1.28 62.28 14.1916 9 72.33 15.29 10.08 0.71 0.00 0.00 0.00 0.00 12.38 14.2717 12 16.97 5.39 48.76 1.17 4.68 2.20 18.99 1.68 77.63 14.3518 16 12.11 3.88 49.54 1.30 5.11 2.29 24.18 1.87 84.02 14.4719 22 72.59 17.75 7.42 0.51 0.00 0.00 0.00 0.00 9.66 14.5520 17 12.25 3.90 50.03 1.28 5.16 2.31 23.94 1.84 83.85 14.5721 14 13.79 4.40 50.27 1.20 5.08 2.18 21.78 1.63 81.81 15.3922 13 16.68 5.31 48.24 1.07 4.88 2.15 18.78 1.32 78.01 15.8223 15 14.89 4.69 51.33 1.16 5.15 1.27 20.54 1.56 80.42 19.3524 4 40.71 18.62 26.44 0.00 3.67 1.50 7.96 0.45 40.66 19.4525 3 41.85 29.38 18.16 0.00 2.52 0.99 3.87 0.00 28.76 24.8326 8 47.84 19.18 23.67 0.00 2.36 0.98 5.23 0.00 32.98 31.8227 21 53.39 27.10 13.61 0.00 1.10 0.46 1.43 0.00 19.52 35.0828 37 40.23 55.20 1.75 0.00 1.60 0.00 0.00 0.00 4.57 >4029 38 40.17 55.34 1.80 0.00 1.53 0.00 0.00 0.00 4.48 >4030 28 63.97 26.59 2.77 3.21 0.56 0.16 0.30 0.00 9.44 1.0831 29 62.85 27.64 2.91 3.30 0.56 0.00 0.33 0.00 9.51 1.1532 30 52.21 39.39 2.97 2.32 0.88 0.00 0.00 0.00 8.40 1.6633 31 53.29 37.12 3.63 2.72 1.00 0.00 0.32 0.00 9.60 1.8234 32 31.18 60.06 2.80 1.40 1.63 0.42 0.54 0.00 8.76 2.7235 35 62.97 31.08 2.70 1.19 0.57 0.00 0.41 0.00 5.95 3.1036 48 73.31 21.68 1.82 0.64 0.39 0.00 0.00 0.00 5.01 3.4337 33 30.02 59.97 3.48 1.44 2.27 0.37 0.57 0.00 10.01 3.4938 34 61.14 30.63 3.57 1.15 1.03 0.00 0.99 0.00 8.22 4.8739 46 49.36 15.83 19.23 1.99 3.78 1.67 6.88 0.42 34.81 7.3140 40 66.21 21.64 7.20 1.23 1.49 0.00 0.38 0.00 12.16 7.3641 49 68.30 22.72 5.50 0.90 1.15 0.00 0.00 0.00 8.97 7.3642 47 25.90 18.62 28.29 2.62 7.13 3.21 13.11 0.73 55.48 7.4143 36 38.39 56.70 1.80 0.48 1.79 0.00 0.00 0.00 4.91 7.4744 44 50.34 22.18 18.56 2.41 3.66 0.85 2.33 0.00 27.49 7.5345 41 57.77 22.74 13.02 1.65 2.53 0.35 1.04 0.00 19.50 8.2946 42 55.54 23.23 14.47 1.76 2.94 0.41 1.25 0.00 21.23 8.5847 45 51.09 22.93 14.94 1.64 3.79 0.91 3.84 0.00 25.98 8.8448 52 62.87 14.94 14.48 1.51 2.16 0.62 2.33 0.00 22.19 8.8849 39 63.70 23.09 7.96 1.11 1.75 0.00 0.38 0.00 13.22 9.0950 43 76.47 13.13 6.68 0.81 0.60 0.00 0.34 0.00 10.40 9.4351 50 31.37 36.88 16.46 1.44 8.87 0.97 4.22 0.00 31.75 12.2752 51 30.32 36.91 16.18 1.46 10.00 1.03 4.49 0.00 32.77 12.3453 57 58.88 13.25 14.40 3.73 1.95 3.57 2.29 0.80 27.87 2.3054 53 60.45 14.47 14.47 3.86 2.00 3.39 2.15 0.71 25.08 2.3455 62 76.44 8.03 11.61 3.30 0.63 1.72 0.97 0.00 15.53 2.6356 54 76.09 6.75 12.67 3.51 0.61 1.96 1.12 0.00 17.16 2.6357 55 33.23 14.33 24.96 2.80 6.47 5.92 7.15 1.88 52.45 3.6458 56 33.28 16.05 24.31 2.95 7.35 5.49 6.86 1.63 50.67 3.8363 66 46.95 19.22 19.74 1.56 5.74 1.68 3.81 0.29 33.83 8.2864 65 48.47 19.08 19.44 1.58 5.41 1.53 3.56 0.26 32.45 8.4465 68 61.67 19.61 12.21 1.23 3.29 0.60 1.18 0.00 18.73 9.1266 64 40.48 30.52 13.14 1.38 7.61 1.13 2.21 0.00 28.99 9.1767 63 42.05 31.26 11.34 1.22 6.76 0.93 1.80 0.00 26.69 9.2668 67 63.67 19.35 11.48 1.16 3.04 0.00 1.00 0.00 16.97 13.39__________________________________________________________________________ The above tables show the excellent activity of H-Y zeolite on effecting conversion of N-alkylate to ortho-alkylate. Conversions are much higher at a lower temperature than is obtained with other catalysts. The H-Y catalyst runs demonstrate the effect of LHSV on conversion of N-alkylates. It can be readily seen that the degree of conversion is dependent on residence time. Longer residence time, i.e., lower LHSV, brings about higher conversion of N-alkylates. Compare runs 51 and 36 (OBS 46 and 50). The table also shows that higher conversions can be obtained with H-Y than with gamma-alumina and silica-alumina at comparable temperatures and space velocities.
Claims
1. In a process for alkylating aromatic amines by contacting said aromatic amine with an olefin in the presence of a catalyst system, the improvement which comprises alkylating aromatic amines represented by the formulas: ##STR6## where R is hydrogen, C.sub.1-10 alkyl, halogen, phenyl, alkoxy, ester or nitrile; R.sub.1 is hydrogen or C.sub.1-10 alkyl, x is 0, 1 or 2; A is C.sub.0-4 alkylene, y is 1 or 2, except one y in formula I can be zero, with an aliphatic acyclic or cyclic monoolefin in the presence of an acidic crystalline molecular sieve catalyst, said catalyst having an acidity factor of at least 0.30, said alkylation being carried out at a pressure from 50-3,000 psig.
2. The process of claim 1 wherein said acidic molecular sieve has exchangeable cation sites and said sites are populated substantially by hydrogen ion or rare earth metal cations.
3. The process of claim 2 wherein said acidic crystalline molecular sieve is an acidic crystalline alumino-silicate.
4. The process of claim 3 wherein said olefin is a C.sub.2 to C.sub.12 aliphatic acyclic or cyclic olefin.
5. The process of claim 4 wherein said reaction temperature is from 50.degree. to 425.degree. C.
6. The process of claim 4 where the molar ratio of olefin to aromatic amine is from about 1-10:1.
7. The process of claim 6 wherein R is C.sub.1 and X is 1 or 2.
8. The process of claim 7 wherein R.sub.1 is hydrogen.
9. The process of claim 4 wherein said reaction temperature does not exceed 300.degree. C. and the acidity factor of said catalyst is at least 1.
10. The process of claim 9 wherein said olefin is a C.sub.4 to C.sub.6 olefin.
11. The process of claim 10 wherein said olefin is selected from the group consisting of isobutylene, isoamylene, and cyclohexene.
12. The process of claim 11 wherein said crystalline alumino-silicate is selected from the group consisting of mordenite, offretite, zeolites X, Y, and K.
13. The process of claim 12 wherein said aromatic amine is represented by formula 2.
14. The process of claim 13 wherein said aromatic amine is toluenediamine, toluidine, aniline or halogenated derivative of said aromatic amine.
15. The process of claim 14 wherein said catalyst is H-Y zeolite.
16. In a process for alkylating aromatic amines by contacting said aromatic amine with an olefin in the presence of a catalyst system, the improvement for obtaining high conversion of amine to alkylated aromatic amine a high selectivity to the orthoalkylated aromatic amine, the improvement which comprises effecting said reaction with an aromatic amine having active hydrogen atoms in positions both ortho and para to said amino group on said aromatic amine, said aromatic amine represented by the formula I and II: ##STR7## where R is hydrogen, C.sub.1-6 alkyl, R.sub.1 is hydrogen or C.sub.1-8 alkyl; X is 0, 1, or 2; y is 1; A is C.sub.0-4 alkylene or NH;
with a C.sub.2 to C.sub.12 mono-olefin in the presence of an acidic crystalline molecular sieve of the type having an acidity factor of at least 0.30 measured with respect to the amount of ammonia irreversibly adsorbed at 200.degree. C. by 1 gram of molecular sieve.
17. The process of claim 16 wherein said crystalline molecular sieve is exchanged with a hydrogen or rare earth metal ion.
18. The process of claim 17 wherein the molar ratio of olefin to aromatic amine is from 1-10:1.
19. The process of claim 18 wherein the olefin is isobutylene and the reaction temperature ranges from 75.degree. to 240.degree. C.
20. The process of claim 18 wherein said olefin is cyclohexene and said reaction temperature ranges from 125.degree. to 250.degree. C.
21. The process of claim 18 wherein said olefin is propylene and said reaction temperature ranges from 125.degree. to 300.degree. C.
22. The process of claim 18 wherein said olefin is ethylene and said reaction temperature ranges from 250.degree. to 425.degree. C.
23. In a process for alkylating aromatic amines by contacting said aromatic amine with an olefin in the presence of a catalyst system, the improvement for obtaining high conversion of amine to alkylated aromatic amine and a high selectivity to ortho alkylated aromatic amine which comprises:
effecting said reaction with an aromatic amine having active hydrogen atoms in position both ortho and para to said amino group on said aromatic diamine, said aromatic amine selected from aniline or toluidine with an olefin selected from the group consisting of ethylene, propylene, isobutylene, or cyclohexene in the presence of an acidic crystalline molecular sieve of the type having an acidity factor of at least 0.30 measured with respect to the amount of ammonia irreversibility absorbed at 200.degree. C. by 1 gram of molecular sieve.
Foreign Referenced Citations (1)
Number
Date
Country
6407639
Jan 1966
NLX
Non-Patent Literature Citations (1)
Entry
Venuto, P. B. et al., "Organic Reactions Catalyzed by Crystalline Aluminosilicates", J. of Catalysis, vol. 4, pp. 81-98, (1966), Chemical Abstracts, vol. 83, No. 134815s.