The present invention relates to electronic adjustable phase shifters and more particularly to an all-pass wideband phase shifter.
Electronic adjustable phase shifters are widely used in phase control array antennas, radars, and phase modulation communication systems.
In addition to the aforesaid existing designs, to further bring the phase shifter wideband performance into full play, a reflective load phase shifter 400 shown in
Nonetheless, the switch microstrip line length phase shifter 100 shown in
Every conventional phase shifter is subjected to limits on available bandwidth. The objective of the present invention is to not only provide an all-pass wideband phase shifter but also attain the advantages of operating an 360-degree all-pass phase shifter by techniques related to phase shift and vector synthesis, with a view to effectuating performance enhancement in terms of the application of mobile communication technology.
The objective and technical solution of the present invention are achieved as described below. The present invention provides an all-pass wideband phase shifter which comprises a first 3 dB hybrid coupler, a second 3 dB hybrid coupler, a first attenuator, a second attenuator, a first continuous phase shifter and a second continuous phase shifter. The first 3 dB hybrid coupler has a signal input end, a first grounding resistor, a first series-connection starting end and a second series-connection starting end to allow a first distribution signal to be sent from the first series-connection starting end at the first series-connection path and allow a second distribution signal to be sent from the second series-connection starting end at the second series-connection path. The second 3 dB hybrid coupler has a signal output end, a second grounding resistor, a first series-connection terminating end and a second series-connection terminating end, so as to vector synthesize the first distribution signal and the second distribution signal. The first attenuator is disposed in the first series-connection path which connects the first series-connection starting end and the first series-connection terminating end, so as to attenuate and intercept the first distribution signal. The second attenuator is disposed in the second series-connection path which connects the second series-connection starting end and the second series-connection terminating end, so as to attenuate and intercept the second distribution signal. The first continuous phase shifter is disposed in the first series-connection path which connects the first series-connection starting end and the first series-connection terminating end, so as to continuously and discontinuously adjust the phases of the first distribution signal. The second continuous phase shifter is disposed in the second series-connection path which connects the second series-connection starting end and the second series-connection terminating end, so as to continuously and discontinuously adjust the phases of the second distribution signal. An all-pass phase shift is formed by IQ phase synthesis and continuous phase shift according to the four quadrant model.
The objective and technical solution of the present invention are achieved as described below.
In the aforesaid all-pass wideband phase shifter, the first continuous phase shifter and the second continuous phase shifter each have a 0˜90 degrees of continuously adjustable angle.
In the aforesaid all-pass wideband phase shifter, especially in first quadrant-based continuous phase shift mode, the first attenuator intercepts the first distribution signal, whereas the second continuous phase shifter adjusts 0˜90 degrees of phase of the second distribution signal; in the third quadrant-based continuous phase shift mode, the second attenuator intercepts the second distribution signal, whereas the first continuous phase shifter adjusts 0˜90 degrees of phases of the first distribution signal, wherein, in the second quadrant-based continuous phase shift mode, the first continuous phase shifter fixes the phase of the first distribution signal to the 90 degree so as for the first distribution signal to be attenuated and adjusted with the first attenuator, whereas the second continuous phase shifter fixes the phase of the second distribution signal to the 0 degree so as for the second distribution signal to be attenuated and adjusted with the second attenuator, thereby being vector synthesized in the second 3 dB hybrid coupler, wherein, in the fourth quadrant-based continuous phase shift mode, the first continuous phase shifter fixes the phase of the first distribution signal to the 0 degree so as for the first distribution signal to be attenuated and adjusted with the first attenuator, whereas the second continuous phase shifter fixes the phase of the second distribution signal to the 90 degree so as for the second distribution signal to be attenuated and adjusted with the second attenuator, thereby being vector synthesized in the second 3 dB hybrid coupler.
Given the above technical solution, the present invention effectuates a wideband phase shifter. The all-pass wideband phase shifter of the present invention attains 0/180-degree wideband phase shift with two 3 dB hybrid couplers, effectuates between two couplers series connections in parallel which include combining two 90-degree phase shifters and two attenuators, and enables a 360-degree all-pass phase shifter to operate under the control of continuous 90-degree phase shifters and attenuators. Hence, the resultant novel phase shifter framework is capable of IQ phase synthesis and functioning as a 0˜90-degree continuous phase shifter to thereby effectuate the operation of the all-pass wideband phase shifter.
The embodiments of the present invention are hereunder described with reference to the accompany drawing. Although the accompanying drawings are schematic diagrams illustrative of the framework and implementation of the present invention and thus only components and combinations thereof related to the present invention are shown, the diagrams are not drawn to scale in terms of the quantity, shape and dimensions of the components; instead, the dimensions of the components shown in the diagram may be exaggerated and diminished as needed for illustrative sake. Hence, the actual quantity, shape and dimensions of the components shown in the diagrams are attributed to design choices, and related layouts of component can be more complicated than they are shown in the diagrams.
According to a preferred embodiment of the present invention, an all-pass wideband phase shifter 600 is illustrated with
The first 3 dB hybrid coupler 610 has a signal input end 611, a first grounding resistor 612, a first series-connection starting end 613 and a second series-connection starting end 614. A first distribution signal P1 is sent from the first series-connection starting end 613 which a first series-connection path 601 starts with. A second distribution signal P2 is sent from the second series-connection starting end 614 which a second series-connection path 602 ends at. The second 3 dB hybrid coupler 620 has a signal output end 621, a second grounding resistor 622, a first series-connection terminating end 623 and a second series-connection terminating end 624 so as to vector synthesize the first distribution signal P1 and the second distribution signal P2. An output signal Pout sent from the second 3 dB hybrid coupler 620 through the signal output end 621 is commensurate with the phase change of the first distribution signal P1 in different quadrants, the phase change of the second distribution signal P2, and is vector synthesized after being attenuated at a fixed phase of the first distribution signal P1 and the second distribution signal P2 as shown in
The first attenuator 631 is disposed in the first series-connection path 601 which connects the first series-connection starting end 613 and the first series-connection terminating end 623, so as to attenuate and intercept the first distribution signal P1. The second attenuator 632 is disposed in the second series-connection path 602 which connects the second series-connection starting end 614 and the second series-connection terminating end 624, so as to attenuate and intercept the second distribution signal P2.
The first continuous phase shifter 641 is disposed in the first series-connection path 601 which connects the first series-connection starting end 613 and the first series-connection terminating end 623 so as to continuously and discontinuously adjust the phase of the first distribution signal P1. The second continuous phase shifter 642 is connected in the second series-connection path 602 which connects the second series-connection starting end 614 and the second series-connection terminating end 624 so as to continuously and discontinuously adjust the phase of the second distribution signal P2. The first continuous phase shifter 641 and the second continuous phase shifter 642 each have a 0˜90 degree of continuously adjustable angle, i.e., phase angle φ, which can be changed and adjusted within the 0˜90° range as shown in
An all-pass phase shift is formed by IQ phase synthesis and continuous phase shift according to the four quadrant model.
Referring to
Referring to
Referring to
The present invention provides an all-pass wideband phase shifter which is capable of phase shift and vector synthesis to thereby function as a 360-degree all-pass phase shifter, thereby effectuating performance enhancement in terms of the application of mobile communication technology.
The present invention is disclosed above by preferred embodiments. However, the preferred embodiments should not be interpreted as restrictive of the scope of the present invention. Hence, all equivalent changes made to the claims of the present invention should fall within the scope of the present invention.