The present application relates generally to door switches indicating the state of a vending machine service door and, more specifically, to an interface allowing multiple controllers within the vending machine to employ a single door switch.
Vending machines are typically equipped with a service door normally used by the vending machine operator to stock the vending machine, program or retrieve data from the vending machine, and/or load or unload currency or coins within the vending machine payment system. Often a door switch within the vending machine indicates the state (i.e., “open” or “closed”) of the service door.
Attempts to interface multiple controllers to a single service door switch may result in the door switch signal electronics becoming polarized by at least one of the controllers, resulting in unreliable operation. There is, therefore, a need in the art for an interface providing reliable operation of multiple controllers within a vending machine based upon signals from a single door switch.
A vending machine door switch interface allows multiple controllers, including the vending machine controller, to employ a single door switch without polarization or interference. The interface includes a comparator having inputs coupled across the door switch and, based on the door switch state, produces an output signal indicating whether the service door is closed or open. The comparator output when the service door is known to be open is recorded to subsequently distinguish open and closed states. Unbalanced connections to power and ground result in different voltages at the comparator inputs when the door switch is closed.
Before undertaking the DETAILED DESCRIPTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
In the exemplary embodiment illustrated in
In accordance with the known art, the service door 102 is held closed by a locking mechanical latch mechanism (not shown in
Many functions within vending machine 100 are controlled by a single vending machine controller (or “VMC”) 205. The VMC 205 is a programmable controller that is coupled to the customer user interface 103, the payment system 104, the product delivery mechanisms 201, the delivery detection mechanisms 202, the delivery door mechanisms 203 and/or the refrigeration system 204. By way of example, the vending machine controller 205 may enable selection of certain products in response to signals from the payment system 104, then actuate the appropriate product delivery mechanism(s) 201 to cause delivery of a selected product based upon the customer's input to customer user interface 103, open or unlock the delivery door mechanism(s) 203 to enable customer retrieval of the vended product, and finally cause the payment system 104 to cancel credit and/or issue change to the customer in response to detecting product delivery using the delivery detection mechanism(s) 202. VMC 205 thus interfaces with many different systems within the vending machine 101.
Vending machine 100 also includes an operator user interface 209 including at least one physical switch inside the vending machine 100, where it can only be actuated with the service door 102 open. Operator user interface 209 is coupled to VMC 205.
Although illustrated in
Vending machine 100 also includes a service door switch 206 coupled to at least the VMC 205. Service door switch 206 is implemented using any of the known vending machine door switch structures and supplies a signal to VMC 205 indicating whether the service door 103 is open or closed. VMC 205 controls various functions within vending machine 100 based on the state of, or based on a change in the state of, the service door 102, as such state or change in state is indicated by door switch 206. For example, access to programming menus through the vending machine external customer user interface 103 may be enabled only when the service door 102 is open. The vending machine refrigeration system 204 (if any) may be automatically turned on when the door switch 206 output indicates that the service door 102 has been closed, from a previously open state, in order to compensate for temperature changes expected to be associated with opening the service door. Similarly, self-diagnostic routines may be triggered by detecting, based on the door switch 102, that the service door has been closed, from an open state.
As vending machines become more sophisticated, it is desirable to add functionality without overloading the VMC 205. Many sub-systems that can be added to the vending machine 101 can operate using one or more controller(s) 208 separate from the VMC 205, functioning largely independently from the remainder of the systems in vending machine 101 or in conjunction with specific components. For example, a large liquid crystal display (LCD) on the front exterior of the service door 102 may have a separate controller for generating the image(s) displayed, and changing the displayed image in response to specific events. The display controller (e.g., one of controller(s) 208) for the LCD may, when no customer is seeking to purchase products, display or cycle through a series of advertisements designed to attract customer attention to the products in the vending machine 101, or to promote goods or services unrelated to vending machine 101. In response to a customer initiating a purchase transaction (by using a user interface input to inquire as to products available or by depositing money), the display controller may switch to an image showing the products available for purchase and the quantity remaining within each product column, emulating a glass front vending machine. Alternatively, a telemetry controller (e.g., another of controller(s) 208) for wireless communication of sales information, inventory counts, bill or coin counts within a recycler for the payment system, etc. may operate substantially independently from the VMC 205, other than retrieving needed data from VMC 205 for transmission. As still another example, a payment systems controller (e.g., yet another of controller(s) 208) may be integrated into any of a bill validator, a coin acceptor or a credit/debit card swipe mechanism within payment system 104, to control or alter the manner in which change is dispensed following a customer purchase.
Such separate controllers 208 may operate differently depending on whether the service door 102 is open or closed, or may take action upon the door being opened or closed. For example, the display controller discussed above may blank the screen while the service door is open, the telemetry controller may report door opening events to a remote operations center, and the payment systems controller might initiate an electronic or printed report of the contents of the bill validator and/or coin acceptor.
As discussed above, attempts to interface multiple controllers to a single service door switch may result in the door switch signal electronics becoming polarized by at least one of the controllers, resulting in unreliable operation. One solution is to add a separate door switch. However, such redundancy adds additional mechanical complexity and expense to the construction and operation of the vending machine 101, and constitutes an additional point of potential failure. It would be preferable to allow all controller(s) 208, as well as VMC 205, to operate based on the signals from a single door switch 206. An interface 207 between the controller(s) 208 and door switch 206 preferably avoids polarization or incorrect polarity, shorts to the power rails, or other incorrect operation of door switch 206 when multiple controllers are coupled thereto.
Those skilled in the art will recognize that the full structure and operation of the vending machine 100 and each of the components thereof have not been depicted in
Door switch interface 207 in the example of
In many door switch signal electronics implementations, one of the signal lines will be connected to a power supply (e.g., a 5 volt power supply) and the other will be connected to ground. Instead of looking across a dry switch contact, in the exemplary door switch interface 207 the signal lines tie one differential comparator input to the comparator 301 to a known high or low state, with the other differential input being drawn toward the same level when the service door switch 206 is closed and pulled in the other direction when the service door switch is open. That is, if the positive input of the comparator is connected to the power supply line and the negative input is connected to ground, when the service door switch 206 is closed, either the positive input of the comparator will be pulled toward ground or the negative input will be pulled toward the power supply voltage. The output 302 of comparator 301 signals the state of service door switch 206 to controller(s) 208 coupled thereto by, for example, direct connection, buffers/inverters, and/or other signal conditioning electronics such as amplifiers.
Resistor R4 has a value different than that from resistors R1, R2 and R3. Thus, if service door switch 206 is a dry contact switch, the differential inputs to comparator 301 are slightly unbalanced. When the service door switch 206 is open, the inverting comparator input is low compared to the non-inverting comparator input, allowing the detection of switch closure by differences in the output 302 of comparator 301 when service door 206 is open versus when service door 206 is closed.
Some vending machine door switch implementations pulse or scan the service door switch 206. Such pulsing has no effect on the exemplary door switch interface 207 since, when the service door switch 206 is closed, the pulsing is simply ignored. When the service door switch 206 is open, the pulsing is filtered by controller(s) 208 or, in an alternate embodiment, by a filter (not shown) such as a secondary comparator stage at the comparator output 302. In any event, the output 302 of comparator 301 will differ when the service door 206 is open and when service door 206 is closed, and such difference may be relied upon to identify the state of the service door 206.
The process 400 begins when the vending machine is powered on (step 401), either for the first time following delivery by the manufacturer or following a power-down cycle during normal operation. Logically the service door 102 must be open in order for one or more physical switches inside the vending machine 100 (e.g., operator programming switches, as part of operator user interface 209) to be actuated. Therefore, in the exemplary embodiment, when one of the physical switches accessible only inside the vending machine 100 (i.e., with the service door open) is actuated (step 402), the state of the output of door switch interface 207 is recorded (step 403) within a memory-type device 304 such as a register, a latch or a flip-flop. That state is subsequently used as indicative of the state of service door switch 206 when the service door is open. Optionally, the state of service door switch 206 that is recorded as indicating that the service door 102 is open is updated each time one of the physical switches inside the vending machine 100 is actuated. The memory-type device 304 may be directly accessible to controller(s) 208 (and VMC 205). Alternatively, an optional second comparator stage (shown in phantom in
The door switch interface 207 described above is inexpensive to implement and replaces the need for separate door switch(es) to be provided for controller(s) other than the VMC. Multiple controllers, including the VMC, may be coupled to a single door switch.
Although the present disclosure has been described with exemplary embodiments, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/279,892 filed Oct. 26, 2009, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61279892 | Oct 2009 | US |