This disclosure relates generally to surface cleaning apparatus, including all in the head type surface cleaning apparatus.
Various types of surface cleaning apparatus are known. These include upright surface cleaning apparatus, canister surface cleaning apparatus, stick surface cleaning apparatus and central vacuum systems. Typically, a surface cleaning apparatus has a surface cleaning head with an inlet. For example, an upright surface cleaning apparatus typically comprises an upright section containing at least an air treatment member that is pivotally mounted to a surface cleaning head. A canister surface cleaning apparatus typically comprises a canister body containing at least an air treatment member and a suction motor that is connected to a surface cleaning head by a flexible hose and a handle. Such designs are advantageous as they permit some of the operating components, and optionally all of the operating components (i.e., the suction motor and the air treatment members) to be placed at a location other than the surface cleaning head. This enables the surface cleaning head to be lighter and smaller. Reducing the weight of the surface cleaning head may increase its maneuverability. Also, reducing the height of the surface cleaning head enables the surface cleaning head to clean under furniture having a lower ground clearance.
Another type of surface cleaning apparatus is the all in the head surface cleaning apparatus. An all in the head surface cleaning apparatus has the suction motor and the air treatment members (e.g., one or more cyclones) positioned in the surface cleaning head. However, for various reasons, the all in the head vacuum cleaner has not been widely accepted by consumers.
U.S. Pat. Nos. 5,699,586; 6,012,200; 6,442,792; 7,013,528; US 2004/0134026; US 2006/0156509; and, US 2009/0056060 disclose an all in the head vacuum cleaner wherein the surface cleaning head is wedge shaped (i.e., the height of the surface cleaning head increases from the front end to the rear end). Accordingly, the height at the rear end limits the extent to which the surface cleaning head may travel under furniture. If the height is too tall, then only the front portion of the surface cleaning head may be able to be placed under furniture, thereby limiting the ability of the surface cleaning apparatus to clean under furniture.
U.S. Pat. No. 5,909,755 discloses an all in the head vacuum cleaner. However, this design has limited filtration ability. As set out in the abstract, the design uses a suction motor to draw in air having entrained particulate matter through a filter to thereby treat the air. Accordingly, while the design is not wedge shaped, it relies upon a filter to treat the air.
This summary is intended to introduce the reader to the more detailed description that follows and not to limit or define any claimed or as yet unclaimed invention. One or more inventions may reside in any combination or sub-combination of the elements or process steps disclosed in any part of this document including its claims and figures.
In accordance with one aspect of this disclosure an all in the head surface cleaning apparatus may also have an above floor cleaning mode. Accordingly, the all in the head surface cleaning apparatus may be useable in the same modes as an upright vacuum cleaner and may replace an upright vacuum cleaner. In accordance with this aspect of this disclosure, an all in the head surface cleaning apparatus may include a portable cleaning unit that is removably mounted to the surface cleaning head wherein the portable cleaning unit comprises some or all of the operating components of the all in the head surface cleaning apparatus. For example, the portable cleaning unit may comprise a suction motor and one or more air treatment members. In some embodiments, the portable cleaning unit comprises all the suction motor and all of the air treatment members. Accordingly, the suction motor and air treatment member, which are contained within the removable portable cleaning unit, are used for above floor cleaning and are connected in fluid communication with the dirty air inlet on the surface cleaning head when used in a floor cleaning mode (i.e., when the portable cleaning unit is positioned in the surface cleaning head and is therefore in its floor cleaning position). Therefore, when the portable cleaning unit is used for cleaning when separated from the surface cleaning head, the air may be subjected to the same level of filtration as when the portable cleaning unit is installed in the surface cleaning head.
One advantage of providing a removable cleaning unit may be that it allows a user to lift and carry the portable cleaning unit to a cleaning location, without having to lift the entire weight of the surface cleaning head and upper portion. Accordingly, if a user wants to clean a surface above the floor, such as furniture, curtains or the ceiling, a user may merely remove the portable cleaning unit and commence cleaning. If the portable cleaning unit includes the only suction motor of the all in the head surface cleaning apparatus, then the weight of the surface cleaning head may be reduced by providing only a single suction motor.
Another advantage is that using a common suction motor and air treatment member or members in both the floor cleaning and above floor cleaning modes may help reduce the complexity and number of components required while still providing at least two cleaning modes.
The apparatus may be configured such that the portable cleaning unit may be moved from a floor cleaning position (in which it is mounted to the surface cleaning head and fluidly connected to the dirty air inlet of the surface cleaning head and useable to clean a floor) to a removal position (in which the air flow communication between the portable cleaning unit and surface cleaning head dirty air inlet is interrupted). Preferably, the portable cleaning unit may include the handle that is revealed and/or raised when the portable cleaning unit is in or is moved to the removal position.
Preferably, the portable cleaning unit remains supported by the surface cleaning head when in the removal position, such that it is stable and will resist falling over. One advantage of this configuration is that a handle, and other portions of the portable cleaning unit, may be raised to a position (e.g., a higher elevation) in which it is more comfortable for a user to grasp (e.g., the user may reach down a lesser distance to grasp and remove the portable cleaning unit).
The surface cleaning head may have a height which permits the entire surface cleaning head to extend under furniture. For example, the maximum height of the surface cleaning head may be less than 6 inches, less than 5 inches, or less than 4.0 inches. At the same time, the surface cleaning head may employ cyclonic air treatment technology and achieve a degree of air treatment comparable to that of leading upright cyclonic vacuum cleaners.
In accordance with one aspect, there is provided an all in the head surface cleaning apparatus comprising:
In any embodiment, the surface cleaning head may have a recess and the portable cleaning unit may be positioned in the recess when the portable cleaning unit is mounted to the surface cleaning head. The recess may be provided in the upper surface of the surface cleaning head. Optionally, at least 75% of the portable cleaning unit is positioned in the recess when the portable cleaning unit is mounted to the surface cleaning head.
In any embodiment, an upper surface of the portable cleaning unit may be substantially flush with the upper surface of the surface cleaning head when the portable cleaning unit is mounted to the surface cleaning head.
In any embodiment, the portable cleaning unit may be rotatably moveable from the floor cleaning position to a removal position in which portable cleaning unit is mounted on the surface cleaning head and air flow communication between the portable cleaning unit and the dirt air inlet is interrupted.
In any embodiment, the portable cleaning unit may comprise a carry handle that may be recessed into the surface cleaning head when the portable cleaning unit is mounted to the surface cleaning head.
In any embodiment, the surface cleaning head may further comprise a moveably mounted platform and the portable cleaning unit may be removably mounted to the platform.
In any embodiment, the air treatment member assembly may comprise a cyclone assembly and the air treatment member may comprise a cyclone chamber having a longitudinal cyclone axis that extends between the first and second laterally opposed sides.
In any embodiment, the surface cleaning head may further comprise a rotating cleaning brush and a brush motor, the brush motor having a brush motor axis wherein the brush motor is positioned forward of the suction motor. Optionally, the brush motor axis and the suction motor axis may extend generally transverse to the forward direction and the brush motor may be laterally spaced from the air treatment member.
In any embodiment, the apparatus may further comprise a biasing member biasing the portable cleaning unit away from the floor cleaning position.
In accordance with another aspect, there is provided an all in the head surface cleaning apparatus comprising a surface cleaning head, the apparatus comprising:
In any embodiment, the surface cleaning head may have a recess and the portable cleaning unit may be positioned in the recess when the portable cleaning unit is mounted to the surface cleaning head and is in the floor cleaning position. Optionally, the recess may be provided in the upper surface of the surface cleaning head. At least 75% of the portable cleaning unit may be positioned in the recess when the portable cleaning unit is mounted to the surface cleaning head.
In any embodiment, an upper surface of the portable cleaning unit may be substantially flush with the upper surface of the surface cleaning head when the portable cleaning unit is mounted to the surface cleaning head.
In any embodiment, the portable cleaning unit may be rotatably moveable from the floor cleaning position to the removal position.
In any embodiment, the portable cleaning unit may comprise a carry handle that is recessed into the surface cleaning head when the portable cleaning unit is mounted to the surface cleaning head.
In any embodiment, the surface cleaning head may further comprise a moveably mounted platform and the portable cleaning unit may be removably mounted to the platform.
In any embodiment, the air treatment member assembly may comprise a cyclone assembly comprising a cyclone chamber having a longitudinal cyclone axis that extends between the first and second laterally opposed sides.
In any embodiment, the apparatus may further comprise a brush and a brush motor, the brush motor having a brush motor axis wherein the brush motor is positioned forward of the suction motor. Optionally, the brush motor axis and a suction motor axis may extend generally transverse to a forward direction and wherein the brush motor is laterally spaced from the air treatment member.
In any embodiment, the surface cleaning head may further comprise a brush chamber positioned toward the front end for containing a cleaning brush and the portable cleaning unit may comprise an air inlet extending along an inlet axis, wherein when the portable cleaning unit is in the floor cleaning position the inlet axis intersects the brush chamber and when the portable cleaning unit is in the removal position the inlet axis does not intersect the brush chamber.
In any embodiment, the suction motor may comprise a suction motor axis that extends generally parallel to a horizontal direction when the portable cleaning unit is in the floor cleaning position, and the suction motor axis may be inclined relative to the horizontal direction when the portable cleaning unit is in the removal position.
The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the teaching of the present specification and are not intended to limit the scope of what is taught in any way. In the drawings:
Various apparatuses or processes will be described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover processes or apparatuses that differ from those described below. The claimed inventions are not limited to apparatuses or processes having all of the features of any one apparatus or process described below or to features common to multiple or all of the apparatuses described below. It is possible that an apparatus or process described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus or process described below that is not claimed in this document may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicants, inventors or owners do not intend to abandon, disclaim or dedicate to the public any such invention by its disclosure in this document.
As exemplified herein, the surface cleaning apparatus is an all in the head vacuum cleaner. It will be appreciated that, in some embodiments, aspects disclosed herein may be used in other surface cleaning apparatus such as extractors or in surface cleaning heads of other vacuum cleaners, such as an upright vacuum cleaner or a canister vacuum cleaner.
Referring to
The surface cleaning apparatus 100 preferably includes a dirty air inlet 110, a clean air outlet 112 and an air flow path or passage extending therebetween. Preferably, at least one suction motor and at least one air treatment member assembly are provided in the air flow path. The air treatment member assembly may include an air treatment member, including, for example, one or more cyclones (arranged in series or in parallel with each other), filters, bags and other dirt separation devices, and a dirt collection area. Preferably, the at least one air treatment member assembly is provided upstream from the suction motor, but alternatively may be provided downstream from the suction motor or both upstream and downstream from the suction motor. In addition to the at least one air treatment member assembly, the surface cleaning apparatus may also include one or more pre-motor filters (preferably positioned in the air flow path between the air treatment member assembly and the suction motor) and/or one or more post-motor filters (positioned in the air flow path between the suction motor and the clean air outlet).
In the illustrated embodiment, the surface cleaning apparatus includes an air treatment member assembly in the form of a cyclone bin assembly 160 (
Upper portion 104 may be of any design known in the art that is drivingly connected to surface cleaning head 102 so as to permit a user to move surface cleaning head 102 across a surface to be cleaned (such as a floor). Upper portion 104 may be moveably (e.g., pivotally) connected to surface cleaning head for movement between an upright storage position as exemplified in
Upper portion 104 may comprise a hand grip portion 105 and a drive handle or drive shaft 107. Drive shaft 107 may be useable as an above floor cleaning wand and/or it may provide electrical cord storage and/or auxiliary cleaning tool storage and/or it may be used to hang the surface cleaning apparatus on a wall when not in use
In the embodiment illustrated, the surface cleaning apparatus 100 is an all in the head type vacuum cleaner in which the functional or operational components for the transport and treatment of fluid (e.g., air) entering the dirty air inlet of the vacuum cleaner (e.g. the suction motor, air treatment member, filters, motors, etc.) are all contained within the surface cleaning head 102 portion of surface cleaning apparatus 100. Providing the functional air flow components within the surface cleaning head may help reduce the size and/or weight of the upper portion and/or help lower the centre of gravity of the surface cleaning apparatus. Accordingly, the hand weight experienced by a user operating surface cleaning apparatus 100 may be reduced.
In some embodiments, the surface cleaning head may also be configured to accommodate functional components that do not form part of the air flow path, such as, for example, brush motors, brushes, on board energy storage systems, controllers and other components.
Alternatively, while being free from air flow components, the upper section may include some non-airflow related components, such as, for example, electrical cord connections, electrical cord storage members, handles, actuators, steering components, and other functional, on board energy storage systems. In the illustrated example, the upper portion 104 includes an optional storage compartment 109 (for example for storing auxiliary cleaning tools) and an optional battery pack 111 that may be mounted to, and movable with, the drive shaft 107. The battery pack 111 may be electrically connected to the suction motor, brush motor, lights and/or any other electrical components on the apparatus. If the surface cleaning apparatus is battery powered, the batteries may be located elsewhere.
Referring to
Referring to
In the exemplified embodiment, surface cleaning head 102 has a generally rectangular footprint when viewed from above. It will be appreciated that front, rear, and sides faces need not extend linearly and that surface cleaning head may be of various shapes.
As exemplified in
As exemplified in the cross-sectional view of
As exemplified, the bottom side of brush chamber 130 is at least partially open and forms the dirty air inlet 110 of surface cleaning apparatus 100. In the illustrated example the open bottom side of the brush chamber 130 is generally rectangular in shape, but alternatively could be configured in other shapes. As exemplified, the brush chamber 130 may extend from the bottom face 126 to the top face 128 of the surface cleaning head 102, so that an outer surface of the top wall 142 of the brush chamber 130 forms part of the top face 128 of the surface cleaning head 102, and the open, bottom side of the brush chamber 130 forms part of the bottom face 126 of the surface cleaning head 102.
As exemplified in
Optionally a post-motor filter may be provided upstream of the suction motor, such as at the clear air outlet 112, to filter air that has passed through the air treatment member and suction motor. The filter may be provided as a generally planar post-motor filter made from foam and/or felt that is positioned beneath the grill 150. Removing the grill 150 provides access to the post-motor filter for inspection and/or replacement. Optionally, instead of, or in addition to the felt filter, the post-motor filter may include one or more other filters or filtering media, including, for example, a HEPA filter, an electrostatic filter, a cyclonic post-motor filter or other suitable filter.
It will be appreciated that the forgoing is a general description of an all in the head vacuum cleaner. It will be appreciated that the actual size and shape of the surface cleaning head may depend upon which of the following aspects are included in the product design.
The following is a description of a cyclone bin assembly having various features, any or all of which may be used (individually or in any combination or sub-combination) in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.
Referring to
As exemplified, cyclone chamber 164 has a first cyclone end 168 with a first end wall 169, and a second cyclone end 170 with a second end wall 171. A generally cylindrical cyclone sidewall 173 extends between first end wall 169 and second end wall 171, spaced apart from each other by cyclone length 172 along a cyclone axis 174, about which air circulates. The cyclone chamber 164 also includes a cyclone air inlet 184, a cyclone air outlet 186, and a dirt outlet 188.
As exemplified in
Cyclone air inlet 184 may be provided at any desired location on cyclone chamber 164, and in the illustrated example is provided toward a bottom side of cyclone chamber 164, below a horizontal plane containing cyclone axis 174. In this configuration, a cyclone air inlet axis 198 (
In the illustrated example, inlet end 190 of cyclone air inlet 184 is integrally formed with cyclone bin assembly 160. In this configuration, inlet end 190 can be disconnected from air outlet 192 of brush chamber 130 and removed from the surface cleaning head with cyclone bin assembly 160.
As exemplified in
The dirt collection chamber may be of any suitable configuration. Preferably, as exemplified in
As exemplified, a majority of dirt collection chamber 166 is located forward of cyclone chamber 164 (in the direction of travel 106 of the surface cleaning head 102), between cyclone chamber 164 and brush chamber 130. In some configurations, the rear portions of cyclone sidewall 173 and dirt collection chamber sidewall 244 may be coincident, and the front portion of the cyclone sidewall 173 may be spaced apart from the front portion of the dirt collection chamber sidewall 244. Locating the cyclone chamber 164 toward the rear of cyclone bin assembly 160 may help align cyclone air outlet 186 with air inlet 246 (
In the illustrated example, dirt collection chamber 166 is located solely in front of cyclone chamber 164 and does not extend above or below the cyclone chamber 164. It will be appreciated that small portions of the dirt collection chamber may be positioned above or below the cyclone chamber without significantly deviating from the advantage of this feature. In this configuration, the overall height of cyclone bin assembly 160 (measured in a vertical direction when the cyclone bin assembly is mounted to the surface cleaning head) is generally equal to the outer diameter of cyclone chamber 164 (i.e. including the wall thicknesses), while the overall width of cyclone bin assembly 160 (measured in the front/back direction 106 when the cyclone bin assembly is mounted to the surface cleaning head) is greater than the cyclone diameter. Providing the dirt collection chamber 166 only in front of cyclone chamber 164 may help reduce the overall height of cyclone bin assembly 160 while still providing a dirt collection chamber 166 with a practical internal storage volume. Reducing the overall height of cyclone bin assembly 160 may help reduce the overall height 339 (
Alternatively, the cyclone bin assembly 160 may be configured so that the dirt collection chamber is located entirely behind the cyclone chamber (i.e. between the cyclone chamber and the rear face of the surface cleaning head), or is located partially in front of and partially behind the cyclone chamber and so that the dirt collection chamber extends partially or entirely above and/or below the cyclone chamber.
Cyclone chamber 164 may be in communication with a dirt collection chamber 166 by any suitable cyclone dirt outlet known in the art. Preferably the cyclone chamber includes at least one dirt outlet in communication with the dirt chamber that is external the cyclone chamber.
Optionally, to help facilitate emptying the dirt collection chamber, at least one of or both of the end walls may be openable. Similarly, one or both of the cyclone chamber end walls and may be openable to allow a user to empty debris from the cyclone chamber.
Referring to
Preferably, openable door 266 can be secured in its closed position until opened by a user. Door 266 may be held closed using any suitable latch or fastening mechanism, such as latch 268 (
Optionally, the opposing ends of the cyclone chamber 164 and dirt collection chamber 166 may also be openable. For example, the end walls 171 and 242 may both be provided as portions of a second openable door 267 (
In the illustrated example, portions of cyclone sidewall 173 coincide with portions of dirt chamber sidewall 244 and form portions of the outer, exposed surface of cyclone bin assembly 160. Further, when cyclone bin assembly 160 is attached to surface cleaning head 102, portions of the outer surface of cyclone bin assembly 160 provide portions of, and are substantially flush with the top face 128 of surface cleaning head 102.
The cyclone bin assembly 160 may be detachable from the rest of the apparatus as a generally sealed unit, but for the inlet end 190 and the outlet aperture 210. Providing a detachable cyclone bin assembly 160 allows a user to carry cyclone bin assembly 160 to a garbage can for emptying, without needing to carry or move the rest of surface cleaning apparatus 100. The cyclone bin assembly may be removable from when the portable cleaning unit 500 has been removed from the surface cleaning head and/or when the suction motor is still connected to the surface cleaning head.
It will be appreciated that some of the embodiments disclosed herein may not use any of the features of the cyclone bin assembly disclosed herein and that, in those embodiments, any air treatment member assembly known in the art may be used.
The following is a description of a portable cleaning unit having various features, any or all of which may be used (individually or in any combination or sub-combination) in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.
Optionally, a portion of the apparatus 100 can be detachable from the rest of the apparatus 100, and can be operable as a portable cleaning unit. For example, portions of the apparatus 100 may be separable from the surface cleaning head 102 and upper portion 104 and usable as a separate cleaning unit. This may allow a user to clean without having to move around the weight of the cleaning head 102 and upper portion 104. This may also allow a user to operate the apparatus 100 in an above floor cleaning configuration, where the removable cleaning unit may be used to clean above-floor areas, such as furniture and window coverings.
Optionally, the removable portions of the apparatus 100 may include the same suction motor and cyclone bin assembly that are utilized in the floor cleaning configuration. This may allow a common suction motor and cyclone bin assembly to be used in at least two cleaning configurations, and may help reduce the need to provide additional suction motors and air treatment members.
Referring to
Optionally, one or more auxiliary cleaning tools, wands, hoses and the like may be selectively connected to the portable cleaning unit 500, preferably when in the above floor cleaning configuration.
As exemplified in
For example, as exemplified in
Optionally, as exemplified, the pre-motor filter chamber 280 is opened when the cyclone bin assembly 160 is separated from the housing portion 504. For example, as shown in
The cyclone bin assembly 160 and/or a pre-motor filter housing may be releasably attached to the housing 504 or other portion of the portable cleaning unit 500 using any suitable mechanism, including releasable latches, locks, clips and the like. As exemplified in
Alternatively, instead of providing a support structure, the cyclone bin assembly 160 may be locked directly to the housing portion 504.
The following is a description of a mounting portion of the surface cleaning apparatus that may be used to removably receive and support the portable cleaning unit. The mounting portion may have various features, any or all of which may be used (individually or in any combination or sub-combination) in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.
To accommodate the portable cleaning unit 500, the surface cleaning head 102 may be provided with any suitable mounting portion. Preferably, the mounting portion is configured to at least partially receive the portable cleaning unit 500, and optionally may receive all or substantially all of the cleaning unit. This may help reduce the overall size of the cleaning head 102 while the portable cleaning unit 500 is attached.
Referring to
As exemplified, the cavity 161 is a generally open-topped, U-shaped recess that is provided in the upper surface 128 of the surface cleaning head 102. The cavity 161 may be configured to allow the portable cleaning unit 500 to be inserted and removed from the cavity 161 in a generally upwardly/downwardly motion, whether by lifting the portable cleaning unit 500 vertically or by pivoting the portable cleaning unit 500, such as on a cradle 360 as described herein.
As exemplified, the cavity 161 includes a front wall 522 and an opposing rear wall 524 (
When the portable cleaning unit 500 is mounted to the surface cleaning head 102 in a floor cleaning position, the portable cleaning unit 500 preferably does not extend beyond upper surface 128 and/or side faces 124 of the surface cleaning head 102. This can help reduce the overall size of the surface cleaning head 102 in the floor cleaning position.
Optionally, portable cleaning unit 500 may be configured to partially surround and/or nest with other portions of the surface cleaning head 102 when in the floor cleaning position. This may help reduce the overall size of the surface cleaning head 102. For example, in the present embodiment the portable cleaning unit 500 partially nests with the brush motor 214, and its respective housing, as shown in
The following is a description of an optional feature of the teachings disclosed herein, in which the portable cleaning may can be moved from a floor cleaning position to a removal position, in which the portable cleaning unit is no longer in air flow communication with the surface cleaning head but remains physically supported by the surface cleaning head. The removal position may be any suitable position and may have various features, any or all of which may be used (individually or in any combination or sub-combination) in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein. Alternatively, a surface cleaning apparatus may be configured having some of the advantages and features described herein (such as a removable portable cleaning unit) but need not be configured to provide a removal position. Instead, the portable cleaning unit may be moved directly from the floor cleaning position to an above floor cleaning position without being temporarily held in a removal position (e.g., the portable cleaning unit may be merely lifted out of the surface cleaning head by a user).
As mentioned herein, preferably the portable cleaning unit 500 is removable from the cavity 161 on the surface cleaning head 102. Preferably, to help facilitate removal of the cyclone bin assembly 160, the cyclone bin assembly 160 may be movable from a use or floor cleaning position (for example
For example, when the in the floor cleaning position, the upstream end 190 of the cyclone air inlet 184 may be in air flow communication with the air outlet 192 of the brush chamber 130. In this configuration, the surface cleaning apparatus 100 is useable to clean the floor. In contrast, when the portable cleaning unit 500 is moved to the removal position, air flow communication between the cyclone bin assembly 160 and the brush chamber 130 is interrupted.
Preferably, when in the removal position, the portable cleaning unit 500 may continue to be at least partially, and preferably entirely, supported by the surface cleaning head 102. This may allow a user to move the portable cleaning unit 500 into the removal position without having to lift or remove the portable cleaning unit 500 or support its weight.
In accordance with one feature, the portable cleaning unit 500 may be moved relative to the surface cleaning apparatus when transitioning from the floor cleaning position to the removal position. For example, the portable cleaning unit 500 may translate, pivot, rotate or otherwise move relative to other portions of the surface cleaning apparatus (such as the surface cleaning head 102) when transitioning from the floor cleaning position to the removal position. Moving the portable cleaning unit 500 and/or changing its orientation when transitioning from the floor cleaning position to the removal position may help position the portable cleaning unit 500 and/or cyclone bin assembly 160 in a position that is relatively easier to access for a user. For example, when the portable cleaning unit 500 is in the floor cleaning position it may be substantially or fully nested within the cavity 161 on the surface cleaning head 102 and may be disposed relatively close to the ground. It may be inconvenient or uncomfortable for a user to reach all the way down to the surface cleaning head 102 to grasp the portable cleaning unit 500.
In accordance with another feature, the surface cleaning apparatus 100 may be configured so that when the portable cleaning unit 500 is transitioned to the removal position it is arranged in a position that is more convenient for a user to reach it, including, for example, by moving some or all portions of the portable cleaning unit 500 to higher elevations and/or by exposing features (such as handles) that are exposed for access by a user in the removal position and are less exposed, or inaccessible, when in the floor cleaning position.
In accordance with another feature, the portable cleaning unit 500 may be biased toward or into one or both of the floor cleaning position and the removal position. Preferably, the portable cleaning unit 500 is at least biased toward the removal position. Accordingly, when a lock that secures the portable cleaning unit 500 in the use position is released, the portable cleaning unit 500 may be moved sufficiently out of the cavity 161 to assist a user to pick up and remove the portable cleaning unit 500 from the surface cleaning head.
To help facilitate access and removal of the portable cleaning unit 500, in the illustrated example the portable cleaning unit 500 can be rotated, relative to the surface cleaning head 102, into in the removal position (
As exemplified in
As exemplified in
The end wall 364 maybe configured to receive the laterally outer end of the portable cleaning unit 500 in a relatively snug engagement. As exemplified, the end wall 364 may include an upstanding rim 368 (
When the portable cleaning unit 500 is in the floor cleaning position, the cradle 360 is rotated so that the end wall 364 is generally horizontal and is disposed vertically between the housing portion 504 and a bottom surface of the cavity 161. In this configuration the end wall 364 of the cradle 360 is generally vertical. When the portable cleaning unit 500 is in the floor cleaning position, an upper portion 378 (
In the illustrated example, rotation of the cradle 360 about its axis 362 causes a corresponding rotation of the portable cleaning unit 500 from the generally horizontal floor cleaning position to a generally upright removal position. Referring to
Optionally, the cradle may be freely moveable between the cleaning and removal positions, or alternatively it may be biased. For example, in the illustrated example, a torsion spring 380 (
As exemplified in, the cradle 360 may be only biased toward the removal position. To return the portable cleaning unit 500 to the floor cleaning position a user may reseat the laterally outer end of the portable cleaning unit 500 onto the end wall 364 of the cradle 360, and then pivot the portable cleaning unit 500 into the cavity 161.
In accordance with another feature, the portable cleaning unit 500 may be securable in one or both of the cleaning and removal positions using a lock. The lock may be any suitable apparatus, and optionally may be configured to lock the portable cleaning unit 500 in the floor cleaning position until the lock is released. Preferably, the lock may be automatically re-engaged when the portable cleaning unit 500 is moved into the floor cleaning position so that the portable cleaning unit 500 will be held in place without requiring a user to manually re-latch or reengage the lock. The lock may be configured to engage one or both of the cradle and the portable cleaning unit 500, or any other suitable component of the surface cleaning apparatus.
For example, a latch on the surface cleaning head 102 may be configured to engage a corresponding latch member provided on the outer surface of the portable cleaning unit 500. When the portable cleaning unit 500 is placed in the cavity 161, the latch portions may interlock with each other, thereby securing the portable cleaning unit 500. To release the portable cleaning unit 500, an actuator, such as the foot pedal 388 (
The following is a description of an optional feature of the teachings disclosed herein, in which the portable cleaning unit includes a carry handle. The carry handle may be of any suitable configuration and may have various features, any or all of which may be used (individually or in any combination or sub-combination) in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein. In some embodiments, the carry handle may be at least partially nested within the surface cleaning head, or otherwise inaccessible, when the portable cleaning unit is in the floor cleaning position, and may be moved to a second position where the carry handle is more exposed for grasping by a user when the portable cleaning unit is not in the floor cleaning position.
Optionally, the portable cleaning unit 500 may include a carry handle that can be used to maneuver the portable cleaning unit 500 when it is detached from the surface cleaning head 102. The carry handle may be provided on any suitable portion of the portable cleaning unit 500, including, for example, on the cyclone bin assembly 160, and may be of any configuration. Providing the carry handle on the cyclone bin assembly 160 may allow the carry handle to be used to maneuver the entire portable cleaning unit 500 when the cyclone bin assembly 160 is connected to the housing 504, and to maneuver only the cyclone bin assembly 160 when it is separated from the housing 504. As exemplified in
In accordance with one feature, the portable cleaning unit carry handle, such as handle 510, may be recessed within the surface cleaning head 102 when the portable cleaning unit is in the floor cleaning position (
Optionally, the portable cleaning unit 500 may be configured so that the portable cleaning unit 500, including the handle 510, extends across most or all of the entire width 338 (
In accordance with another feature, the handle 510 may be configured to be positioned at an upper portion of the cyclone bin assembly when the cyclone bin assembly is in the removal position and (as exemplified in
It will be appreciated that some of the embodiments disclosed herein may not use all or any of the features of the dirt collection chamber disclosed herein and that, in those embodiments, any dirt collection chamber known in the art may be used.
The following is a description of an electrical cord that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.
In accordance with one aspect, power may be supplied to the surface cleaning apparatus using the electrical cord. In the illustrated examples, AC power is supplied to the surface cleaning apparatus using an electrical cord that may be connected to a wall socket. The cord may be connected to the apparatus at any suitable location, including, for example on the surface cleaning head itself, or on the upper portion 104. If connected to the upper section, the cord attachment point may be toward an upper end of the upper section (e.g., generally adjacent the hand grip portion 105), and one or more electrical conductors may extend from the cord attachment point to the surface cleaning head. The electrical conductors may be external and/or internal the upper section. Optionally, the electrical conductors may be adjustable, and preferably may be extensible and/or resilient (e.g. a coiled electrical cord) so that the electrical conductors may accommodate changes in length of the upper portion (e.g., if the upper portion is a telescoping handle) without requiring decoupling or reconfiguration, and without interrupting electrical supply to the surface cleaning head.
In accordance with one feature, the electrical cord may be connected to an upper portion of the drive handle 107, such as the upper end of the upper section, e.g., on or adjacent and slightly beneath the hand grip 105. Connecting the electrical cord on an upper portion of the drive handle, such as adjacent the hand grip may help reduce the likelihood that the cord will interfere with the movement of the surface cleaning head. This positioning may also help make it convenient for a user to hold a portion of the cord with his/her free hand (i.e. the hand that is not holding the hand grip 105) and to manipulate the cord to help prevent entanglement or other impediments to the vacuuming process. Spacing the electrical cord attachment point away from the surface cleaning head may also help reduce the need to move the electrical cord when the surface cleaning head is in close proximity to and/or is beneath furniture or other objects. This may help reduce the chances of the electrical cord becoming tangled or snagged while the surface cleaning apparatus is in use.
In accordance with another feature, the electrical cord may be detachably connected to the surface cleaning apparatus. This may allow the cord to be detached for storage, or for an alternative or replacement cord to be connected to the apparatus. This may also allow the cord to be detached when not needed, such as if the surface cleaning apparatus is being powered by an alternative power source.
Alternatively, as in the example illustrated in
Optionally, a power cord 502 may be detachably connected to the upper portion of drive shaft 107, shown using dashed lines in
It will be appreciated that some of the embodiments disclosed herein may not use any of the features of the electrical cord disclosed herein and that, in those embodiments, the electrical cord may be of various constructions or a detachable electrical cord may not be used.
The following is a description of a cordless operating mode that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.
Optionally, the surface cleaning apparatus may include one or more portable energy storage devices, such as one or more batteries. The onboard battery may be a DC power source. Providing an onboard portable energy storage device may allow the surface cleaning apparatus to be operated in a cordless mode, in which the surface cleaning apparatus may be powered by the onboard energy storage device and need not be plugged into a wall socket.
Optionally, when operated on DC battery power, as opposed to external AC power, the rotating brush motor and/or the suction motor may operate at a reduced rate or may be otherwise configured to reduce power consumption (e.g., the motor may have dual windings to be operable on both AC and DC power). If required, a converter module may be provided to convert the external power supply (e.g. AC) into a format (e.g., DC) that is compatible with the motor, configured to re-charge the batteries, or is otherwise preferred over the native incoming format.
The battery may be any suitable type of battery, including a rechargeable battery. Optionally, when the surface cleaning apparatus is electrically connected to an AC power source (e.g., a wall socket), power from the AC source may be used to re-charge the battery, to directly power/drive the suction motor and/or rotating brush motor, or to simultaneously run the suction motor and/or brush motor and re-charge the battery. In this configuration, when the surface cleaning apparatus is operated while coupled to an AC power source, the battery in the cleaning head may be charged and the suction motor and brush motor may be driven by AC power and/or a combination of AC and battery power. Then, when the surface cleaning apparatus is electrically decoupled from the AC power source, the surface cleaning apparatus can be operated on battery power alone.
Alternatively, or in addition to positioning a battery in the surface cleaning head, one or more batteries may be provided within the upper portion and electrically connected to the suction motor and/or other components in the surface cleaning head. Providing at least some batteries in the upper portion may provide extra space to accommodate the batteries, as compared to the space limitations within the surface cleaning head. Positioning batteries in the upper portion may also alter the weight distribution of the surface cleaning apparatus, which may alter the “feel” of the apparatus in a user's hand. In embodiments where the electrical cord is connected to the upper portion, providing batteries within the upper portion may help facilitate the use of a convenient electrical connection between the incoming power from the electrical cord and the batteries and/or charging equipment. This may help reduce the need to run multiple electrical conductors between the upper portion and the surface cleaning head.
It will be appreciated that some of the embodiments disclosed herein may not use any of the features of the cordless mode disclosed herein and that, in those embodiments, the cordless mode may be of other designs or a cordless mode may not be used.
As exemplified, the apparatus 100 may include a battery pack 111 on the upper portion 104 that may provide power when in the floor cleaning configuration. Alternately or in addition, a secondary battery pack 111 may optionally be provided in the portable cleaning unit 500, such as within the support structure 516 (see
In one embodiment, an on board power source may be provided as part of portable cleaning unit 500 and the power cord 502 may be provided at any location on surface cleaning apparatus 100, such as upper portion 104. In the floor cleaning configuration, the surface cleaning apparatus may be operated on power provided by the power cord 502. In the above floor cleaning configuration, the portable cleaning unit may be powered by the on board power source (e.g., the batteries). The on board power source may be recharged when the portable cleaning unit is mounted to the surface cleaning head. Optionally, the power cord 502 may be used to operate the portable cleaning unit 500 when in the above floor cleaning configuration. For example, if the power cord 502 is detachable, the portable cleaning unit may be operated without the power cord attached when in the above floor cleaning configuration. If the on board power source are exhausted when the user still desires to perform above floor cleaning, the power cord 502 may be attached to the portable cleaning unit 500 and the user may continue to perform above floor cleaning.
What has been described above has been intended to be illustrative of the invention and non-limiting and it will be understood by persons skilled in the art that other variants and modifications may be made without departing from the scope of the invention as defined in the claims appended hereto. The scope of the claims should not be limited by the preferred embodiments and examples, but should be given the broadest interpretation consistent with the description as a whole.
This application is a continuation of U.S. patent application Ser. No. 16/407,339, filed on May 9, 2019, now allowed, which is a continuation of U.S. patent application Ser. No. 15/254,072, filed on Sep. 1, 2016 and issued as U.S. Pat. No. 10,357,136 on Jul. 23, 2019, which itself is a continuation-in-part of co-pending U.S. patent application Ser. No. 14/829,331, which was filed on Aug. 18, 2015 and issued as U.S. Pat. No. 10,022,027 on Jul. 17, 2018, which is a continuation-in-part of co-pending U.S. patent application Ser. No. 14/573,549, which was filed on Dec. 17, 2014 and issued as U.S. Pat. No. 9,717,383 on Aug. 1, 2017, which are incorporated herein in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16407339 | May 2019 | US |
Child | 17504147 | US | |
Parent | 15254072 | Sep 2016 | US |
Child | 16407339 | US | |
Parent | 14573549 | Dec 2014 | US |
Child | 14829331 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14829331 | Aug 2015 | US |
Child | 15254072 | US |