ALPHA (1,2) FUCOSYLTRANSFERASE SYNGENES FOR USE IN THE PRODUCTION OF FUCOSYLATED OLIGOSACCHARIDES

Abstract
The invention provides compositions and methods for engineering E. coli or other host production bacterial strains to produce fucosylated oligosaccharides, and the use thereof in the prevention or treatment of infection.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted via EFS-Web. The content of the text file named “37847-517001US_ST25.txt”, which was created on Oct. 20, 2017 and is 791 KB in size, is hereby incorporated by reference in its entirety.


FIELD OF THE INVENTION

The invention provides compositions and methods for producing purified oligosaccharides, in particular certain fucosylated oligosaccharides that are typically found in human milk.


BACKGROUND OF THE INVENTION

Human milk contains a diverse and abundant set of neutral and acidic oligosaccharides. More than 130 different complex oligosaccharides have been identified in human milk, and their structural diversity and abundance is unique to humans. Although these molecules may not be utilized directly by infants for nutrition, they nevertheless serve critical roles in the establishment of a healthy gut microbiome, in the prevention of disease, and in immune function. Prior to the invention described herein, the ability to produce human milk oligosaccharides (HMOS) inexpensively was problematic. For example, their production through chemical synthesis was limited by stereo-specificity issues, precursor availability, product impurities, and high overall cost. As such, there is a pressing need for new strategies to inexpensively manufacture large quantities of HMOS.


SUMMARY OF THE INVENTION

The invention features an efficient and economical method for producing fucosylated oligosaccharides. Such production of a fucosylated oligosaccharide is accomplished using an isolated nucleic acid comprising a sequence encoding a lactose-utilizing α (1,2) fucosyltransferase gene product (e.g., polypeptide or protein), which is operably linked to one or more heterologous control sequences that direct the production of the recombinant fucosyltransferase gene product in a host production bacterium such as Escherichia coli (E. coli).


The present disclosure provides novel α (1,2) fucosyltransferases (also referred to herein as α(1,2) FTs) that utilize lactose and catalyzes the transfer of an L-fucose sugar from a GDP-fucose donor substrate to an acceptor substrate in an alpha-1,2-linkage. In a preferred embodiment, the acceptor substrate is an oligosaccharide. The α(1,2) fucosyltransferases identified and described herein are useful for expressing in host bacterium for the production of human milk oligosaccharides (HMOS), such as fucosylated oligosaccharides. Exemplary fucosylated oligosaccharides produced by the methods described herein include 2′-fucosyllactose (2′FL), lactodifucotetraose (LDFT), lacto-N-fucopentaose I (LNF I), or lacto-N-difucohexaose I (LDFH I). The “α(1,2) fucosyltransferases” disclosed herein encompasses the amino acid sequences of the α(1,2) fucosyltransferases and the nucleic acid sequences that encode the α(1,2) fucosyltransferases, as well as variants and fragments thereof that exhibit α(1,2) fucosyltransferase activity. Also within the invention is a nucleic acid construct comprising an isolated nucleic acid encoding a lactose-accepting α (1,2) fucosyltransferase enzyme, said nucleic acid being optionally operably linked to one or more heterologous control sequences that direct the production of the enzyme in a host bacteria production strain.


The amino acid sequence of the lactose-accepting α(1,2) fucosyltransferases described herein is at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identity to Helicobacter pylori 26695 alpha-(1,2) fucosyltransferase (futC or SEQ ID NO: 1). Preferably, the lactose-accepting α(1,2) fucosyltransferases described herein is at least 22% identical to H. pylori FutC, or SEQ ID NO: 1.


In another aspect, the amino acid sequence of the lactose-accepting α(1,2) fucosyltransferases described herein is at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identity to Bacteroides vulgatus alpha-(1,2) fucosyltransferase (FutN or SEQ ID NO: 3). Preferably, the lactose-accepting α(1,2) fucosyltransferases described herein is at least 25% identical to B. vlugatos FutN, or SEQ ID NO: 3.


Alternatively, the exogenous α (1,2) fucosyltransferase preferably comprises at least at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identity to any one of the novel α (1,2) fucosyltransferases disclosed herein, for example, to the amino acid sequences in Table 1.


Exemplary α(1,2) fucosyltransferases include, but are not limited to, Prevotella melaninogenica FutO, Clostridium bolteae FutP, Clostridium bolteae+13 FutP, Lachnospiraceae sp. FutQ, Methanosphaerula palustris FutR, Tannerella sp. FutS, Bacteroides caccae FutU, Butyrivibrio FutV, Prevotella sp. FutW, Parabacteroides johnsonii FutX, Akkermansia muciniphilia FutY, Salmonella enterica FutZ, Bacteroides sp. FutZA. For example, the α(1,2) fucosyltransferases comprise the amino acid sequences comprising any one of the following: Prevotella melaninogenica FutO (SEQ ID NO: 10), Clostridium bolteae FutP (SEQ ID NO: 11), Clostridium bolteae+13 FutP (SEQ ID NO: 292), Lachnospiraceae sp. FutQ (SEQ ID NO: 12), Methanosphaerula palustris FutR (SEQ ID NO: 13), Tannerella sp. FutS (SEQ ID NO: 14), Bacteroides caccae FutU (SEQ ID NO: 15), Butyrivibrio FutV (SEQ ID NO: 16), Prevotella sp. FutW (SEQ ID NO: 17), Parabacteroides johnsonii FutX (SEQ ID NO: 18), Akkermansia muciniphilia FutY (SEQ ID NO: 19), Salmonella enterica FutZ (SEQ ID NO: 20), and Bacteroides sp. FutZA (SEQ ID NO: 21), or a functional variant or fragment thereof. Other exemplary α(1,2) fucosyltransferases include any of the enzymes listed in Table 1, or functional variants or fragments thereof.


The present invention features a method for producing a fucosylated oligosaccharide in a bacterium by providing bacterium that express at least one exogenous lactose-utilizing α(1,2) fucosyltransferase. The amino acid sequence of the exogenous lactose-utilizing α(1,2) fucosyltransferase is preferably at least 22% identical to H. pylori FutC or at least 25% identical to B. vulgatus FutN. In one aspect, the bacterium also expresses one or more exogenous lactose-utilizing α(1,3) fucosyltransferase enzymes and/or one or more exogenous lactose-utilizing α(1,4) fucosyltransferase enzymes. The combination of fucosyltransferases expressed in the production bacterium is dependent upon the desired fucosylated oligosaccharide product. The method disclosed herein further includes retrieving the fucosylated oligosaccharide from said bacterium or from a culture supernatant of said bacterium.


Examples of suitable a(1,3) fucosyltransferase enzymes include, but are not limited to Helicobacter pylori 26695 futA gene (GenBank Accession Number HV532291 (GI:365791177), incorporated herein by reference), H. hepaticus Hh0072, H. pylori 11639 FucT, and H. pylori UA948 FucTa (e.g., GenBank Accession Number AF194963 (GI:28436396), incorporated herein by reference)(Rasko, D. A., Wang, G., Palcic, M. M. & Taylor, D. E. J Biol Chem 275, 4988-4994 (2000)). Examples of suitable a(1,4) fucosyltransferase enzymes include, but are not limited to H. pylori UA948 FucTa (which has has relaxed acceptor specificity and is able to generate both a(1,3)- and a(1,4)-fucosyl linkages). An example of an enzyme possessing only a(1,4) fucosyltransferase activity is given by the FucT III enzyme from Helicobacter pylori strain DMS6709 (e.g., GenBank Accession Number AY450598.1 (GI:40646733), incorporated herein by reference) (S. Rabbani, V. Miksa, B. Wipf, B. Ernst, Glycobiology 15, 1076-83 (2005).)


The invention also features a nucleic acid construct or a vector comprising a nucleic acid enconding at least one a (1,2) fucosyltransferase or variant, or fragment thereof, as described herein. The vector can further include one or more regulatory elements, e.g., a heterologous promoter. By “heterologous” is meant that the control sequence and protein-encoding sequence originate from different bacterial strains. The regulatory elements can be operably linked to a gene encoding a protein, a gene construct encoding a fusion protein gene, or a series of genes linked in an operon in order to express the fusion protein. In yet another aspect, the invention comprises an isolated recombinant cell, e.g., a bacterial cell containing an aforementioned nucleic acid molecule or vector. The nucleic acid is optionally integrated into the genome of the host bacterium. In some embodiments, the nucleic acid construct also further comprises one or more a(1,3) fucosyltransferases and/or a(1,4) fucosyltransferases. Alternatively, the α (1,2) fucosyltransferase also exhibits a(1,3) fucosyltransferase and/or a(1,4) fucosyltransferase activity.


The bacterium utilized in the production methods described herein is genetically engineered to increase the efficiency and yield of fucosylated oligosaccharide products. For example, the host production bacterium is characterized as having a reduced level of (3-galactosidase activity, a defective colanic acid synthesis pathway, an inactivated ATP-dependent intracellular protease, an inactivated lacA, or a combination thereof. In one embodiment, the bacterium is characterized as having a reduced level of β-galactosidase activity, a defective colanic acid synthesis pathway, an inactivated ATP-dependent intracellular protease, and an inactivated lacA.


As used herein, an “inactivated” or “inactivation of a” gene, encoded gene product (i.e., polypeptide), or pathway refers to reducing or eliminating the expression (i.e., transcription or translation), protein level (i.e., translation, rate of degradation), or enzymatic activity of the gene, gene product, or pathway. In the instance where a pathway is inactivated, preferably one enzyme or polypeptide in the pathway exhibits reduced or negligible activity. For example, the enzyme in the pathway is altered, deleted or mutated such that the product of the pathway is produced at low levels compared to a wild-type bacterium or an intact pathway. Alternatively, the product of the pathway is not produced. Inactivation of a gene is achieved by deletion or mutation of the gene or regulatory elements of the gene such that the gene is no longer transcribed or translated. Inactivation of a polypeptide can be achieved by deletion or mutation of the gene that encodes the gene product or mutation of the polypeptide to disrupt its activity. Inactivating mutations include additions, deletions or substitutions of one or more nucleotides or amino acids of a nucleic acid or amino acid sequence that results in the reduction or elimination of the expression or activity of the gene or polypeptide. In other embodiments, inactivation of a polypeptide is achieved through the addition of exogenous sequences (i.e., tags) to the N or C-terminus of the polypeptide such that the activity of the polypeptide is reduced or eliminated (i.e., by steric hindrance).


A host bacterium suitable for the production systems described herein exhibits an enhanced or increased cytoplasmic or intracellular pool of lactose and/or GDP-fucose. For example, the bacterium is E. coli and endogenous E. coli metabolic pathways and genes are manipulated in ways that result in the generation of increased cytoplasmic concentrations of lactose and/or GDP-fucose, as compared to levels found in wild type E. coli. Preferably, the bacterium accumulates an increased intracellular lactose pool and an increased intracellular GDP-fucose pool. For example, the bacteria contain at least 10%, 20%, 50%, or 2×, 5×, 10× or more of the levels of intracellular lactose and/or intracellular GDP-fucose compared to a corresponding wild type bacteria that lacks the genetic modifications described herein.


Increased intracellular concentration of lactose in the host bacterium compared to wild-type bacterium is achieved by manipulation of genes and pathways involved in lactose import, export and catabolism. In particular, described herein are methods of increasing intracellular lactose levels in E. coli genetically engineered to produce a human milk oligosaccharide by simultaneous deletion of the endogenous β-galactosidase gene (lacZ) and the lactose operon repressor gene (lad). During construction of this deletion, the lacIq promoter is placed immediately upstream of (contiguous with) the lactose permease gene, lacY, i.e., the sequence of the lacIq promoter is directly upstream and adjacent to the start of the sequence encoding the lacY gene, such that the lacY gene is under transcriptional regulation by the lacIq promoter. The modified strain maintains its ability to transport lactose from the culture medium (via LacY), but is deleted for the wild-type chromosomal copy of the lacZ (encoding β-galactosidase) gene responsible for lactose catabolism. Thus, an intracellular lactose pool is created when the modified strain is cultured in the presence of exogenous lactose.


Another method for increasing the intracellular concentration of lactose in E. coli involves inactivation of the lacA gene. A inactivating mutation, null mutation, or deletion of lacA prevents the formation of intracellular acetyl-lactose, which not only removes this molecule as a contaminant from subsequent purifications, but also eliminates E. coli's ability to export excess lactose from its cytoplasm (Danchin A. Cells need safety valves. Bioessays 2009, July;31(7):769-73.), thus greatly facilitating purposeful manipulations of the E. coli intracellular lactose pool.


The invention also provides methods for increasing intracellular levels of GDP-fucose in a bacterium by manipulating the organism's endogenous colanic acid biosynthesis pathway. This increase is achieved through a number of genetic modifications of endogenous E. coli genes involved either directly in colanic acid precursor biosynthesis, or in overall control of the colanic acid synthetic regulon. Particularly preferred is inactivation of the genes or encoded polypeptides that act in the colanic acid synthesis pathway after the production of GDP-fucose (the donor substrate) and before the generation of colanic acid. Exemplary colanic acid synthesis genes include, but are not limited to: a wcaJ gene, (e.g., GenBank Accession Number (amino acid) BAA15900 (GI:1736749), incorporated herein by reference), a wcaA gene (e.g., GenBank Accession Number (amino acid) BAA15912.1 (GI:1736762), incorporated herein by reference), a wcaC gene (e.g., GenBank Accession Number (amino acid) BAE76574.1 (GI:85675203), incorporated herein by reference), a wcaE gene (e.g., GenBank Accession Number (amino acid) BAE76572.1 (GI:85675201), incorporated herein by reference), a weal gene (e.g., GenBank Accession Number (amino acid) BAA15906.1 (GI:1736756), incorporated herein by reference), a wcaL gene (e.g., GenBank Accession Number (amino acid) BAA15898.1 (GI:1736747), incorporated herein by reference), a wcaB gene (e.g., GenBank Accession Number (amino acid) BAA15911.1 (GI:1736761), incorporated herein by reference), a wcaF gene (e.g., GenBank Accession Number (amino acid) BAA15910.1 (GI:1736760), incorporated herein by reference), a wzxE gene (e.g., GenBank Accession Number (amino acid) BAE77506.1 (GI:85676256), incorporated herein by reference), a wzxC gene, (e.g., GenBank Accession Number (amino acid) BAA15899 (GI:1736748), incorporated herein by reference), a wcaD gene, (e.g., GenBank Accession Number (amino acid) BAE76573 (GI:85675202), incorporated herein by reference), a wza gene (e.g., GenBank Accession Number (amino acid) BAE76576 (GI:85675205), incorporated herein by reference), a wzb gene (e.g., GenBank Accession Number (amino acid) BAE76575 (GI:85675204), incorporated herein by reference), and a wzc gene (e.g., GenBank Accession Number (amino acid) BAA15913 (GI:1736763), incorporated herein by reference).


Preferably, a host bacterium, such as E. coli, is genetically engineered to produce a human milk oligosaccharide by the inactivation of the wcaJ gene, which encoding the UDP-glucose lipid carrier transferase. The inactivation of the wcaJ gene can be by deletion of the gene, a null mutation, or inactivating mutation of the wcaJ gene, such that the activity of the encoded wcaJ is reduced or eliminated compared to wild-type E. coli. In a wcaJ null background, GDP-fucose accumulates in the E. coli cytoplasm.


Over-expression of a positive regulator protein, RcsA (e.g., GenBank Accession Number M58003 (GI:1103316), incorporated herein by reference), in the colanic acid synthesis pathway results in an increase in intracellular GDP-fucose levels. Over-expression of an additional positive regulator of colanic acid biosynthesis, namely RcsB (e.g., GenBank Accession Number E04821 (GI:2173017), incorporated herein by reference), is also utilized, either instead of or in addition to over-expression of RcsA, to increase intracellular GDP-fucose levels.


Alternatively, colanic acid biosynthesis is increased following the introduction of a mutation into the E. coli ion gene (e.g., GenBank Accession Number L20572 (GI:304907), incorporated herein by reference). Lon is an adenosine-5′-triphosphate (ATP)-dependant intracellular protease that is responsible for degrading RcsA, mentioned above as a positive transcriptional regulator of colanic acid biosynthesis in E. coli. In a ion null background, RcsA is stabilized, RcsA levels increase, the genes responsible for GDP-fucose synthesis in E. coli are up-regulated, and intracellular GDP-fucose concentrations are enhanced. Mutations in ion suitable for use with the methods presented herein include null mutations or insertions that disrupt the expression or function of ion.


A functional lactose permease gene is also present in the bacterium. The lactose permease gene is an endogenous lactose permease gene or an exogenous lactose permease gene. For example, the lactose permease gene comprises an E. coli lacY gene (e.g., GenBank Accession Number V00295 (GI:41897), incorporated herein by reference). Many bacteria possess the inherent ability to transport lactose from the growth medium into the cell, by utilizing a transport protein that is either a homolog of the E. coli lactose permease (e.g., as found in Bacillus licheniformis), or a transporter that is a member of the ubiquitous PTS sugar transport family (e.g., as found in Lactobacillus casei and Lactobacillus rhamnosus). For bacteria lacking an inherent ability to transport extracellular lactose into the cell cytoplasm, this ability is conferred by an exogenous lactose transporter gene (e.g., E. coli lacY) provided on recombinant DNA constructs, and supplied either on a plasmid expression vector or as exogenous genes integrated into the host chromosome.


As described herein, in some embodiments, the host bacterium preferably has a reduced level of β-galactosidase activity. In the embodiment in which the bacterium is characterized by the deletion of the endogenous β-galactosidase gene, an exogenous β-galactosidase gene is introduced to the bacterium. For example, a plasmid expressing an exogenous β-galactosidase gene is introduced to the bacterium, or recombined or integrated into the host genome. For example, the exogenous β-galactosidase gene is inserted into a gene that is inactivated in the host bacterium, such as the ion gene.


The exogenous b-galactosidase gene is a functional b-galactosidase gene characterized by a reduced or low leve of b-galactosidase activity compared to β-galactosidase activity in wild-type bacteria lacking any genetic manipulation. Exemplary β-galactosidase genes include E. coli lacZ and β-galactosidase genes from any of a number of other organisms (e.g., the lac4 gene of Kluyveromyces lactis (e.g., GenBank Accession Number M84410 (GI:173304), incorporated herein by reference) that catalyzes the hydrolysis of b-galactosides into monosaccharides. The level of β-galactosidase activity in wild-type E. coli bacteria is, for example, 6,000 units. Thus, the reduced β-galactosidase activity level encompassed by engineered host bacterium of the present invention includes less than 6,000 units, less than 5,000 units, less than 4,000 units, less than 3,000 units, less than 2,000 units, less than 1,000 units, less than 900 units, less than 800 units, less than 700 units, less than 600 units, less than 500 units, less than 400 units, less than 300 units, less than 200 units, less than 100 units, or less than 50 units. Low, functional levels of β-galactosidase include β-galactosidase activity levels of between 0.05 and 1,000 units, e.g., between 0.05 and 750 units, between 0.05 and 500 units, between 0.05 and 400 units, between 0.05 and 300 units, between 0.05 and 200 units, between 0.05 and 100 units, between 0.05 and 50 units, between 0.05 and 10 units, between 0.05 and 5 units, between 0.05 and 4 units, between 0.05 and 3 units, or between 0.05 and 2 units of β-galactosidase activity. For unit definition and assays for determining β-galactosidase activity, see Miller J H, Laboratory CSH. Experiments in molecular genetics. Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y.; 1972; (incorporated herein by reference). This low level of cytoplasmic β-galactosidase activity is not high enough to significantly diminish the intracellular lactose pool. The low level of β-galactosidase activity is very useful for the facile removal of undesired residual lactose at the end of fermentations.


Optionally, the bacterium has an inactivated thyA gene. Preferably, a mutation in a thyA gene in the host bacterium allows for the maintenance of plasmids that carry thyA as a selectable marker gene. Exemplary alternative selectable markers include antibiotic resistance genes such as BLA (beta-lactamase), or proBA genes (to complement a proAB host strain proline auxotropy) or purA (to complement a purA host strain adenine auxotrophy).


In one aspect, the E. coli bacterium comprises the genotype ΔampC::PtrpBcI, Δ(lacI-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA, and also comprises any one of the exogenous α(1,2) fucosyltransferases described herein.


The bacterium comprising these characteristics is cultured in the presence of lactose. In some cases, the method further comprises culturing the bacterium in the presence of tryptophan and in the absence of thymidine. The fucosylated oligosaccharide is retrieved from the bacterium (i.e., a cell lysate) or from a culture supernatant of the bacterium.


The invention provides a purified fucosylated oligosaccharide produced by the methods described herein. The fucosylated oligosaccharide is purified for use in therapeutic or nutritional products, or the bacterium is used directly in such products. The fucosylated oligosaccharide produced by the engineered bacterium is 2′-fucosyllactose (2′-FL) or lactodifucotetraose (LDFT). The new alpha 1,2-fucosyltransferases are also useful to synthesize HMOS of larger molecular weight bearing alpha 1,2 fucose moieties, e.g., lacto-N-fucopentaose (LNF I) and lacto-N-difucohexaose (LDFH I). For example, to produce LDFT, the host bacterium is engineered to express an exogenous α (1,2) fucosyltransferase that also possesses a (1,3) fucosyltransferase activity, or an exogenous α (1,2) fucosyltransferase and an exogenous α (1,3) fucosyltransferase. For the production of LNF I and LDFH I, the host bacterium is engineered to express an exogenous α (1,2) fucosyltransferase that also possesses a (1,3) fucosyltransferase activity and/or a (1,4) fucosyltransferase activity, or an exogenous α (1,2) fucosyltransferase, an exogenous α (1,3) fucosyltransferas, and an exogenous α (1,4) fucosyltransferase.


A purified fucosylated oligosaccharide produced by the methods described above is also within the invention. The purified oligosaccharide (2′-FL) obtained at the end of the process is a white/slightly off-white, crystalline, sweet powder. For example, an engineered bacterium, bacterial culture supernatant, or bacterial cell lysate according to the invention comprises 2′-FL, LDFT, LNF I or LDFH I produced by the methods described herein, and does not substantially comprise a other fucosylated oligosaccharides prior to purification of the fucosylated oligosaccharide products from the cell, culture supernatant, or lysate. As a general matter, the fucosylated oligosaccharide produced by the methods contains a negligible amount of 3-FL in a 2′-FL-containing cell, cell lysate or culture, or supernatant, e.g., less than 1% of the level of 2′-FL or 0.5% of the level of 2′-FL. Moreover, the fucosylated oligosaccharide produced by the methods described herein also have a minimal amount of contaminating lactose, which can often be co-purified with the fucosylated oligosaccharide product, such as 2′FL. This reduction in contaminating lactose results from the reduced level of β-galactosidase activity present in the engineered host bacterium.


A purified oligosaccharide, e.g., 2′-FL, LDFT, LNF I, or LDFH I, is one that is at least 90%, 95%, 98%, 99%, or 100% (w/w) of the desired oligosaccharide by weight. Purity is assessed by any known method, e.g., thin layer chromatography or other chromatographic techniques known in the art. The invention includes a method of purifying a fucosylated oligosaccharide produced by the genetically engineered bacterium described above, which method comprises separating the desired fucosylated oligosaccharide (e.g., 2′-FL) from contaminants in a bacterial cell lysate or bacterial cell culture supernatant of the bacterium.


The oligosaccharides are purified and used in a number of products for consumption by humans as well as animals, such as companion animals (dogs, cats) as well as livestock (bovine, equine, ovine, caprine, or porcine animals, as well as poultry). For example, a pharmaceutical composition comprises purified 2′-FL and a pharmaceutically-acceptable excipient that is suitable for oral administration. Large quantities of 2′-FL are produced in bacterial hosts, e.g., an E. coli bacterium comprising an exogenous α (1,2) fucosyltransferase gene.


A method of producing a pharmaceutical composition comprising a purified human milk oligosaccharide (HMOS) is carried out by culturing the bacterium described above, purifying the HMOS produced by the bacterium, and combining the HMOS with an excipient or carrier to yield a dietary supplement for oral administration. These compositions are useful in methods of preventing or treating enteric and/or respiratory diseases in infants and adults. Accordingly, the compositions are administered to a subject suffering from or at risk of developing such a disease.


The invention also provides methods of identifying an α (1,2) fucosyltransferase gene capable of synthesizing fucosylated oligosaccharides in a host bacterium, i.e., 2′-fucosyllactose (2′-FL) in E. coli. The method of identifying novel lactose-utilizing, α(1,2)fucosyltransferase enzyme comprises the following steps:


1) performing a computational search of sequence databases to define a broad group of simple sequence homologs of any known, lactose-utilizing α(1,2)fucosyltransferase;


2) using the list from step (1), deriving a search profile containing common sequence and/or structural motifs shared by the members of the list;


3) searching sequence databases, using a derived search profile based on the common sequence or structural motif from step (2) as query, and identifying a candidate sequences, wherein a sequence homology to a reference lactose-utilizing α(1,2)fucosyltransferase is a predetermined percentage threshold;


4) compiling a list of candidate organisms, said organisms being characterized as expressing α(1,2)fucosyl-glycans in a naturally-occurring state;


5) selecting candidate sequences that are derived from candidate organisms to generate a list of candidate lactose-utilizing enzymes;


6) expressing the candidate lactose-utilizing enzyme in a host organism; and


7) testing for lactose-utilizing α(1,2)fucosyltransferase activity, wherein detection of the desired fucosylated oligosaccharide product in said organism indicates that the candidate sequence comprises a novel lactose-utilizing α(1,2)fucosyltransferase. In another embodiment, the search profile is generated from a multiple sequence alignment of the amino acid sequences of more than one enzyme with known α(1,2)fucosyltransferase activity. The database search can then be designed to refine and iteratively search for novel α(1,2)fucosyltransferases with significant sequence similarity to the multiple sequence alignment query.


The invention provides a method of treating, preventing, or reducing the risk of infection in a subject comprising administering to said subject a composition comprising a purified recombinant human milk oligosaccharide, wherein the HMOS binds to a pathogen and wherein the subject is infected with or at risk of infection with the pathogen. In one aspect, the infection is caused by a Norwalk-like virus or Campylobacter jejuni. The subject is preferably a mammal in need of such treatment. The mammal is, e.g., any mammal, e.g., a human, a primate, a mouse, a rat, a dog, a cat, a cow, a horse, or a pig. In a preferred embodiment, the mammal is a human. For example, the compositions are formulated into animal feed (e.g., pellets, kibble, mash) or animal food supplements for companion animals, e.g., dogs or cats, as well as livestock or animals grown for food consumption, e.g., cattle, sheep, pigs, chickens, and goats. Preferably, the purified HMOS is formulated into a powder (e.g., infant formula powder or adult nutritional supplement powder, each of which is mixed with a liquid such as water or juice prior to consumption) or in the form of tablets, capsules or pastes or is incorporated as a component in dairy products such as milk, cream, cheese, yogurt or kefir, or as a component in any beverage, or combined in a preparation containing live microbial cultures intended to serve as probiotics, or in prebiotic preparations to enhance the growth of beneficial microorganisms either in vitro or in vivo.


Polynucleotides, polypeptides, and oligosaccharides of the invention are purified and/or isolated. Purified defines a degree of sterility that is safe for administration to a human subject, e.g., lacking infectious or toxic agents. Specifically, as used herein, an “isolated” or “purified” nucleic acid molecule, polynucleotide, polypeptide, protein or oligosaccharide, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. For example, purified HMOS compositions are at least 60% by weight (dry weight) the compound of interest. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight the compound of interest. Purity is measured by any appropriate standard method, for example, by column chromatography, thin layer chromatography, or high-performance liquid chromatography (HPLC) analysis. For example, a “purified protein” refers to a protein that has been separated from other proteins, lipids, and nucleic acids with which it is naturally associated. Preferably, the protein constitutes at least 10, 20, 50, 70, 80, 90, 95, 99-100% by dry weight of the purified preparation.


Similarly, by “substantially pure” is meant an oligosaccharide that has been separated from the components that naturally accompany it. Typically, the oligosaccharide is substantially pure when it is at least 60%, 70%, 80%, 90%, 95%, or even 99%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated.


By “isolated nucleic acid” is meant a nucleic acid that is free of the genes which, in the naturally-occurring genome of the organism from which the DNA of the invention is derived, flank the gene. The term covers, for example: (a) a DNA which is part of a naturally occurring genomic DNA molecule, but is not flanked by both of the nucleic acid sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner, such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein. Isolated nucleic acid molecules according to the present invention further include molecules produced synthetically, as well as any nucleic acids that have been altered chemically and/or that have modified backbones.


A “heterologous promoter” is a promoter which is different from the promoter to which a gene or nucleic acid sequence is operably linked in nature.


The term “overexpress” or “overexpression” refers to a situation in which more factor is expressed by a genetically-altered cell than would be, under the same conditions, by a wild type cell. Similarly, if an unaltered cell does not express a factor that it is genetically altered to produce, the term “express” (as distinguished from “overexpress”) is used indicating the wild type cell did not express the factor at all prior to genetic manipulation.


The terms “treating” and “treatment” as used herein refer to the administration of an agent or formulation to a clinically symptomatic individual afflicted with an adverse condition, disorder, or disease, so as to effect a reduction in severity and/or frequency of symptoms, eliminate the symptoms and/or their underlying cause, and/or facilitate improvement or remediation of damage. The terms “preventing” and “prevention” refer to the administration of an agent or composition to a clinically asymptomatic individual who is susceptible to a particular adverse condition, disorder, or disease, and thus relates to the prevention of the occurrence of symptoms and/or their underlying cause.


By the terms “effective amount” and “therapeutically effective amount” of a formulation or formulation component is meant a nontoxic but sufficient amount of the formulation or component to provide the desired effect.


The transitional term “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. By contrast, the transitional phrase “consisting of” excludes any element, step, or ingredient not specified in the claim. The transitional phrase “consisting essentially of” limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention.


The host organism used to express the lactose-accepting fucosyltransferase gene is typically the enterobacterium Escherichia coli K12 (E. coli). E. coli K-12 is not considered a human or animal pathogen nor is it toxicogenic. E. coli K-12 is a standard production strain of bacteria and is noted for its safety due to its poor ability to colonize the colon and establish infections (see, e.g., epa.gov/oppt/biotech/pubs/fra/fra004.htm). However, a variety of bacterial species may be used in the oligosaccharide biosynthesis methods, e.g., Erwinia herbicola (Pantoea agglomerans), Citrobacter freundii, Pantoea citrea, Pectobacterium carotovorum, or Xanthomonas campestris. Bacteria of the genus Bacillus may also be used, including Bacillus subtilis, Bacillus licheniformis, Bacillus coagulans, Bacillus thermophilus, Bacillus laterosporus, Bacillus megaterium, Bacillus mycoides, Bacillus pumilus, Bacillus lentus, Bacillus cereus, and Bacillus circulans. Similarly, bacteria of the genera Lactobacillus and Lactococcus may be modified using the methods of this invention, including but not limited to Lactobacillus acidophilus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus jensenii, and Lactococcus lactis. Streptococcus thermophiles and Proprionibacterium freudenreichii are also suitable bacterial species for the invention described herein. Also included as part of this invention are strains, modified as described here, from the genera Enterococcus (e.g., Enterococcus faecium and Enterococcus thermophiles), Bifidobacterium (e.g., Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium bifidum), Sporolactobacillus spp., Micromomospora spp., Micrococcus spp., Rhodococcus spp., and Pseudomonas (e.g., Pseudomonas fluorescens and Pseudomonas aeruginosa). Bacteria comprising the characteristics described herein are cultured in the presence of lactose, and a fucosylated oligosaccharide is retrieved, either from the bacterium itself or from a culture supernatant of the bacterium. The fucosylated oligosaccharide is purified for use in therapeutic or nutritional products, or the bacteria are used directly in such products. A suitable production host bacterial strain is one that is not the same bacterial strain as the source bacterial strain from which the fucosyltransferase-encoding nucleic acid sequence was identified.


Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All published foreign patents and patent applications cited herein are incorporated herein by reference. Genbank and NCBI submissions indicated by accession number cited herein are incorporated herein by reference. All other published references, documents, manuscripts and scientific literature cited herein are incorporated herein by reference. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration showing the synthetic pathway of the major neutral fucosyl-oligosaccharides found in human milk.



FIG. 2 is a schematic demonstrating metabolic pathways and the changes introduced into them to engineer 2′-fucosyllactose (2′-FL) synthesis in Escherichia coli (E. coli). Specifically, the lactose synthesis pathway and the GDP-fucose synthesis pathway are illustrated. In the GDP-fucose synthesis pathway: manA=phosphomannose isomerase (PMI), manB=phosphomannomutase (PMM), manC=mannose-1-phosphate guanylyltransferase (GMP), gmd=GDP-mannose-4,6-dehydratase,fcl=GDP-fucose synthase (GFS), and Awcaf=mutated UDP-glucose lipid carrier transferase.



FIG. 3A and FIG. 3B show the sequence identity and a multiple sequence alignment of 4 previously known lactose-utilizing α(1,2)-fucosyltransferase protein sequences. FIG. 3A is a table showing the sequence identity between the 4 known lactose-utilizing α(1,2)-fucosyltransferases: H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). FIG. 3B shows multiple sequence alignment of the 4 known α(1,2)-fucosyltransferases. The ovals highlight regions of particularly high sequence conservation between the four enzymes in the alignment.



FIG. 4A through FIG. 4F show the sequence alignment of the 12 identified α(1,2)-fucosyltransferase syngenes identified, along with the 4 previously known lactose-utilizing α(1,2)-fucosyltransferase protein sequences. The 4 known lactose-utilizing α(1,2)-fucosyltransferases are boxed and include H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). The 12 identified α(1,2)-fucosyltransferase are as follows: Prevotella melaninogenica FutO (SEQ ID NO: 10), Clostridium bolteae+13 FutP (SEQ ID NO: 292), Lachnospiraceae sp. FutQ (SEQ ID NO: 12), Methanosphaerula palustris FutR (SEQ ID NO: 13), Tannerella sp. FutS (SEQ ID NO: 14), Bacteroides caccae FutU (SEQ ID NO: 15), Butyrivibrio FutV (SEQ ID NO: 16), Prevotella sp. FutW (SEQ ID NO: 17), Parabacteroides johnsonii FutX (SEQ ID NO: 18), Akkermansia muciniphilia FutY (SEQ ID NO: 19), Salmonella enterica FutZ (SEQ ID NO: 20), Bacteroides sp. FutZA (SEQ ID NO: 21). The sequence for Clostridium bolteae FutP (without the 13 additional amino acids in the N-terminus) (SEQ ID NO: 11) is also shown in the alignment.



FIG. 5A and FIG. 5B are two pictures of gels showing the construction of the syngenes for each of the 12 novel α(1,2)-fucosyltransferases. FIG. 5A shows post-Gibson assembly PCR. FIG. 5B shows gel-purified RI/Xho1 syngene fragments.



FIG. 6A and FIG. 6B are two photographs showing thin layer chromatograms of fucosylated oligosaccharide products produced in E. coli cultures using the 12 novel α(1,2)-fucosyltransferase syngenes. FIG. 6A shows fucosylated oligosaccharide products from 2 μl of culture supernatant. FIG. 6B shows fucosylated oligosaccharide products from 0.2 OD600 cell equivalents of whole cell heat extracts.



FIG. 7 is a graph showing the growth curve of the host bacterium expressing plasmids containing the α(1,2) fucosyltransferase genes WbgL, FutN, FutO, FutQ, and FutX after tryptophan induction in the presence of lactose in the culture medium (i.e. lac+trp).



FIG. 8 is a photograph of a SDS-PAGE gel showing the proteins produced from host bacterium expressing α(1,2) fucosyltransferase genes WbgL, FutN, FutO, FutQ, and FutX after induction.



FIG. 9A and FIG. 9B are two photographs of thin layer chromatograms showing the production of fucosylated oligosaccharide products from in E. coli cultures expressing select α(1,2)-fucosyltransferase syngenes WbgL, FutN, FutO, FutQ, and FutX at 7 hours or 24 hours after induction. FIG. 9A shows fucosylated oligosaccharide products from 2 μl of culture supernatant. FIG. 9B shows fucosylated oligosaccharide products from 0.2 OD600 cell equivalents of whole cell heat extracts.



FIG. 10A and FIG. 10B are two photographs of thin layer chromatograms showing the fucosylated oligosaccharide products after two different 1.5 L fermentation runs from E. coli expressing FutN: FIG. 10A) 36B and FIG. 10B) 37A. The culture yield for run 36B was 33 g/L while the yield for run 37A was 36.3 g/L.



FIG. 11 is a plasmid map of pG217 carrying the B. vulgatus FutN gene.



FIG. 12 is a schematic diagram showing the insertion of the LacIq promoter, the functional lacY gene, and the deletion of lacA.



FIG. 13 is a schematic diagram showing the deletion of the endogenous wcaJ gene using FRT recombination.



FIG. 14 is a schematic diagram of the E. coli W3110 chromosome, showing the insertion of a DNA fragment carrying kanamycin resistance gene (derived from transposon Tn5) and wild-type lacZ into the ion gene.





DETAILED DESCRIPTION OF THE INVENTION

While some studies suggest that human milk glycans could be used as antimicrobial anti-adhesion agents, the difficulty and expense of producing adequate quantities of these agents of a quality suitable for human consumption has limited their full-scale testing and perceived utility. What has been needed is a suitable method for producing the appropriate glycans in sufficient quantities at reasonable cost. Prior to the invention described herein, there were attempts to use several distinct synthetic approaches for glycan synthesis. Some chemical approaches can synthesize oligosaccharides (Flowers, H. M. Methods Enzymol 50, 93-121 (1978); Seeberger, P. H. Chem Commun (Camb) 1115-1121 (2003)), but reactants for these methods are expensive and potentially toxic (Koeller, K. M. & Wong, C. H. Chem Rev 100, 4465-4494 (2000)). Enzymes expressed from engineered organisms (Albermann, C., Piepersberg, W. & Wehmeier, U. F. Carbohydr Res 334, 97-103 (2001); Bettler, E., Samain, E., Chazalet, V., Bosso, C., et al. Glycoconj J 16, 205-212 (1999); Johnson, K. F. Glycoconj J 16, 141-146 (1999); Palcic, M. M. Curr Opin Biotechnol 10, 616-624 (1999); Wymer, N. & Toone, E. J. Curr Opin Chem Biol 4, 110-119 (2000)) provide a precise and efficient synthesis (Palcic, M. M. Curr Opin Biotechnol 10, 616-624 (1999)); Crout, D. H. & Vic, G. Curr Opin Chem Biol 2, 98-111 (1998)), but the high cost of the reactants, especially the sugar nucleotides, limits their utility for low-cost, large-scale production. Microbes have been genetically engineered to express the glycosyltransferases needed to synthesize oligosaccharides from the bacteria's innate pool of nucleotide sugars (Endo, T., Koizumi, S., Tabata, K., Kakita, S. & Ozaki, A. Carbohydr Res 330, 439-443 (2001); Endo, T., Koizumi, S., Tabata, K. & Ozaki, A. Appl Microbiol Biotechnol 53, 257-261 (2000); Endo, T. & Koizumi, S. Curr Opin Struct Biol 10, 536-541 (2000); Endo, T., Koizumi, S., Tabata, K., Kakita, S. & Ozaki, A. Carbohydr Res 316, 179-183 (1999); Koizumi, S., Endo, T., Tabata, K. & Ozaki, A. Nat Biotechnol 16, 847-850 (1998)). However, prior to the invention described herein, there was a growing need to identify and characterize additional glycosyltransferases that are useful for the synthesis of HMOS in metabolically engineered bacterial hosts.


Human Milk Glycans

Human milk contains a diverse and abundant set of neutral and acidic oligosaccharides (Kunz, C., Rudloff, S., Baier, W., Klein, N., and Strobel, S. (2000). Annu Rev Nutr 20, 699-722; Bode, L. (2006). J Nutr 136, 2127-130). More than 130 different complex oligosaccharides have been identified in human milk, and their structural diversity and abundance is unique to humans. Although these molecules may not be utilized directly by infants for nutrition, they nevertheless serve critical roles in the establishment of a healthy gut microbiome (Marcobal, A., Barboza, M., Froehlich, J. W., Block, D. E., et al. J Agric Food Chem 58, 5334-5340 (2010)), in the prevention of disease (Newburg, D. S., Ruiz-Palacios, G. M. & Morrow, A. L. Annu Rev Nutr 25, 37-58 (2005)), and in immune function (Newburg, D. S. & Walker, W. A. Pediatr Res 61, 2-8 (2007)). Despite millions of years of exposure to human milk oligosaccharides (HMOS), pathogens have yet to develop ways to circumvent the ability of HMOS to prevent adhesion to target cells and to inhibit infection. The ability to utilize HMOS as pathogen adherence inhibitors promises to address the current crisis of burgeoning antibiotic resistance. Human milk oligosaccharides produced by biosynthesis represent the lead compounds of a novel class of therapeutics against some of the most intractable scourges of society.


One alternative strategy for efficient, industrial-scale synthesis of HMOS is the metabolic engineering of bacteria. This approach involves the construction of microbial strains overexpressing heterologous glycosyltransferases, membrane transporters for the import of precursor sugars into the bacterial cytosol, and possessing enhanced pools of regenerating nucleotide sugars for use as biosynthetic precursors (Dumon, C., Samain, E., and Priem, B. (2004). Biotechnol Prog 20, 412-19; Ruffing, A., and Chen, R.R. (2006). Microb Cell Fact 5, 25). A key aspect of this approach is the heterologous glycosyltransferase selected for overexpression in the microbial host. The choice of glycosyltransferase can significantly affect the final yield of the desired synthesized oligosaccharide, given that enzymes can vary greatly in terms of kinetics, substrate specificity, affinity for donor and acceptor molecules, stability and solubility. A few glycosyltransferases derived from different bacterial species have been identified and characterized in terms of their ability to catalyze the biosynthesis of HMOS in E. coli host strains (Dumon, C., Bosso, C., Utille, J.P., Heyraud, A., and Samain, E. (2006). Chembiochem 7, 359-365; Dumon, C., Samain, E., and Priem, B. (2004). Biotechnol Prog 20, 412-19; Li, M., Liu, X. W., Shao, J., Shen, J., Jia, Q., Yi, W., Song, J. K., Woodward, R., Chow, C. S., and Wang, P. G. (2008). Biochemistry 47, 378-387). The identification of additional glycosyltransferases with faster kinetics, greater affinity for nucleotide sugar donors and/or acceptor molecules, or greater stability within the bacterial host significantly improves the yields of therapeutically useful HMOS. Prior to the invention described herein, chemical syntheses of HMOS were possible, but were limited by stereo-specificity issues, precursor availability, product impurities, and high overall cost (Flowers, H. M. Methods Enzymol 50, 93-121 (1978); Seeberger, P. H. Chem Commun (Camb) 1115-1121 (2003); Koeller, K. M. & Wong, C. H. Chem Rev 100, 4465-4494 (2000)). The invention overcomes the shortcomings of these previous attempts by providing new strategies to inexpensively manufacture large quantities of human milk oligosaccharides (HMOS) for use as dietary supplements. Advantages include efficient expression of the enzyme, improved stability and/or solubility of the fucosylated oligosaccharide product (2′-FL, LDFT, LNF I, and LDFH I) and reduced toxicity to the host organism. The present invention features novel α(1,2) FTs suitable for expression in production strains for increased efficacy and yield of fucosylated HMOS compared to α(1,2) FTs currently utilized in the field.


As described in detail below, E. coli (or other bacteria) is engineered to produce selected fucosylated oligosaccharides (i.e., 2′-FL, LDFT, LDHF I, or LNF I) in commercially viable levels. For example, yields are >5 grams/liter in a bacterial fermentation process. In other embodiments, the yields are greater than 10 grams/liter, greater than 15 grams/liter, greater than 20 grams/liter, greater than 25 grams/liter, greater than 30 grams/liter, greater than 35 grams/liter, greater than 40 grams/liter, greater than 45 grams/liter, greater than 50 grams/liter, greater than 55 grams/liter, greater than 60 grams/liter, greater than 65 grams/liter, greater than 70 grams/liter, or greater than 75 grams/liter of fucosylated oligosaccharide products, such as 2′-FL, LDFT, LDHF I, and LNF I.


Role of Human Milk Glycans in Infectious Disease

Human milk glycans, which comprise both unbound oligosaccharides and their glycoconjugates, play a significant role in the protection and development of the infant gastrointestinal (GI) tract. Neutral fucosylated oligosaccharides, including 2′-fucosyllactose (2′-FL), protect infants against several important pathogens. Milk oligosaccharides found in various mammals differ greatly, and the composition in humans is unique (Hamosh M., 2001 Pediatr Clin North Am, 48:69-86; Newburg D. S., 2001 Adv Exp Med Biol, 501:3-10). Moreover, glycan levels in human milk change throughout lactation and also vary widely among individuals (Morrow A. L. et al., 2004 J Pediatr, 145:297-303; Chaturvedi P et al., 2001 Glycobiology, 11:365-372). Approximately 200 distinct human milk oligosaccharides have been identified and combinations of simple epitopes are responsible for this diversity (Newburg D.S., 1999 Curr Med Chem, 6:117-127; Ninonuevo M. et al., 2006 J Agric Food Chem, 54:7471-74801).


Human milk oligosaccharides are composed of 5 monosaccharides: D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine (GlcNAc), L-fucose (Fuc), and sialic acid (N-acetyl neuraminic acid, NeuSAc, NANA). Human milk oligosaccharides are usually divided into two groups according to their chemical structures: neutral compounds containing Glc, Gal, GlcNAc, and Fuc, linked to a lactose (Galβ1-4G1c) core, and acidic compounds including the same sugars, and often the same core structures, plus NANA (Charlwood J. et al., 1999 Anal Biochem, 273:261-277; Martin-Sosa et al., 2003 J Dairy Sci, 86:52-59; Parkkinen J. and Finne J., 1987 Methods Enzymol, 138:289-300; Shen Z. et al., 2001 J Chromatogr A, 921:315-321).


Approximately 70-80% of oligosaccharides in human milk are fucosylated, and their synthetic pathways are believed to proceed as shown in FIG. 1. A smaller proportion of the oligosaccharides are sialylated or both fucosylated and sialylated, but their synthetic pathways are not fully defined. Understanding of the acidic (sialylated) oligosaccharides is limited in part by the ability to measure these compounds. Sensitive and reproducible methods for the analysis of both neutral and acidic oligosaccharides have been designed. Human milk oligosaccharides as a class survive transit through the intestine of infants very efficiently, being essentially indigestible (Chaturvedi, P., Warren, C. D., Buescher, C. R., Pickering, L. K. & Newburg, D. S. Adv Exp Med Biol 501, 315-323 (2001)).


Human Milk Glycans Inhibit Binding of Enteropathogens to their Receptors


Human milk glycans have structural homology to cell receptors for enteropathogens and function as receptor decoys. For example, pathogenic strains of Campylobacter bind specifically to glycans containing H-2, i.e., 2′-fucosyl-N-acetyllactosamine or 2′-fucosyllactose (2′FL); Campylobacter binding and infectivity are inhibited by 2′-FL and other glycans containing this H-2 epitope. Similarly, some diarrheagenic E. coli pathogens are strongly inhibited in vivo by human milk oligosaccharides containing 2-linked fucose moieties. Several major strains of human caliciviruses, especially the noroviruses, also bind to 2-linked fucosylated glycans, and this binding is inhibited by human milk 2-linked fucosylated glycans. Consumption of human milk that has high levels of these 2-linked fucosyloligosaccharides was associated with lower risk of norovirus, Campylobacter, ST of E. coli-associated diarrhea, and moderate-to-severe diarrhea of all causes in a Mexican cohort of breastfeeding children (Newburg D.S. et al., 2004 Glycobiology, 14:253-263; Newburg D. S. et al., 1998 Lancet, 351:1160-1164). Several pathogens utilize sialylated glycans as their host receptors, such as influenza (Couceiro, J. N., Paulson, J. C. & Baum, L. G. Virus Res 29, 155-165 (1993)), parainfluenza (Amonsen, M., Smith, D. F., Cummings, R. D. & Air, G. M. J Virol 81, 8341-8345 (2007), and rotoviruses (Kuhlenschmidt, T. B., Hanafin, W. P., Gelberg, H. B. & Kuhlenschmidt, M. S. Adv Exp Med Biol 473, 309-317 (1999)). The sialyl-Lewis X epitope is used by Helicobacter pylori (Mandavi, J., Sondén, B., Hurtig, M., Olfat, F. O., et al. Science 297, 573-578 (2002)), Pseudomonas aeruginosa (Scharfman, A., Delmotte, P., Beau, J., Lamblin, G., et al. Glycoconj J 17, 735-740 (2000)), and some strains of noroviruses (Rydell, G. E., Nilsson, J., Rodriguez-Diaz, J., Ruvoen-Clouet, N., et al. Glycobiology 19, 309-320 (2009)).


Identification of Novel α(1,2) Fucosyltransferases

The present invention provides novel α(1,2) fucosyltransferase enzymes. The present invention also provides nucleic acid constructs (i.e., a plasmid or vector) carrying the nucleic acid sequence of a novel α(1,2) fucosyltransferases for the expression of the novel α(1,2) fucosyltransferases in host bacterium. The present invention also provides methods for producing fucosylated oligosaccharides by expressing the novel α(1,2) fucosyltransferases in suitable host production bacterium, as further described herein.


Not all α(1,2)fucosyltransferases can utilize lactose as an acceptor substrate. An acceptor substrate includes, for example, a carbohydrate, an oligosaccharide, a protein or glycoprotein, a lipid or glycolipid, e.g., N-acetylglucosamine, N-acetyllactosamine, galactose, fucose, sialic acid, glucose, lactose, or any combination thereof. A preferred alpha (1,2) fucosyltransferase of the present invention utilizes GDP-fucose as a donor, and lactose is the acceptor for that donor.


A method of identifying novel α(1,2)fucosyltransferase enzymes capable of utilizing lactose as an acceptor was previously carried out (as described in PCT/US2013/051777, hereby incorporated by reference in its entirety) using the following steps: 1) performing a computational search of sequence databases to define a broad group of simple sequence homologs of any known, lactose-utilizing α(1,2)fucosyltransferase; 2) using the list of homologs from step 1 to derive a search profile containing common sequence and/or structural motifs shared by the members of the broad group, e.g. by using computer programs such as MEME (Multiple Em for Motif Elicitation available at http://meme.sdsc.edu/meme/cgi-bin/meme.cgi) or PSI-BLAST (Position-Specific Iterated BLAST available at ncbi.nlm.nih.gov/blast with additional information at cnx.org/content/m11040/latest/); 3) searching sequence databases (e.g., using computer programs such as PSI-BLAST, or MAST (Motif Alignment Search Tool available at http://meme.sdsc.edu/meme/cgi-bin/mast.cgi);, using this derived search profile as query, and identifying “candidate sequences” whose simple sequence homology to the original lactose-accepting α(1,2)fucosyltransferase is 40% or less; 4) scanning the scientific literature and developing a list of “candidate organisms” known to express α(1,2)fucosyl-glycans; 5) selecting only those “candidate sequences” that are derived from “candidate organisms” to generate a list of “candidate lactose-utilizing enzymes”; and 6) expressing each “candidate lactose-utilizing enzyme” and testing for lactose-utilizing α(1,2)fucosyltransferase activity.


The MEME suite of sequence analysis tools (meme.sdsc.edu/meme/cgi-bin/meme.cgi) can also be used as an alternative to PSI-BLAST. Sequence motifs are discovered using the program “MEME”. These motifs can then be used to search sequence databases using the program “MAST”. The BLAST and PSI-BLAST search algorithms are other well known alternatives.


To identify additional novel α(1,2)fucosyltransferases, a multiple sequence alignment query was generated using four previously identified lactose-utilizing α(1,2)fucosyltransferase protein sequences: H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). These sequence alignment and percentage of sequence identity is shown in FIG. 3. An iterative PSI-BLAST was performed, using the FASTA-formatted multiple sequence alignment as the query, and the NCBI PSI-BLAST program run on a local copy of NCBI BLAST+version 2.2.29. An initial position-specific scoring matrix file (.pssm) was generated by PSI-BLAST, which the program then used to adjust the score of iterative homology search runs. The process is iterated to generate an even larger group of candidates, and the results of each run were used to further refine the matrix.


This PSI-BLAST search resulted in an initial 2515 hits. There were 787 hits with greater than 22% sequence identity to FutC. 396 hits were of greater than 275 amino acids in length. Additional analysis of the hits was performed, including sorting by percentage identity to FutC, comparing the sequences by BLAST to existing α(1,2) fucosyltransferase inventory (of known α(1,2) fucosyltransferases), and manual annotation of hit sequences to identify those originating from bacteria that naturally exist in the gastrointestinal tract. An annotated list of the novel α(1,2) fucosyltransferases identified by this screen are listed in Table 1. Table 1 provides the bacterial species from which the candidate enzyme is found, the GenBank Accession Number, GI Identification Number, amino acid sequence, and % sequence identity to FutC.


Of the identified hits, 12 novel α(1,2) fucosyltransferases were further analyzed for their functional capacity: Prevotella melaninogenica FutO, Clostridium bolteae FutP, Clostridium bolteae+13 FutP, Lachnospiraceae sp. FutQ, Methanosphaerula palustries FutR, Tannerella sp. FutS, Bacteroides caccae FutU, Butyrivibrio FutV, Prevotellaa sp. FutW, Parabacteroides johnsonii FutX, Akkermansia muciniphilia FutY, Salmonella enterica FutZ, and Bacteroides sp. FutZA. For Clostridium bolteae FutP, the annotation named the wrong initiation methionine codon. Thus, the present invention includes FutP with an additional 13 amino acids at the N-terminus of the annotated FutP (derived in-frame from the natural upstream DNA sequence), which is designated herein as Clostridium bolteae+13 FutP. The sequence identity between the 12 novel α(1,2) fucosyltransferases identified and the 4 previously identified α(1,2) fucosyltransferases is shown in Table 2 below.









TABLE 2







Sequence Identity


























1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16




























H.pylori futC

1

70.10
21.99
20.82
27.68
27.36
23.56
23.28
23.62
25.75
23.72
24.05
22.29
24.19
22.92
22.29



H.mustelae futL

2
70.10

23.87
19.88
26.38
28.21
24.30
23.38
24.62
25.31
25.31
24.47
23.56
25.15
23.55
23.26



Bacteroides vulgatus

3
21.99
23.87

25.16
32.05
28.71
28.94
25.79
37.46
32.27
26.11
61.27
71.63
27.67
25.15
84.75


futN




















E. coli 0126 wbgL

4
20.82
19.88
25.16

24.25
22.73
22.32
26.04
25.45
24.77
21.49
23.29
26.71
24.63
21.45
25.16



Prevotella

5
27.68
26.38
32.05
24.25

36.96
31.63
35.74
35.16
55.74
30.28
30.03
32.80
30.09
26.28
31.83



melaninogenica Fut0




















YP_003814512.1




















Clostridium
bolteae +

6
27.36
28.21
28.71
22.73
36.96

37.87
35.10
33.77
36.91
35.74
29.58
31.39
27.67
26.33
29.13


13 FutP



















WP_002570768.1




















Lachnospiraceae sp.

7
23.56
24.30
28.94
22.32
31.63
37.87

29.87
29.17
32.90
51.02
28.53
30.00
27.69
24.00
27.74


FutQ



















WP_009251343.1




















Methanosphaerula

8
23.28
23.38
25.79
26.04
35.74
35.10
29.87

28.71
38.24
31.41
25.39
28.08
30.65
23.93
25.55



palustris FutR




















YP_002467213.1




















Tannerella sp. FutS

9
23.62
24.62
37.46
25.45
35.16
33.77
29.17
28.71

34.41
30.03
35.71
36.27
26.48
21.75
36.60


WP_021929367.1




















Bacteroides
caccae

10
25.75
25.31
32.27
24.77
55.74
36.91
32.90
38.24
34.41

31.21
29.94
33.33
29.28
24.46
33.01


FutU



















WP_005675707.1




















Butyrivibrio FutV

11
23.72
25.31
26.11
21.49
30.28
35.74
51.02
31.41
30.03
31.21

27.62
26.20
26.46
22.15
26.52


WP_022772718.1




















Prevotella sp. FutW

12
24.05
24.47
61.27
23.29
30.03
29.58
28.53
25.39
35.71
29.94
27.62

57.60
25.79
22.15
59.01


WP_022481266.1




















Parabacteroides

13
22.29
23.56
71.63
26.71
32.80
31.39
30.00
28.08
36.27
33.33
26.20
57.60

28.71
24.00
74.02



johnsonii FutX




















WP_008155883.1




















Akkermansia

14
24.19
25.15
27.67
24.63
30.09
27.67
27.69
30.65
26.48
29.28
26.46
25.79
28.71

21.45
28.08



muciniphilia FutY




















YP_001877555




















Salmonella
enterica

15
22.92
23.55
25.15
21.45
26.28
26.33
24.00
23.93
21.75
24.46
22.15
22.15
24.00
21.45

24.62


FutZ



















WP_023214330




















Bacteroides sp.

16
22.29
23.26
84.75
25.16
31.83
29.13
27.74
25.55
36.60
33.01
26.52
59.01
74.02
28.08
24.62



FutZA



















WP_022161880.1









Based on the amino acid sequences of the identified α(1,2) fucosyltransferases (i.e., in Table 1), syngenes can be readily designed and constructed by the skilled artisan using standard methods known in the art. For example, the syngenes include a ribosomal binding site, are codon-optimized for expression in a host bacterial production strain (i.e., E. coli), and have common 6-cutter restriction sites or sites recognized by endogenous restriction enzymes present in the host strain (i.e., EcoK restriction sites) removed to ease cloning and expression in the E. coli host strain. In a preferred embodiment, the syngenes are constructed with the following configuration: EcoRI site-T7g10 RBS-α(1,2) FT syngene-XhoI site. The nucleic acid sequences of sample syngenes for the 12 identified α(1,2) fucosyltransferases are shown in Table 3. (the initiating methionine ATG codon is bolded)









TABLE 3







Nucleic acid sequences of 12 novel α(1,2) fucosyltransferase syngenes









Bacteria/

SEQ


Gene name
Sequence
ID NO:





FutO
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGAAAATCGTCAAAATCCTGGGCGGT
276



CTGGGCAATCAGATGTTCCAGTATGCTCTGTACCTGAGCCTGCAAGAAAGTTTTCCAAAA




GAACGTGTGGCCCTGGACCTGTCCTCCTTCCACGGCTATCACCTGCATAATGGCTTTGAG




CTGGAGAACATTTTCTCCGTTACCGCTCAGAAAGCATCCGCCGCAGATATCATGCGTATT




GCTTATTACTACCCGAACTATCTGCTGTGGCGCATTGGCAAACGTTTTCTGCCGCGTCGT




AAAGGTATGTGCCTGGAATCTAGCTCCCTGCGTTTCGATGAAAGCGTTCTGCGTCAGGAA




GGTAACCGTTATTTTGACGGTTACTGGCAAGACGAACGCTACTTCGCAGCCTATCGTGAA




AAAGTGCTGAAGGCTTTCACCTTTCCTGCATTCAAACGCGCAGAAAACCTGAGCCTGCTG




GAAAAACTGGACGAAAACAGCATTGCTCTGCATGTTCGTCGCGGTGATTACGTAGGTAAT




AACCTGTACCAAGGCATCTGTGACCTGGACTACTACCGTACCGCTATCGAGAAAATGTGT




GCACACGTTACTCCGTCTCTGTTTTGTATCTTTTCCAACGACATCACGTGGTGCCAGCAG




CACCTGCAACCGTACCTGAAGGCCCCTGTGGTGTACGTTACTTGGAACACCGGTGTTGAA




TCCTACCGCGATATGCAGCTGATGTCCTGCTGCGCACATAACATCATCGCGAATAGCTCC




TTCTCTTGGTGGGGTGCTTGGCTGAATCAGAACCGTGAAAAAGTTGTTATCGCCCCGAAA




AAATGGCTGAACATGGAAGAATGTCACTTCACGCTGCCGGCAAGCTGGATCAAAATTTAG




CTCGAGTGACTGACTG






FutP
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGGTGATTATCAAAATGATGGGTGGT
277



CTGGGCAACCAGATGTTCCAGTACGCACTGTACAAAGCATTCGAGCAGAAGCACATCGAT




GTGTATGCAGACCTGGCATGGTACAAAAACAAATCCGTGAAATTTGAACTGTACAACTTC




GGCATTAAAATCAACGTAGCATCCGAGAAAGACATCAACCGTCTGAGCGATTGCCAGGCG




GACTTTGTTTCCCGCATCCGCCGTAAAATCTTTGGTAAAAAAAAGAGCTTCGTATCTGAA




AAAAATGACTCCTGCTATGAAAACGACATCCTGCGTATGGACAACGTTTATCTGAGCGGT




TATTGGCAGACCGAAAAATACTTCTCTAACACGCGTGAGAAGCTGCTGGAGGATTATTCC




TTCGCTCTGGTAAACTCTCAGGTGTCCGAATGGGAAGACTCCATTCGCAACAAAAACAGC




GTTAGCATCCATATCCGTCGTGGTGATTATCTACAGGGCGAACTGTATGGTGGTATTTGC




ACCTCTCTGTACTACGCCGAAGCAATCGAGTACATTAAAATGCGTGTTCCGAACGCAAAA




TTCTTCGTTTTCTCTGATGACGTTGAATGGGTTAAACAGCAAGAAGACTTCAAAGGCTTC




GTAATCGTTGATCGCAACGAGTATTCTAGCGCTCTGTCCGATATGTACCTGATGTCCCTG




TGCAAGCATAACATTATTGCTAACTCCTCTTTCAGCTGGTGGGCAGCTTGGCTGAACCGT




AACGAAGAAAAAATTGTAATCGCGCCGCGCCGTTGGCTGAACGGCAAGTGCACCCCAGAT




ATCTGGTGTAAAAAATGGATTCGTATCTAGCTCGAGTGACTGACTG






FutQ
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGGTGATCGTACAGCTGAGCGGCGGT
278



CTGGGCAACCAGATGTTCGAATACGCGCTGTACCTGAGCCTGAAAGCAAAAGGCAAAGAA




GTGAAAATTGACGATGTTACGTGTTACGAGGGCCCTGGCACCCGTCCGCGTCAACTGGAT




GTTTTTGGTATCACGTACGATCGCGCGTCTCGTGAGGAGCTGACTGAGATGACGGACGCG




AGCATGGATGCGCTGTCTCGTGTTCGTCGCAAACTGACCGGTCGCCGCACTAAAGCGTAC




CGCGAACGCGACATCAACTTCGATCCACTGGTTATGGAAAAAGACCCGGCACTGCTGGAA




GGCTGTTTCCAGTCTGACAAATACTTTCGTGATTGCGAAGGCCGCGTGCGCGAAGCGTAT




CGTTTCCGCGGCATTGAATCCGGCGCGTTCCCGCTGCCGGAAGACTATCTGCGCCTGGAA




AAGCAGATCGAAGATTGTCAGTCCGTATCCGTACACATCCGTCGTGGCGACTACCTGGAC




GAATCTCATGGTGGTCTGTACACCGGCATTTGTACTGAGGCGTACTATAAAGAGGCTTTT




GCTCGCATGGAACGTCTGGTTCCGGGCGCACGTTTCTTCCTGTTCTCTAACGATCCAGAA




TGGACTCGTGAGCACTTTGAGAGCAAGAACTGCGTTCTGGTTGAAGGTAGCACCGAAGAC




ACGGGTTACATGGACCTGTACCTGATGAGCCGCTGCCGCCACAATATTATTGCCAACTCT




TCTTTCAGCTGGTGGGGCGCTTGGCTGAATGAGAACCCTGAGAAAAAAGTCATCGCACCG




GCTAAATGGCTGAACGGTCGTGAGTGCCGTGATATCTATACCGAACGCATGATTCGTCTG




TAGCTCGAGTGACTGACTG






FutR
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGATCATTGTTCGTCTGAAAGGCGGT
279



CTGGGCAACCAACTGTCTCAGTATGCACTGGGCCGTAAGATCGCGCATCTGCACAATACC




GAACTGAAACTGGACACCACTTGGTTCACCACTATCTCCTCCGACACTCCACGTACCTAC




CGTCTGAACAATTATAACATCATCGGCACTATTGCATCCGCAAAGGAAATCCAGCTGATC




GAACGTGGTCGCGCGCAAGGCCGTGGCTACCTGCTGTCTAAAATTTCTGATCTGCTGACT




CCGATGTACCGTCGTACCTACGTCCGTGAACGTATGCATACCTTCGATAAAGCTATCCTG




ACCGTTCCGGACAACGTGTACCTGGATGGTTACTGGCAGACCGAAAAGTACTTCAAAGAC




ATCGAAGAAATCCTGCGCCGTGAGGTTACGCTGAAAGATGAACCGGATAGCATCAACCTG




GAAATGGCTGAACGTATTCAGGCTTGCCACAGCGTTTCCCTGCACGTGCGTCGTGGCGAC




TACGTTTCCAACCCGACCACTCAACAATTCCACGGCTGTTGCTCCATTGACTACTACAAC




CGCGCTATCTCTCTGATTGAAGAAAAAGTGGATGACCCGTCTTTCTTTATTTTTTCTGAC




GATCTGCCGTGGGCTAAAGAAAACCTGGACATCCCTGGCGAAAAAACCTTCGTTGCGCAT




AACGGCCCGGAAAAAGAGTATTGCGATCTGTGGCTGATGTCTCTGTGCCAGCACCATATC




ATCGCAAACTCTTCTTTCAGCTGGTGGGGTGCCTGGCTGGGTCAAGACGCCGAAAAGATG




GTGATCGCGCCGCGTCGCTGGGCCCTGTCCGAGAGCTTTGACACTTCTGACATCATTCCG




GACTCTTGGATTACTATCTAGCTCGAGTGACTGACTG






FutS
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGGTACGCATTGTGGAAATCATCGGC
280



GGTCTGGGTAACCAGATGTTCCAGTACGCATTCTCCCTGTACCTGAAAAACAAATCTCAC




ATCTGGGACCGTCTGTATGTGGACATCGAGGCGATGAAAACCTACGATCGTCACTATGGT




CTGGAACTGGAGAAAGTTTTCAATCTGAGCCTGTGTCCAATCTCTAACCGTCTGCACCGC




AACCTGCAAAAACGCTCCTTCGCAAAACACTTTGTAAAGAGCCTGTACGAGCACTCTGAA




TGCGAGTTCGACGAACCGGTGTACCGTGGCCTGCGTCCTTATCGCTATTATCGCGGCTAC




TGGCAAAACGAAGGTTACTTCGTTGATATTGAACCGATGATCCGTGAGGCTTTTCAGTTC




AACGTTAACATCCTGAGCAAAAAGACTAAAGCGATCGCATCCAAAATGCGCCGTGAACTG




TCCGTATCTATCCATGTTCGCCGTGGTGATTACGAAAACCTGCCGGAAGCGAAAGCGATG




CATGGCGGTATTTGTTCTCTGGACTATTACCACAAAGCGATCGACTTCATCCGCCAGCGT




CTGGATAATAACATCTGTTTCTATCTGTTCTCCGACGATATCAATTGGGTAGAAGAAAAC




CTGCAACTGGAAAACCGTTGCATCATCGACTGGAACCAGGGCGAAGATAGCTGGCAGGAC




ATGTACCTGATGAGCTGCTGCCGCCACCACATTATCGCAAACAGCTCTTTCTCCTGGTGG




GCGGCATGGCTGAATCCAAACAAGAACAAAATCGTACTGACCCCGAACAAATGGTTCAAC




CATACTGACGCAGTGGGTATCGTCCCAAAGTCCTGGATTAAAATTCCTGTGTTTTAGCTC




GAGTGACTGACTG






FutU
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGAAAATCGTTAAAATCCTGGGCGGC
281



CTGGGTAACCAGATGTTTCAGTACGCCCTGTTCCTGTCTCTGAAAGAACGCTTCCCGCAT




GAACAGGTGATGATTGACACCAGCTGCTTCCGCAATTACCCACTGCACAACGGTTTCGAA




GTGGATCGTATCTTCGCCCAGAAAGCACCGGTTGCCTCTTGGCGTAACATCCTGAAGGTT




GCCTACCCGTACCCGAACTACCGTTTCTGGAAAATCGGTAAATACATCCTGCCTAAACGT




AAAACCATGTGTGTAGAGCGTAAAAACTTCAGCTTTGACGCCGCAGTCCTGACCCGTAAA




GGCGATTGCTACTATGATGGCTACTGGCAGCATGAGGAATATTTCTGTGATATGAAAGAA




ACGATTTGGGAGGCTTTCTCCTTCCCTGAGCCGGTTGATGGTCGTAACAAGGAGATCGGT




GCCCTGCTACAGGCATCTGATAGCGCTTCCCTGCACGTTCGTCGCGGTGACTACGTGAAC




CACCCACTGTTTCGTGGTATTTGTGACCTGGACTATTATAAACGTGCCATCCACTACATG




GAAGAACGCGTCAACCCACAGCTGTACTGCGTTTTCAGCAACGATATGGCCTGGTGCGAG




TCCCACCTGCGTGCACTGCTGCCAGGCAAAGAAGTAGTTTATGTTGACTGGAACAAGGGT




GCGGAATCTTACGTTGATATGCGTCTGATGAGCCTGTGCCGTCACAACATCATCGCTAAC




TCTTCTTTCAGCTGGTGGGGCGCATGGCTGAACCGTAACCCGCAGAAAGTGGTGGTAGCG




CCGGAACGTTGGATGAACAGCCCGATTGAAGACCCAGTGAGCGACAAATGGATTAAACTG




TAGCTCGAGTGACTGACTG






FutV
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGATCATCATCCAGCTGAAAGGTGGC
282



CTGGGCAACCAAATGTTCCAGTACGCGCTGTACAAATCCCTGAAAAAACGTGGTAAAGAA




GTTAAAATTGATGACAAAACTGGCTTCGTGAACGACAAACTGCGTATCCCGGTACTGTCC




CGTTGGGGTGTTGAGTACGATCGTGCAACCGACGAAGAGATTATTAACCTGACCGACTCC




AAAATGGACCTGTTCTCTCGCATCCGCCGTAAACTGACTGGCCGCAAAACGTTCCGTATC




GACGAAGAATCCGGTAAATTCAACCCGGAAATCCTGGAAAAAGAGAACGCTTATCTGGTG




GGTTATTGGCAGTGCGACAAGTACTTCGACGACAAAGATGTGGTTCGCGAAATTCGTGAA




GCGTTCGAGAAAAAACCGCAGGAGCTGATGACCGACGCCAGCTCTTGGTCTACTCTACAG




CAGATTGAATGCTGCGAGTCCGTATCCCTGCACGTACGTCGTACTGATTACGTGGACGAG




GAACATATTCATATCCATAACATCTGTACGGAAAAATACTATAAAAACGCCATTGATCGT




GTGCGTAAACAGTACCCGAGCGCAGTGTTCTTCATCTTCACCGATGATAAAGAATGGTGC




CGCGACCACTTTAAAGGTCCGAACTTCATCGTAGTCGAACTGGAAGAAGGCGACGGTACC




GACATCGCTGAAATGACTCTGATGTCCCGCTGTAAACATCACATCATCGCTAATTCTAGC




TTTAGCTGGTGGGCGGCGTGGCTGAACGACTCCCCGGAAAAAATCGTGATCGCTCCTCAG




AAATGGATTAACAACCGCGACATGGACGATATTTACACCGAGCGTATGACTAAAATCGCA




CTGTAGCTCGAGTGACTGACTG






FutW
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGCGCCTGGTTAAAATGATCGGCGGT
283



CTGGGTAATCAGATGTTCATCTACGCGTTTTACCTACAGATGCGTAAGCGTTTCTCCAAC




GTTCGTATCGACCTGACCGATATGATGCACTACAACGTACACTATGGCTACGAACTGCAC




AAAGTTTTCGGTCTGCCGCGCACCGAGTTCTGTATGAACCAGCCTCTGAAAAAGGTTCTG




GAGTTCCTGTTCTTCCGTACCATTGTTGAACGTAAACAGCACGGTCGTATGGAGCCGTAT




ACTTGCCAGTATGTTTGGCCGCTGGTTTACTTTAAGGGCTTCTATCAGTCCGAACGTTAC




TTCTCCGAAGTTAAGGACGAAGTTCGTGAGTGTTTCACCTTCAATCCGGCACTGGCGAAT




CGTTCTTCCCAACAGATGATGGAACAGATCCAGAATGATCCTCAGGCTGTCTCTATCCAC




ATCCGTCGTGGCGACTATCTGAATCCGAAGCACTACGACACTATCGGTTGTATCTGTCAG




CTGCCGTATTACAAGCACGCCGTTTCCGAAATTAAAAAGTACGTTTCTAACCCTCACTTT




TACGTTTTCTCCGAAGACCTGGATTGGGTCAAAGCAAACCTGCCGCTGGAAAACGCACAG




TACATCGATTGGAACAAAGGCGCAGATAGCTGGCAGGATATGATGCTGATGAGCTGTTGC




AAACACCACATTATCTGTAACTCCACCTTTAGCTGGTGGGCGGCGTGGCTGAACCCATCT




GTCGAAAAAACCGTGATCATGCCGGAACAGTGGACGTCTCGTCAAGATTCCGTGGACTTT




GTGGCTAGCTGTGGCCGTTGGGTCCGTGTTAAAACGGAGTAGCTCGAGTGACTGACTG






FutX
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGCGTCTGATCAAGATGATCGGCGGC
284



CTGGGTAACCAGATGTTTATCTACGCGTTCTACCTGAAAATGAAACACCATTACCCGGAT




ACGAACATCGATCTGTCTGACATGGTTCATTATAAAGTTCACAACGGTTATGAGATGAAC




CGTATCTTTGACCTGAGCCAGACTGAATTTTGCATCAACCGTACCCTGAAAAAAATCCTG




GAGTTCCTGTTCTTCAAAAAAATCTACGAACGTCGCCAGGACCCGTCTACTCTGTATCCA




TACGAAAAACGTTATTTTTGGCCGCTGCTGTACTTTAAAGGTTTCTACCAGTCTGAACGC




TTCTTCTTCGATATCAAAGACGACGTTCGTAAAGCCTTCTCTTTTAACCTGAACATCGCT




AACCCGGAAAGCCTGGAACTGCTGAAACAGATCGAAGTTGACGACCAAGCTGTTTCTATC




CACATCCGCCGTGGTGACTACCTGCTGCCGCGTCACTGGGCAAACACGGGTTCCGTGTGC




CAGCTGCCGTATTACAAGAACGCGATCGCGGAAATGGAGAACCGTATTACTGGCCCGAGC




TACTACGTGTTCTCTGATGATATCTCTTGGGTTAAAGAAAACATCCCGCTGAAGAAAGCG




GTCTACGTGACGTGGAACAAGGGCGAAGACAGCTGGCAGGATATGATGCTGATGAGCCAC




TGTCGTCACCACATTATCTGTAATTCTACGTTCTCCTGGTGGGGTGCTTGGCTGAACCCA




CGTAAAGAGAAAATCGTCATCGCGCCGTGTCGCTGGTTCCAGCATAAAGAAACCCCGGAC




ATGTACCCGAAAGAATGGATCAAAGTACCGATTAACTAGCTCGAGTGACTGACTG






FutZ
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGTATTCTTGCCTGTCTGGTGGCCTG
285



GGTAACCAAATGTTTCAATACGCAGCAGCGTATATCCTGAAGCAGTATTTTCAGTCTACC




ACTCTGGTCCTGGATGATAGCTATTACTATTCCCAGCCGAAACGTGATACCGTTCGTAGC




CTGGAACTGAATCAGTTCAACATCTCTTATGATCGTTTTAGCTTCGCGGATGAAAAAGAG




AAGATCAAACTGCTGCGCAAATTCAAACGTAACCCGTTCCCTAAACAGATTTCCGAGATC




CTGTCTATTGCGCTGTTCGGCAAATACGCGCTGTCCGACCGTGCATTTTACACCTTCGAA




ACTATCAAAAACATCGACAAAGCGTGCCTGTTCTCCTTTTACCAGGACGCCGATCTGCTG




AATAAATATAAGCAGCTGATCCTGCCGCTGTTCGAACTGCGCGATGACCTGCTGGATATC




TGCAAGAACCTGGAACTGTATTCCCTGATCCAACGCAGCAACAATACCACTGCACTGCAT




ATCCGCCGTGGCGACTACGTGACCAACCAGCACGCCGCGAAATACCACGGCGTGCTGGAC




ATCAGCTACTATAACCACGCAATGGAATACGTGGAACGTGAACGCGGCAAACAGAACTTC




ATTATCTTCAGCGATGATGTACGTTGGGCACAGAAAGCGTTTCTGGAGAACGATAATTGC




TACGTGATTAACAACTCCGACTACGATTTCTCTGCGATCGATATGTATCTGATGTCTCTG




TGCAAAAACAACATCATCGCAAATTCCACCTACTCCTGGTGGGGTGCGTGGCTGAACAAA




TACGAGGACAAACTGGTTATCTCTCCGAAACAATGGTTTCTGGGTAACAACGAAACCTCT




CTGCGTAACGCGTCTTGGATCACCCTGTAGCTCGAGTGACTGACTG






FutZA
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGCGTCTGATCAAGATGACCGGTGGC
286



CTGGGTAACCAGATGTTCATCTACGCGTTTTATCTGCGTATGAAAAAACGTTATCCGAAA




GTTCGTATTGATCTGTCTGATATGGTTCATTATCACGTTCACCACGGCTATGAAATGCAC




CGTGTTTTCAATCTGCCGCACACCGAATTTTGCATCAACCAGCCGCTGAAAAAAGTGATC




GAGTTCCTGTTTTTCAAAAAGATTTACGAACGTAAACAGGACCCTAATTCTCTGCGTGCA




TTCGAGAAGAAGTATCTGTGGCCGCTGCTGTACTTCAAAGGTTTCTATCAATCTGAGCGC




TTCTTTGCTGACATCAAAGACGAGGTTCGTAAAGCATTCACCTTTGACTCTTCTAAAGTG




AACGCTCGCTCTGCCGAACTGCTGCGTCGCCTGGATGCCGATGCTAACGCGGTTAGCCTG




CACATTCGTCGCGGTGACTATCTACAGCCGCAGCATTGGGCTACCACTGGTTCTGTCTGC




CAGCTGCCGTACTACCAGAACGCGATCGCTGAAATGAACCGTCGCGTTGCTGCCCCGAGC




TACTACGTTTTCAGCGATGACATCGCGTGGGTGAAGGAAAACATCCCTCTACAGAACGCA




GTGTACATCGACTGGAATAAAGGCGAAGAAAGCTGGCAGGATATGATGCTGATGAGCCAC




TGCCGCCACCACATTATCTGTAACAGCACCTTCTCTTGGTGGGGCGCGTGGCTGGACCCG




CACGAGGACAAAATTGTAATCGTTCCGAATCGTTGGTTCCAGCATTGCGAAACTCCTAAC




ATCTATCCGGCAGGCTGGGTGAAAGTTGCGATTAATTAGCTCGAGTGACTGACTG









In any of the methods described herein, the α(1,2) fucosyltransferase genes or gene products may be variants or functional fragments thereof. A variant of any of genes or gene products disclosed herein may have 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to the nucleic acid or amino acid sequences described herein.


Variants as disclosed herein also include homolog, orthologs, or paralogs of the genes or gene products described herein that retain the same biological function as the genes or gene products specified herein. These variants can be used interchangeably with the genes recited in these methods. Such variants may demonstrate a percentage of homology or identity, for example, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity conserved domains important for biological function, preferably in a functional domain, e.g. catalytic domain.


The term “% identity,” in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. For example, % identity is relative to the entire length of the coding regions of the sequences being compared, or the length of a particular fragment or functional domain thereof.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.


Percent identity is determined using search algorithms such as BLAST and PSI-BLAST (Altschul et al., 1990, J Mol Biol 215:3, 403-410; Altschul et al., 1997, Nucleic Acids Res 25:17, 3389-402). For the PSI-BLAST search, the following exemplary parameters are employed: (1) Expect threshold was 10; (2) Gap cost was Existence:11 and Extension:1; (3) The Matrix employed was BLOSUM62; (4) The filter for low complexity regions was “on”.


Changes can be introduced by mutation into the nucleic acid sequence or amino acid sequence of any of the genes or gene products described herein, leading to changes in the amino acid sequence of the encoded protein or enzyme, without altering the functional ability of the protein or enzyme. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of any of sequences expressly disclosed herein. A “non-essential” amino acid residue is a residue at a position in the sequence that can be altered from the wild-type sequence of the polypeptide without altering the biological activity, whereas an “essential” amino acid residue is a residue at a position that is required for biological activity. For example, amino acid residues that are conserved among members of a family of proteins are not likely to be amenable to mutation. Other amino acid residues, however, (e.g., those that are poorly conserved among members of the protein family) may not be as essential for activity and thus are more likely to be amenable to alteration. Thus, another aspect of the invention pertains to nucleic acid molecules encoding the proteins or enzymes disclosed herein that contain changes in amino acid residues relative to the amino acid sequences disclosed herein that are not essential for activity (i.e., fucosyltransferase activity).


An isolated nucleic acid molecule encoding a protein essentially retaining the functional capability compared to any of the genes described herein can be created by introducing one or more nucleotide substitutions, additions or deletions into the corresponding nucleotide sequence, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


Mutations can be introduced into a nucleic acid sequence by standard techniques such that the encoded amino acid sequence is altered, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. Certain amino acids have side chains with more than one classifiable characteristic. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, tryptophan, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tyrosine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a given polypeptide is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a given coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for given polypeptide biological activity to identify mutants that retain activity. Conversely, the invention also provides for variants with mutations that enhance or increase the endogenous biological activity. Following mutagenesis of the nucleic acid sequence, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined. An increase, decrease, or elimination of a given biological activity of the variants disclosed herein can be readily measured by the ordinary person skilled in the art, i.e., by measuring the capability for mediating oligosaccharide modification, synthesis, or degradation (via detection of the products).


The present invention also provides for functional fragments of the genes or gene products described herein. A fragment, in the case of these sequences and all others provided herein, is defined as a part of the whole that is less than the whole. Moreover, a fragment ranges in size from a single nucleotide or amino acid within a polynucleotide or polypeptide sequence to one fewer nucleotide or amino acid than the entire polynucleotide or polypeptide sequence. Finally, a fragment is defined as any portion of a complete polynucleotide or polypeptide sequence that is intermediate between the extremes defined above.


For example, fragments of any of the proteins or enzymes disclosed herein or encoded by any of the genes disclosed herein can be 10 to 20 amino acids, 10 to 30 amino acids, 10 to 40 amino acids, 10 to 50 amino acids, 10 to 60 amino acids, 10 to 70 amino acids, 10 to 80 amino acids, 10 to 90 amino acids, 10 to 100 amino acids, 50 to 100 amino acids, 75 to 125 amino acids, 100 to 150 amino acids, 150 to 200 amino acids, 200 to 250 amino acids, 250 to 300 amino acids, 300 to 350 amino acids, 350 to 400 amino acids, 400 to 450 amino acids, or 450 to 500 amino acids. The fragments encompassed in the present invention comprise fragments that retain functional fragments. As such, the fragments preferably retain the catalytic domains that are required or are important for functional activity. Fragments can be determined or generated by using the sequence information herein, and the fragments can be tested for functional activity using standard methods known in the art. For example, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined. The biological function of said fragment can be measured by measuring ability to synthesize or modify a substrate oligosaccharide, or conversely, to catabolize an oligosaccharide substrate.


Within the context of the invention, “functionally equivalent”, as used herein, refers to a gene or the resulting encoded protein variant or fragment thereof capable of exhibiting a substantially similar activity as the wild-type fucosyltransferase. Specifically, the fucosyltransferase activity refers to the ability to transfer a fucose sugar to an acceptor substrate via an alpha-(1,2)-linkage. As used herein, “substantially similar activity” refers to an activity level within 5%, 10%, 20%, 30%, 40%, or 50% of the wild-type fucosyltransferase.


To test for lactose-utilizing fucosylatransferase activity, the production of fucosylated oligossacharides (i.e., 2′-FL) is evaluated in a host organism that expresses the candidate enzyme (or syngene) and which contains both cytoplasmic GDP-fucose and lactose pools. The production of fucosylated oligosaccharides indicates that the candidate enzyme-encoding sequence functions as a lactose-utilizing α(1,2)fucosyltransferase.


Engineering of E. coli to Produce Human Milk Oligosaccharide 2′-FL


Described herein is a gene screening approach, which was used to validate the novel α (1,2) fucosyltransferases (a (1,2) FTs) for the synthesis of fucosyl-linked oligosaccharides in metabolically engineered E. coli. Of particular interest are a (1,2) FTs that are capable of the synthesis of the HMOS 2′-fucosyllactose (2′-FL). 2′-FL is the most abundant fucosylated oligosaccharide present in human milk, and this oligosaccharide provides protection to newborn infants against infectious diarrhea caused by bacterial pathogens such as Campylobacter jejuni (Ruiz-Palacios, G. M., et al. (2003). J Biol Chem 278, 14112-120; Morrow, A. L. et al. (2004). J Pediatr 145, 297-303; Newburg, D. S. et al. (2004). Glycobiology 14, 253-263). Other a (1,2) FTs of interest are those capable of synthesis of HMOS lactodifucotetraose (LDFT), laco-N-fucopentaose I (LNFI), or lacto-N-difucohexaose I (LDFH I).


The synthetic pathway of fucosyl oligosaccharides of human milk is illustrated in FIG. 1. Structurally, 2′-FL consists of a fucose molecule a 1,2 linked to the galactose portion of lactose (Fucα1-2Galβ1-4G1c). An α (1,2) FT from H. pylori strain 26695 termed FutC has been utilized to catalyze the synthesis of 2′-FL in metabolically engineered E. coli (Drouillard, S. et al. (2006). Angew Chem Int Ed Engl 45, 1778-780).


Candidate α(1,2) FTs (i.e., syngenes) were cloned by standard molecular biological techniques into an expression plasmid. This plasmid utilizes the strong leftwards promoter of bacteriophage λ (termed PL) to direct expression of the candidate genes (Sanger, F. et al. (1982). J Mol Biol 162, 729-773). The promoter is controllable, e.g., a trp-cI construct is stably integrated the into the E. coli host's genome (at the ampC locus), and control is implemented by adding tryptophan to the growth media. Gradual induction of protein expression is accomplished using a temperature sensitive cI repressor. Another similar control strategy (temperature independent expression system) has been described (Mieschendahl et al., 1986, Bio/Technology 4:802-808). The plasmid also carries the E. coli rcsA gene to up-regulate GDP-fucose synthesis, a critical precursor for the synthesis of fucosyl-linked oligosaccharides. In addition, the plasmid carries a β-lactamase (bla) gene for maintaining the plasmid in host strains by ampicillin selection (for convenience in the laboratory) and a native thyA (thymidylate synthase) gene as an alternative means of selection in thyA hosts. Alternative selectable markers include the proBA genes to complement proline auxotrophy (Stein et al., (1984), J Bacteriol 158:2, 696-700 (1984) or purA to complement adenine auxotrophy (S. A. Wolfe, J. M. Smith, J Biol Chem 263, 19147-53 (1988)). To act as plasmid selectable markers each of these genes are first inactivated in the host cell chromosome, then wild type copies of the genes are provided on the plasmid. Alternatively a drug resistance gene may be used on the plasmid, e.g. beta-lactamase (this gene is already on the expression plasmid described above, thereby permitting selection with ampicillin). Ampicillin selection is well known in the art and described in standard manuals such as Maniatis et al., (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring, N.Y.


The nucleic acid sequence of such an expression plasmid, pEC2-(T7)FutX-rcsA-thyA (pG401) is provided below. The underlined sequence represents the FutX syngene, which can be readily replaced with any of the novel α(1,2) FTs described herein using standard recombinant DNA techniques.










(SEQ ID NO: 287)



TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGT






CTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGG





CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACC





GCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCTCCTCAACCTGTATATTCGTAAACCACGCC





CAATGGGAGCTGTCTCAGGTTTGTTCCTGATTGGTTACGGCGCGTTTCGCATCATTGTTGAGTTTTTC





CGCCAGCCCGACGCGCAGTTTACCGGTGCCTGGGTGCAGTACATCAGCATGGGGCAAATTCTTTCCAT





CCCGATGATTGTCGCGGGTGTGATCATGATGGTCTGGGCATATCGTCGCAGCCCACAGCAACACGTTT





CCTGAGGAACCATGAAACAGTATTTAGAACTGATGCAAAAAGTGCTCGACGAAGGCACACAGAAAAAC





GACCGTACCGGAACCGGAACGCTTTCCATTTTTGGTCATCAGATGCGTTTTAACCTGCAAGATGGATT





CCCGCTGGTGACAACTAAACGTTGCCACCTGCGTTCCATCATCCATGAACTGCTGTGGTTTCTGCAGG





GCGACACTAACATTGCTTATCTACACGAAAACAATGTCACCATCTGGGACGAATGGGCCGATGAAAAC





GGCGACCTCGGGCCAGTGTATGGTAAACAGTGGCGCGCCTGGCCAACGCCAGATGGTCGTCATATTGA





CCAGATCACTACGGTACTGAACCAGCTGAAAAACGACCCGGATTCGCGCCGCATTATTGTTTCAGCGT





GGAACGTAGGCGAACTGGATAAAATGGCGCTGGCACCGTGCCATGCATTCTTCCAGTTCTATGTGGCA





GACGGCAAACTCTCTTGCCAGCTTTATCAGCGCTCCTGTGACGTCTTCCTCGGCCTGCCGTTCAACAT





TGCCAGCTACGCGTTATTGGTGCATATGATGGCGCAGCAGTGCGATCTGGAAGTGGGTGATTTTGTCT





GGACCGGTGGCGACACGCATCTGTACAGCAACCATATGGATCAAACTCATCTGCAATTAAGCCGCGAA





CCGCGTCCGCTGCCGAAGTTGATTATCAAACGTAAACCCGAATCCATCTTCGACTACCGTTTCGAAGA





CTTTGAGATTGAAGGCTACGATCCGCATCCGGGCATTAAAGCGCCGGTGGCTATCTAATTACGAAACA





TCCTGCCAGAGCCGACGCCAGTGTGCGTCGGTTTTTTTACCCTCCGTTAAATTCTTCGAGACGCCTTC





CCGAAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGC





TATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCC





CAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTTCTTTAATGAAGCAGGGCATCAGGACGGT





ATCTTTGTGGAGAAAGCAGAGTAATCTTATTCAGCCTGACTGGTGGGAAACCACCAGTCAGAATGTGT





TAGCGCATGTTGACAAAAATACCATTAGTCACATTATCCGTCAGTCGGACGACATGGTAGATAACCTG





TTTATTATGCGTTTTGATCTTACGTTTAATATTACCTTTATGCGATGAAACGGTCTTGGCTTTGATAT





TCATTTGGTCAGAGATTTGAATGGTTCCCTGACCTGCCATCCACATTCGCAACATACTCGATTCGGTT





CGGCTCAATGATAACGTCGGCATATTTAAAAACGAGGTTATCGTTGTCTCTTTTTTCAGAATATCGCC





AAGGATATCGTCGAGAGATTCCGGTTTAATCGATTTAGAACTGATCAATAAATTTTTTCTGACCAATA





GATATTCATCAAAATGAACATTGGCAATTGCCATAAAAACGATAAATAACGTATTGGGATGTTGATTA





ATGATGAGCTTGATACGCTGACTGTTAGAAGCATCGTGGATGAAACAGTCCTCATTAATAAACACCAC





TGAAGGGCGCTGTGAATCACAAGCTATGGCAAGGTCATCAACGGTTTCAATGTCGTTGATTTCTCTTT





TTTTAACCCCTCTACTCAACAGATACCCGGTTAAACCTAGTCGGGTGTAACTACATAAATCCATAATA





ATCGTTGACATGGCATACCCTCACTCAATGCGTAACGATAATTCCCCTTACCTGAATATTTCATCATG





ACTAAACGGAACAACATGGGTCACCTAATGCGCCACTCTCGCGATTTTTCAGGCGGACTTACTATCCC





GTAAAGTGTTGTATAATTTGCCTGGAATTGTCTTAAAGTAAAGTAAATGTTGCGATATGTGAGTGAGC





TTAAAACAAATATTTCGCTGCAGGAGTATCCTGGAAGATGTTCGTAGAAGCTTACTGCTCACAAGAAA





AAAGGCACGTCATCTGACGTGCCTTTTTTATTTGTACTACCCTGTACGATTACTGCAGCTCGAGCTAG






TTAATCGGTACTTTGATCCATTCTTTCGGGTACATGTCCGGGGTTTCTTTATGCTGGAACCAGCGACA







CGGCGCGATGACGATTTTCTCTTTACGTGGGTTCAGCCAAGCACCCCACCAGGAGAACGTAGAATTAC







AGATAATGTGGTGACGACAGTGGCTCATCAGCATCATATCCTGCCAGCTGTCTTCGCCCTTGTTCCAC







GTCACGTAGACCGCTTTCTTCAGCGGGATGTTTTCTTTAACCCAAGAGATATCATCAGAGAACACGTA







GTAGCTCGGGCCAGTAATACGGTTCTCCATTTCCGCGATCGCGTTCTTGTAATACGGCAGCTGGCACA







CGGAACCCGTGTTTGCCCAGTGACGCGGCAGCAGGTAGTCACCACGGCGGATGTGGATAGAAACAGCT







TGGTCGTCAACTTCGATCTGTTTCAGCAGTTCCAGGCTTTCCGGGTTAGCGATGTTCAGGTTAAAAGA







GAAGGCTTTACGAACGTCGTCTTTGATATCGAAGAAGAAGCGTTCAGACTGGTAGAAACCTTTAAAGT







ACAGCAGCGGCCAAAAATAACGTTTTTCGTATGGATACAGAGTAGACGGGTCCTGGCGACGTTCGTAG







ATTTTTTTGAAGAACAGGAACTCCAGGATTTTTTTCAGGGTACGGTTGATGCAAAATTCAGTCTGGCT







CAGGTCAAAGATACGGTTCATCTCATAACCGTTGTGAACTTTATAATGAACCATGTCAGACAGATCGA







TGTTCGTATCCGGGTAATGGTGTTTCATTTTCAGGTAGAACGCGTAGATAAACATCTGGTTACCCAGG







CCGCCGATCATCTTGATCAGACGCATATGTATATCTCCTTCTTGAATTCTAAAAATTGATTGAATGTA






TGCAAATAAATGCATACACCATAGGTGTGGTTTAATTTGATGCCCTTTTTCAGGGCTGGAATGTGTAA





GAGCGGGGTTATTTATGCTGTTGTTTTTTTGTTACTCGGGAAGGGCTTTACCTCTTCCGCATAAACGC





TTCCATCAGCGTTTATAGTTAAAAAAATCTTTCGGAACTGGTTTTGCGCTTACCCCAACCAACAGGGG





ATTTGCTGCTTTCCATTGAGCCTGTTTCTCTGCGCGACGTTCGCGGCGGCGTGTTTGTGCATCCATCT





GGATTCTCCTGTCAGTTAGCTTTGGTGGTGTGTGGCAGTTGTAGTCCTGAACGAAAACCCCCCGCGAT





TGGCACATTGGCAGCTAATCCGGAATCGCACTTACGGCCAATGCTTCGTTTCGTATCACACACCCCAA





AGCCTTCTGCTTTGAATGCTGCCCTTCTTCAGGGCTTAATTTTTAAGAGCGTCACCTTCATGGTGGTC





AGTGCGTCCTGCTGATGTGCTCAGTATCACCGCCAGTGGTATTTATGTCAACACCGCCAGAGATAATT





TATCACCGCAGATGGTTATCTGTATGTTTTTTATATGAATTTATTTTTTGCAGGGGGGCATTGTTTGG





TAGGTGAGAGATCAATTCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGG





CGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGC





TCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAA





AAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCC





CCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA





CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACC





TGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCG





GTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT





ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTG





GTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTAC





GGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGT





TGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGA





TTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG





AACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTT





AAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAAT





GCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCC





GTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGA





CCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTG





GTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCG





CCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGG





TATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAA





AAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATG





GTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA





GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATAC





GGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGA





AAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATC





TTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAA





AGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATT





TATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGT





TCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCT





ATAAAAATAGGCGTATCACGAGGCCCTTTCGTC






The expression constructs were transformed into a host strain useful for the production of 2′-FL. Biosynthesis of 2′-FL requires the generation of an enhanced cellular pool of both lactose and GDP-fucose (FIG. 2). The wild-type Escherichia coli K12 prototrophic strain W3110 was selected as the parent background to test the ability of the candidates to catalyze 2′-FL production (Bachmann, B J (1972). Bacteriol Rev 36, 525-557). The particular W3110 derivative employed was one that previously had been modified by the introduction (at the ampC locus) of a tryptophan-inducible PtrpB cI+ repressor cassette, generating an E. coli strain known as GI724 (LaVallie, E. R. et al. (2000). Methods Enzymol 326, 322-340). Other features of GI724 include lacIq and lacPL8 promoter mutations. E. coli strain GI724 affords economical production of recombinant proteins from the phage λ PL promoter following induction with low levels of exogenous tryptophan (LaVallie, E. R. et al. (1993). Biotechnology (N Y) 11, 187-193; Mieschendahl, et al. (1986). Bio/Technology 4, 802-08). Additional genetic alterations were made to this strain to promote the biosynthesis of 2′-FL. This was achieved in strain GI724 through several manipulations of the chromosome using λ Red recombineering (Court, D. L. et al. (2002). Annu Rev Genet 36, 361-388) and generalized P1 phage transduction.


First, the ability of the E. coli host strain to accumulate intracellular lactose was engineered by simultaneous deletion of the endogenous β-galactosidase gene (lacZ) and the lactose operon repressor gene (lad). During construction of this deletion, the lacIq promoter was placed immediately upstream of the lactose permease gene, lacY. The modified strain maintains its ability to transport lactose from the culture medium (via LacY), but is deleted for the wild-type copy of the lacZ (β-galactosidase) gene responsible for lactose catabolism. Therefore, an intracellular lactose pool is created when the modified strain is cultured in the presence of exogenous lactose. A schematic of the PlacIq lacY+ chromosomal construct is shown in FIG. 12.


Genomic DNA sequence of the P lacIq lacY+ chromosomal construct is set forth below (SEQ ID NO: 288):









CACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCG





GAAGAGAGTCAAGTGTAGGCTGGAGCTGCTTCGAAGTTCCTATACTTTC





TAGAGAATAGGAACTTCGGAATAGGAACTTCGGAATAGGAACTAAGGAG





GATATTCATATGTACTATTTAAAAAACACAAACTTTTGGATGTTCGGTT





TATTCTTTTTCTTTTACTTTTTTATCATGGGAGCCTACTTCCCGTTTTT





CCCGATTTGGCTACATGACATCAACCATATCAGCAAAAGTGATACGGGT





ATTATTTTTGCCGCTATTTCTCTGTTCTCGCTATTATTCCAACCGCTGT





TTGGTCTGCTTTCTGACAAACTCGGGCTGCGCAAATACCTGCTGTGGAT





TATTACCGGCATGTTAGTGATGTTTGCGCCGTTCTTTATTTTTATCTTC





GGGCCACTGTTACAATACAACATTTTAGTAGGATCGATTGTTGGTGGTA





TTTATCTAGGCTTTTGTTTTAACGCCGGTGCGCCAGCAGTAGAGGCATT





TATTGAGAAAGTCAGCCGTCGCAGTAATTTCGAATTTGGTCGCGCGCGG





ATGTTTGGCTGTGTTGGCTGGGCGCTGTGTGCCTCGATTGTCGGCATCA





TGTTCACCATCAATAATCAGTTTGTTTTCTGGCTGGGCTCTGGCTGTGC





ACTCATCCTCGCCGTTTTACTCTTTTTCGCCAAAACGGATGCGCCCTCT





TCTGCCACGGTTGCCAATGCGGTAGGTGCCAACCATTCGGCATTTAGCC





TTAAGCTGGCACTGGAACTGTTCAGACAGCCAAAACTGTGGTTTTTGTC





ACTGTATGTTATTGGCGTTTCCTGCACCTACGATGTTTTTGACCAACAG





TTTGCTAATTTCTTTACTTCGTTCTTTGCTACCGGTGAACAGGGTACGC





GGGTATTTGGCTACGTAACGACAATGGGCGAATTACTTAACGCCTCGAT





TATGTTCTTTGCGCCACTGATCATTAATCGCATCGGTGGGAAAAACGCC





CTGCTGCTGGCTGGCACTATTATGTCTGTACGTATTATTGGCTCATCGT





TCGCCACCTCAGCGCTGGAAGTGGTTATTCTGAAAACGCTGCATATGTT





TGAAGTACCGTTCCTGCTGGTGGGCTGCTTTAAATATATTACCAGCCAG





TTTGAAGTGCGTTTTTCAGCGACGATTTATCTGGTCTGTTTCTGCTTCT





TTAAGCAACTGGCGATGATTTTTATGTCTGTACTGGCGGGCAATATGTA





TGAAAGCATCGGTTTCCAGGGCGCTTATCTGGTGCTGGGTCTGGTGGCG





CTGGGCTTCACCTTAATTTCCGTGTTCACGCTTAGCGGCCCCGGCCCGC





TTTCCCTGCTGCGTCGTCAGGTGAATGAAGTCGCTTAAGCAATCAATGT





CGGATGCGGCGCGAGCGCCTTATCCGACCAACATATCATAACGGAGTGA





TCGCATTGTAAATTATAAAAATTGCCTGATACGCTGCGCTTATCAGGCC





TACAAGTTCAGCGATCTACATTAGCCGCATCCGGCATGAACAAAGCGCA





GGAACAAGCGTCGCA






Second, the ability of the host E. coli strain to synthesize colanic acid, an extracellular capsular polysaccharide, was eliminated by the deletion of the wcaJ gene, encoding the UDP-glucose lipid carrier transferase (Stevenson, G. et al. (1996). J Bacteriol 178, 4885-893). In a wcaJ null background GDP-fucose accumulates in the E. coli cytoplasm (Dumon, C. et al. (2001). Glycoconj J 18, 465-474). A schematic of the chromosomal deletion of wcaJ is shown in FIG. 13.


The sequence of the chromosomal region of E. coli bearing the ΔwcaJ::FRT mutation is set forth below (SEQ ID NO: 289):









GTTCGGTTATATCAATGTCAAAAACCTCACGCCGCTCAAGCTGGTGATC





AACTCCGGGAACGGCGCAGCGGGTCCGGTGGTGGACGCCATTGAAGCCC





GCTTTAAAGCCCTCGGCGCGCCCGTGGAATTAATCAAAGTGCACAACAC





GCCGGACGGCAATTTCCCCAACGGTATTCCTAACCCACTACTGCCGGAA





TGCCGCGACGACACCCGCAATGCGGTCATCAAACACGGCGCGGATATGG





GCATTGCTTTTGATGGCGATTTTGACCGCTGTTTCCTGTTTGACGAAAA





AGGGCAGTTTATTGAGGGCTACTACATTGTCGGCCTGTTGGCAGAAGCA





TTCCTCGAAAAAAATCCCGGCGCGAAGATCATCCACGATCCACGTCTCT





CCTGGAACACCGTTGATGTGGTGACTGCCGCAGGTGGCACGCCGGTAAT





GTCGAAAACCGGACACGCCTTTATTAAAGAACGTATGCGCAAGGAAGAC





GCCATCTATGGTGGCGAAATGAGCGCCCACCATTACTTCCGTGATTTCG





CTTACTGCGACAGCGGCATGATCCCGTGGCTGCTGGTCGCCGAACTGGT





GTGCCTGAAAGATAAAACGCTGGGCGAACTGGTACGCGACCGGATGGCG





GCGTTTCCGGCAAGCGGTGAGATCAACAGCAAACTGGCGCAACCCGTTG





AGGCGATTAACCGCGTGGAACAGCATTTTAGCCGTGAGGCGCTGGCGGT





GGATCGCACCGATGGCATCAGCATGACCTTTGCCGACTGGCGCTTTAAC





CTGCGCACCTCCAATACCGAACCGGTGGTGCGCCTGAATGTGGAATCGC





GCGGTGATGTGCCGCTGATGGAAGCGCGAACGCGAACTCTGCTGACGTT





GCTGAACGAGTAATGTCGGATCTTCCCTTACCCCACTGCGGGTAAGGGG





CTAATAACAGGAACAACGATGATTCCGGGGATCCGTCGACCTGCAGTTC





GAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCC





TACAGTTAACAAAGCGGCATATTGATATGAGCTTACGTGAAAAAACCAT





CAGCGGCGCGAAGTGGTCGGCGATTGCCACGGTGATCATCATCGGCCTC





GGGCTGGTGCAGATGACCGTGCTGGCGCGGATTATCGACAACCACCAGT





TCGGCCTGCTTACCGTGTCGCTGGTGATTATCGCGCTGGCAGATACGCT





TTCTGACTTCGGTATCGCTAACTCGATTATTCAGCGAAAAGAAATCAGT





CACCTTGAACTCACCACGTTGTACTGGCTGAACGTCGGGCTGGGGATCG





TGGTGTGCGTGGCGGTGTTTTTGTTGAGTGATCTCATCGGCGACGTGCT





GAATAACCCGGACCTGGCACCGTTGATTAAAACATTATCGCTGGCGTTT





GTGGTAATCCCCCACGGGCAACAGTTCCGCGCGTTGATGCAAAAAGAGC





TGGAGTTCAACAAAATCGGCATGATCGAAACCAGCGCGGTGCTGGCGGG





CTTCACTTGTACGGTGGTTAGCGCCCATTTCTGGCCGCTGGCGATGACC





GCGATCCTCGGTTATCTGGTCAATAGTGCGGTGAGAACGCTGCTGTTTG





GCTACTTTGGCCGCAAAATTTATCGCCCCGGTCTGCATTTCTCGCTGGC





GTCGGTGGCACCGAACTTACGCTTTGGTGCCTGGCTGACGGCGGACAGC





ATCATCAACTATCTCAATACCAACCTTTCAACGCTCGTGCTGGCGCGTA





TTCTCGGCGCGGGCGTGGCAGGGGGATACAACCTGGCGTACAACGTGGC





CGTTGTGCCACCGATGAAGCTGAACCCAATCATCACCCGCGTGTTGTTT





CCGGCATTCGCCAAAATTCAGGACGATACCGAAAAGCTGCGTGTTAACT





TCTACAAGCTGCTGTCGGTAGTGGGGATTATCAACTTTCCGGCGCTGCT





CGGGCTAATGGTGGTGTCGAATAACTTTGTACCGCTGGTCTTTGGTGAG





AAGTGGAACAGCATTATTCCGGTGCTGCAATTGCTGTGTGTGGTGGGTC





TGCTGCGCTCCG






Third, the magnitude of the cytoplasmic GDP-fucose pool was enhanced by the introduction of a null mutation into the ion gene. Lon is an ATP-dependant intracellular protease that is responsible for degrading RcsA, which is a positive transcriptional regulator of colanic acid biosynthesis in E. coli (Gottesman, S. & Stout, V. Mol Microbiol 5, 1599-1606 (1991)). In a ion null background, RcsA is stabilized, RcsA levels increase, the genes responsible for GDP-fucose synthesis in E. coli are up-regulated, and intracellular GDP-fucose concentrations are enhanced. The lon gene was almost entirely deleted and replaced by an inserted functional, wild-type, but promoter-less E. coli lacZ+ gene (Δlon::(kan, lacZ+). λ Red recombineering was used to perform the construction. A schematic of the kan, lacZ+ insertion into the ion locus is shown in FIG. 14.


Genomic DNA sequence surrounding the lacZ+ insertion into the ion region in the. E. coli strain is set forth below (SEQ ID NO: 290):









GTGGATGGAAGAGGTGGAAAAAGTGGTTATGGAGGAGTGGGTAATTGAT





GGTGAAAGGAAAGGGTTGGTGATTTATGGGAAGGGGGAAGGGGAAGAGG





GATGTGGTGAATAATTAAGGATTGGGATAGAATTAGTTAAGGAAAAAGG





GGGGATTTTATGTGGGGTTTAATTTTTGGTGTATTGTGGGGGTTGAATG





TGGGGGAAAGATGGGGATATAGTGAGGTAGATGTTAATAGATGGGGTGA





AGGAGAGTGGTGTGATGTGATTAGGTGGGGGAAATTAAAGTAAGAGAGA





GGTGTATGATTGGGGGGATGGGTGGAGGTGGAGTTGGAAGTTGGTATTG





TGTAGAAAGTATAGGAAGTTGAGAGGGGTTTTGAAGGTGAGGGTGGGGG





AAGGAGTGAGGGGGGAAGGGGTGGTAAAGGAAGGGGAAGAGGTAGAAAG





GGAGTGGGGAGAAAGGGTGGTGAGGGGGGATGAATGTGAGGTAGTGGGG





TATGTGGAGAAGGGAAAAGGGAAGGGGAAAGAGAAAGGAGGTAGGTTGG





AGTGGGGTTAGATGGGGATAGGTAGAGTGGGGGGTTTTATGGAGAGGAA





GGGAAGGGGAATTGGGAGGTGGGGGGGGGTGTGGTAAGGTTGGGAAGGG





GTGGAAAGTAAAGTGGATGGGTTTGTTGGGGGGAAGGATGTGATGGGGG





AGGGGATGAAGATGTGATGAAGAGAGAGGATGAGGATGGTTTGGGATGA





TTGAAGAAGATGGATTGGAGGGAGGTTGTGGGGGGGGTTGGGTGGAGAG





GGTATTGGGGTATGAGTGGGGAGAAGAGAGAATGGGGTGGTGTGATGGG





GGGGTGTTGGGGGTGTGAGGGGAGGGGGGGGGGGTTGTTTTTGTGAAGA





GGGAGGTGTGGGGTGGGGTGAATGAAGTGGAGGAGGAGGGAGGGGGGGT





ATGGTGGGTGGGGAGGAGGGGGGTTGGTTGGGGAGGTGTGGTGGAGGTT





GTGAGTGAAGGGGGAAGGGAGTGGGTGGTATTGGGGGAAGTGGGGGGGG





AGGATGTGGTGTGATGTGAGGTTGGTGGTGGGGAGAAAGTATGGATGAT





GGGTGATGGAATGGGGGGGGTGGATAGGGTTGATGGGGGTAGGTGGGGA





TTGGAGGAGGAAGGGAAAGATGGGATGGAGGGAGGAGGTAGTGGGATGG





AAGGGGGTGTTGTGGATGAGGATGATGTGGAGGAAGAGGATGAGGGGGT





GGGGGGAGGGGAAGTGTTGGGGAGGGTGAAGGGGGGATGGGGGAGGGGG





AGGATGTGGTGGTGAGGGATGGGGATGGGTGGTTGGGGAATATGATGGT





GGAAAATGGGGGGTTTTGTGGATTGATGGAGTGTGGGGGGGTGGGTGTG





GGGGAGGGGTATGAGGAGATAGGGTTGGGTAGGGGTGATATTGGTGAAG





AGGTTGGGGGGGAATGGGGTGAGGGGTTGGTGGTGGTTTAGGGTATGGG





GGGTGGGGATTGGGAGGGGATGGGGTTGTATGGGGTTGTTGAGGAGTTG





TTGTAATAAGGGGATGTTGAAGTTGGTATTGGGAAGTTGGTATTGTGTA





GAAAGTATAGGAAGTTGGAAGGAGGTGGAGGGTAGATAAAGGGGGGGGT





TATTTTTGAGAGGAGAGGAAGTGGTAATGGTAGGGAGGGGGGGTGAGGT





GGAATTGGGGGGATAGTGAGGGGGTGGAGGAGTGGTGGGGAGGAATGGG





GATATGGAAAGGGTGGATATTGAGGGATGTGGGTTGTTGGGGGTGGAGG





AGATGGGGATGGGTGGTTTGGATGAGTTGGTGTTGAGTGTAGGGGGTGA





TGTTGAAGTGGAAGTGGGGGGGGGAGTGGTGTGGGGGATAATTGAATTG





GGGGGTGGGGGAGGGGAGAGGGTTTTGGGTGGGGAAGAGGTAGGGGGTA





TAGATGTTGAGAATGGGAGATGGGAGGGGTGAAAAGAGGGGGGAGTAAG





GGGGTGGGGATAGTTTTGTTGGGGGGGTAATGGGAGGGAGTTTAGGGGG





TGTGGTAGGTGGGGGAGGTGGGAGTTGAGGGGAATGGGGGGGGGATGGG





GTGTATGGGTGGGGAGTTGAAGATGAAGGGTAATGGGGATTTGAGGAGT





AGGATGAATGGGGTAGGTTTTGGGGGTGATAAATAAGGTTTTGGGGTGA





TGGTGGGAGGGGTGAGGGGTGGTAATGAGGAGGGGATGAGGAAGTGTAT





GTGGGGTGGAGTGGAAGAAGGGTGGTTGGGGGTGGTAATGGGGGGGGGG





GTTGGAGGGTTGGAGGGAGGGGTTAGGGTGAATGGGGGTGGGTTGAGTT





AGGGGAATGTGGTTATGGAGGGGTGGAGGGGTGAAGTGATGGGGGAGGG





GGGTGAGGAGTTGTTTTTTATGGGGAATGGAGATGTGTGAAAGAAAGGG





TGAGTGGGGGTTAAATTGGGAAGGGTTATTAGGGAGGTGGATGGAAAAA





TGGATTTGGGTGGTGGTGAGATGGGGGATGGGGTGGGAGGGGGGGGGGA





GGGTGAGAGTGAGGTTTTGGGGGAGAGGGGAGTGGTGGGAGGGGGTGAT





GTGGGGGGGTTGTGAGGATGGGGTGGGGTTGGGTTGGAGTAGGGGTAGT





GTGAGGGAGAGTTGGGGGGGGGTGTGGGGGTGGGGTAGTTGAGGGAGTT





GAATGAAGTGTTTAGGTTGTGGAGGGAGATGGAGAGGGAGTTGAGGGGT





TGGGAGGGGGTTAGGATGGAGGGGGAGGATGGAGTGGAGGAGGTGGTTA





TGGGTATGAGGGAAGAGGTATTGGGTGGTGAGTTGGATGGTTTGGGGGG





ATAAAGGGAAGTGGAAAAAGTGGTGGTGGTGTTTTGGTTGGGTGAGGGG





TGGATGGGGGGTGGGGTGGGGAAAGAGGAGAGGGTTGATAGAGAAGTGG





GGATGGTTGGGGGTATGGGGAAAATGAGGGGGGTAAGGGGAGGAGGGGT





TGGGGTTTTGATGATATTTAATGAGGGAGTGATGGAGGGAGTGGGAGAG





GAAGGGGGGGTGTAAAGGGGGATAGTGAGGAAAGGGGTGGGAGTATTTA





GGGAAAGGGGGAAGAGTGTTAGGGATGGGGTGGGGGTATTGGGAAAGGA





TGAGGGGGGGGGTGTGTGGAGGTAGGGAAAGGGATTTTTTGATGGAGGA





TTTGGGGAGAGGGGGGAAGGGGTGGTGTTGATGGAGGGGGGGGTAGATG





GGGGAAATAATATGGGTGGGGGTGGTGTGGGGTGGGGGGGGTTGATAGT





GGAGGGGGGGGGAAGGATGGAGAGATTTGATGGAGGGATAGAGGGGGTG





GTGATTAGGGGGGTGGGGTGATTGATTGGGGAGGGAGGAGATGATGAGA





GTGGGGTGATTAGGATGGGGGTGGAGGATTGGGGTTAGGGGTTGGGTGA





TGGGGGGTAGGGAGGGGGGATGATGGGTGAGAGGATTGATTGGGAGGAT





GGGGTGGGTTTGAATATTGGGTTGATGGAGGAGATAGAGGGGGTAGGGG





TGGGAGAGGGTGTAGGAGAGGGGATGGTTGGGATAATGGGAAGAGGGGA





GGGGGTTAAAGTTGTTGTGGTTGATGAGGAGGATATGGTGGAGGATGGT





GTGGTGATGGATGAGGTGAGGATGGAGAGGATGATGGTGGTGAGGGTTA





AGGGGTGGAATGAGGAAGGGGTTGGGGTTGAGGAGGAGGAGAGGATTTT





GAATGGGGAGGTGGGGGAAAGGGAGATGGGAGGGTTGTGGTTGAATGAG





GGTGGGGTGGGGGGTGTGGAGTTGAAGGAGGGGAGGATAGAGATTGGGG





ATTTGGGGGGTGGAGAGTTTGGGGTTTTGGAGGTTGAGAGGTAGTGTGA





GGGGATGGGGATAAGGAGGAGGGTGATGGATAATTTGAGGGGGGAAAGG





GGGGGTGGGGGTGGGGAGGTGGGTTTGAGGGTGGGATAAAGAAAGTGTT





AGGGGTAGGTAGTGAGGGAAGTGGGGGGAGATGTGAAGTTGAGGGTGGA





GTAGAGGGGGGGTGAAATGATGATTAAAGGGAGTGGGAAGATGGAAATG





GGTGATTTGTGTAGTGGGTTTATGGAGGAAGGAGAGGTGAGGGAAAATG





GGGGTGATGGGGGAGATATGGTGATGTTGGAGATAAGTGGGGTGAGTGG





AGGGGAGGAGGATGAGGGGGAGGGGGTTTTGTGGGGGGGGTAAAAATGG





GGTGAGGTGAAATTGAGAGGGGAAAGGAGTGTGGTGGGGGTAAGGGAGG





GAGGGGGGGTTGGAGGAGAGATGAAAGGGGGAGTTAAGGGGATGAAAAA





TAATTGGGGTGTGGGGTTGGTGTAGGGAGGTTTGATGAAGATTAAATGT





GAGGGAGTAAGAAGGGGTGGGATTGTGGGTGGGAAGAAAGGGGGGATTG





AGGGTAATGGGATAGGTGAGGTTGGTGTAGATGGGGGGATGGTAAGGGT





GGATGTGGGAGTTTGAGGGGAGGAGGAGAGTATGGGGGTGAGGAAGATG





GGAGGGAGGGAGGTTTGGGGGAGGGGTTGTGGTGGGGGAAAGGAGGGAA





AGGGGGATTGGGGATTGAGGGTGGGGAAGTGTTGGGAAGGGGGATGGGT





GGGGGGGTGTTGGGTATTAGGGGAGGTGGGGAAAGGGGGATGTGGTGGA





AGGGGATTAAGTTGGGTAAGGGGAGGGTTTTGGGAGTGAGGAGGTTGTA





AAAGGAGGGGGAGTGAATGGGTAATGATGGTGATAGTAGGTTTGGTGAG





GTTGTGAGTGGAAAATAGTGAGGTGGGGGAAAATGGAGTAATAAAAAGA





GGGGTGGGAGGGTAATTGGGGGTTGGGAGGGTTTTTTTGTGTGGGTAAG





TTAGATGGGGGATGGGGGTTGGGGTTATTAAGGGGTGTTGTAAGGGGAT





GGGTGGGGTGATATAAGTGGTGGGGGTTGGTAGGTTGAAGGATTGAAGT





GGGATATAAATTATAAAGAGGAAGAGAAGAGTGAATAAATGTGAATTGA





TGGAGAAGATTGGTGGAGGGGGTGATATGTGTAAAGGTGGGGGTGGGGG





TGGGTTAGATGGTATTATTGGTTGGGTAAGTGAATGTGTGAAAGAAGG






Fourth, a thyA (thymidylate synthase) mutation was introduced into the strain by P1 transduction. In the absence of exogenous thymidine, thyA strains are unable to make DNA and die. The defect can be complemented in trans by supplying a wild-type thyA gene on a multicopy plasmid (Belfort, M., Maley, G. F., and Maley, F. (1983). Proc Natl Acad Sci USA 80, 1858-861), This complementation was used here as a means of plasmid maintenance.


An additional modification that is useful for increasing the cytoplasmic pool of free lactose (and hence the final yield of 2′-FL) is the incorporation of a lacA mutation. LacA is a lactose acetyltransferase that is only active when high levels of lactose accumulate in the E. coli cytoplasm. High intracellular osmolarity (e.g., caused by a high intracellular lactose pool) can inhibit bacterial growth, and E. coli has evolved a mechanism for protecting itself from high intra cellular osmlarity caused by lactose by “tagging” excess intracellular lactose with an acetyl group using LacA, and then actively expelling the acetyl-lactose from the cell (Danchin, A. Bioessays 31, 769-773 (2009)). Production of acetyl-lactose in E. coli engineered to produce 2′-FL or other human milk oligosaccharides is therefore undesirable: it reduces overall yield. Moreover, acetyl-lactose is a side product that complicates oligosaccharide purification schemes. The incorporation of a lacA mutation resolves these problems. Sub-optimal production of fucosylated oligosaccharides occurs in strains lacking either or both of the mutations in the colanic acid pathway and the lon protease. Diversion of lactose into a side product (acetyl-lactose) occurs in strains that do not contain the lacA mutation. A schematic of the lacA deletion and corresponding genomic sequence is provided above (SEQ ID NO: 288).


The strain used to test the different α(1,2) FT candidates incorporates all the above genetic modifications and has the following genotype: ΔampC::PtrpB cI, A(lacI-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA


The E. coli strains harboring the different α(1,2) FT candidate expression plasmids were analyzed. Strains were grown in selective media (lacking thymidine) to early exponential phase. Lactose was then added to a final concentration of 0.5%, and tryptophan (200 μM) was added to induce expression of each candidate α(1,2) FT from the PL promoter. At the end of the induction period (˜24 h) equivalent OD 600 units of each strain and the culture supernatant was harvested. Lysates were prepared and analyzed for the presence of 2′-FL by thin layer chromatography (TLC).


A map of plasmid pG217 is shown in FIG. 11, which carries the B. vulgatus FutN. The sequence of plasmid pG217 is set forth below (SEQ ID NO: 291):









TCTAGAATTCTAAAAATTGATTGAATGTATGCAAATAAATGCATACAC





CATAGGTGTGGTTTAATTTGATGCCCTTTTTCAGGGCTGGAATGTGTA





AGAGCGGGGTTATTTATGCTGTTGTTTTTTTGTTACTCGGGAAGGGCT





TTACCTCTTCCGCATAAACGCTTCCATCAGCGTTTATAGTTAAAAAAA





TCTTTCGGAACTGGTTTTGCGCTTACCCCAACCAACAGGGGATTTGCT





GCTTTCCATTGAGCCTGTTTCTCTGCGCGACGTTCGCGGCGGCGTGTT





TGTGCATCCATCTGGATTCTCCTGTCAGTTAGCTTTGGTGGTGTGTGG





CAGTTGTAGTCCTGAACGAAAACCCCCCGCGATTGGCACATTGGCAGC





TAATCCGGAATCGCACTTACGGCCAATGCTTCGTTTCGTATCACACAC





CCCAAAGCCTTCTGCTTTGAATGCTGCCCTTCTTCAGGGCTTAATTTT





TAAGAGCGTCACCTTCATGGTGGTCAGTGCGTCCTGCTGATGTGCTCA





GTATCACCGCCAGTGGTATTTATGTCAACACCGCCAGAGATAATTTAT





CACCGCAGATGGTTATCTGTATGTTTTTTATATGAATTTATTTTTTGC





AGGGGGGCATTGTTTGGTAGGTGAGAGATCAATTCTGCATTAATGAAT





CGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGC





TTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGC





GGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGG





GGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAG





GAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCC





CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA





CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCT





CGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGC





CTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAG





GTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCA





CGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCG





TCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGC





CACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGA





GTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATT





TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGG





TAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT





TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGA





TCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTC





ACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTA





GATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATA





TGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACC





TATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCC





CGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAG





TGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATC





AGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGC





AACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAG





AGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGC





TACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAG





CTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTG





CAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAA





GTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTC





TCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTA





CTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTC





TTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTT





AAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAG





GATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACC





CAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGC





AAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG





GAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCAT





TTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTA





GAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCC





ACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAA





TAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGG





TGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCT





GTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGG





TGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGAT





TGTACTGAGAGTGCACCATATATGCGGTGTGAAATACCGCACAGATGC





GTAAGGAGAAAATACCGCATCAGGCGCCTCCTCAACCTGTATATTCGT





AAACCACGCCCAATGGGAGCTGTCTCAGGTTTGTTCCTGATTGGTTAC





GGCGCGTTTCGCATCATTGTTGAGTTTTTCCGCCAGCCCGACGCGCAG





TTTACCGGTGCCTGGGTGCAGTACATCAGCATGGGGCAAATTCTTTCC





ATCCCGATGATTGTCGCGGGTGTGATCATGATGGTCTGGGCATATCGT





CGCAGCCCACAGCAACACGTTTCCTGAGGAACCATGAAACAGTATTTA





GAACTGATGCAAAAAGTGCTCGACGAAGGCACACAGAAAAACGACCGT





ACCGGAACCGGAACGCTTTCCATTTTTGGTCATCAGATGCGTTTTAAC





CTGCAAGATGGATTCCCGCTGGTGACAACTAAACGTTGCCACCTGCGT





TCCATCATCCATGAACTGCTGTGGTTTCTGCAGGGCGACACTAACATT





GCTTATCTACACGAAAACAATGTCACCATCTGGGACGAATGGGCCGAT





GAAAACGGCGACCTCGGGCCAGTGTATGGTAAACAGTGGCGCGCCTGG





CCAACGCCAGATGGTCGTCATATTGACCAGATCACTACGGTACTGAAC





CAGCTGAAAAACGACCCGGATTCGCGCCGCATTATTGTTTCAGCGTGG





AACGTAGGCGAACTGGATAAAATGGCGCTGGCACCGTGCCATGCATTC





TTCCAGTTCTATGTGGCAGACGGCAAACTCTCTTGCCAGCTTTATCAG





CGCTCCTGTGACGTCTTCCTCGGCCTGCCGTTCAACATTGCCAGCTAC





GCGTTATTGGTGCATATGATGGCGCAGCAGTGCGATCTGGAAGTGGGT





GATTTTGTCTGGACCGGTGGCGACACGCATCTGTACAGCAACCATATG





GATCAAACTCATCTGCAATTAAGCCGCGAACCGCGTCCGCTGCCGAAG





TTGATTATCAAACGTAAACCCGAATCCATCTTCGACTACCGTTTCGAA





GACTTTGAGATTGAAGGCTACGATCCGCATCCGGGCATTAAAGCGCCG





GTGGCTATCTAATTACGAAACATCCTGCCAGAGCCGACGCCAGTGTGC





GTCGGTTTTTTTACCCTCCGTTAAATTCTTCGAGACGCCTTCCCGAAG





GCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGT





GCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC





AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTG





TAAAACGACGGCCAGTGCCAAGCTTTCTTTAATGAAGCAGGGCATCAG





GACGGTATCTTTGTGGAGAAAGCAGAGTAATCTTATTCAGCCTGACTG





GTGGGAAACCACCAGTCAGAATGTGTTAGCGCATGTTGACAAAAATAC





CATTAGTCACATTATCCGTCAGTCGGACGACATGGTAGATAACCTGTT





TATTATGCGTTTTGATCTTACGTTTAATATTACCTTTATGCGATGAAA





CGGTCTTGGCTTTGATATTCATTTGGTCAGAGATTTGAATGGTTCCCT





GACCTGCCATCCACATTCGCAACATACTCGATTCGGTTCGGCTCAATG





ATAACGTCGGCATATTTAAAAACGAGGTTATCGTTGTCTCTTTTTTCA





GAATATCGCCAAGGATATCGTCGAGAGATTCCGGTTTAATCGATTTAG





AACTGATCAATAAATTTTTTCTGACCAATAGATATTCATCAAAATGAA





CATTGGCAATTGCCATAAAAACGATAAATAACGTATTGGGATGTTGAT





TAATGATGAGCTTGATACGCTGACTGTTAGAAGCATCGTGGATGAAAC





AGTCCTCATTAATAAACACCACTGAAGGGCGCTGTGAATCACAAGCTA





TGGCAAGGTCATCAACGGTTTCAATGTCGTTGATTTCTCTTTTTTTAA





CCCCTCTACTCAACAGATACCCGGTTAAACCTAGTCGGGTGTAACTAC





ATAAATCCATAATAATCGTTGACATGGCATACCCTCACTCAATGCGTA





ACGATAATTCCCCTTACCTGAATATTTCATCATGACTAAACGGAACAA





CATGGGTCACCTAATGCGCCACTCTCGCGATTTTTCAGGCGGACTTAC





TATCCCGTAAAGTGTTGTATAATTTGCCTGGAATTGTCTTAAAGTAAA





GTAAATGTTGCGATATGTGAGTGAGCTTAAAACAAATATTTCGCTGCA





GGAGTATCCTGGAAGATGTTCGTAGAAGCTTACTGCTCACAAGAAAAA





AGGCACGTCATCTGACGTGCCTTTTTTATTTGTACTACCCTGTACGAT





TACTGCAGCTCGAGTTAGGATACCGGCACTTTGATCCAACCAGTCGGG





TAGATATCCGGTGCTTCGGAGTGCTGGAACCAACGGCTCGGCACAATA





ACAGTCTTATCCATATTAGGGTTCAGCCAGGCACCCCACCAAGAAAAC





GTGCTGTTACAAATGATGTGATGTTTGCAATGAGACATCAGCATCATA





TCCTGCCAGGAGTCTTCATCAGTGTTCCAGTCAATATAAACCGCATTC





TGCAGTGGCAGATTTTCTTTAACCCACGCGATATCGTCGGAGAAGATA





TAGTAAGATGGGCTAGCAACACGACGGGACATTTCCGCGATAGCATTC





TGGTAATACGGCAGCTGGCACACGGAACCGGTAGTAGCCCAGTGTTTC





GGCTGCAGATAGTCACCACGACGAATGTGCAGGGAAACCGCGTTTTCA





TCTTTGTCCAGGATTTCCAGCATGTTCAGGCTGCGGGAATTTGCTTTG





TTCTTATCAAAGGTGAAGGATTCACGCACTTCGTCTTTGATATCAGCG





AAGAAACGCTCGCTCTGATAGAAACCTTTAAAGTACAGCAGCGGCCAG





AAATACTTCTTCTCGAACGCACGCAGAGAGTTCGGCGCCTGCTTGCGT





TCGTAGATTTTTTTAAAAAACAGGAATTCGATAACTTTTTTCAGCGGT





TGGTTGATGCAGAATTCGGTGTGCGGCAGGTTGAACACGCGGTGCATT





TCGTAACCGTAATGGACTTTGTAATGCATCATGTCGCTCAGGTCGATA





CGGACCTTCGGGTAATACTTTTTCATACGCAGATAGAAAGCATAGATA





AACATCTGGTTGCCCAGACCGCCAGTCACTTTGATCAGACGCATTATA





TCTCCTTCTTG






Fucosylated oligosaccharides produced by metabolically engineered E. coli cells are purified from culture broth post-fermentation. An exemplary procedure comprises five steps. (1) Clarification: Fermentation broth is harvested and cells removed by sedimentation in a preparative centrifuge at 6000×g for 30 min. Each bioreactor run yields about 5-7 L of partially clarified supernatant. (2) Product capture on coarse carbon: A column packed with coarse carbon (Calgon 12×40 TR) of ˜4000 ml volume (dimension 5 cm diameter×60 cm length) is equilibrated with 1 column volume (CV) of water and loaded with clarified culture supernatant at a flow rate of 40 ml/min. This column has a total capacity of about 120 g of sugar. Following loading and sugar capture, the column is washed with 1.5 CV of water, then eluted with 2.5 CV of 50% ethanol or 25% isopropanol (lower concentrations of ethanol at this step (25-30%) may be sufficient for product elution.) This solvent elution step releases about 95% of the total bound sugars on the column and a small portion of the color bodies. In this first step capture of the maximal amount of sugar is the primary objective. Resolution of contaminants is not an objective. (3) Evaporation: A volume of 2.5 L of ethanol or isopropanol eluate from the capture column is rotary-evaporated at 56 C.° and a sugar syrup in water is generated. Alternative methods that could be used for this step include lyophilization or spray-drying. (4) Flash chromatography on fine carbon and ion exchange media: A column (GE Healthcare HiScale50/40, 5×40 cm, max pressure 20 bar) connected to a Biotage Isolera One FLASH Chromatography System is packed with 750 ml of a Darco Activated Carbon G60 (100-mesh): Celite 535 (coarse) 1:1 mixture (both column packings were obtained from Sigma). The column is equilibrated with 5 CV of water and loaded with sugar from step 3 (10-50 g, depending on the ratio of 2′-FL to contaminating lactose), using either a celite loading cartridge or direct injection. The column is connected to an evaporative light scattering (ELSD) detector to detect peaks of eluting sugars during the chromatography. A four-step gradient of isopropanol, ethanol or methanol is run in order to separate 2′-FL from monosaccharides (if present), lactose and color bodies. Fractions corresponding to sugar peaks are collected automatically in 120-ml bottles, pooled and directed to step 5. In certain purification runs from longer-than-normal fermentations, passage of the 2′-FL-containing fraction through anion-exchange and cation exchange columns can remove excess protein/DNA/caramel body contaminants. Resins tested successfully for this purpose are Dowex 22.


The gene screening approach described herein was successfully utilized to identify new α(1,2) FTs for the efficient biosynthesis of 2′-FL in metabolically engineered E. coli host strains. The results of the screen are summarized in Table 1.


Production Host Strains


E. coli K-12 is a well-studied bacterium which has been the subject of extensive research in microbial physiology and genetics and commercially exploited for a variety of industrial uses. The natural habitat of the parent species, E. coli, is the large bowel of mammals. E. coli K-12 has a history of safe use, and its derivatives are used in a large number of industrial applications, including the production of chemicals and drugs for human administration and consumption. E. coli K-12 was originally isolated from a convalescent diphtheria patient in 1922. Because it lacks virulence characteristics, grows readily on common laboratory media, and has been used extensively for microbial physiology and genetics research, it has become the standard bacteriological strain used in microbiological research, teaching, and production of products for industry and medicine. E. coli K-12 is now considered an enfeebled organism as a result of being maintained in the laboratory environment for over 70 years. As a result, K-12 strains are unable to colonize the intestines of humans and other animals under normal conditions. Additional information on this well known strain is available at http://epa.gov/oppt/biotech/pubs/fra/fra004.htm. In addition to E. coli K12, other bacterial strains are used as production host strains, e.g., a variety of bacterial species may be used in the oligosaccharide biosynthesis methods, e.g., Erwinia herbicola (Pantoea agglomerans), Citrobacter freundii, Pantoea citrea, Pectobacterium carotovorum, or Xanthomonas campestris. Bacteria of the genus Bacillus may also be used, including Bacillus subtilis, Bacillus licheniformis, Bacillus coagulans, Bacillus thermophilus, Bacillus laterosporus, Bacillus megaterium, Bacillus mycoides, Bacillus pumilus, Bacillus lentus, Bacillus cereus, and Bacillus circulans. Similarly, bacteria of the genera Lactobacillus and Lactococcus may be modified using the methods of this invention, including but not limited to Lactobacillus acidophilus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus jensenii, and Lactococcus lactis. Streptococcus thermophiles and Proprionibacterium freudenreichii are also suitable bacterial species for the invention described herein. Also included as part of this invention are strains, modified as described here, from the genera Enterococcus (e.g., Enterococcus faecium and Enterococcus thermophiles), Bifidobacterium (e.g., Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium bifidum), Sporolactobacillus spp., Micromomospora spp., Micrococcus spp., Rhodococcus spp., and Pseudomonas (e.g., Pseudomonas fluorescens and Pseudomonas aeruginosa).


Suitable host strains are amenable to genetic manipulation, e.g., they maintain expression constructs, accumulate precursors of the desired end product, e.g., they maintain pools of lactose and GDP-fucose, and accumulate endproduct, e.g., 2′-FL. Such strains grow well on defined minimal media that contains simple salts and generally a single carbon source. The strains engineered as described above to produce the desired fucosylated oligosaccharide(s) are grown in a minimal media. An exemplary minimal medium used in a bioreactor, minimal “FERM” medium, is detailed below.


Ferm (10 liters): Minimal medium comprising:


40 g (NH4)2HPO4


100 g KH2PO4


10 g MgSO4.7H2O


40 g NaOH


1× Trace elements:


1.3 g NTA (nitrilotriacetic acid)


0.5 g FeSO4.7H2O


0.09 g MnCl2.4H2O


0.09 g ZnSO4.7H2O


0.01 g CoCl2.6H2O


0.01 g CuCl2.2H2O


0.02 g H3BO3


0.01 g Na2MoO4.2H2O (pH 6.8)


Water to 10 liters


DF204 antifoam (0.1 ml/L)


150 g glycerol (initial batch growth), followed by fed batch mode with a 90% glycerol-1% MgSO4-1× trace elements feed, at various rates for various times.


A suitable production host strain is one that is not the same bacterial strain as the source bacterial strain from which the fucosyltransferase-encoding nucleic acid sequence was identified.


Bacteria comprising the characteristics described herein are cultured in the presence of lactose, and a fucosylated oligosaccharide is retrieved, either from the bacterium itself or from a culture supernatant of the bacterium. The fucosylated oligosaccharide is purified for use in therapeutic or nutritional products, or the bacteria are used directly in such products.


EXAMPLES
Example 1: Identification of Novel α(1,2) Fucosyltransferases

To identify additional novel α(1,2)fucosyltransferases, a multiple sequence alignment query was generated using the alignment algorithm of the CLCbio Main Workbench package, version 6.9 (CLCbio, 10 Rogers Street #101, Cambridge, Mass. 02142, USA) using four previously identified lactose-utilizing α(1,2)fucosyltransferase protein sequences: H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). This sequence alignment and percentages of sequence identity between the four previously identified lactose-utilizing α(1,2)fucosyltransferase protein sequences is shown in FIG. 3. An iterative PSI-BLAST was performed, using the FASTA-formatted multiple sequence alignment as the query, and the NCBI PSI-BLAST program run on a local copy of NCBI BLAST+version 2.2.29. An initial position-specific scoring matrix file (.pssm) was generated by PSI-BLAST, which was then used to adjust the score of iterative homology search runs. The process is iterated to generate an even larger group of candidates, and the results of each run were used to further refine the matrix.


A portion of the initial position-specific scoring matrix file used is shown below:












Last position-specific scoring matrix computed






























A
R
N

text missing or illegible when filed

C
Q
E
G
H
I
L
K
N
F
P
S
T
W
Y
V































 1
M
−1
−1
−2
−3
−2

text missing or illegible when filed

−2
−3
−2
1
2
−1
6

text missing or illegible when filed

−3
−2
−1
−2
−1
1


 2
A
2
−2

text missing or illegible when filed

4
−2
−1
1
−1
−1
−2
−3
−1
−2
−3
−1
1
−1
−3
−3
−1


 3
F
−2
−3
−3
−4
−3
−3
−3
−3
−1

text missing or illegible when filed


text missing or illegible when filed

−3

text missing or illegible when filed

7
−4
−3
−2
1
3
−1


 4
K

text missing or illegible when filed

3

text missing or illegible when filed

−1
−2
1

text missing or illegible when filed

−1
−1
−3
−3
3
−2
−3
−1
2

text missing or illegible when filed

−3
−2
−2


 5
V
−1
−3
−3
−4
−1
−3
−3
−4
−3
4
2
−3
1

text missing or illegible when filed

−3
−2
−1
−3
−1
3


 6
V
−1
−3
−3
−3
−1
−3
−3
−4
−3
4
1
−3
1
−1
−3
−2

text missing or illegible when filed

−3
−1
3


 7

text missing or illegible when filed

−1
4

text missing or illegible when filed

−1
−3
4
1
−2

text missing or illegible when filed

−3
−2
3
−1
−3
−2

text missing or illegible when filed

−1
−3
−2
−3


 8
I
−1
−3
−3
−4
−1
−2
−3
−4
−3
3
2
−3
1

text missing or illegible when filed

−3
−2
−1
−3
−1
3


 9
C
−1
−1

text missing or illegible when filed

−1
5
3

text missing or illegible when filed

−2
4
−2
−2

text missing or illegible when filed

−1
−2
−2

text missing or illegible when filed

2
−2
−1
−1


10
G

text missing or illegible when filed

−3
−1
−1
−3
−2
−2

text missing or illegible when filed

−2
−4
−4
−2
−3
−3
−2

text missing or illegible when filed

−2
−3
−3
−3


11
G

text missing or illegible when filed

−3
−1
−1
−3
−2
−2

text missing or illegible when filed

−2
−4
−4
−2
−3
−3
−2

text missing or illegible when filed

−2
−3
−3
−3


12
L
−2
−2
−4
−4
−1
−2
−3
−4
−3
2
4
−3
2

text missing or illegible when filed

−3
−3
−1
−2
−1
1


13
G

text missing or illegible when filed

−3
−1
−1
−3
−2
−2

text missing or illegible when filed

−2
−4
−4
−2
−3
−3
−2

text missing or illegible when filed

−2
−3
−3
−3


14
N
−2
−1

text missing or illegible when filed

1
−3

text missing or illegible when filed


text missing or illegible when filed

−1
1
−4
−4

text missing or illegible when filed

−2
−3
−2
1

text missing or illegible when filed

−4
−2
−3


15

text missing or illegible when filed

−1
1

text missing or illegible when filed


text missing or illegible when filed

−3

text missing or illegible when filed

2
−2

text missing or illegible when filed

−3
−2
1
−1
−3
−1

text missing or illegible when filed

−1
−2
−2
−2


16
M
−1
−2
−3
−4
−2
−1
−2
−3
−2
1
3
−2
5

text missing or illegible when filed

−3
−2
−1
−2
−1
1


17
F
−2
−3
−3
−4
−3
−3
−4
−3
−1

text missing or illegible when filed


text missing or illegible when filed

−3

text missing or illegible when filed

7
−4
−3
−2
1
3
−1


18

text missing or illegible when filed

−1

text missing or illegible when filed

−1
−1
−3
5
1
−2

text missing or illegible when filed

1
−1
1

text missing or illegible when filed

−2
−2
−1
−1
−2
−2

text missing or illegible when filed



19
Y
−2
−2
−3
−3
−3
−2
−3
−3
1
−1
−1
−2
−1

text missing or illegible when filed

−2
−2
−2
2

text missing or illegible when filed

−1


20
A
4
−1
−1
−1
−1
−1
−1

text missing or illegible when filed

−2
−2
−2
−1
−1
−2
−1
2

text missing or illegible when filed

−3
−2
−1


21
F
−2
−3
−3
−4
−3
−3
−4
−3
−1

text missing or illegible when filed


text missing or illegible when filed

−3

text missing or illegible when filed

7
−4
−3
−2
1
3
−1


22
A
3
−2
−1
−2
−1
−1
−1
4
−2
−2
−2
−1
−2
−3
−1
1
−1
−3
−2
−1


23
K
−1

text missing or illegible when filed

−1
−2
−3

text missing or illegible when filed

−1
−3
1
−2
−2
3
−1
2
−2
−1
−1
1

text missing or illegible when filed

−2


24
S
2
−1
−1
−2
−1
−1
−1
−1
−2
−1
1
−1

text missing or illegible when filed

−1
−1
3

text missing or illegible when filed

−3
−2

text missing or illegible when filed



25
L
−2
3
−2
−3
−2
−1
−2
−3
−2
1
3

text missing or illegible when filed

1

text missing or illegible when filed

−3
−2
−1
−2
−1

text missing or illegible when filed



26

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed

−1
−2
4
1
−2
−1
−1

text missing or illegible when filed


text missing or illegible when filed

3
−2
−2
2

text missing or illegible when filed

−2
−2
−1


27
K
−1
2

text missing or illegible when filed

−1
−3
1

text missing or illegible when filed

−2
−1
−2
−2
4
−1
−3
−1

text missing or illegible when filed

2
−3
−2
−2


28

text missing or illegible when filed

−1

text missing or illegible when filed


text missing or illegible when filed

−2
−3

text missing or illegible when filed


text missing or illegible when filed

−2

text missing or illegible when filed

1
−1
2
−1
−1
−2
−1
−1
−3

text missing or illegible when filed


text missing or illegible when filed



29
S
−1
−1
3
−1
−2
−1
−1
−2

text missing or illegible when filed

−1
1
−1

text missing or illegible when filed

1
−2
1

text missing or illegible when filed


text missing or illegible when filed

4
−1


30
N
−1
−1
4

text missing or illegible when filed

−3
−1
−1
3

text missing or illegible when filed

−3
−3
−1
−2

text missing or illegible when filed

−3

text missing or illegible when filed

−1
−1
4
−3


31
T
−1
−2
−1
−2
−2
−1
−2
−2
−2
1
−1
−1
−1
−2
5

text missing or illegible when filed

3
−3
−2

text missing or illegible when filed



32
P
−1

text missing or illegible when filed

−2
−1
−3

text missing or illegible when filed

−1
−2
−2
−3
−3
2
−2
−4
7
−1
−1
−4
−3
−3


33
V
−1
−3
−3
−4
−1
−2
−3
−4
−3
2
2
−3
1
−1
−3
−2

text missing or illegible when filed

−3
−1
4


34
L
−2
3
−2
−3
−2
−1
−2
−3

text missing or illegible when filed


text missing or illegible when filed

2

text missing or illegible when filed

1
1
−3
−2
−1

text missing or illegible when filed

4
−1


35
L
−2
−3
−4
−4
−2
−3
−3
−4
−3
3
3
−3
1
3
−3
−3
−1
−1
1
1


36

text missing or illegible when filed

−2
−2
1

text missing or illegible when filed

−4

text missing or illegible when filed

1
−2
−1
−4
−4
−1
−3
−4
−2

text missing or illegible when filed

−1
−5
−3
−4






text missing or illegible when filed indicates data missing or illegible when filed







The command line of PSI-BLAST that was used is as follows: psiblast-db<LOCAL NR database name>-max_target_seqs 2500-in_msa<MSA file in FAST format>-out<results output file>-outfmt “7sskingdoms sscinames scomnames sseqid stitle evalue length pident”-out_pssm<PSSM file output>-out_ascii_pssm<PSSM (ascii) output>-num_iterations 6-num_threads 8


This PSI-BLAST search resulted in an initial 2515 hits. There were 787 hits with greater than 22% sequence identity to FutC. 396 hits were of greater than 275 amino acids in length. Additional analysis of the hits was performed, including sorting by percentage identity to FutC, comparing the sequences by BLAST to an existing α(1,2) fucosyltransferase inventory (of known α(1,2) fucosyltransferases, to eliminate known lactose-utilizing enzymes and duplicate hits), and manual annotation of hits to identify those originating from bacteria that naturally exist in the gastrointestinal tract. An annotated list of the novel α(1,2) fucosyltransferases identified by this screen are listed in Table 1. Table 1 provides the bacterial species from which the enzyme is found, the GenBank Accession Number, GI Identification Number, amino acid sequence, and % sequence identity to FutC.


Multiple sequence alignment of the 4 known α(1,2) FTs used for the PSI-BLAST query and 12 newly identified α(1,2) FTs is shown in FIG. 4.


Example 2: Validation of Novel α(1,2) FTs

To test for lactose-utilizing fucosylatransferase activity, the production of fucosylated oligossacharides (i.e., 2′-FL) is evaluated in a host organism that expresses the candidate enzyme (i.e., syngene) and which contains both cytoplasmic GDP-fucose and lactose pools. The production of fucosylated oligosaccharides indicates that the candidate enzyme-encoding sequence functions as a lactose-utilizing α(1,2)fucosyltransferase. Of the identified hits, 12 novel α(1,2) fucosyltransferases were further analyzed for their functional capacity to produce 2′-fucosyllactose: Prevotella melaninogenica FutO, Clostridium bolteae FutP, Clostridium bolteae+13 FutP, Lachnospiraceae sp. FutQ, Methanosphaerula palustries FutR, Tannerella sp. FutS, Bacteroides caccae FutU, Butyrivibrio FutV, Prevotellaa sp. FutW, Parabacteroides johnsonii FutX, Akkermansia muciniphilia FutY, Salmonella enterica FutZ, and Bacteroides sp. FutZA.


Syngenes were constructed comprising the 12 novel α(1,2) FTs in the configuration as follows: EcoRI-T7g10 RBS-syngene-XhoI. FIG. 5A and FIG. 5B show the syngene fragments after PCR assembly and gel-purification.


The candidate α(1,2) FTs (i.e., syngenes) were cloned by standard molecular biological techniques into an exemplary expression plasmid pEC2-(T7)-Fut syngene-rcsA-thyA. This plasmid utilizes the strong leftwards promoter of bacteriophage X (termed PL) to direct expression of the candidate genes (Sanger, F. et al. (1982). J Mol Biol 162, 729-773). The promoter is controllable, e.g., a trp-cI construct is stably integrated the into the E. coli host's genome (at the ampC locus), and control is implemented by adding tryptophan to the growth media. Gradual induction of protein expression is accomplished using a temperature sensitive cI repressor. Another similar control strategy (temperature independent expression system) has been described (Mieschendahl et al., 1986, Bio/Technology 4:802-808). The plasmid also carries the E. coli rcsA gene to up-regulate GDP-fucose synthesis, a critical precursor for the synthesis of fucosyl-linked oligosaccharides. In addition, the plasmid carries a β-lactamase (bla) gene for maintaining the plasmid in host strains by ampicillin selection (for convenience in the laboratory) and a native thyA (thymidylate synthase) gene as an alternative means of selection in thyA hosts.


The expression constructs were transformed into a host strain useful for the production of 2′-FL. The host strain used to test the different α(1,2) FT candidates incorporates all the above genetic modifications described above and has the following genotype: ΔampC::PtrpB cl, A(lacl-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA


The E. coli strains harboring the different α(1,2) FT candidate expression plasmids were analyzed. Strains were grown in selective media (lacking thymidine) to early exponential phase. Lactose was then added to a final concentration of 0.5%, and tryptophan (200 μM) was added to induce expression of each candidate α(1,2) FT from the PL promoter. At the end of the induction period (˜24 h) the culture supernatants and cells were harvested. Heat extracts were prepared from whole cells and the equivalent of 0.2OD600 units of each strain analyzed for the presence of 2′-FL by thin layer chromatography (TLC), along with 2 μl of the corresponding clarified culture supernatant for each strain.



FIG. 6 shows the oligosaccharides produced by the α(1,2) FT-expressing bacteria, as determined by TLC analysis of the culture supernatant and extracts from the bacterial cells. 2′FL was produced by exogenous expression of WbgL (used as control), FutO, FutP, FutQ, FutR, FutS, FutU, FutW, FutX, FutZ, and FutZA.


Table 4 summarizes the fucosyltransferase activity for each candidate syngene as determined by the 2′FL synthesis screen described above. 11 of the 12 candidate α(1,2) FTs were found to have lactose-utilizing fucosyltransferase activity.












TABLE 4







2′FL synthesis screen results




















2′FL
2′FL







24 h OD
culture
cell






Syngene
(induced)
medium
extract






Escherichia coli

WbgL
 9.58
5
5
pG204
pEC2-WbgL-rcsA-thyA
E640



Prevotella melaninogenica

FutO
12.2
3
2
pG393
pEC2-(T7)FutO-rcsA-thyA
E985



Clostridium bolteae

FutP
10.4
1
2
pG394
pEC2-(T7)FutP-rcsA-thyA
E986



Lachnospiraceae sp.

FutQ
10.6
3
4
pG395
pEC2-(T7)FutQ-rcsA-thyA
E987



Methanosphaerula palustris

FutR
11.9
0
1
pG396
pEC2-(T7)FutR-rcsA-thyA
E988


Tannerella sp.
FutS
11.3
2
3
pG397
pEC2-(T7)FutS-rcsA-thyA
E989



Bacteroides caccae

FutU
12.1
0
2
pG398
pEC2-(T7)FutU-rcsA-thyA
E990



Butyrivibrio

FutV
11.3
0
1
pG399
pEC2-(T7)FutV-rcsA-thyA
E991



Prevotella sp.

FutW
10.5
3
3
pG400
pEC2-(T7)FutW-rc sA-thyA
E992



Parabacteroides johnsonii

FutX
10.7
3
5
pG401
pEC2-(T7)FutX-rcsA-thyA
E993



Akkermansia muciniphilia

FutY
 9.1
0
0
pG402
pEC2-(T7)FutY-rcsA-thyA
E994



Salmonella enterica

FutZ
11.0
0
3
pG403
pEC2-(T7)FutZ-rcsA-thyA
E995



Bacteroides sp.

FutZA
 9.9
3
3
pG404
pEC2-(T7)FutZA-rcsA-thyA
E996









Example 3: Characterization of Cultures Expressing Novel α(1,2) FTs

Further characterization of the bacterium expressing novel α(1,2) FTs FutO, FutQ, and FutX was performed. Specifically, proliferation rate and exogenous α(1,2) FT expression was examined.


Expression plasmids containing fucosyltransferases WbgL (plasmid pG204), FutN (plasmid pG217), and novel α(1,2) FTs FutO (plasmid pG393), FutQ (plasmid pG395), and FutX (pG401) were introduced into host bacterial strains. For example, the host strains utilized has the following genotype: ΔampC::PtrpBcI, A(lacl-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA


Bacterial cultures expressing each exogenous fucosyltransferase were induced by addition of tryptophan (to induce expression of the exogenous fucosyltransferases) in the presence of lactose. Growth of the cultures was monitored by spectrophotometric readings at A600 at the following timepoints: 4 hours and 1 hour before induction, at the time of induction (time 0), and 3 hours, 7 hours, and 24 hours after induction. The results are shown in FIG. 7, and indicate that expression of the exogenous fucosyltransferase did not prevent cell proliferation. Furthermore, the growth curve for the bacterial cultures expressing the novel α(1,2) fucosyltransferases FutO, FutQ, and FutX is similar to those expressing the known α(1,2)FT enzymes WbgL and FutN.


Protein expression was also assessed for the bacterial cultures expressing each fucosyltransferase after induction. Cultures were induced as described previously, and protein lysates were prepared from the bacterial cultures at the time of induction (0 hours), 3 hours, 7 hours, and 24 hours after induction. The protein lysates were run on an SDS-PAGE gel and stained to examine the distribution of proteins at each time point. As shown in FIG. 8, induction at 7 hours and 24 hours showed increases in a protein band at around 20-28 kDa for bacterial cultures expressing exogenous FutN, FutO, and FutX. These results indicate that induction results in significant expression of the exogenous fucosyltransferases.


Finally, additional TLC analysis to assess the efficiency and yield of 2′FL production in bacterial cultures expressing novel α(1,2) FTs FutO, FutQ, and FutX compared to known fucosyltransferases WbgL and FutN. Cultures were induced at 7 hours and 24 hours, and run out on TLC. FIG. 9A shows the level of 2′FL in the cell supernatant. The level of 2′FL found in the bacterial cells were also examined. As shown in FIG. 9B, 2′FL was produced in cell lysates from bacteria expressing the novel α(1,2) FTs FutO, FutQ, and FutX at 7 hours and 24 hours after induction.


Example 4: FutN Exhibits Increased Efficiency for Production of 2′FL

Fucosylated oligosaccharides produced by metabolically engineered E. coli cells to express B. vulgatus FutN was purified from culture broth post-fermentation.


Fermentation broth was harvested and cells were removed by sedimentation in a preparative centrifuge at 6000×g for 30 min. Each bioreactor run yields about 5-7 L of partially clarified supernatant. A column packed with coarse carbon (Calgon 12×40 TR) of ˜1000 ml volume (dimension 5 cm diameter×60 cm length) was equilibrated with 1 column volume (CV) of water and loaded with clarified culture supernatant at a flow rate of 40 ml/min. This column had a total capacity of about 120 g of sugar. Following loading and sugar capture, the column is washed with 1.5 CV of water, then was eluted with 2.5 CV of 50% ethanol or 25% isopropanol (lower concentrations of ethanol at this step (25-30%) may be sufficient for product elution.) This solvent elution step released about 95% of the total bound sugars on the column and a small portion of color bodies (caramelized sugars). A volume of 2.5 L of ethanol or isopropanol eluate from the capture column was rotary-evaporated at 56 C.° and a sugar syrup in water was generated. A column (GE Healthcare HiScale50/40, 5×40 cm, max pressure 20 bar) connected to a Biotage Isolera One FLASH Chromatography System was packed with 750 ml of a Darco Activated Carbon G60 (100-mesh): Celite 535 (coarse) 1:1 mixture (both column packings were obtained from Sigma). The column was equilibrated with 5 CV of water and loaded with sugar from step 3 (10-50 g, depending on the ratio of 2′-FL to contaminating lactose), using either a celite loading cartridge or direct injection. The column was connected to an evaporative light scattering (ELSD) detector to detect peaks of eluting sugars during the chromatography. A four-step gradient of isopropanol, ethanol or methanol was run in order to separate 2′-FL from monosaccharides (if present), lactose and color bodies. Fractions corresponding to sugar peaks were collected automatically in 120-ml bottles, pooled.


The results from two fermentation runs are shown in FIG. 10A and FIG. 10B. The cultures were grown for 136 (run 36B) or 112 hours (run 37A), and the levels of 2′-FL produced was analyzed by TLC analysis. As shown in both FIG. 10A and FIG. 10B, the 2′-fucosyllactose was produced at 40 hours of culture, and production continued to increase until the end point of the fermentation process. The yield of 2′-FL produced from run 36B was 33 grams per liter. The yield of 2′-FL produced from run 37A was 36.3 grams per liter. These results indicate that expression of exogenous FutN is suitable for high yield of 2′-fucosyllactose product.









TABLE 1







Hits from PSI-BLAST multiple sequence alignment query for novel α(1,2) fucosyltransferases


















%


SEQ



Accession

Gene name
identity


ID


Bacterium names
No.
GI No.
[bacterium]
FutC
Alias
SEQUENCE
NO






Helicobacter

AAD29869.1
4808599
alpha-1,2-
98
FutC
MAFKVVQICGGLGNQMFQYAFAKSLQKHSNTPVLLDITSFDWSDRKMQLELFPINLPY
1



pylori



fucosyl-


ASAKEIAIAKMQHLPKLVRDALKCMGFDRVSQEIVFEYEPELLKPSRLTYFYGYFQDP






transferase


RYFDAISPLIKQTFTLPPPPENNKNNNKKEEEYHRKLSLILAAKNSVFVHIRRGDYVG






[helicobacter


IGCQLGIDYQKKALEYMAKRVPNMELFVFCEDLEFTQNLDLGYPFMDMTTRNKEEEAY







pylori]



WDMLLMQSCQHGIIANSTYSWWAAYLIENPEKIIIGPKHWLFGHENILCKEWVKIESH









FEVKSQKYNA







Helicobacter

YP_
291277413
alpha-1,2-
70.85
FutL
MDFKIVQVHGGLGNQMFQYAFAKSLOTHLNIPVLLDTTWFDYGNRELGLHLFPIDLQC
2



mustelae;

003517185.1

fucosyl-


ASAQQIAAAHMQNLPRLVRGALRRMGLGRVSKEIVFEYMPELFEPSRIAYFHGYFQDP




Helicobacter



transferase


RYFEDISPLIKQTFTLPHPTEHAEQYSRKLSQILAAKNSVFVHIRRGDYMRLGWQLDI




mustelae 12198



[helicobacter


SYQLRAIAYMAKRVQNLELFLFCEDLEFVQNLDLGYPFVDMTTRDGAAHWDMMLMQSC







mustelae



KHGIITNSTYSWWAAYLIKNPEKIIIGPSHWIYGNENILCKDWVKIESQFETKS






12198]










Bacteroides;

YP_
150005717
glycosyl
24.83
FutN
MRLIKVIGGLGNQMFIYAFYLRMKKYYPKVRIDLSDMMHYKVHYGYEMHRVFNLPHTE
3



Bacteroides

001300461.1

transferase


FCINQPLKKVIEFLFFKKIYERKQAPNSLRAFEKKYFWPLLYFKGFYQSERFFADIKD




vulgatus ATCC



family protein


EVRESFTFDKNKANSRSLNMLEILDKDENAVSLHIRRGDYLQPKHWATTGSVCQLPYY



8482; Bacteroides


[Bacteroides


QNAIAEMSRRVASPSYYIFSDDIAWVKENLPLQNAVYIDWNTDEDSWQDMMLMSHCKH



sp.



vulgatus ATCC



HIICNSTFSWWGAWLNPNMDKTVIVPSRWFQHSEAPDIYPTGWIKVPVS



4_3_47FAA;


8482]







Bacteroides sp.










3_1_40A;










Bacteroides











vulgatus










PC510; Bacteroides










vulgatus










CL09T03C04;










Bacteroides











vulgatus










dnLKV7;










Bacteroides











vulgatus CAG:6














Escherichia

WP_
545259828
protein
23.13
WbgL
MSIIRLQGGLGNQLFQFSFGYALSKINGTPLYFDISHYAENDDHGGYRLNNLQIPEEY
4



coli;

021554465.1

[Escherichia


LQYYTPKINNIYKLLVRGSRLYPDIFLFLGFCNEFHAYGYDFEYIAQKWKSKKYIGYW




Escherichia coli




coli]



IQSEHFFHKHILDLKEFFIPKNVSEQANLLAAKLESQSSLSIHIRRGDYIKNKTATLT



UMEA 3065-1





HGVCSLEYYKKALNKIRDLAMIRDVFIFSDDIFWCKENIETLLSKKYNIYYSEDLSQE









EDLWLMSLANHHIIANSSFSWWGAYLGSSASQIVIYPTPWYDITPKNTYIPIVNHWIN









VDKHSSC







Helicobacter

WP_
491361813
predicted
36.79
FutD
MGDYKIVELTCGLGNQMFQYAFAKALQKHLQVPVLLDKIWYDTQDNSTQFSLDIFNVD
5



bilis;

005219731.1

protein


LEYATNTQIEKAKARVSKLPGLLRKMFGLKKHNIAYSQSFDFHDEYLLPNDFTYFSGF




Helicobacter



[Helicobacter


FQNAKYLKGLEQELKSIFYYDSNNFSNFGKQRLELILQAKNSIFIHIRRGDYCKIGWE




bilis ATCC 43879




bilis]



LGMDYYKRAIQYIMDRVEEPKFFIFGATDMSFTEQFQKNLGLNENNSANLSEKTITQD









NQHEDMFLMCYCKHAILANSSYSFWSAYLNNDANNIVIAPTPWLLDNDNIICDDWIKI









SSK







Escherichia

AAO37698.1
37788088
fucosyl-
25.94
WbsJ
MEVKIIGGLGNQMFQYATAFAIAKRTHQNLTVDISDAVKYKTHPLRLVELSCSSEFVK
6



coli



transferase


KAWPFEKYLFSEKIPHEMKKGMFRKHYVEKSLEYDPDIDTKSINKKIVGYFQTEKYFK






[Escherichia


EFRHELIKEFQPKTKENSYQNELLNLIKENDTCSLHIRRGDYVSSKIANETHGTCSEK







coli]



YFERAIDYLMNKGVINKKILLFIFSDDIKWCRENIFFNNQICFVQGDAYHVELDMLLM









SKCKNNIISNSSFSWWAAWLNENKNKTVIAPSKWFKKDIKHDIIPESWVKL







Vibrio cholerae

BAA33632.1
3721682
probable beta-
25.94
WblA
MIVMKISGGLGNQLFQYAVGRAIAIQYGVPLKLDVSAYKNYKLHNGYRLDQFNINADI
7





D-galactoside


ANEDEIFHLKGSSNRLSRILRRLGWLKKNTYYAEKORTIYDVSVFMQAPRYLDGYWQN






2-alpha-


EQYFSQIRAVLLQELWPNQPLSINAQAHQIKIQQTHAVSIHVRRGDYLNHPEIGVLDI






L-fucosyl


DYYKRAVDYIKEKIEAPVFFVFSNDVAWCKDNENFIDSPVFIEDTQTEIDDLMLMCQC






transferase


QHNIVANSSFSWWAAWLNSNVDKIVIAPKTWMAENPKGYKWVPDSWREI






[Vibrio










cholerae]











Bacteroides

YP_
53713126
alpha-1,2-
24.58
Bft2
MIVSSLRGGLGNQMFIYAMVKAMALRNNVPFAFNLITDFANDEVYKRKLLLSYFALDL
8



fragilis;

099118.1

fucosyl-


PENKKLIFDFSYGNYYRRLSRNLGCHILHPSYRYICEERPPHFESRLISSKITNAFLE




Bacteroides



transferase


GYWQSEKYFLDYKQEIKEDNIQKKLEYTSYLELEEIKLLDKNAIMIGVRRYQESDVAP




fragilis NCTC



[Bacteroides


GGVLEDDYYKCAMDIMASKVISPVFFCFSQDLEWVEKHLAGKYPVRLISKKEDDSGTI



9343; Bacteroides



fragilis 



DDMFLMMHFRNYIISNSSFYWWGAWLSKYDDKLVIAPGNFINKDSVPESWFKLNVR




fragilis



YCH46]






YCH46; Bacteroides










fragilis HMW 615














Escherichia

WP_
486356116
protein
24.25
WbgN
MSIVVARLAGGLGNQMFQYAKGYAESVERNSYLKLDLRGYKNYTLHGGFRLDKLNIDN
9


coli;
001592236.1

[Escherichia


IFVMSKKEMCIFPNFIVRAINKFPKLSLCSKRFESEQYSKKINGSMKGSVEFIGFWQN




Escherichiacoli




coli]



ERYFLEHKEKLREIFTPININLDAKELSDVIRCINSVSVHIRRGDYVSNVEALKIHGL



KTE84





CTERYYIDSIRYLKERFNNLVFFVFSDDIEWCKKYKNEIFSRSDDVKFIEGNIQEVDM









WLMSNAKYHIIANSSFSWWGAWLKNYDLGITIAPTPWFEREELNSFDPCPEKWVRIEK







Prevotella

YP_
302346214
glycosyl-
31.1
FutO
MKIVKILGGLGNQMFQYALYLSLQESFPKERVALDLSSFHGYHLHNGFELENIFSVTA
10



melaninogenica;

003814512.1

transferase


QKASAADIMRIAYYYPNYLLWRIGKRFLPRRKGMCLESSSLRFDESVLRQEGNRYFDG




Prevotella



family 11


YWQDERYFAAYREKVLKAFTFPAFKRAENLSLLEKLDENSIALHVRRGDYVGNNLYQG




melaninogenica 



[Prevotella


ICDLDYYRTAIEKMCAHVIPSLFCIFSNDITWCQQHLQPYLKAPVVYVTWNTGVESYR



ATCC 25845



melaninogenica



DMQLMSCCAHNIIANSSFSWWGAWLNQNREKVVIAPKKWLNMEECHFTLPASWIKI






ATCC 25845]










Clostridium

WP_
488634090
protein
29.86
FutP
MFQYALYKAFEQKHIDVYADLAWYKNKSVKFELYNEGIKINVASEKDINRLSDCQADF
11



bolteae;

002570768.1

[Clostridium


VSRIRRKIFGKKKSFVSEKNDSCYENDILRMDNVYLSGYWQTEKYFSNTREKLLEDYS




Clostridium




bolteae]



FALVNSQVSEWEDSIRNKNSVSIHIRRGDYLQGELYGGICTSLYYAEAIEYIKMRVPN




bolteae






AKFFVFSDDVEWVKQQEDFKGFVIVDRNEYSSALSDMYLMSLCKHNIIANSSFSWWAA



90A9; Clostridium





WLNRNEEKIVIAPRRWLNGKCTPDIWCKKWIRI




bolteae 90133;











Clostridium











bolteae 90138














Lachnospiraceae

WP_
496545268
protein
29.25
FutQ
MVIVQLSGGLGNQMFEYALYLSLKAKGKEVKIDDVTCYEGPGTRPRQLDVEGITYDRA
12



bacterium

009251343.1

[Lachno-


SREELTEMTDASMDALSRVRRKLTGRRTKAYRERDINFDPLVMEKDPALLEGCFQSDK



3_1_57FAA_CT1



spiraceae



YFRDCEGRVREAYRFRGIESGAFPLPEDYLRLEKQIEDCQSVSVHIRRGDYLDESHGG







bacterium



LYTGICTEAYYKEAFARMERLVPGARFFLFSNDPEWTREHFESKNCVLVEGSTEDTGY






3_1_57FAA_CT1]


MDLYLMSRCRHNIIANSSFSWWGAWLNENPEKKVIAPAKWLNGRECRDIYTERMIRL







Methano-

YP_
219852781
glycosyl
28.52
FutR
MIIVRLKGGLGNQLSQYALGRKIAHLHNTELKLDTTWFTTISSDTPRTYRLNNYNIIG
13



sphaerula

002467213.1

transferase


TIASAKEIQLIERGRAQGRGYLLSKISDLLTPMYRRTYVRERMHTFDKAILTVPDNVY




palustris;



family protein


LDGYWQTEKYFKDIEEILRREVTLKDEPDSINLEMAERIQACHSVSLHVRRGDYVSNP




Methano-



[Methano-


TTQQFHGCCSIDYYNRAISLIEEKVDDPSFFIFSDDLPWAKENLDIPGEKTFVAHNGP




sphaerula 




sphaerula 



EKEYCDLWLMSLCQHHIIANSSFSWWGAWLGQDAEKMVIAPRRWALSESFDTSDIIPD




palustris E1-9c




palustris E1-9c



SWITI







Tannerella sp.

WP_
547187521
glycosyl
28.38
FutS
MVRIVEIIGGLGNQMFQYAFSLYLKNKSHIWDRLYVDIEAMKTYDRHYGLELEKVFNL
14


CAG:118
021929367.1

transferase


SLCPISNRLHRNLQKRSFAKHFVKSLYEHSECEFDEPVYRGLRPYRYYRGYWQNEGYF






family 11


VDIEPMIREAFQFNVNILSKKTKAIASKMRRELSVSIHVRRGDYENLPEAKAMHGGIC






[Tannerella


SLDYYHKAIDFIRQRLDNNICFYLFSDDINWVEENLQLENRCIIDWNQGEDSWQDMYL






sp. CAG:118]


MSCCRHHIIANSSFSWWAAWLNPNKNKIVLTPNKWFNHTDAVGIVPKSWIKIPVF







Bacteroides

WP_
491925845
protein
28.09
FutU
MKIVKILGGLGNQMFQYALFLSLKERFPHEQVMIDTSCFRNYPLHNGFEVDRIFAQKA
15



caccae;

005675707.1

[Bacteroides


PVASWRNILKVAYPYPNYRFWKIGKYILPKRKTMCVERKNFSFDAAVLTRKGDCYYDG




Bacteroides




caccae]



YWQHEEYFCDMKETIWEAFSFPEPVDGRNKEIGALLQASDSASLHVRRGDYVNHPLFR




caccae ATCC 43185






GICDLDYYKRAIHYMEERVNPQLYCVFSNDMAWCESHLRALLPGKEVVYVDWNKGAES









YVDMRLMSLCRHNIIANSSFSWWGAWLNRNPQKVVVAPERWMNSPIEDPVSDKWIKL







Butyrivibrio sp.

WP_
551028636
protein
27.8
FutV
MIIIQLKGGLGNQMFQYALYKSLKKRGKEVKIDDKTGFVNDKLRIPVLSRWGVEYDRA
16


AE2015
022772718.1

[Butyrivibrio


TDEEIINLTDSKMDLFSRIRRKLTGRKTFRIDEESGKENPEILEKENAYLVGYWQCDK






sp.


YFDDKDVVREIREAFEKKPQELMTDASSWSTLQQIECCESVSLHVRRIDYVDEEHIHI






AE2015]


HNICTEKYYKNAIDRVRKQYPSAVFFIFTDDKEWCRDHFKGPNFIVVELEEGDGTDIA









EMTLMSRCKHHIIANSSFSWWAAWLNDSPEKIVIAPQKWINNRDMDDIYTERMTKIAL







Prevotella sp.

WP_
548264264
uncharacterized
27.4
FutW
MRLVKMIGGLGNQMFIYAFYLQMRKRFSNVRIDLTDMMHYNVHYGYELHKVFGLPRTE
17


CAG:891
022481266.1

protein


FCMNQPLKKVLEFLFFRTIVERKQHGRMEPYTCQYVWPLVYFKGFYQSERYFSEVKDE






[Prevotella


VRECFTFNPALANRSSQQMMEQIQNDPQAVSIHIRRGDYLNPKHYDTIGCICQLPYYK






sp. CAG:891]


HAVSEIKKYVSNPHFYVFSEDLDWVKANLPLENAQYIDWNKGADSWQDMMLMSCCKHH









IICNSTFSWWAAWLNPSVEKTVIMPEQWTSRQDSVDEVASCGRWVRVKTE







Parabacteroides

WP_
495431188
glycosyl
26.69
FutX
MRLIKMIGGLGNQMFIYAFYLKMKHHYPDTNIDLSDMVHYKVHNGYEMNRIFDLSQTE
18



johnsonii;

008155883.1

transferase


FCINRTLKKILEFLFFKKIYERRQDPSTLYPYEKRYFWPLLYFKGFYQSERFFFDIKD




Parabacteroides



[Para-


DVRKAFSFNLNIANPESLELLKQIEVDDQAVSIHIRRGDYLLPRHWANTGSVCQLPYY




johnsonii




bacteroides



KNAIAEMENRITGPSYYVFSDDISWVKENIPLKKAVYVTWNKGEDSWQDMMLMSHCRH



CL02T12C29



johnsonii]



HIICNSTFSWWGAWLNPRKEKIVIAPCRWFQHKETPDMYPKEWIKVPIN







Akkermansia

YP_
187735443
glycosyl
25.67
FutY
MRLFGGLGNQLFQYAFLFALSRQGGKARLETSSYEHDDKRVCELHHFRVSLPIEGGPP
19



muciniphila;

001877555.1

transferase


PWAFRKSRIPACLRSLFAAPKYPHFREEKRHGFDPGLAAPPRRHTYFKGYFQTEQYFL




Akkermansia



family protein


HCREQLCREFRLKTPLTPENARILEDIRSCCSISLHIRRIDYLSNPYLSPPPLEYYLR




muciniphila



[Akkermansia


SMAEMEGRLRAAGAPQESLRYFIFSDDIEWARQNLRPALPHVHVDINDGGIGYFDLEL



ATCC BAA-835



muciniphila



MRNCRHHIIANSTFSWWAAWLNEHAEKIVIAPRIWENREEGDRYHTDDALIPGSWLRI






ATCC BAA-835]










Salmonella

WP_
555221695
fucosyl-
25.99
FutZ
MYSCLSGGLGNQMFQYAAAYILKQYFQSTTLVLDDSYYYSQPKRDTVRSLELNQFNIS




enterica;

023214330.1

transferase


YDRFSFADEKEKIKLLRKFKRNPFPKQISEILSIALFGKYALSDRAFYTFETIKNIDK
20



Salmonella



[Salmonella


ACLFSFYQDADLLNKYKQLILPLFELRDDLLDICKNLELYSLIQRSNNTTALHIRRGD




enterica subsp.




enterica]



YVTNQHAAKYHGVLDISYYNHAMEYVERERGKQNFIIFSDDVRWAQKAFLENDNCYVI




entericaserovar






NNSDYDFSAIDMYLMSLCKNNIIANSTYSWWGAWLNKYEDKLVISPKQWFLGNNETSL



Poona str. ATCC 





RNASWITL



BAA-1673













Bacteroides sp.

WP_
547748823
glycosyl-
26.01
FutZA
MRLIKMTGGLGNQFIYAFYLRMKKRYPKVRIDLSDMVHYHVHHGYEMHRVFNLPHTEF
21


CAG:633
022161880.1

transferase


CINQPLKKVIEFLFFKKIYERKQDPNSLRAFEKKYLWPLLYFKGFYQSERFFADIKDE






family 11


VRKAFTFDSSKVNARSAELLRRLDADANAVSLHIRRGDYLQPQHWATTGSVCQLPYYQ






[Bacteroides


NAIAEMNRRVAAPSYYVFSDDIAWVKENIPLQNAVYIDWNKGEESWQDMMLMSHCRHH






sp. CAG:633]


IICNSTFSWWGAWLDPHEDKIVIVPNRWFQHCETPNIYPAGWVKVAIN







Clostridium sp.

WP_
547839506
alpha-1 2-
34.28

MEKIKIVKLQGGMGNQMFQYAFGKGLESKFGCKVISDKINYDELQKTIINNTGKNAEG
22


CAG:306
022247142.1

fucosyl-


ICVRKYELGIFNLNIDFATAEQIQECIGEKLNKACYLPGFIRKIFNLSKNKTVSNRIF






transferase


EKKYGEYDEEILKDYSLAYYDGYFQNPKYFEDISDKIKKEFTLPEIKNHDIYNKKLLE






[Clostridium


KITQFENSVFIHVRRDDYLNINCEIDLDYYQKAVKYILKHIENPKFFVFCAEDPDYIK






sp. CAG:306]


NHFDIGYDFELVGENNKTQDTYYENMRLMMACKHAIIANSSYSWWAAWLSDYDNKIVI









APTPWLPGISNEIICKNWIQIKRGISNE







Prevotella

WP_
497004957
protein
32.11

MKIVKILGGLGNQMFQYALYLSLQESFPKERVALDLSCFNGYHLHNGFELERIFSLTA
23


sp. oral taxon 
009434595.1

[Prevotella sp.


QKASAATIMRIAYYYPNYLLWRIGKRLLPRRKTMCLESSTFRYDESVLTREGNRYFDG



306; Prevotella


oral taxon


YWQDERYFVACREKVLKAFTFPAFKRTENLSLLRKLDKNSVAIHVRRGDYIGNQLYQG



sp. oral taxon 


306]


ICDLDYYRAAIDKISTYVTPSVFCIFSNDIAWCQTHLQPYLKAPVVYVTWNTGTESYR



306 str. F0472





DMQLMSCCAHNIIANSSFSWWGAWLNQNNEKVVIAPKRWLNMDDCQFPLPASWVKI






glycosyl
WP_
547139308
[Brachyspira
30.14

MQLVKLMGGLGNQMFQYAFAKALGDKNILFYGDYKKHSLRKVELNRFKCKAVYIPREL
24


transferase
021917109.1

sp.


FKYLKFVFTKFDKIEYMRSGIYVPEYLNRDGNHIYIGFWQTEKYFKQIRPRLLKDFTP



family 11


CAG:484]


RKKLDRENAGIISKMQQINSVSVHIRRTDYVDESHIYGDINLDYYKRAIEYISSKIEN




Brachyspira sp.






PEFFFFSDDMAYVKEKFAGLKEPHSFIDINSGNNSYKDLILMKNCKHNIIANSTFSWW



CAG:484





GAWLNENEEKIVIAPAKWFVTGENDKDIVPDEWIKL










Thalassospira

WP_
496164823
glycosyl
30

MVIVKLLGGLGNQMFQYATGRAVASRLDVELLLDVSAFAHYDLRRYELDDWNITARLA
25



profundimaris;

008889330.1

transferase


TSEELARSGVTAAPPSFFDRIARFLRIDLPVNCFREASFTYDPRILEVSSPVYLDGYW




Thalassospira



family 11


QSERYFLDIEKKLRQEFQLKASIDANNHSFKKKIDGLGKQAVSLHVRRGDYVINPQTA




profundimaris



[Thalassospira


SYHGVCSLDYYRAAVDYIAEHVSDPCFFVFSDDLEWVQTNLNIKQPIVLVDANGPDNG



WP0211



profundimaris]



AADMALMMACRHHIIANSSFSWWGSWLNPLNDKIIVAPKKWFGRANHDTTDLVPDSWV









RL







Acetobacter sp.

WP_
547459369
alpha-1 2-
29.9

MAVSPQESKYSAHVSPDKPLRIVRLGGGLGNQMFQYAFGLAAGDVLWDNTSFLINHYR
26


CAG:267
022078656.1

fucosyl-


SFDLGLYNISGDFASNEQIKKCKNEIRFKNILPRSIRKKFNLGKFIYLKTNRVCERQI






transferase


NRYEPELLSKDGDVYYDGVFQTEKYFKPLRERLLHDFILTKPLDAANLDMLAKIRAAD






[Acetobacter


AVAVHIRRGDYLNPRSPFTYLDKDYFLNAMDYIGKRVDKPHFFIFSSDIDWVRTNIQT






sp. CAG:267]


AYPQTIVEINDEKHGYFDLELMRNCRHNIIANSTFSWWGAWLNINPDKIVVAPKQWFR









PDAAEYSGDIVPNDWIKL







Dysgonomonas

WP_
493896281
protein
29.9

MVTVLLSGGLGNQMFQYAAAKSLAIRLNTALSVDLYTFSKKTQATVRPYELGIENIED
27



mossii;

006842165.1

[Dysgonomonas


VVETSSLKAKAVIKARPFIQRHRSFFQRFGVFIDTYAILYQPIFEALTGGVIMSGYFQ




Dysgonomonas




mossii]



NESYFKNISELLRKDFSFKYPLIGENKDVAGQISENQSVAVHIRRGDYLNKNSQSNFA




mossii DSM 22836






ILEKDYYEKAINYISAHVKNPEFYVFSEDFDWIKDNLNEKEFPVTFIDWNKGKDSYID









MQLMSLCKHNIIANSSFSWWSAWLNNSEERKIVAPERWFVDEQKNELLDCFYPQGWIK









I







Clostridium

WP_
545396671
glycosyl-
29.83

>gi|545396671|ref|WP_021636924.1|glycosyltransferase,
28


sp. KLE
021636924.1

transferase,


family11 [Clostridium sp.KLE 1755]



1755


family 11


MIIIEISGGLGNQMFQYALGQKFISMGKEVKYDLSFYNDRVQTLRQFELDIFDLDCPV






[Clostridium


ASNSELSRFGKGNSLKSRLKQKLGWDKEKIYEENLDLGYQPRIFELDDIYLSGYWQSE






sp.


LYFKDIREQILRLYTFPIQLDYMNGVFLRKIENSNSVSIHIRRGDYLNENNLKIYGNI






KLE 1755]


CTLNYYNKALQIIAKKITNPIIFVFINDIEWVRKELEIPNMVIVDCNSGKLSYWDMYL









MSKCKANIVANSSFSWWGAWLNKNENRIIISPKRWLNNHEQTSTLCDNWIRCGDD







Gillisia

WP_
494045950
alpha-1,2-
29.28

MFISKNIVIIKLVGGLGNQMFQFAIAKIIAEKEKSEVLVDITFYTELTENTKKFPRHF
29



limnaea;

006988068.1

fucosyl-


SLGIFNSSFAIASKKEIDYFTKLSNENKFKKKLGLNYPTIFHESSFNFKAQVLELKAP




Gillisialimnaea



transferase


IYLNGYFQSFRYFLGKEYVIRKIFKFPDEALDKDNDNIKRKIIGKTSVSLHIRRGDYV



DSM 15749


[Gillisia


NNKKTQQFHGNCTIDYYQSAIAYLSSKLTDFNLIFFSDDIHWVRQQFKNISNQKIYVS







limnaea]



GNLNHNSWKDMYLMSLCDHNIIANSSFSWWGAWLNKNPEKIIIAPKRWFADTEQDKNS









IDLIPSEWYRI







Methylotenera

YP_
253996403
glycosyl
29.19

MLVSRIIGGLGNQMFEYAAARAASLRISVQLKLDLSGFETYDLHAYGLNNFNIVEDVA
30



mobilis;

003048467.1

transferase


KKDDYFIGAPESLLKKIKKYLRGLIQLESFRESDLSFDSKVLELNDNTYLDGYWQCER




Methylotenera



family protein


YFIDFDKQIRQDFSFKFAPDALNQRYLELIDSVNAVSVHIRRGDYVSNSTTNEIHGVC




mobilis JLW8



[Methylotenera


DLDYYQRAAEFMRARIGPENLHFFVFSDDTDWVKENISFGSDTTFISHNDAAKNYEDM







mobilis JLW8]



RLMSACKHHIIANSSFSWWAAWLNPSKQKVVIAPRQWFKSTLLNSDDIVPASWVRL







Runella

YP_
338214504
glycosyl
29.14

MIIVKLSGGLGNQLFQYAFGRHLATVNQKELKLDTSALTKTSDWINRSYALDAFNIRA
31



slithyformis;

004658567.1

transferase


QEATPEEIKALAGKPNRLLQRVGRKVGITPIQYFQEPHFHFYSSALSIKSSHYLEGYW




Runella



family protein


QSEKYFEAITPILREEFAFTISPSTHAQTIKEKISNGTSVSIHLRRGDYVKISKANRY




slithyformis DSM



[Runella


LRPLTMDYYQKAIDYINQRVKNPNFFLFSDDIKWAKSQVTFPPITHFSTGTSAHEDLW



19594



slithyformis



LMTHCRHHIIANSTFSWWGAWLNQQPDKIVIAPQKWFSTERFDTKDLLPEPWIQL






DSM 19594]










Pseudoalteromonas

WP_
489048235
alpha-1,2-
29.1

MIKVKAIGGLGNQLFQYATARAIAEKRGDGVVVDMSDFSSYKTHPFCLNKFRCKATYE
32



haloplanktis;

002958454.1

fucosyl-


SKPKLINKLLSNEKIRNLLQKLGFIKKYYFETQLPFNEDVLLNNSINYLTGYFQSEKY




Pseudoalteromonas



transferase


FLSIRECLLDELTLIEDLNIAETAVSKAIKNAKNSISIHIRRGDYVSNEGANKTHGVC




haloplanktis



[Pseudo-


DSDYFKKALNYFSERKLLDEHTELFIFSDDIEWCRNNLSFDYKMNFVDGSSERPEVDM



ANT/505



alteromonas



VLMSQCKHQVISNSTFSWWGAWLNKNDEKVVVAPKEWFKSTDLDSTDIVPNQWIKL







haloplanktis]










uncultured
EKE06679.1
406985989
glycosyl
28.67

MLTLKLKGGLGNQMFQYAASHNLAKNKKTKIFDLSFFSDIEVRDIKRDYLLDKFNISA
33


bacterium


transferase


DISFDQKNSISGFRKFLVKVISKFFGEVFYYRLKFLSSKYLDGYFQSEKYFKNVEEDI






family 11


RKDFTLKDEMGVEAKKIEQQIVNSKNSVSLHIRRGDYVDDLKTNIYHGVCNLDYYKRS






[uncultured


IKYLKENFGEINIFVFSDDIAWVKENLAFENLQFVSRPDIKDYEELMLMSKCEHNIIA






bacterium]


NSSFSWWGAWLNENKNKIIIAPKEWFQKFNINEKHIVPKSWIRL







Clostridium sp.

WP_
545396696
glycosyl-
28.57

MVIVQLSGGLGNQMFEYALYLSLKAKGKVVKIDDITCYEGPGTRPKQLDVEGVSYERA
34


KLE
021636949.1

transferase,


TKQELTEMTDSSLDPVSRIRRKLTGRKTKAYREKDINFDPQVMERDPALLEGCFQSEK



1755


family 11


YFQDCREQVREAYRFRGIESGAYPLPEAYRRLEKEIADCKSVSVHIRRGDYLEESHGG






[Clostridium


LYTGICTEQYYQEAFARMEKEVPGAKFFLFSNDPDWTREHFKGENRILVEGSTEDTGY






sp. KLE 1755]


LDLYLMSKCKHNIIANSSFSWWGAWLNDNPEKKVTAPARWLNGRECRDIYTERMIRI







Francisella

WP_
490414974
alpha-1,2-
28.57

MKIIKIQGGLGNQMFQYAFYKSLKNNCIDCYVDIKNYDTYKLHYGFELNRIFKNIDLS
35



philomiragia;

004287502.1

fucosyl-


FARKYHKKEVLGKLFSIIPSKFIVKFNKNYILQKNFAFDKAYFEIDNCYLDGYWQSEK




Francisella



transferase


YFKKITKDIYDAFTFEPLDSINFEFLKNIQDYNLVSIHVRRGDYVNHPLHGGICDLEY




philomiragia



[Francisella


YNKAISFIRSKVANVHFLVFSNDILWCKDNLKLDRVTYIDHNRWMDSYKDMHLMSLCK



subsp.



philomiragia]



HNIIANSSFSWWGAWLNQNDDKIVIAPSKWENDDKINQKDICPNSWVRI




philomiragia










ATCC 25015













Pseudomonas

WP_
515906733
protein
28.52

MVIAHLIGGLGNQMFQYAAARALSSAKKEPLLLDTSSFESYTLHQGFELSKLFAGEMC
36



fluorescens;

017337316.1

[Pseudomonas


IARDKDINHVLSWQAFPRIRNFLHRPKLAFLRKASLIIEPSFHYWNGIQKAPADCYLM




Pseudomonas




fluorescens]



GYWQSERYFQDAAEEIRKDFTFKLNMSPQNIATADQILNINAISLHVRRGDYVNNSVY




fluorescens






AACTVEYYQAAIQLLSKRVDAPTFFVFSDDIDWVKNNLNIGFPHCYVNHNKGSESYND



NCIMB 11764





MRLMSMCQHNIIANSSFSWWGAWLNSNADKIVVAPKQWFINNTNVNDLFPPAWVTL







Herbaspirillum

WP_
495392680
glycosyl
28.48

MIATRLIGGLGNQMFQYAAGRALALRVGSPLLLDVSGFANYELRRYELDGFRIDATAA
37


sp.
008117381.1

transferase


SAQQLARLGVNATPGTSLLARVLRKVWPQPADRILREASFTYDARIEQASAPVYLDGY



YR522


family 11


WQSERYFARIRQHLLDEFTLKGDWGSDNAAMAAQIATAGAGAVSLHVRRGDYVSNAHT






[Herbaspirillum


AQYHGVCSLDYYRDAVAHIGGRVEAPHFFVFSDDHEWVRENLQIGHPATFVQINSADH






sp. YR522]


GIYDMMLMKSCRHHIIANSSFSWWGAWLNPAEDKIVVAPQRWFKDATNDTRDLIPAAW









VRL







Prevotella

WP_
496097659
rotein
28.43

MKIVKILGGLGNQMFQYALYLSLKETFPQENVTVDLSCFHGYHLHNGFEIARIFSLHP
38



histicola;

008822166.1

[Prevotella


DKATVMEILRIAYYYPNYFFWQIGKRVLPQRKTMCTESTKLLFDKSVLQREGDRYFDG




Prevotella




histicola]



YWQDERYFIDCRRTILNIFKFPPFTDDNNLALLKKMDINSVSIHVRRGDYVGNKLYQG




histicola F0411






ICDLNYYREAIMKISSYISPSMFCVFSNDIEWCRDNLESFIKAPIYYVDWNSGTESYR









DMQLMSCCGHNIIANSSFSWWGAWLNQNSSKIVIAPKRWINLKNCGFMLPSRWVKI







Flavobacterium

WP_
516064371
protein
28.42

MIVVQLIGGLGNQLFQYAAAKALALQTKQKFSLDVSQFESYKLHNYALNHENVISKNY
39


sp.
017494954.1

[Flavobacterium


KKPNRYLRKIKSFYQKNVEYKEVDEGYNPDLIHLKGGIIFLEGYFQSEKYFIKYEKEI



WG21


sp. WG21]


REDFELRTPLKKETKAAIAKIESVNSVSIHIRRGDYINNPLHNTSKEEYYNKALEIVE









NKINNPVYFVFSDDMEWVKANFSTKQETIFIDENDASTNFEDLKLMTSCKHNIIANSS









FSWWGGWLNKNPDKIVIAPKRWENDDSINTNDIIPTNWVKI







Polaribacter

WP_
517774309
protein
28.42

MIIVRIVGGLGNQMFQYAYAKALQQKGYQVKIDITKFKKYNLHGGYQLDQFKIDLETS
40



franzmannii

018944517.1

[Polaribacter


SPIANVLCRIGLRRSVKEKSLLFDEKFLEIPQREYIKGYFQTEKYFSSITPILRKQFI







franzmannii]



VQKELCNTTLRYLKEITIQKNACSLHIRRGDYISDEKANSVHGTCDLPYYKKSIKRIQ









DEYKDAHFFIFSDDISWAKKNLINKNTTFIEHIVMPHEDMHLMSLCKHNITANSSFSW









WGAWLNQHENKTVIAPKNWFVNRENEVACANWIQL







Polaribacter sp.

YP_
472321325
glycosyl
28.42

MVVVRILGGLGNQMFQYAYAKSLAEKGYEVQIDISKFKSYKLHGGYHLDKFRIDLETA
41


MED152
007670847.1

transferase


NSSSAFLSKIGLKKTIKEPNLLFHKDLLKVNNNAFIKGYFQAEQYFSDIREILINQFK






family 11


IKKELAKSTLAIKNQIELLKTICSLHVRRGDYISDKKANKVHGTCDLDYYSSAIEHIS






[Polaribacter


KQNSNVHFFVFSDDIAWVKDNLNITNATYIDHNVIPHEDMYLMTLCNHNITANSSFSW






sp. MED152]


WGAWLNQNPDKIVIAPKNWFVDKENEVACKSWITL







Methanococcus

YP_
150402264
glycosyl
28.19

MKIIQLKGGLGNQMFQYALYKSLKKRGQEVLLDISWYLKNNAHNGYELEWVFGLSPEY
42



maripaludis;

001329558.1

transferase


ASIRQCFKLGDIPINLIYNVKRKVFPKKTFIFFEKSNENYDNNVFEVTNGYFEGYWQN




Methanococcus



family protein


ENYFKNFRSEILNDFSFKNIDKRNAEFSEYLKSINSVSVHVRRGDYVINQKALNVHGN




maripaludis




[Methanococcus



ICNLEYYNKAINLANNNLKNPKNIFSDDITWCKSNLGIDDPVYVDWNTGPYSYQDMYL



C7



maripaludis C7]



MSNCKNNIIANSSFSWWGAWLNQNTEKKVFSPKKWVNDRNNVNIVPNGWIKIK







Gallionella sp.

WP_
517104561
protein
28.15

MIIAHIIGGLGNQMFQYAAGRALSLARGVPFKLDISGFEGYDLHQGFELQRVFNCAAG
43


SCGC
018293379.1

[Gallionella


IASEAEVRDSLGWQFSSPIRRIVARPSLAVLRRSTFVVEPHFHYWAGIKQVPDNCYLA



AAA018-N21


sp.


GYWQSEQYFQSHAAVIRTDFAFKPPLSGQNSKLAMQIAQGNAVSLHIRRGDYANNPKT






SCGC AAA018-


TATHGLCSLDYYRAAIQHIAERVQSPHFFIFSDDIAWVKSNLAINFPHQYVDHNQGTE






N21]


SYNDMRLMSLCQHNIIANSSFSWWGAWLNINAHKIVIAPKQWFANTTHVADLIPSSWE









RL







Azospira

YP_
372486759
Glycosyl
28.04

MQSPACIAGARAWWVGYGMAEAMQPVVVGLSGGLGNQMFQYAAGRALAHRLGHPLSLD
44



oryzae;

005026324.1

transferase


LSWFQGRGDRHFALAPFHIAASLERAWPRLPPAMQAQLSRLSRRWAPRIMGAPVFREP




Dechlorosoma



family 11


HFHYVPAFAALAAPVFLEGYWQSERYFRELREPLLQDFSLRQPLPASCQPILAAIGNS




suillum PS



[Dechlorosoma


DAICVHVRRGDYLSNPVAAKVHGVCPVDYYQQGVAELSASLARPHCFVFSDDPEWVRG







suillum PS]



SLAFPCPMTVVDVNGPAEAHFDLALMAACQHFVIANSSLSWWGAWLGQAAGKRVIAPS









RWFLTSDKDARDLLPPSWERR







Prevotella

WP_
517274199
protein
28

MKIVKIIGGLGNQMFQYALAMALNKNFTDEEVKLDIHCFNGYTKHQGFEIDRVEGNEF
45



paludivivens

018463017.1

[Prevotella


ELASYRDVAKVAYPYFNFQLWRIGSRIFPDRRHMISEDTSFKIMPEVITSHNYKYYDG







paludivivens]



YWQHEEYEKNIHDEILDAFKFPKFQDERNKALAERLSDSNSISIHIRRGDYLNDELFK









GTCGIEYYKKAIEEINERTVPTLFCVFSNDIHWCKENIEPLLNGKETIYVDWNTGSDN









YRDMQLMTKCKHNIIANSSFSWWGAWLNNTKDKIVIAPRIWYNTKEKVSPVANSWIKL







Gramella

YP_
120434923
alpha-1,2-
27.96

MSNKNPVIVEIMGGLGNQMFQFAVAKLLAEKNSSVLLVDTNEYKEISQNLKDFPRYFS
46



forsetii;

860609.1

fucosyl-


LGIFDISYKMGTENGMVNEKNLSFKNRVSRKLGLNYPKIFKEKSYRFDADISNKKTPI




Gramella



transferase


YLKGYFQSYKYFIGVESKIRQWEEFPYENLGVGNEEIKSKILEKTSVSVHIRRGDYVE




forsetii KT0803



[Gramella


NKKTKEFHGNCSLEYYKNAITYFLDIVKEFNIVFFSDDISWVRDEFKDLPNEKVFVTG







forsetii



NLHENSWKDMYLMSLCDHNIIANSSFSWWAAWLNNNSEKNVIAPKKWFADIDQEQKSL






KT0803]


DLLPPSWIRM







Mariprofundus

WP_
497534831
alpha-1,2-
27.92

MIIVQFTGGLGNQMFQYALGRRLSLLHDVELKFDLSFYQHDILRDFMLDRFQVNGQVA
47



ferrooxydans;

009849029.1

fucosyl-


TEKEIEAYTNTPIFALDRPLLDRLVRWGLYRGIVSVSDEPPGKQALMVYNSRVLQAPR




Mariprofundus



transferase


NTYVQGYWQSEKYFMPIRQKLLDDFSLVDKADQANGAMLEKIRQCHSVSLHVRRGDYV




ferrooxydans PV-1



[Mariprofundus


SNPLINHSHGTCGLEYYEKAIALIGSKVDDPHFFVFSDDPEWTRDHLKCRFPMTYVTC







ferrooxydans]



NSADSCEWDMELMRHCRDHIIANSSFSWWGAWLNMNPDKVVVAPAAWENNFSADTSDL









IPDSWVRI







Bacillus

WP_
488102896
protein 
27.91

MKIIQVSSGLGNQMFQYALYKKISLNDNDVFLDSSTSYMMYKNQHNGYELERIFHIKP
48



cereus; Bacillus

002174293.1

[Bacillus


RHAGKEIIDNLSDLDSELISRIRRKLFGAKKSMYVELKEFEYDPIIFEKKETYFKGYW




cereus VD107




cereus]



QNYNYFKDIEQELRKDFVFTEKLDKRNEKLANEIRNKNSVSIHIRRGDYYLNKVYEEK









FGNIANLEYYLKAINLVKKKIEDPKFYIFSDDIDWAQKNINLINDVVYISHNQGNESY









KDMQLMSLCKHNIIANSTFSWWGAFLNNNDDKIVVAPKKWINIKGLEKVELFPENWIT









Y







Firmicutes

WP_
547951299
protein
27.81

MIIIRMIGGLGNQMFQYALYLKLRAMGKEVKMDDFTEYEGREARPLSLWAFGIEYDRA
49



bacterium

022352106.1

[Firmicutes


SREELCRMTDGFLDPVSRIRRKLFGRKSLEYMEKDCNFDPEILNRDPAYLTGYFQSEK



CAG:534



bacterium



YFADIEEEVRQAFRFSERIWEGIPSQLLERIRSYEQQ1KTTMAVSVHIRRGDYLQNEE






CAG:534]


AYGGICTERYYKTAIEYVKKRQQDASFFVFTNDPDYAGEWILKNFGQEKERFVLIEGT









QEENGYLDLYLMSLCRHHILANSSFSWWGAYLNPSREKMVIVPHKWEGNQECRDIYME









NMIRIAKEQS







Sideroxydans

YP_
291615344
glycosyl
27.81

MVISNIIGGLGNQMFQYAAARALSLKLEVPLKLDISGFTNYALHQGFELDRIFGCKIE
50



lithotrophicus;

003525501.1

transferase


IASEADVHEILGWQSASGIRRVVSRPGMSIFRRKGFVVEPHFSYWNGIRKITGDCYLA




Sideroxydans



family 11


GYWQSEKYFLDAAVEIRKDFSFKLPLDSHNAELAEKIDQENAVSLHIRRGDYANNPLT




lithotrophicus



[Sideroxydans


AATHGLCSLDYYRKSIKHIAGQVRNPYFFVFSDDIAWVKDNLEIEFPSQYVDYNHGSM



ES-1



lithotrophicus



SENDMRLMSLCKHHIIANSSFSWWGAWLNPNPEKVVIAPERWFANRTDVQDLLPPGWV






ES-1]


KL







zeta 

WP_
517092760
protein [zeta
27.81

MIVSQIIGGLGNQMFQYATGRALSHRLHDIFFLDLDGFSGYQLHQGFELSNVFQCEVN
51



proteobacterium

018281578.1


proteo-



VATRSQMQALLGWRSFSSVRRLLMKRSLKWARGHRVMIEPHFHYWSRFAEINEGCYLS



SCGC AB-137-009



bacterium



GYWQSERYFKPIENIIRQDFKFNHLLKGVNLDLAQQMTEVNSVSLHVRRGDYASDANT






SCGC AB-137-


NHTHGLCPLDYYRDAILYIAQNTVAPSFFIFSDDIEWCREHLKLSFPATYIDHNKGSN






C09]


SYCDMQLMSLCHHHIIANSSFSWWGAWLNTRLDKIVIAPKQWFANGNRTDDLIPAEWL









VM







Pedobacter

YP_
255530062
glycosyl
27.8

MKIIRFLGGLGNQMFQYAFYKSLQHREPHVKADLQGYQEYTLHNGFELEHIFNIKVNS
52



heparinus;

003090434.1

transferase


VSSFTSDLFYNKKWLYRKLRRILNLRNTYIEEKKLFSFDPSLLNNPKSAYYWGYWQNF




Pedobacter



family protein


QYFEHIADDLRKDFQFRAPLSAQNQEVLDQTKLSNSISLHIRRGDYIKDPLLGGLCGP




heparinus DSM



[Pedobacter


EYYQTAINYITSKVNAARFFIFSDDIDWCIANLKLQDCSFISWNKGTSSYIDMQLMSS



2366



heparinus DSM



CKHHIVANSSFSWWAAWLNPNPDKIVIAPEKWINDKDINVRMSFPQGWISL






2366]










Methylophilus

WP_
517814852
protein
27.78

MFQYAMGLSLAENNQTPLKLDLSQFTDYKLHNGFELSKVFNCSAETASVTQIETLLGI
53



methylotrophus

018985060.1

[Methylophilus


NCKYSFIRRILKNTYLKLRPAQYVVEPFEGYWDGVNFLGDNVYLEGYWQSQKYFIDYE







methylotrophus]



STIRTHFTFKNILSGENLKLSDRIKGSNSVSLHIRRGDYVINKNNAFIGTCSLIYYQN









AIEYFSTKIADPIFFIFSDDITWAKSNLRLANEHYFVGHNQGEDSHFDMQLMSLCKHH









IIANSSFSWWGAWLNPSKDKIIIAPKKWFASGLNDQDLVPKDWLRI







Rhodobacterales

WP_
495309205
alpha-1,2-
27.7

MIYTRIRGGLGNQLFQYSAARSLADYLNVSLGLDTREFDENSPYKMSLNHFNIRADLN
54



bacterium

008033953.1

fucosyl-


PPDLIKHKKDGKIAYIIDHIKGNQKKVYKEPFLSFDKNLFSNVDGTYLKGYWQSEKYF



HTCC2255


transferase


LRNRKNILSDINLIKKTDKENTINLKEIKKSTSISLHIRRGDYLSNESYNETHGICSL






[Rhodo-


SYYTDAVEYIKNRLGENIKVFAFSDDPDWVLENLKLSVDIKIINNNTSANSFEDLRLM







bacterales



LNCDHNIIANSSFSWWGAWLNQNPEKIVISPKKWYNKKQLQNADIVPSSWLKY







bacterium










HICC2255]










Spirulina

WP_
515872075
protein
27.69

MAKIIARIRGGIGNQIFIYAAARRLELINNAELVLDSVSGFVHDLQYRQHYQLDHFHI
55



subsalsa

017302658.1

[Spirulina


PCRKATPAERFEPFSRVRRYLKRQLNQRLPFEQRRYVIQESIDFDPRLIEFKPRGTVH







subsalsa]



LEGYWQSEDYFKDIEATIRQDLQIQPPTDPTNLAIVQHIHQHTSVAVHIRFFDQPNAD









TMNNAPSDYYHRAVEAMETFVPGAHYYLFSDQPEAAKSRIPLPDERVTLVNHNRGNKL









AYADLWLMTQCQHFIIANSTFSWWGAWLAENQKKQVIAPGFEKREGVSWWGFKGLLPK









QWIKL







Vibrio

WP_
498119755
glycosyl
27.67

MVIVKITGGLGNQLFQYATGSALANKLSCELVLDLSFYPTQTLRKYELAKENNARVAT
56



cyclitrophicus 

010433911.1

transferase


DREIFLAGGGNDFFSKALKKLGLTSIIFPEYIKEQESIKYVGKIDLCKSGAYLDGYWQ






family 11 


HNPLYFSQNKIELTREFLPRAQLSPSALAWKDISQASNSVSLHVRRGDYVENAHTNNI






[Vibrio


HGTCSLEYYQHAIEKIRSEVHNPVFFVFSDDIEWCKLNLSSLAEVEFVDNTTSAIDDL







cyclitrophicus]



MLMRQCKHSIIANSTFSWWGAWLKLDGLVIAPRNWFSSASRNLKGIYPKEWHIL







Lachnospiraceae

WP_
551039510
protein
27.65

MRSVVDIKGGYGNQLFCYSFGYAVSKETGSELIIDTSMLDMNNVKDRNYQLGVLGITY
57



bacterium NK4A179

022783177.1

[Lachno-


DSHISYKYGKDFLSRKTGLNRLRKKSAIGEGTVVFKEKEQYVYDPSVFEIKRDTYFDG







spiraceae



FWQSSRYFEKYSDDLRKMLKPKKISNAAEKLAEDARDCLSVSVHIRRGDYVSLGWILK







bacterium



DDYYIKALDIIKERYGSEPVFFVFSDNKKYADDFFSAAGLKYRLMDYETDDAVRDDMF






NK4A179]


LMSRCSHNIMANSSYSWWGAFLNDNKDKTVICPETGVWGGDFYPEGWMKVTASSGK






uncultured
EKE02186.1
406980610
glycosyl
27.57

MIIVNLYGGLGNQMFQYALGRHLAEKNNTELKLDISAFESYKLRKYELGNLNIIEKFA
58


bacterium


transferase


LPEEISRLSTLPTGKIERFIRKTLRKPVKKPESYIKENITGGENPKILDLQNNIYLEG






family protein


YWQSEKYFIEIEDIIRKEFSFKFPATGKNKEILENILNINSVSLHIRRGDYVINPEVN






[uncultured


QVHGVCSLDYYKSCVDFIEKKLESPYFYIFSDDIEWVKNNLQIQSQVYYVDHNTVDNA






bacterium]


IEDMRLMFSCKHNILANSSFSWWGAWLNSNPDKMVITPRKWENTTYDSNDLIPERWIK









L







Bacteroides

WP_
492366053
protein
27.46

MKIGIIYIVTGPYIKFWNEFYSSSQLYFCVEAEKNYEVFTDSSELASQRLPNVHMHLI
59



fragilis;

005822375.1

[Bacteroides


EDKGWIVNVSSKSKFICEIRNQLTSYDYIFYLNGNFKFISPIYCDEILPQAEHNYLTA




Bacteroides




fragilis]



LSFSHYLTIHPDHYPYDRNKNCNAFIPYGQGKYYFQGGFYGGRTQEVLSLSEWCRDAI




fragilis HMW 616






EADFNKKVIARFHDESYINRYLLTQHPKVLNDKYAFQDIWPYEGEYKAIVLNKEEVPE









DNNLQEMKQNYIDPSLSFLLNDELKFIPISIVQLYGGLGNQMFGYAFYLYIRHISTQE









RKLLIDPAPCKRYGNHNGYELPSIFSKICQDIHISDETKNNIRKLRKGTSLSIEEVRA









SMPQSFKEKKQPIIFYSGCWQCVTYVETVKDEIKKDFIFDESKLNEPSAQMLRIIRRS









NSVSVHIRRNDYLIGNNEFLYGGICTKSYYEKAISQMYTLLKDEPIFIYFTDDPEWVR









SNFALDKSYLVDWNKNKDNWQDMYLMSACRHHIIANSSFSWWAAWLGGFPEKKVIAPS









TWLNGMQTPDILPTEWIKIPITPDKKILDRICNHLILHSSYMKQLGLNSGKMGVVIFF









FHYARYTQNPLYENYAGDLFDELYEEIHKGISFSFLDGLCGIAWAVEYLVHEQFIEGN









TDDSLAEIDFKVMQIDPRRFTDYSFETGLEGIACYVLSRLLSPRVCSSSLILDSVYLK









DLTEACRKVPVDKANYTRLFLNYIESKEVGYSFKDVLMQVLNHSEKAFGSDGLTWQTG









LTMIMR







Butyrivibrio sp.

WP_
551034739
protein
27.46

MIIIQLKGGLGNQMFQYALYKELRSRGKEVKIDDVTGFVDDELRTPVLQRFGIEYDRA
60


AE3009
022778576.1

[Butyrivibrio


TREEVVKLTDSKMDIFSRIRRKLTGRKTCRIDEESGTFNPDILELDEAYLVGYWQSDK






sp.


YFRNEDVIAQLRQEFQKRPQEIMTDSASWATLQQIECCQSVSLHIRRIDYIDEEHNHI






AE3009]


HNLCTEKYYKGAIDRIRSQYPSAVFFIFTDDKEWCRNHFRGPNFFVVELAEKENTDIA









EMLLMSSCKHHICANSSFSWWSAWLNDSPEKMVIVPNKWINNRDMDDIYTDRMTKMAI







Bacteroides

WP_
490447027
protein
27.43

MKQTIILSGGLGNQMFQYAFFLSMKAKGKSCSLDTTLFQINKMHNGFELKSVFDIPDS
61



ovatus;

004317929.1

[Bacteroides


PNQASALHSLLIKMLRRYKPKSILTIDEPYTFCPDALESKKSFLMGDWLSPKYFESIK




Bacteroides




ovatus]



DVVVNAYRFHNIGNKNVDTANEMHGNNSVSIHIRRGDYLKLPYYCVCNENYYRQAIEQ




ovatus CL02T12C04






IKDRVDNPIFYVESNEPSWCDSFMKEFRVNFKIVNWNQGKDSYQDMYLMTQCKHNIIA









NSTFSWWGAWLNNNTDKIIVAPSKWFKNSEHNINCKEWLLIDTSK







Desulfospira

WP_
550911345
protein
27.42

MGKKYVETVVNGGLGNQIFQFSAGFALSKRLNLDLVLNISTFDSCQKRNFELYTFPKI
62



joergensenii

022664368.1

[Desulfospira


SKNSFACIKDDDPGVFRLRIPFLNEKEKIKQFHESHEFFDPAFFDIREPVRIEGYFQS







joergensenii]



YKYFEKYSDQLKDILLDIPLTSRLKTVLKVISSKKESVSVHIRRGDYISDQGINEVHG









TLNEAYYLNSIKLMEKMFPESEFFLFTDDPHYVEENFKFLEDTSCIISDNDCLPYEDM









YLMANCHHNIIANSSFSWWGAWLNQNPEKIVIAPRKWFSRKILMEKPVMDLLPDDWIL









L







Lachnospiraceae

EOS74299.1
507817890
protein
27.39

MNIIRMTGGLGNQMFQYALFLRLKAQGKEVKFDDRTEYKGEEARPILLWAFGIDYPAA
63



bacterium 10-1



C819_03052


GEEEVNELTDGVMKFSHRLRRKLFGRKSKEYREKSCNFDQQILEKEPAYFTGYFQSER






[Lachno-


YFEEVKEQVRKAFQFSGKIWGSVSKELEERIREYQTKIENKSQMPVSVHIRRGDYLEN







spiraceae



DEAYGGICTDAYYRKAIEMMEEKFPNTVFYIFSNDTGWAKQWIDHFYKEKSRFIVIEG







bacterium 10-



TTEDTGYLDLFLMSKCRAHIIANSSFSWWGAWLDPDQEKIVIAPSKWVNNQDMKDIYT






1]


REMIKISPKGEVR







Bacteroides

WP_
495107639
protein
27.33

MVVVYVGAGLANRMFQYAFALSLREKGLDVFIDEDSFIPREDFERTKLDSVFVNVNIQ
64



dorei;

007832461.1

[Bacteroides


RCDKNSFPLVLREDRFYKLLKRISEYMSDNRYIERWNLDYLPYIHKKASTNCIFIGFW




Bacteroides




dorei]



ISYKYFQSSEDAVRKAFTFKPLDSIRNVELATKLVTENSVAVHFRKNIDYLKNLPNTC




dorei DSM 17855






PPSYYYEAINYIKKYVPNPKFYFFSDNWDWVRENIRGVEFTAVDWNPSSGIHSHCDMQ









LMSLCKHNIIANSTYSWWSAYLNENNNKIVVCPKDWYGGMVKKLDTIIPESWIIING







Firmicutes

WP_
547127421
protein
27.33

MVIVKMSGGLGNQMFQYALYRKIQQTGKDVKLDLFSFQDKNAFRRFSLDIFPIEYQTA
65



bacterium

021916201.1

[Firmicutes


NLEECRKLGECSYRPVDKIRRKMFGLKESYYQEDLDKGYQPEILEMNPVYLDGYWQCE



CAG:24



bacterium



RYFQDIREKILEDYTFPKKISIESSRLQERIKNTESVSIHIRRGDYLDAANYKIYGNI






CAG:24]


CTIEYYQSAISRMRKLCEKPNFYLFSNDPEWAKEIFGDTEDITIVEEDKERPDYEDMF









LMSRCKHNIIANSSFSWWAAWLNQNENKRVIAPVKWENNHSVTDVICDDWIRIDGDHK









GA







Clostridium

WP_
547299420
epsH
27.3

MIYVNIRGRLGNQLFIYAFARALQKSTNQQITLNYTSFRKHYNNTAMDLEQFNIPEDI
66



hathewayi CAG:224

022031822.1

[Clostridium


MFENSKELPWFANTDGKVIRILRHYFPKLIRSILQKMNVLMWLGDEYVEVKVNKRRDI







hathewayi



YIDGFWQSSRYFKSVYKELKNELIPKMEMSKEIKTMGDLINQKESVCVSVRRGDYVTV






CAG:224]


KKNRDVYYICDEKYLNTSIMRMVELVPNVTWFIFSDDADWVKDNIVFPGEVFYQPPRV









TPLETLYLMKACKHFIISNSSFSWWGQYLSNNDNKIVIGPAKWYVDGRKTDIIEEEWI









KIEV







Syntrophus

YP_462663.1
85860461
alpha-1,2-
27.3

MVIVRLIGGIGNQMFQYAAARRVSLVNNAPLFLDLGWFQETGSWTPRKYELDAFRIAG
67



aciditrophicus



fucosyl-


ESASVGDIKDFKSRRQNAFFRRLPLFLKKRIFHTRQTHIIEKSYNFDPEILNLQGNVY



SB; Syntrophus


transferase


LDGYWQSEKYFSDVDSEIRREFSFQTDPAERNRKILERIASCESVSIHIRRGDYVTLP




aciditrophicus



[Syntrophus


DANAFHGLCIPAYYRLAVEQISRKVVEPVFFVFSDDIAWARGNLKLGFETCFMDQNGP







aciditrophicus



DRGDEDLRLMIACRHHIIANSSFSWWGAWLCSNPEKIVYAPRKWENNGLDTPDNIPAS






SB]


WIRI







Bacteroides

WP_
491931393
protein
27.27

MKIVKIIGGLGNQMFQYALYLSLKKKYPKEKIKIDISMFETYGLHNGFELKRIFDIDA
68



caccae;

005678148.1

[Bacteroides


EYASREEIRELSFYIKIYKLQRIFRKIFPVRKTECVEKYDFKFMSEVWSNCDRYYEGY




Bacteroides




caccae]



WQNWEYFIEAQTEVRSTFTFKKELVGRNAKVIREIQYAKMPVSLHIRRGDYLHHKLEG




caccae ATCC 43185






GLCDLNYYKKAIDYVLNNYDTPQFYLFSNDIEWCKTYILPLVQGYPFILVDWNSGVES









YIDMQLMSCCRINIIANSSFSWWAAWLNDSSEKIVIAPKLWAHSPYGKEIQLKSWLLF







Butyrivibrio

WP_
551011888
protein
27.24

MIIIEMSGGLGNQMFQYALYKSMLHKGLDVTIDKSIYRDVDHKEQVDLDRFPNVSYIE
69



fibrisolvens

022756304.1

[Butyrivibrio


ADRKLSSTLRGYGYNDSIIDKIRNKLNKSKRNLYHEDLDKGYQPEIFEFDNVYLNGYW







fibrisolvens]



QCERYFKDIKNEIKKDFIFPCTQSGDDKIKALTIEMESCNSVSLHVRRGDYLKPGLIE









IYGNICTEEYYKKSIEYIKERVDNPVFYIFSNDMAWVRDNEKSDDFRYVNEDGAFDGM









TDMYLMTRCRHNIVANSSFSWWGAWLNKHDDNIVICPNRWVNTHTVTDIICEDWIRID









V







Parabacteroides

WP_
492476819
protein
27.24

MIVGGNDYCKVKVVNIIGGLGNQMFQYAFALSLKEHFPKEEIRIDISHENYLFVNKVG
70



distasonis;

005857874.1

[Para-


AANLHNGYELDKIFFNIELKKANAWQLMKLTWFIPNYLISRIARKILPVRNSEYIQNS




Parabacteroides




bacteroides



SDCFFYDPMVYNKQGSCYYEGYWQAIGYYESMRDKLCKIFQHPSPEGKNKQYIENMES




distasonis




distasonis]



SNSVGIHIRRGDYLLSDNFRGICEVDYYKRAIDKILQDGEKHVFYLFSNDQKWCEEYI



CL03T12C09





LPLLGNYEIIFVTGNIGRDSCWDMFLMTHCKDLIIANSSFSWWGAFLNKRGGRVVTPK









RWMNRNIRYDLWMPEWIRI







Geobacter

YP_
148263741
glycosyl
27.21

MIIARLQGGLGNQMFQYAVGLHLALTHNVELKIDITMFSDYKWHTYSLRPFNIRESIA
71



uraniireducens;

001230447.1

transferase


TEEEIKALTDVKMDRPYKKIDNFLCRLLRKSQKISATHVKEKHFHYDPDILKLPDNVY




Geobacter



family protein


LDGYWQSEKYFKEIENIIRQTFIIKNPQLGRDKELACKILSTESVCLHIRRGNYVTDK




uraniireducens



[Geobacter


TINSVLGPCDLSYYSNCIKSLAGNNKDPHFFVFSNDHEWVSKNLKLDYPTIYVDHNNE



Rf4



uraniireducens



DKDYEDLRLMSQCKHHIIANSTFSWWSAWLCSNPDKVIYAPQKWERVDEYNTKDLLPS






Rf4]


NWLIL







Lachnospiraceae

WP_
511026085
protein
27.21

MIIVKIYEGLGNQLFQYAFARSIQVNGKKVFLDTSGYTDQLFPLCRTSTRRRYQLNCF
72



bacterium A4

016280341.1

[Lachno-


NIRIKEVEKKNIEKYSFLIQEDMFGKLISKLAKLHLWMYKVTIQQNAQEYKESYLNTR







spiraceae



GNVYYKGWFQNPKYFSSIRRLLLKEITPKYKIRIPAELRELLQEDNIVAVHCRRGDYQ







bacterium A4]



YIRNCLPVNYYKKAMAYMEKKLGVPRYLFFSDDLSWVKRQFGNKDNNYYIEDYGKFED









YQELMIMSRCRNFIIANSTFSWWAAWLCSYENKVVIMPRVWTYVGGQGVEMSDFPADW









IRI







Colwellia

YP_270849.1
71282201
alpha-1,2-
27.15

MKVVRVCGGEGNQLFQYAFYLAVKHKFNETTKLDIHDMASYELHNGYELERIFNLNEN
73



psychrerythraea;



fucosyl-


YCSAEEKLAVQSTKNIFTKLLKEIKKYTPFIPRTYIKEKKHLHFSYQEVDLGTKDTSI




Colwellia



transferase


YYRGSWQNPQYFNSIASEIREKLTFPEFTEPKSLALHQEISEHETVAVHIRRGDYLKH




psychrerythraea



[Colwellia


KALGGICDLPYYQNAIKEIEGLVEKPLEVIFSDDITWCRANINVEKVRFVDWNSGEQS



34H



psychrerythraea



FQDMHLMSLCIHNIIANSSFSWWGAWLNANPNKIVISPNKWIHYTDSMGIVPSEWIKV






34H]


ETSI







Roseobacter sp.

WP_
497495952
alpha-1,2-
26.96

MITSRLHGRLGNQMFQYAAARALAHRLGCGVALDGRGAELRGEGVLTRVFDLPLSAAP
74


MED193
009810150.1

fucosyl-


KLPPLKQHAPLRYGLWRGLGLAPRFRRERGLGYNTAFETWEDGCYLHGYWQSERYFEE






transferase


ISDLIRADFTFPDFSNRQNAEMAARIMEDNAISLHVRRGDYVALSAHVLCDQAYYEAA






[Roseobacter


LTRLLEGLSQDAPTVYVFSDDPDWAKANLPLPCKKVVVDENGPETDFEDMRLMSLCKH






sp. MED193]


NIIGNSSFSWWAAWLNANPQKRVAGPANWFGDPKLSNPDILPSQWLKVAP







Cesiribacter

WP_
496488826
Glycosyl
26.89

MMIVRLCGGLGNQLFQYAVGKQLSVKNNIPLKIDDSWLRLPDARKYRLQFFQIEEPLA
75



andamanensis;

009197396.1

transferase


SPQEVERFVGPYESQSLYARLYRKVQNMLPRHRRRYFQESGFWAYEPELMRIRSQVFL




Cesiribacter



family 11


EGFWQHHAYFTRLHPQVLEALQLREEYRQEPYAVLDQIREDAASVSLHIRRGDYVSDP




andamanensis



[Cesiribacter


YNLQFFGVMPLSYYQQAVAYMQEQLHAPTFYIFSDDLDWARAHLKLQAPMVFVDIEGG



AMV16



andamanensis]



RKEYLELEAMRLCRHNILANSSFSWWGAYLNINPHKRVIAPRQWVADPELKDKVQIQM









PDWILL







Rhodopirellula

WP_
495954476
glycosyl
26.89

MIATRLIGGLGNQMFQYAYGFSLARRRSERLVLDVSAFESYDLHALAIDQFDISAARM
76



sallentina;

008679055.1

transferase


TQAEFARIPGRYRGKSRWAERVANFAGGLQSCDKRPLRLRREKPFGFAEKYLAEGSDL




Rhodopirellula



family 11


YLDGYWQSERYFPGLQAELKKEFQLKRGLSDESSRVLDEIQSSMSVAMHVRRGDYVTN




sallentina SM41



[Rhodopirellula


AETLRIYRRLDAEYYRKCLNDLRQRFSNLNVFVFSNDIQWCQDHLDVGLKQRPVTHND







sallentina]



ATTAIEDMFLMSQCDHSIIANSSFSWWAAFLGRSDAQRRVYYPDPWFNPGTLNGDSLG









CANWVSESSISVSRPSRAA







Butyrivibrio sp.

WP_
551018054
protein
26.85

MIIIRMMGGLGNQMFQYALYLCILKALGKEVKIDDVYGERDDPQRDPVLEKMYGITYT
77


AD3002
022762282.1

[Butyrivibrio


KASDAEVVDITDSHLDIFSRIRRKLFGRKSHEYIEETGLFDPKVFEFETAYLNGYFQS






sp.


DKYFPDKEVLAQLRREFVIKPDDVFTSADSWELYRQIRETESVSIHVRRGDYLLPGTV






AD3002]


ETFGGICDNDYYKRAIDRMVSEHPDAIFFVFTSDKEWCEQNVSGKKFRIVDTKEENDD









AADLLLMSLCKHHILANSSYSWWSAWMNDSPEKTVIVPSKWLNTKPMDDIYISRMTKI







Segetibacter

WP_
517440157
protein
26.78

MVVVKLIGGMGNQMFQYAIGRHLAIKNKCPLYFDHIELENKNTANTPRNYELDIFNVQ
78



koreensis

018611017.1

[Segetibacter


YQKNPFLQSNRFVAKVYFIKLFSVQRIKEPDFTFHPHILNVQGNIHLNGYWQNENYFK







koreensis]



EIEEIIRQDFTFKTPANEKIESILQQ1AAINSVSLHVRRGDYITLTEANQFHGVCSDT









YYQKAIAKIKEAIPAPHLFVFSDDIHWVKQNMPFTEEHTFVDGNTGKNSFEDLRLMAA









CRHNILANSSFSWWAGWLNKNPEKMVIAPEKWFRAVHTDIVPPSWIKM







Amphritea

WP_
518450815
protein
26.76

MVIVRLIGGLGNQLFQYAYALSLLEQGYDVKLDASAFESYTLHGGFGLGEYAERLEVA
79



japonica

019621022.1

[Amphritea


TTEEVDMVSRVGRISTLLRKLQGKKSRRVIKESNFSYDEKMLTPEDSHYLVGYFQSEL







japonica]



YFNKIRGELLSALDLKHKLSPYTEASYLAIADASVSVSMHIRRGDYVSDKAAHNTHGV









CSLDYYYAAVTFFEERYPDVDFYIFSDDIEWVKENLNVQRAHYISSEEKRFAGEDIYL









MSQCDHNIVANSSFSWWGAWLNANEDKIVVAPRQWYADSNMQRLSKTLVPDTWIRL







Desulfovibrio

YP_
218887785
glycosyl
26.76

MRPVVVDIFGGLGNQMFQYAAAKSLAERLGVRLELDVSMFSGDPLRAFSLGEFAITDH
80



vulgaris;

002437106.1

transferase


VRGKSRSSLLVRFARSLGFGSSSKCVEPFFHYWEGINEIEAPVHMHGYWQSEKYFKAY




Desulfovibrio



family protein


EDLIRRTFSFSACEGVASSGKYAGVSSPMSVSVHLRRGDYKEQKNVVVHGILGREYYD



vulgaris str.


[Desulfovibrio


AAYSIIKQGCPSACFFVFTDAINEAVDFFSHWNDVLFVDGNNQYQDMYLMSQCRHHII



′Miyazaki



vulgaris str.



ANSSYSWWGAWLGAFSDGMTVAPKMWFAYDVLKEKSIKDLFPEDWIVL



F′


′Miyazaki F′]










Spirosoma

WP_
522095677
protein
26.76

MIISRITSGLGNQLFQYAVARHLSLKNKTSLYVDLSYYLYQYHDDTSRNFKLGNFSVP
81



spitsbergense

020606886.1

[Spirosoma


YHTLQQSPVEYVSKATKLLPNRSLRPFFLFQKERQFHFDEQILQSRAGCVILEGFWQS







spitsbergense]



EAYFRDNADTIRRDLQLSGTPSPEFNQYRELIRETPMSVSIHVRRSDYVNHPEFSQTF









GFVGIDYYKRAIELARKELANPRFFVFSDDKEWSKTNLPLGEDSVFVQNTGLNGDVAD









LVLMSHCQHHIIANSSFSWWGAWLNPNAGKLVITPKNWYKNKPAWNTKDLLPPTWLSI







Lachnospiraceae

WP_
511037988
protein
26.73

MNIIRMSGGIGNQMFQYALYLKLVSLGKEVKFDDVTEYELDNARPIMLSVFGIDYPKA
82



bacterium 28-4

016292012.1

[Lachno-


SREELVELTDASMDFLSRVRRKIFGRKSGEYHEASADYDETVLEKEHAYLCGCFQSER







spiraceae



YFKDIEYEVREAYRFRNVVVPEEIRGGIETYERQIGESLSVSIHIRRGDYLDAADVYG







bacterium 28-



GICTDAYYNQAIRYMIKKYENPSFFVFINDTFWAEKWCEVREREIGKRFTVIKGTDEE






4]


TGYIDLMLMSRCKAHIIANSSFSWWGAWLDASPDKCVVAPVKWINTRECRDIYTEDMV









RIGSNGKISFSNCSSL







Lachnospiraceae

WP_
511048325
protein
26.71

MVVVRIWEGLGNQLFQYAYARALSLRTKDRVYLDISEYEMSPKPVRKYELCHFKIKQP
83



bacterium COE1

016302211.1

[Lachno-


VINCGRIFPFVNKDSFYTKNNQYLRYFPAGLIKEEDCYFKRDFCELKGLLYLKGWFQS







spiraceae 



EKYFKEFESHIREEIYPRNKIKITRGLRKILNSDNIVSVHIRRGDFGKDHNILPIEYY






bacterium COE1]


ENSKRVILERVDNPYFIIFSDDILWVKENMNFGLNCFYMDKEYSYKDYEELMIMSRCK









HNIIANSTFSWWGAWLNPSKDKIVIAPKKWFLYNPKKDFDIVPNDWIRV










Parabacteroides;

WP_
492502331
alpha-1,2-
26.69
FutZB
MKIVNIIGGLGNQMFQYAFAVALKAKYPNEEVFIDTQHYKNAFIKVYHGNNFYHNGYE
84



Parabacteroides

005867692.1

fucosyl-


IDKVFPNATLEPARPKDLMKVSFYIPNQVLARAVRRIFPKRKTEFVTDQQPYVFIPEA



sp. 20_3;


transferase


LSVIDDCYFDGYWMTPLYFDKYRDRILKEFTFRPFDTKENLELEPLLKQDNSVIVHIR




Parabacteroides



[Para-


RGDYVGSSSFGGICTLDYYRNAIREAYNLITSPEFFIFSNDQKWCMENMRNEFGDAKV




distasonis




bacteroides]



HFIAHNRGADSYRDMQLLSIARCNILANSSFSWWGAYLNQRKNCFIICPHKWHNTLEY



CL09T03C24





SDLYLPTWIKI







Bacteroides sp.

WP_
488624717
protein
26.62

MFVIRLIGGVGNQLFQYTFGQFLRHKFGVEVCYDIVAFDTVDKGRNLELQLLDESLPL



HPS0048
002561428.1

[Bacteroides


FETSNFFFSKYKSWKKRLFLYGELLKKNNKYYTKYAPEEISLFTEKGLSYFDGWWQYP






sp.


ALLRDTINNMEDFFIPKQPIPVQIQKYYNEILLNNFAVALHVRRGDYFTSKYAKTYAV






HPS0048]


CNVEYYTSAVNLMCEKLRSCKFYVFSDDLDWVKSNLILPSNTVYVKNYDINSYWYIYL
85








MSLCRHIIISNSSFSWWGATLNRNFHKIVIAPKYWSTKKNNTLCDNSWIKI







Bacteroides

WP_
511013468
protein
26.58

MKIINILGGLGNQMFEYAMYLALKNAHSEEEILCSTRSFCGYGLHNGYELGRIFGIQV
86



thetaiotaomicron;

016267863.1

[Bacteroides


KEASLLQLTKLAYPFFNYKSWQVMRHWLPVRKTMTRGAINIPFDYSQVMREDSVYYDG




Bacteroides




theta-



YWQNEKNFLHIREEILTAYTFPKFDDEKNQELADIIVKSNAVSCHIRRGDYLKEINMC




thetaiotaomicron




iotaomicron]



VCTSSYYAHAISYMNEEINPNLYCVFSDDIEWCRNNICELMGEDKKIIFIDWNKGEKS



dnLKV9





FRDMQLMSLCKHNIIANSSFSWWGAWLNRNDKKIVVAPTRWIASEVKNDPLCDSWKRI









E







Desulfovibrio

YP_389367.1
78357918
glycosyl
26.56

MKFVGVWILGGLGNQMFQFAAAYALAKRMGGELRLDLSGFKKYPLRSYSLDLFTVDTP
87



alaskensis;



transferase


LWHGLPMSQRRFRIPMDAWTRGSRLPLVPSPPFVMAKEKNFAFSPIVYELQQSCYLYG




Desulfovibrio



[Desulfovibrio


YWQSYRYFQDVEDDIRTLFSLSRFATLELAPVVAQLNEVESVAVHLRRGDYITDAASN




alaskensis G20




alaskensis G20]



AVHGVCGIDYYQRSMSLVRRSTTKPIFYIFSDEPEVAKKLFATEDDVVVMPSRRQEED









LLLMSRCKHHIIANSSFSWWAAWLGKRASGLCIAPRYWFARPKLESTYLFDLIPDEWL









LL







Prevotella oralis

ETD21592.1
564721540
protein
26.56

MDIVVIENGLGNQMSQYAFYLAKRKSGSRCHCIFHNVSTGEHNGSELDKVEGIKYEKG
88


CC98A


HMPREF1199_


IFSKLLSKIYDIFDGIPKLRKKLNSLGIHIIREPRNYDYTASLLPRVSRWGLNYFVGG






00667


WHSEKYYTEILQEIKNIFSFKIDDEIKDIDFYEFYSLIHNDINSVSLHIRRGDYVGAN






[Prevotella


EYSYFQFGGVATLEYYHKAIDEIYQRIENPTFYVFSDDIGWCKTTFLKNNFIFVDCNC







oralis CC98A



GEKSWRDMFLISQCKHHIIANSTFSWWGAWLSIFHNSITICPKEFIKGVVIRDVYPDT









WIKLSS







Comamonadaceae

YP_
550990115
glycosyl-
26.54

MASKISKIIPRIFGGLGNQLFIYAAARRLALVNGAELALDDVSGFVRDHEYNRHYQLD
89



bacterium CR

008680725.1

transferase


HFNIPCRKATAAERLEPFARVRRYLKRKWNQRLPFEQRKYLVQESVDFDERLLTFKPR






[Comamonadaceae


GTVYLEGYWQSEDYFKDIEPQIRADLRIHPPIDTVNQQMAERIRATNAVAVHVRFFDA







bacterium



PAQSALGVGGNNAPGDYYQRAIKVMQEQAPDAQYYIFSDQPQAARARIPLRDDHVTLV






CR]


NHNQCDAVAYADLWLISQCQHFIIANSTFSWWGAWLGKTPESIVIAPGFEKREGAMFW









GFRGLLPDRWVKL







Vibrio

WP_
550250577
WblA protein
26.51

MKDSRIVKLNGGLGNQMFQFALAFALKKKLNVAVKFDTELLDTNRTEFKLSLERFGLI
90



nigripulchritudo;

022596860.1

[Vibrio


VDKLTITEKFKYKGLESCKYRKICNWISNFTTINIHKGYYKEKERGVYDRGIFDSNVK




Vibrio




nigri-



YIDGYWQNQEYENDFRSELLNKFNLNGKVSNHAIQYLKEITSVQNSVSIHVRRGDYLL




nigripulchritudo




pulchritudo]



LDVYRNLTLDYYSEAIKLVRITNPDSKFFIFSNDINWCKSNEKSVDNAIFVDSTVDEF



AM115; Vibrio





DDMFLMSKCKTNIIANSTFSWWAAWLNNNSGKIVYCPKKWRNDTTEVHKGLPEGWNII



nigripulchritudo





DK



FTn2; Vibrio










nigripulchritudo










Pon4; Vibrio










nigripulchritudo










SO65













Sulfurospirillum

YP_
268680406
glycosyl
26.48

MIIIKIMGGLISQMHKYALGRVLSLKYNVPLKLDLTWFDNPKSDTPWEYQLDYFNINA
91



deleyianum;

003304837.1

transferase


TIATVSEIKKLKGNNLFNRIARKIEKFFSIRIYKKSYINKSFISISDFHKLKSDIYLD



Sulfurospirillum


family protein


GEWNGFKYFEDYQDTIKNELTLKRGSSINIQNTIKELKSSDNSVFLHIRRGDYLSNKN




deleyianum



[Sulfuro-


AAAFHAKCSLDYYYKAIQIVKEKIDNPIFYIFSDDILWVKKNEVINESCRFMEKNQNF



DSM 6946



spirillum



EDLLLMSYCKHGITANSGFSLMAGWLNQNKDKMIIVPQTWVNDDRININILNSLEQDN







deleyianum



FTIIR






DSM 6946]










Escherichia coli;

WP_
486318742
glycosyl
26.47

MTFIVRLTGGLGNQMFQYALARSLAKKYNARLKLDISYYHNQPHKDTPRTFELNQLCI
92



Escherichia coli

001581194.1

transferase 11


VDNILNSSSFSEKFLYIYDKLRVKLSKKISLPYFRNIVTPVNENCIDFAEDKDYYFLG



Jurua


family protein


HFQELSNIYSIDESLRSEFKPNQEIMNLAHQSKIYELIKQSRGSVALHIRRGDYVINK



18/11;


[Escherichia


NAAEHHGVIGLSYYVNALSYLENVSEFFDVFVFSDDPEWARKNIKNSRNLFFCDEGNC




Escherichia coli




coli]



RYSKKYSTIDMYLMSQCDHFIIANSTYSWWAAWLGNYPSKHVVAPARWNANNSPYPIL



180600;





QNWKAIHE




Escherichia coli










P0304777.1;










Escherichia coli










P0304777.2;










Escherichia coli










P0304777.3;










Escherichia coli










P0304777.4;










Escherichia coli










P0304777.7;










Escherichia coli










P0304777.9;










Escherichia coli










P0304777.10;










Escherichia coli










P0304777.11;










Escherichia coli










P0304777.12;










Escherichia coli










P0304777.13;










Escherichia coli










P0304777.14;










Escherichia coli










P0304777.15













Firmicutes

WP_
547109632
protein
26.44

MVGVQLSGGLGNQMFEYALYLKLKSMGKDVRIDDVTCYGAQEKQRVNQLSVFGVSYEH
93



bacterium

021914998.1

[Firmicutes


MTKQEYEQITDSSMSPLHRARRLLCGRKDBYREASCNYDPEILRREPALLLGYFQTER



CAG:24



bacterium



YFADIKDQVREAFTFRNLTLIKESAAMEQQMKECESVSVHIRRGDYLTPANQALFGGI






CAG:24]


CDLDYYHRAVAEIRKRKPDVKFFLFSNDMEWTKEHFCGSEFVPVEGNSEQAGEQDLYL









MSCCKNHILANSSFSWWGAWLDNGKDKLVIAPEKWMNGRGCCDIVIDEMIRV







Amphritea

WP_
518452719
protein
26.42

MVKIKIIGGLGNQMFQYAAAKSLAVLNNTRVSANVWFSNYKTHPLRLNKLNCDCEFDF
94



japonica

019622926.1

[Amphritea


IRDFRLVLSGFPLLGSAFSKKSMLLNHYVEKDLLFDSSFFDLDDNVLLSGYFQSEKYF







japonica]



SNIRELLIQEFSLDDRLTEAELAINNKIESCNSIAIHIRRGDYITDLSANNIFIGICH









EYFEKALNYLDSINVLSDPTTTLFIFSDDILWCKDNLAFKYRTVFVEGSVDRPEVDIH









LMSKCKHQVISNSTFSWWGAWLNINLDKCVIAPLKWFNSLHDSTDIVPKQWMRL







Bacteroides

WP_
492689153
protein
26.41

MKQIIIMSGGLGNQMFQYALYCSMREKGIRVKIDISLYEFNRMHNGYMLDYAFGLNIS
95



salyersiae;

005923045.1

[Bacteroides


HNKINKYSVLWTRLIRSNRAPFLLFREDESRFCDDVETTYKPYIDGCWIDERYFFNIK




Bacteroides




salyersiae]



KKIISQFSFHNIDQKNLMVANMMKVCNSVSLHIRRGDYLSQSMYNICNESYYKSAIEY




salyersiae WAL






IISRVEDSKFFIFSDDPEWCKYFMEKENVDYEIIQHNFGKDSYKDMYLMTQCKHNIIA



10018 = DSM 18765





NSTFSWWGAWLNNNAGKNVVCPSVWINGRDFNPCLEEWYHI



= JCM 12988













Bacteroides

WP_
492241663
protein
26.38

MDIILLHNGLGNQMSQYAFYLSKKKNGIHTSYICLSNDHNGIELDKVEGVECQMGCKK
96



fragilis;

005786334.1

[Bacteroides


IFLLFILRLLMSNRTGFLIRKVNLLFSKIKIKLITENLDYSFHPSFLSASPYCLAFWV




Bacteroides




fragilis]



GGWHHPQYYSEISSQIKEAFTFKRSLLDERNICIEKRMREPNSVCLHIRRGDYLTGIN




fragilis






YELFGKVCNEQYYQKAIDYIEGKLSDICYYVESNDMEWAKKILLGKNAVFVDWNRGEE



CL03T00C08;





SWKDMYLMSKCSNLIIPNSTFSWWAAWLCEHPVNIVCPKISVYGDEQSDIYLDNWHKI




Bacteroides






E




fragilis










CL03T12C07













Bacteroides

WP_
494751435
protein
26.37

MMGIEKTNMVIVRLWGGIGNQLFQYSFGEFLREKYQVDVIYDIASFGKSDKLRKLELS
97



nordii;

007486843.1

[Bacteroides


VVVPGIPVTTDISFSKYVGTKNRLLRFIYGLKNSFIEEKYFSDEQLFKYLSKRGDVYL




Bacteroides




nordii]



QGYWQKTIYAETLRRKGSFELSQEEPIVLHTIKAKIQEAEGAIALHVRRGDYFSSKHI




nordii CL02T12C05






NTFGVCDAHYYEKAVDIMRGRVSNAMIFVFSDDLDWVRRYVNLPTNVIYVPNYDIPQY









WYIYLMSLCRHNIISNSSFSWWGAFLNMNINKIVVSPSKWILNSDKTIALDEWFKI










Butyrivibrio

YP_

glycosyl
26.37

MECSMIIIKFCGALGNQLFQYALYEKMRILGKDVKADISAFGDGNEKRFFYLDELGIE
98



proteoclasticus;

003829743.1
302669783
transferase 11


FNIASADEIAEYLNRKTIRFVPGFLQHRHYYFEKKPYVYNKKILSYDDCYLEGYWQNY




Butyrivibrio



[Butyrivibrio


RYFDDIKDELLKHMKFPCLPLEQKKLAEKMENENSVAVHVRMGDYLNLQDLYGGICDA




proteoclasticus




proteoclasticus



DYYDRAFSYIEGNISNPVYYGFSDDVDKASALLAKHKINWIDYNSEKGAIYDLILMSK



B316


B316]


CKNNIIANSSFSWWGAYLEYNNGKVVVSPNRWMNCFENSNIAYWGWISL







Prevotella

YP_
294674032
family 11
26.33

MRIVKVLGGLGNQMFQFALYKALQKQYPEERVLLDLHCFNGYHKHRGFEIDSVFGVIY
99



ruminicola;

003574648.1

glycosyl


EKATLKEVASLAYPYPNYQCWRIGSRILPVRKTMLKEEPNFTLEPSALSLPDSTYYDG




Prevotella



transferase


YWQHEEYFMHIREEILSTYAFPAFDDERNKTTAQLAASTNSCSIHIRRGDYLTDPLRK




ruminicola 23



[Prevotella


GTINGNYVIAAIKEMQQEVKPEKWLVFSDDIAWCQQHLASTLDATNTIYIDWNTGANS







ruminicola 23]



IHDMHLMALCRHHIIANSSFSWWGAWLSQQDGITIAPSNWMNLKDVCSPVPDNWIKI







Prevotella

WP_
494223898
protein
26.33

MKIIKIIGGLGNQMFQYALAIALQQQYKDEEIRLDLNCFRGYNKHQGYLLDEIFGRRF
100



salivae;

007135533.1

[Prevotella


RAASLQEVARLAWPYPHYQLWRVGSRVLPRRQTMVCEPADGSFSPDVLTLEGNRYYDG




Prevotella




salivae]



YWQDERYFKAYRKEIIEAFKFSPFVGDGNRHVENMLRNERFASLHVRRGDYLNDALYQ




salivae DSM 15606






NTCGIDYYQRAISQMNAMANPSCYFIFSDDIAWCKTHIEPLCEGHRPYYIDWNKGKEA









YRDMQLMALCKYHIIANSSFSWWGAWLNDAEDGITIAPQQWYSHGNKPSPASESWIKV







Lachnospiraceae

WP_
511045640
protein
26.3

MNIVRISDGLGNQMFQYAYARKISILSRQRTYLDIRFINNEDLVKKGNHVQFRKKLGH
101



bacterium COE1

016299568.1

[Lachno-


RKYGLSHENVSLQIADLKMLSHWEYLIQSNCMQQLIYSLSMQDKWIWRYRHEEVNYDG







spiraceae 



MLSKVELLFPTYYQGYFFALKYYDDIKHILQHDFSLKDKMKLLPELRDALYNRNTISL







bacterium COE1]



HVRRGDFLEINRDISGSEYYEKAVQMIGSKVESPIFLIFSDDIEWVKEHIRIPNDKIY









VSGIGYEDYEELTIMKHCKHNIIANSTFSYWAAYLNSNKDKIVICPKHWRERIIPKDW









ICI







Bacteroides

WP_
495118115
alpha-1,2-
26.28

MIVVNVNAGLANQMFHYAFGRGLEAKGWNIYFDQINFKPRKEWSFENVQLQDAFPNLG
102



dorei;

007842931.1

fucosyl-


LKMMPEGKFKWICVNNINKLSKGLHLAMINLHNLIGDEKYIFETTYGYDPDIEKEITK




Bacteroides



transferase


NCILKGFWQSEKYFAHCKDDIRKQFSFLPFDEEKNIVIMNKMVKENSVAIHLRKGADY




dorei 5_1_36/D4



[Bacteroides


LKSELMGKGLCGVEYYIKAIEYIKKNIDNPVFYVFIDNPVWVKNNLPKFDYILVDWNE







dorei]



VAGKKNFRDMQLMSCAKHNIIANSTYSWWGAWLNPNPNKIVIGPAKFFNPINNFFSSS









DIMCEDWVKI







Roseobacter sp.

WP_
495485361
alpha-1,2-
26.28

MLSKDPGMITTRLHGRLGNQMFQYAAGRALAARLGVPLALDSRGAKLRGEGVLTRVFD
103


SK209-2-6
008210047.1

fucosyl-


LPLAQPLSLPPLKQDAPLRYAAWRLTGRTPRFRREQGLGYNPAFETWGDDSYLHGYWQ






transferase


SEAYFDSIADQIRQDFTFPEFSNSQNREMAQRIAGSTAISLHVRRGDYVALAAHVLCD






[Roseobacter


QAYYEAALTRILEGVEGSPTVYVFSDDPNWAKENLPLPCEKVVVDENGPDTDFEDMRL






sp. SK209-2-6]


MSLCQHNIIGNSSFSWWAAWLNTHNEKRVAGPAHWEGNPKLQNPDILPESWLKISV






alpha
WP_
518900826
protein [alpha
26.26

MIYSRIRGGLGNQLFQYCVARSLADNLGTSLGLDVRDFNENSPYLMGLKHFNIRADFN
104


proteobacterium
020056701.1

proteobacterium


PPGMIEHKKNGYFRYLIDVVNGKQKFVYKEPHLNFDKNIFSLPNSSYLKGYWQTEKYF



SCGC AAA076-C03


SCGC


IKNKVNILNDLKIISHQSDKNKTISSKIANNTSVSLHIRRGDYISNSAYNSTHGTCSL






AAA076-C03]


AYYTNAVNFLVNKIGGNEKVFAFSDDPEWVSSNLKLPVDICFVKNNSSEYNYEDLRLM









SECNHNIIANSSFSWWGAWLNINHNKTVITPCKWYADNSTKNADITPSNWIKI







Helicobacter

WP_
490188900
protein
26.26

MGGGGQDLRLFELMLYNISLPLCFDYKTLVKYFYSNDKSLKYNFPLQYIRYATRSKYH
105



bilis;

004087499.1

[Helicobacter


KLYWLALKHYKYFYDEDPQGDNIVKMYLNNSLEKHAYPEGYFQNLIYFDEIDSIIREE




Helicobacter




bilis]



FCLKIPLKPHNQALKEKIEKTENSVFLHVRLGDYLKMEATDGGYVRLGKTYYQSALEI




bilis






LKTRLGQPHIFIFSNDIEWCEKNLCNLLDFTGCHIEFVKANGEGNAAEEMELMRACKH



WiWa





AVIANSTFSWWASYLIDNPDKQIIMPTQVFNDTRRIPKSNMLAKKGYILIDPFWGMHS









IV







Ralstonia sp.

WP_
498513378
glycosyl
26.26

MIVIRVIGGLGNQMFQYAAGRALARRLGVPLKIDSSGFADYPLHNYGLHHFALKAVQA
106


GA3-3
010813809.1

transferase


GDREIPSGRAENRWAKALRRFGLGTELRVFRERGFAVDPEVMKLPDGTYLDGYWQSES






family protein


YFAEMTQELRRDFQIATPPTSENAEWLARIGGDEGAVSIHVRRGDYVTNASANAVHGI






[Ralstonia sp.


CSLDYYMRAARYVAENIGVKPIFYVFSDDPDWVAGNLHLGHETRYVRHNDSARNYEDL






GA3-3]


RLMSACRHHIIANSTFSWWGAWLNASEKKVVIAPAQWERDEKYDTRDLLPPTWTKL







Bacteroides

WP_
490431888
protein
26.25

MVVVYIAAGLANKMFQYAFSRGLMSHGLDVFLDQTSFQPEWSFEDIALEEVFPNIEIK
107



ovatus;

004303999.1

[Bacteroides


DNAPNNMFSLAYKKLLSRIYRRMSAFFPNNRYLMERPFIYDELIYKKATNNCIFCGLW




Bacteroides




ovatus]



QTELYFNFCERDVRRNFVFTPFQDDQNIKLAEKMKNENSVAIHIRKGADYLKRNIWDG




ovatus 3_8_47FAA






ICSVEYYNQAINYLKEHVSNPVFYLFTDNPEWVEENLKNIDYKLVDWNPVSGKQSYRD









MQLMSCAKHNIIANSTYSWWGAWLNNNPQKIVVAPKIWFNPKIEKAPYIIPDRWIRL







Loktanella

WP_
518799952
protein
26.23

MIITKLIGGLGNQMFQYAAGRSLAMRHGVPLLLDITELRSYPKHQGYQFEDVFAGRFE
108



vestfoldensis

019955906.1

[Loktanella


IAGLIPLIRVLGRKARKVPKTVAVVSPKWPPMGDHVWVRQRTHDYDAAFESIGADCYL







vestfoldensis]



SGFWQSEKYFATIAPQIRESFRFKEALTGANAAIASRMKEAPSAAIHIRRGDYVTDKG









AHAFHGLCAWDYYDAAIDHISRHEPDARFFVFSDDVVAAQERFANRQRAEVVAVNSGR









HSYRDMMLMAQCKHQIIANSTFSWWAAWLNQNPDKIVVAPGTWFSGNDGQIKDIYCKD









WIVI







Flavobacterium

WP_
515558304
protein
26.14

MDVVIIFNGLGNQMSQYAFYSQKKKINNSTYFVPFCKDHNGLELETVFSLNTKETLIQ
109


sp.
016991189.1

[Flavo-


KSLYILFRILLTDRLKIVSDPLKWILNLFKCKIVKESFNYNYNPEYLKPSKGITFYYG



ACAM 123



bacterium



GWHAEKYFAKENQQIKSVFEFTGDLGKINKEHVKDIASTNAVSLHVRRGDFMNEANIG






sp. ACAM 123]


LFGGVSTKAYFEGAIKLIATKVDHPHFFVFSNDMDWVKENLSMDTVTYVTCNSGKDSW









KDMCLMSLCQHNIIPNSTFSWWGAWLNKNPHKIVVCPSRFLNNDTYTDIYPDSWVKIS









DY







Bacteroides

WP_
492219620
glycosyl
26.1

MMKLVRMIGGLGNQMFIYAFYIQMKTIFPELRIDMSEMKKYKLHNGYELEDVFSIRPQ
110



fragilis;

005779407.1

transferase


TISAHKWLKRVIVYAFFSIIREKSEEELSIHKYTQHKRWPLVYYKGFFQSELFFKESS




Bacteroides



family 11


DTIRDIFSENTENANFRTKEWAKIIKEQRSSVSIHIRRGDYTSAKNKIKYGNICTEEY




fragilis 3_1_12



[Bacteroides


YQKAISIILKKEPKAFFHIFSDDVEWTKAHLKIHHLPHQYISWNKGPDSWQDMMLMSL







fragilis]



CRHNIIANSSFSWWGAWLNAYKDKTVIAPSRWSNVKKTPHILPESWISIDI







Spirosoma

WP_
522086793
protein
26.09

MIISRVTSGLGNQLFQYAAARSLSLRNKTAFYVDLSYYLVEYPDDISRSFKLGFFSVP
111



panaciterrae

020598002.1

[Spirosoma


YRILQESPVEYLSKSTKLFPNRSLRPFFLFLKEKQFHFDPTILQAHAGCVIMEGFWQS







panaciterrae]



ECYFRDHAEIIRRELQLSKSPSSEFEGYHQQIQATPVPVSVHVRRGDYVNHPEFSKTF









GFIGLDYYKTAIRHLTKTIKNPHFYVFSDDKEWARANLPLPTDSVFVTNTGPSGDVAD









LVLMSTCHHHIIANSSFSWWGAWLNPNPDKLVITPKLWYKNQPTWNTKDLLPPTWVSL






uncultured
EKE06672.1
406985982
glycosyl
26.09

MIITKLTGGLGNQLFQYAIGRNLIYINGSDLKLDVSEYDVSNKGNFRHYALDKFNTIQ
112


bacterium


transferase


NFASKKETNNFKFGVFKKWLYKSGIVKNKNYFLEKKENFDKEILKIKDNAFLQGYWQS






family 11


EKYFIGIRDILLQEFSLKENIELKFGEILKEINESNSVSIHVRRGDYVKNPKNLSFHG






[uncultured


VCSPKYYSESTSKIASLIEKPVFFVFSDDIEWVKENLNITFPVVYLSGIKNIKSYEEL






bacterium]


VLMSKCKHNIIANSSFSWWGAWLNINQKKIVIAPKRWENDVKLDTTDLIPENWIRI







Thermo-

NP_681784.1
22298537
alpha-1,2-
26.07

MIIVHLCGGLGNQMFQYAAGLAAAHRIGSEVKFDTHWFDATCLHQGLELRRVFGLELP
113



synechococcus



fucosyl-


EPSSKDLRKVLGACVHPAVRRLLAGHFLHGLRPKSLVIQPHFHYWTGFEHLPDNVYLE




elongatus;



transferase


GYWQSERYFSNIADIIRQQFRFVEPLDPHNAALMDEMQSGVSVSLHIRRGDYFNNPQM




Thermo-



[Thermo-


RRVHGVDLSEYYPAAVATMIEKTNAERFYVFSDDPQWVLEHLKLPVSYTVVDHNRGAA




synechococcus




synechococcus



SYRDMQLMSACRHHIIANSTFSWWGAWLNPRPDKVVIAPRHWFNVDVFDTRDLYCPGW




elongatus BP-1




ococcus



IVL






elongatus BP-1










Colwellia

WP_
517858213
protein
26.03

MKIVKIAGGEGNQLFQYAFYLALDKKYAEQVCLDSLDMAKYRLHNGYELEGIFKLDAR
114



piezophila

019028421.1

[Colwellia


YCTEEQRIIVRKDNNIFTKLLSSLKKKLGNNKNYILEPKQEHFTFHEKSFGQANTPTY







piezophila]



YKGYWQDVKYLENIEEELKSSLVFPEFELGKNIELANFISSNSSVSLHVRRGDYVQHK









AFGGICDLSYYQRAVEQINTLVKDPIFIVFSDDIQWCKDNLNLEKAKFVDWNIGENSF









RDMQLMTLCKHNIIANSSFSWWGAWLNANDDKNVICPDKWVHYTSATGVLPSEWIKIK









ASV







Prevotella

WP_
518810840
protein
26

MKIVKIIGGLGNQMFQYALAIALQERWKDEEIKLDLHGFNGYHKHQGYQLDMLFGHRF
115



maculosa

019966794.1

[Prevotella


EAATLTDVAQLAWPYPHYQLWRVGSRLLPKRRSMLCEPSKGLLPSDVLKQKGSLYYDG







maculosa]



YWQDERYFRAIRPQIMAAFKFPDFTDRRNLETEKRLKASEAVSIHVRRGDYLDDVLFQ









GTCNIAYYQRAIARLCQLKTPVFCIFSNDMAWCKVHIEPLLHGKEILYVDWNRGKESY









RDLQLMTLCRHHIIANSSFSWWGAWLSKAEDGITIAPRHWYAHDAKPSPAAERWIKV







Salmonella

YP_
525860034
fucosyl-
25.99

MYSCLSGGLGNQMFQYAAAYILKQYFQSTTLVLDDSYYYSQPKRDTVRSLELNQFNIS
116



enterica;

008261369.1

transferase


YDRFSFADEKEKIKLLRKFKRNPFPKQISEILSIALFGKYALSDRAFYTFETIKNIDK




Salmonella



[Salmonella


ACLFSFYQDADLLNKHKQLILPLFELRDDLLDICKNLELYSLIQRSNNTTALHIRRGD




enterica subsp.




enterica subsp.



YVTNQHAAKYHGVLDISYYNHAMEYVERERGKQNFIIFSDDVRWAQKAFLENDNCYVI




enterica serovar




enterica



NNSDYDFSAIDMYLMSLCKNNIIANSTYSWWGAWLNKYEDKLVISPKQWFLGNNETSL



Worthington str.



serovar



RNASWITL



ATCC


Cubana str.






9607; Salmonella


CFSAN002050







enterica subsp.











entericaserovar










Cubana str.









CFSAN001083;










Salmonella











enterica subsp.











enterica serovar










Cubana str.









CFSAN002050;










Salmonella











enterica subsp.











enterica serovar










Cubana str.









CVM42234













Bacteroides sp.

WP_
495935021
protein
25.94

MKKVIFSGGLGNQMFQYAFYLFLKKKGIKAVIDNSLYSEFKMHNGFELIKVFDIKESI
117


3_2_5
008659600.1

[Bacteroides


YRTYFLKVHLIFIKLLMKIPPVRKLSCKDDVIPIGDHEFDPPYARFYLGYWQSKKIVN






sp.


YVIEELRAQFIFRNIPQMTIEKGDFLSSINSVSIHIRRGDYMGIPAYQGICNEIYYER






3_2_5]


AISFMKEHFLNPRFYVESNDSIWAKLFLEKFDIDMEIIVTPPIYSYWDMYLMSRCRNH









IIANSTFSWWAAVLNINKDKIVISPTIFKKDECIDIIFDDWVKISNI







Clostridium sp.

WP_
547662453
protein
25.86

MIMLQMTGGMGNQMFTYALYRSLRQKGKEVCIEDFTHYDTPEKNCLQTVFHLDYRKAD
118


CAG:510
022124550.1

[Clostridium


REVYQRLTDSEPDFLHKVKRKLTGRKEKIYQEKDAIIFEPEVFQTDDVYMIGYFQSGR






sp.


YFEKAVFDLRKDFTFAWNTFPEKAKKLREQMQAESSVSLHIRRGDYMNGKFASIYGNI






CAG:510]


CTDAYYEAARRYMKEHFGDCRFYLFTDDAEWGRQQESEDTVYVDASEGAGAYVDMALM









SCCRHHIIANSSFSWWGAWLDENPDKTVIAPAKWLNISEGKDIYAGLCNCLIDANGSV









QGE







Rhodopirellula

WP_
495940880
glycosyl
25.86

MIVIRLIGGLGNQLFQYAFGHSLARSTYQTLLIDDSAFIDYRLHPLAIDHFTISASRL
119



europaea;

008665459.1

transferase


SDADRSRVPGKFLRTPVGRALDKVSRFVPGYQGVLPVRREKPFGFRESLLARESDLYL




Rhodopirellula



family protein


DGYWQSEKFFPGLRGSLREEFQLREQPSETTRRLSAQMKSENSVAIHVRRGDYVISAK




europaea SH398



[Rhodo-


AKQIYRILDADYYRRCLLDLAAHETDLKLYLFSNDVPWCESNLDVGIPFTPVQHTDGA







pirellula



TAHEDLHLIAQCRHVVIANSTFSWWGAYLGQLHPIRRVYYPEPWFHPGILDGSAMGCD







europaea]



DWISEASLEEQSSLKSSRRAA






uncultured
EKD23702.1
406873590
glycosyl
25.82

MIIVKLKGGMGNQMFQYAIGRNLATKLGTQLRLDLTFLLDRSPRKDFVFRDYDLDIFA
120


bacterium


transferase


LDVAFAGPTDLKPFTQFRISHLTKIYNIFPRLLGRPYVISEPHFHFSEAILKSSDNVY






family protein


LDGYWQSEKYFKEIENSIRDDFKFRQPLEGRAAEMAAQIKNEDRAVCLNVRRADEVIS






[uncultured


KKAQEFHGFIGLDYYQKAVDLLVSKVGPLHLFIFSDDVDWCAANLKENYPTTFVTKDY






bacterium]


SGKKYEAYLQLMTLCRHYIIPNSTFAWWGAWLNSDPNKIVIAPKQWFKEASIDTTDII









PSTWIRL







Bacillus

WP_
446510160
protein
25.74

MIIVKLKGGLGNQMFQYALGKSLALYYDKPLKIDADYIKNNEGYVPRDFSLSKFNIEL
121



cereus; Bacillus

000587678.1

[Bacillus


DLYQEADKERVGFILKNNFLAKKLRNYFLKKGKYKGKYIIENPDNLGLFKKELFENHN




cereus AH1271




cereus]



ESMYIDGYWQSYLYENNIRECLIKEFNLKPEYTKEMTEIMQRINETNSVAVHIRRGDY









VKLGWILDTTYYKKAIAEIVKNVDNPKFYVFSDDTDWVRSNLQELDNAVFIGECNLFD









YQELWLMSTCKHNIISNSTFSWWGAWLNQNDHQVVVSPSAWINGMSVETTSLIPDSWK









RV







Firmicutes

WP_
548309386
protein
25.74

MDIIRMEGGLGNQLFQYALYRQLQFMGRTVKMDVTTEYGREHDRQQMLWAFDVHYEEA
122



bacterium

022499937.1

[Firmicutes


TQEEINRLTDGEMDLPSRIRRKLTGRRTKKYAEADSNFDPQVLLKTPVYLTGYFQSEK



CAG:95



bacterium



YFKDVEGILHTELGFSDRIYDGISEVFADQIRNYQKQIRETESVSLHVRRGDYLEHPE






CAG:95]


IYGMSCTMEYYQAGVRYIRERHPDAEIFVFTNDPVFTEKWLQENFLGDFTLIQGTSEE









TGYLDLMLMSQCKHQIMANSSFSWWGAWLNPNKDKIVVAPEPWFGDRNFHDIYTEEMI









RISPRGEVKKHG







Prevotella

WP_
490508875
alpha-1,2-
25.74

MIAATLFGGLGNQMFIYATVKALSLHYQVPMAFNLNHGFANDYKYHRKLELCKFNCQL
123



oris; Prevotella

004374901.1

fucosyl-


PTAKWITFDYRGELNIKRISRRIGRNLLCPNYQFVIEEEPFHYEKRLFEFINKNIFLE




oris




transferase



GYWQSPCYFENYSKEIRADFQLKVPLSKEMLEEIYALKATGKTLVMLGIRRYQEVEGR



F0302


[Prevotella


DICTYKLCDKEYYIKAITYIQERIPNALFVVFTQDKEWATTHLPKGAEFYFVKDKQDE







oris]



YATVADMFLMTQCTHAIISNSTFYWWGAWLQCTTKNHIVIAPDSFINSDCVCKEWIIL









KRNSLC







Escherichia coli

AAo37719.1
37528734
fucosyl-
25.73

MYSCLSGGLGNQMFQYAAAYILQRKLKQRSLVLDDSYFLDCSNRDTRRRFELNQFNIC
124





transferase


YDRLITSKEKKEISIIRHVNRYRLPLFVTNSIFGVLLKKNYLPEAKFYEFLNNCKLQV






[Escherichia


KNGYCLFSYFQDATLIDSHRDMILPLFQINEDLLHLCNDLHIYKKVICENANTTSLHI







coli]



RRGDYITNHASKFHGVLPMDYYEKAIRYIEDVQGEQVIIVFSDDVKWAENTFANQPNY









YVVNNSECEYSAIDMFLMSKCKNNIIANSTYSWWGAWLNTFEDKIVVSPRKWFAGNNK









SKLTMDSWINL







Leeia oryzae

WP_
516890767
protein [Leeia
25.71

MIIVKIIGGLGNQMMQYAFAHACAKRLGVPFKLDITAFESYKLWPYGLHNFEITAPIA
125



018150480.1


oryzae]



SLEEIEHAKSMGVITETSFRFDDSLVSAVKDGMYLDGYWADYRYSESVWGELKPVFIL









MDPLTPEQQALAMNLSAPNAVALHVRRGDYVINPNCELLPQQYYRDAIKLVLDQQPDA









VFYCFSDDPDWVEAHLDIPAPKVVVRGQGIDNGFVDMILMSKARHRIVANSTFSIWAS









RLADQDGLTIVPSQFFRKDDPWLLQVYGEVLQPCYPPQWRVVDVTGDGKKEAENTSTA









LLQIAGGDVRGRKLRIGVWGFYEEFYQNNYIFLNKNAPIGHELLKPFNQLYQYGQAHN









LEFVTLDLVADLSTLDAVLFFDAPNMRSPLVSSVMQLDIKKYLCLLECELIKPDNWQQ









SLHELFTRIFTWHDGLVDNHRYIKVNYVTDLMPWIESAQSLTAPFEETARKGYLQKKL









ICNISGNKLVSHPFELYSKRIEVIRWFESHHPEHFDLYGMGWSASDYPSYKGKIDDKL









EVLKGYRFSLCYENAKELPGYITEKIIDCFKAGVVPVYSGAPNIADWIPDNCFIDSGK









FPDTDALYTYLISMTEEVHADYLENIRQFFLGGKAYPFSADAFINTITRTIVQDCLEP









HERTDVSVVVPNYNHGNFVVSAITSALNQNVSVELLVLDNASTDDSWSQLQFFADYPQ









VRLIRNRWNIGVQHNWNHATWLATGRYVVMLSADDLLLPGHLEQAVKRLDENPASSLY









YTPCLWINEHDQPLGTLNHPGHLESDYVGGRDEISDLLKFDSYITPSAAVIRRETLNR









IGSMNLHLKGAIDWDLWIRIAEISPAFIFRKQPGVCYRQHSGNNSVDFYASTAPLEDH









IRIVESIIDRKVAVKYLLKAKEEIIAHLDNRASSYPENQIQHLLSRINNIKDYLRKGA









GPVISVIIPTKNRPGLLANALESLTYQTFKDFEVVIHNDGGCDIGGIVDFFSDQLQIS









YVRSSQSGGAAASRNRALKLAKGRIIAYLDDDDVYLDSHLEKLVDAYKGRSEKFIYIN









CEYLIQERKEGRLIELGRERRYAGISYSRAQLLVSNFIPTPTWSHTKELIDTIGDFDE









SLEILEDWDFLLRASKVIEFYQVNATTVEVRSDRSRDDHTLRANADKLLAYHQKIYAK









HPVENESILANRQSLINSLSNRQDVTPKNENSYQGWVNARQPNELAVQILAERMMLQW









SKQYQFMIVMVVKQSQQNLLANTIDSFCQQLYSGWKLIVISDFEAPDESFINNEVLGW









LTLETVEDENLLTQAFNGVLAEVPSDWVTILPVGIRLTSTALLKVGDRLLLNGGACVI









YTDHDYVSDDGMIKDPVLKPAFNLDMLRSQDYIGSSIFFRIDSLAAVGGFASFPGART









YEACFRMLDNYGPQTIEHLPEPVMTFPENQPENSLRVAAMQLALEEHLHRNNISASIE









EGYVTGTFLVQYHHSEQPFVSIIIPNKDKHEFLAPCIETLMKVTQYPAFEVIIVDNQS









TDPDTLSYYEEIESRFANNVKVIQYDNPFNFSAQCNLGAESARGDFILFLNNDTEIVQ









ANWLERMMQHAQRNDVGVVGARLVFPETVTIQHAGIVLGGKYPDEVFQFPYMNFPVDK









DVSLNRTKVVQNYSAVTGACLLVRKSLYQQVGGMNEQNLAVLYGDVDLCLRIRQLHKS









VVWTPFSTLVHHIGKILNSNSDHEKHLMMVIQTRQEREYMLSHWLDIIANDPYYHRLL









DKSECNGTIDCTHTPLWDDIPSARPRLQGMALVGGSGEYRVNMPFRTLERSALAEIVL









SNMTSKARLPSITELARNAPDVFVVQNALADEFIRMLEMYKKYLPSVFRIQMLDDLLT









EIPDASSFKRHFQKNWRDAKARLRKSLKFCDRLIVSTEPLRTFAEDMIDDIIVVPNML









ERSVWGDLVSKRRAGKKPRVGWVGAQQHAGDLALMTDVVKATGHEVDWVFQGMCPDDI









RPYVAEVNTEWLTYDKYPQGIAALNLDLAIAPLEINAFNEAKSNLRLLEYGALGWPVI









CTDIYPYQTNNAPVCRVPNDASAWIEAIRSHIADLDATAQKGDQLRQWVHDHYMIEDH









AQEWLSALTRPAGK







Desulfovibrio

WP_
492830219
Glycosyl
25.68

MFQYAAARALSLRHSASLAADLTWFSQQFDVQTTPREYALPAFRLNLPEADKRIVATF
126



africanus;

005984173.1

transferase


RLNPTELRIVSFLRHRICFPSRFLPRHITELSFDYWDGFRDILPPAYLDGYWQSERYF




Desulfovibrio



family 11


SDYPDIIRADFSMLSISEQAAWMSAKIASVQDSISLHIRRGDYVNSLATRKAHGIDTE




africanus PCS



[Desulfovibrio


RYYAKALEWIADRIGAATIFAFSDDPRWVRANFDFGKHKGIVVDGSWTAHEDMHLMSL







africanus]



CSHHIIANSSFSWWGAWLSTSQGITIAPKSWFSNPHIWTPDVCPATWERIPC







Akkermansia

WP_
547786341
glycosyl
25.66

MAKGKIIVMRLFGGLGNQLFQYAFLFALSRQGGKARLETSSYEHDDKRVCELHHFRVS
127



muciniphila

022196965.1

transferase


LPIEGGPPPWAFRKSRIPACLRSLFAAPKYPHFREEKRHGFDPGLAAPPRRHTYFKGY



CAG:154


family 11


FQTEQYFLHCREQLCREFRLKTPLTPENARILEDIRSCCSISLHIRRIDYLSNPYLSP






[Akkermansia


PPLEYYLRSMAEMEGRLRAADAPQESLRYFIFSDDIEWARQNLRPALPHVHVDINDGG







muciniphila



TGYFDLELMRNCRHHIIANSTFSWWAAWLNEHAEKIVIAPRIWFNREEGDRYHTDDAL






CAG:154]


IPGSWLRI







Dysgonomonas

WP_
493897667
protein
25.66

MKIVKLQGGLGNQMFQYAIARTLETNKKKDIFLDLSFLRMNNVSTDCFTARDFELSIF
128



mossii;

006843524.1

[Dysgonomonas


PHLRAKKLNSLQEKFLLSDRVRYKFIRKIANINFHKINQLENEIVGIPFGIKNVYLDG




Dysgonomonas




mossii]



FFQSESYFKHIRFDLIKDFEFPELDTRNEALKKTIVNNNSVSIHIRRGDYVHLKNANT




mossii DSM 22836






YHGVLSLEYYLNCIKRIGEETKEQLSFFIFSDDPEYASKSLSFLPNMQIVDWNLGKNS









WKDMALMLACKHHIIANSSFSWWGAWLSERNGITYAPVKWENNESQYNINNIIPSDWV









II







Prevotella

WP_
490506359
glycosyl
25.66

MDIVLIFNGLGNQMSQYAFYMSKKKFVPQSKCMYYKGASNNHNGSELDKLFDIKYSET
129



oris; Prevotella

W004372410.1

transferase,


FFCKLILLLFKLYENIPRLRKYFHILGINIVSEPQNYDYNESILKKKTRFGITLYKGG




oris



family 11


WHSEKYFLANKQDVLNTFSFKIAKEDKNFIDLAKSIEEDINSVSLHVRRGDYLNISPT



F0302


[Prevotella


DHYQFGGVATTNYYKNAVSYMLKRNKQAHFYIFSDDITWCKAEYKDLMPTFIECNKKN







oris]



KSWRDMLLMSLCINHINANSTFSWWGAWLSTKNGITICPTEFIHNVVIRDIYPETWVQ









L







Pseudo-

WP_
496239055
glycosyl
25.66

MIIVRLMGGMGNQLFQYATAFALSKRKSEPLVLDTRFFDHYTLHGGYKLDHFNISARI
130



gulbenkiania

008952440.1

transferase


LSKEEESLYPNWQANLLLRYPIIDRAFKKWHVERQFTYQDRIYRMKRGQALLGYWQSE




ferrooxidans



family 11


LYFQEYRKEISAEFTLKEQSSVTAQQ1SVAMQGGNSVAVHIRRGDYLSNPSALRTHGI



2002;


[Pseudo-


CSLGYYNHAMSLLNERINDAQFYIFSDDIAWAKENIKIGKTSKNLIFIEGESVETDFW




Pseudo-




gulbenkiania



LMTQSKHHIIANSTFSWWGAWLANNTDEQLVICPSPWFDDKNLSETDLIPKSWIRLNK




gulbenkiania




ferrooxidans]



DLPV




ferrooxidans














Salmonella

WP_
446208786
protein
25.66

MYSCLSGGLGNQMFQYAAAYILKQYFQSTTLVLDDSYYYSQPKRDTVRSLELNQFNIS
131



enterica

000286641.1

[Salmonella


YDRFSFIDEKEKIKLLRKFKRNPFPKKISEILSIALFGKYALSDSAFYAVETIKNIDK







enterica]



ACLFSFYQDADLLNKHKQLILPLFELRDDLLDICKNLDVYPLILRNNNTTALHIRRGD









YLTNQHAAKYHGVLDTSYYNNAMEYVERERGKQNFIIFSDDVKWAQKAFLGNENCYIV









NNGDYDYSAIDMYLMSLCKNNIIANSTYSWWGAWLNKSEDKLVISPKQWFLGNNETSL









RNASWIIL







Carnobacterium

YP_
554649642
glycosyl
25.59

MLIVKVYGGIGNQMFQYSFYKYLQKNNDDVFLDISDYKVHNHHNGFELIDVFNIEVKQ
132


sp.
008718688.1

transferase


ADMSKFKGHVSSKNSIFYRLTSKLFKRNILGYSEFMDSNGISIVRNEKILTDHYFIGF



WN1359


family 11


WQDVLYLQSVEEEIKEAFNEKNVAIGKQNLELISLSESVESVSVHIRKGDYANNSDLS






[Carno-


DICDLEYYEEAMKIIDSKVSEPLYFIFSDDIEWCKQKFGKRDNLIYVDWNIAKKSYID







bacterium



MLLMSKCKHNIIANSTFSWWGAWLNNNSKKIVICPKTWDRKKNENHLLLNDWIAI






sp. WN1359]










Prevotella sp.

WP_
547227670
protein
25.58

MMKIIVNMACGLANRMFQYSYYLFLMHKGYNVKVDFYNSAKLAHEKVAWNDIFPKARI
133


CAG:1185
021964668.1

[Prevotella sp.


EQASFSDILKSGGGSDVISKIRRKYLPFLSSVVNMPTAFDANLPVENKKLQYIIGVFQ






CAG:1185]


NANMVEAVEEDVKRCFKFQPFTDERNLKLQNEMQSCESVAIHVRKGKDYAQRIWYQNT









CPIEYYQNAIRLISEKVNNPKLYVFTDNPEWVKEHFKDFPYTLVEGNPASGWGSHFDM









QLMSVCKHNIISNSTYSWWSAFLNVHNEKIVIGPKVWFNPDSCSEFTSERILCKDWIA









V







Selenomonas sp.

WP_
497331130
glycosyl-
25.58

MFQYAMASSVARRAGEILKLDLSWIRQMEKKLSADDIYGLGIFSFDEKFSTSNEVQKF
134


CM52
009645343.1

transferase,


LPSGKFSAKIYRAVNRRMPFSWRRVLEEGGMGWHPQIMEIRRSVYFYMGYWQSEKYFS






family 11


DFIQEIRKDFTFREEVRQSIEERRPIVEKIRKSDAVSLHIRRGDYAQNPALGEIFLSF






[Selenomonas


TMQYYIDAARYISERVKTPVFFIFSDDIPWAKENLPLPYEVCYIDDNIQTNEREIGHK






sp. CM52]


SKGYEDMYLMTQCQHNIIANSSFSWWGAWLNHNPNKIVVAPKKWCNGSFNYADIVPEQ









WVKL







Bacteroides

WP_
494751213
protein
25.57

MEIVFIENGLGNQMSQYALYLSKRNLGCKVRYAYNIRSLSDHNGFELDRVEGITYPNN
135



nordii;

007486621.1

[Bacteroides


LENKCINIIYRLLFANKYLFLVQKMIYVLRQMNVYSIKEKDNYDYDYKILTRHKGIVL




Bacteroides




nordii]



YYGGWHSEKYFLSNADIIKDKFRFNISKLNSESLVLYHRLSSLNAVALHVRRGDYMAP



nordii





EHYNVFGCVCGIEYYKAAIQYIQSQILNPVFIVESNDIEWVKENITGIQMIFVDFNKK



CL02T12C05





ENSWMDMCLMSCCEHNIISNSTFSWWGAWLNNNKNKIVVCPKYFMSNIDTKDIYPESW









IKI







Parabacteroides

WP_
491855386
protein
25.54

MKKKDIILRVWGGVGNQLFIYAFAKVLSLITDCKVILDIRTGFANDGYKRVYRLGDFS
136



merdae;

005635503.1

[Para-


ISLLPALRFYILLSFAQRKMPYIRHLLAYKFDFFEEDQKYPLETLDSFFKIYSDKNLY




Parabacteroides




bacteroides



LQGYWQYFDFSSYRDVLLKDLRFEVEINNTYLYYSDLIEKSNAVAIHFRRIQYEPVIS




merdae ATCC




merdae]



IDYYKKAIKYISENVENPIFFIFSDDINWCRENLSINGICFFVENFKDELYELKLMSQ



43184;





CNHFIIANSTFSWWGAWLSVNADKKVIMPDGYTDVSMNGSIVHI




Parabacteroides 











merdae CL09T00C40














Butyrivibrio sp.

WP_
551024004
protein
25.51

MIIIQLKGGLGNQMFQYALYKELKHRGRDVKIDDESGFIGDKLRVPVLDREGVEYDRA
137


NC2007
022768139.1

[Butyrivibrio


TKDEVIALTDSKMDIFSRIRRKLTGRKTFRIDEMEGIFDPKILETENAYLVGYWQSEK






sp.


YFTSPEVIEQIQEAFGKRPQEIMHDSVSWSTLQQIECCESVSIHVRRIDYMDAEHIKI






NC2007]


HNLCSEKYYKNAISKIREEHPNAVFFIFTDDKEWCKEHFKGPKFITVELQEGEFTDVA









DMLLMSRCKHHIIANSSFSWWSAWLNDSPEKIVIAPSKWINNKKMDDIYTERMTKVAI







Bacteroides

WP_
490430100
protein
25.5

MIVVYSNAGLANRMFHYALYKALEVKGIDVYFDEKSYVPEWSFETTILMDVFPNIQYR
138



ovatus;

004302233.1

[Bacteroides


ESLQFKRASKKTFLDKIVIHCSNLFGGRYYVNYRFKYDDKLFTKLETNQDLCLIGLWQ




Bacteroides




ovatus]



SEKYFMDVRQEIQKCFQYRSFVDDKNVKTAQQMLSENSVAIHVRKGADYQQNRIWKNI




ovatus ATCC






CTIDYYRLAIDYIRMHVQNPVFYVFTDNKDWVIENFTDLDYTLCDWNPTSGKQNYLDM



8483;Bacteroides





QLMSCAKHNVIANSTYSWWGAWLNENSDKIVIAPKRWENKIVTPDILPEQWIKI




ovatus CL02T12C04














Mesotoga prima

YP_
389844033
glycosyl
25.5

MRVVWFGGGLGNQMFQYGLYCFLKKNNQEVKADCTQYSTIPMNNGFELERLFNLDIAH
139


MesG1.Ag.4.2;
006346113.1

transferase


ANLDVISKLIGGNRLSPRKVIWKLFRKPKVYFEEKIPFSFDPDVLKGNNRYLKGYWQN




Mesotoga prima



family protein


MNYLEPCAKELRDVFTFPAFSSDNNKRLADEIAKVEAVGVHFRRGDFLKSSNLGLEGG






[Mesotoga


ICSDQYYLRAIQTMENTVVEPVFYVFCDDPQWAKNSFSDARFTVIDWNIGSNSYRDMQ







prima



LMSLCKHNIIANSTFSWWAAWLNRNPNRIVIAPERMVNRDLDFSGIFPNDWIRLQG






MesG1.Ag.4.2]










Clostridium

WP_
545399562
glycosyl-
25.49

MIVLKLQGGLGNQMFEYAFARTIQEQKKDKKLILDTSDFQYDKQREYSLGHFILNENI
140


sp. KLE
021639228.1

transferase,


EIDSSGKENLWYDQRKNPLLKVGFKFWPKFQFQTLKLEGIYVWDYAKYIPVDVSKKHK



1755


family 11


NILLHGLWQSDKYFSQISEIIRKEFAVKDEPSQGNKAWLERISSANAVCVHIRRGDFL






[Clostridium


AKGSVLLTCSNSYYLKAMEIISKKVNEPEFFIFSDDIEDVKKIFEFPGYQITLVNQSN






sp. KLE 1755]


PDYEELRLMSKCKHFIIANSTFSWWSSLLSENEDKVIVAPRLWYSDGRDTSALMRDEW









IIIDNE







Bacteroides

WP_
547321746
glycosyl-
25.42

MDLVTLSGGLGNQMFQFAFYWALKKRGKKVFLYKNKLAAKEHNGYELQTLFGVEEKCV
141



plebeius

022052991.1

transferase


DGLWMTRLLGCPLLGKILKHILFPHKIRERVLYNYSIYLPLFERNGLHWVGYWQSEKY



CAG:211


family 11


FQDVADDIRRIFCFDHLSLNPATSAALKCMSEQVAVSVHIRRGDYYLPCNVATYGGLC






[Bacteroides


TVEYYENAIRYVKERYPQAVFYVFSDDLDWVRENIPSAGKMVFVDWNRGKDSWQDMFL







plebeius



MSKCHHNILANSSFSWWGAWLNTHPEKLVIAPERWANCPAPDALPDGWVRIEGVSRR






CAG:211]










Treponema

WP_
545448980
glycosyl-
25.4

MAIKIVKISGGLGNQMFCYAFACALQKCGHKVYVDTSLYRKATVHSGIDFCHNGLETE
142



lecithinolyticum;

021686002.1

transferase,


RLFGIKFDEADTADVRRLSTSAEGLLNRIRRKYFIKKTHYIDTVFKYTPELLSDKNDC




Treponema



family 11


YLEGYWQTEKYFLPIEKDIRRLFTFRPTLSEKSAAVQSALQAQQAAVLSASIHVRRGD




lecithinolyticum 



[Treponema


FLNIKTLNVCTETYYNNAIKYAVKKHAVSRFYIFSDDIPWCREHLCFCNAHAVFIDWN



ATCC 700332


lecithino-


IGNDSWQDMALMSMCRCNIIANSSFSWWAAWLNNASDKTVLAPAIWNRRQLEYVDRYY







lyticum]



GYDYSDIVPESWIRIPID







Bacteroides

WP_
490419682
glycosyl
25.34

MRLIKMTGGLGNQMFIYAFYLRMKKRHTNTRIDLSDMMHYNVHHGYEMHRVFNLPKTE
143



eggerthii;

004291980.1

transferase


FCINQPLKKVIEFLFFKKIYERKQDPSSLLPFDKKYLWPLLYFKGFYQSERFFADMEN



Bacteroides


[Bacteroides


DIRIAFTENSDLFNEKTQAMLIQIKHNEHAVSLHIRRGDYLEPKHWKTIGSVCQLPYY




eggerthii DSM




eggerthii]



LNAITEMNKRIEQPSYYVFSDDIAWVKENLPLPQAVFIDWNKGAESWQDMMLMSHCRH



20697





HIICNSTFSWWGAWLNPRENKTVIMPERWFQHCDTPNIYPDGWIKVPVN







Bacteroides

WP_
491891563
glycosyl
25.34

MRFIKMTGGLGNQMFIYAFYMRMKKHYSNTRIDLSDMVHYKAHNGYEMHRVFNLPPIE
144



stercoris;

005656005.1

transferase


FRINQPLKKVIEFLFFKKIYERKQVPSSLVPYDKKYFWPLLYFKGFYQSERFFADMAD




Bacteroides



[Bacteroides


DIRKAFTENPRLSNRKTKEMSEQ1DHDENAVSIHVRRGDYLEPKYWIMGCVCQLPYYL




stercoris ATCC




stercoris]



NAIAEMNKRISQPSYYVFSDDIAWVKENLPLPKAFFIDWNKGAESWQDMMLMSRCRHH



43183





IICNSTFSWWGAWLNPRENKTVIMPERWFRHCETPDICPDKWIKVPINQPDSIQ







Butyrivibrio

YP_
302671882
glycosyl
25.34

MIIIQLKGGMGNQMFQYALYRQLKKLGREVKIDDETGFVDDELRIPVLQRFGISYDKA
145



proteoclasticus;

003831842.1

transferase 11


TREEIVKLTDSKMDIFSRIRRKLTGRKTFRIDEESGIFDPRILEVEDAYLVGYWQSDK




Butyrivibrio



[Butyrivibrio


YFANEEVEKEIREAFEKRPQEVMQDSVSWTILQQIECCESVSLHIRRIDYIDEEHIHI




proteoclasticus




proteoclasticus



HNICTEKYYKSAIDEVRNQYPSAVFFIFTDDKDWCRQHFRGPNFFVVDLDEDINTDIA



B316


B316]


EMTLMSRCKHHILANSSFSWWAAWLNDNPGKIVIAPSKWINNRKMDDIYTARMKKIAI







Roseobacter sp.

WP_
495504071
alpha-1,2-
25.34

MSPIVHFPSDRLLRYEHLNSLWKTAMIYIRLLARLGNQMFQYAAGRGLAARLGVDFTV
146


GAI101
008228724.1

fucosyl-


DSRRAVHKGDGVLTRVFDLDWAAPENMPPAQHERPLAYYAWRGLRRDPKIYRENGLGY






transferase


NAAFETLPDNTYLHGYWQCERYFAHIADDIRAAFVPRHPMSAQNADMARRIASGPSVS






[Roseobacter


LHVRRGDYLTVGAHGICDQTYYDAALAAVMQGLPSPTVYVFSDDPQWAKDNLPLIFEK






sp. GAI101]


VVVDFNGPDSDYEDMRLMSLCQHNVIANSSFSWWGAWLNANPQKRVAGPANWFSNPKL









SNPDILPSRWIRI







Thalassobacter

WP_
544666256
alpha-1,2-
25.34

MGQDMIYSRIFGGLGNQLFQYATARAVSLRQGVELVLDTRLAPPGSHWAFGLDHFNIS
147



arenae;

021099615.1

fucosyl-


ARIAEPSELPPSKDNFFKYVMWRAFGHDPAFMRERGLGYQSRIAQAPDGTYLHGYFQS




Thalassobacter



transferase,


ERYFADVLDHLENELRIVTPPDTRNAEYADRIASAGHTVSLHVRRGDYVETSKSNSTH




arenae DSM 19593



[Thalassobacter


ATCDEAYYLRALARLSEGKSDLKVFVFSDDPEWVRDNLKLPYDTTPVGHNGPDKPHED







arenae]



LRLMSCCSDHVIANSTFSWWGGWLDRRPEARVVGPAKWFNNPKLVNPDILPERWIAI







Prevotella

WP_
490511493
protein
25.33

MKIIKIIGGLGNQMFQYALAVALQKKWKDEEIKLDLHGENGYHKHQGYQLDEIFGHRF
148


oris; Prevotella
004377401.1

[Prevotella


KAASLKEVAQLAWPYPHYQLWRVGSRLLPKRKTMVCESADCRFQSDLLNLEGSLYYDG




oris




oris]



YWQDERYFKAFRTEIIEAFKFTPLVGDSNRKVENMLKEGRFASLHVRRGDYLKEPLFQ



C735





STCDIAYYQRAISRLNQMADPYCYLIFSNDIAWCKTHIEPLCDGRRTHYVDWNHGKES









YRDMQLMTFCKHHIIANSSFSWWGAWLSTANDGITIAPHQWYANDRKPSPAAEAWLKL







Prevotella

WP_
490514606
protein
25.33

MKIVRIIGGLGNQMFQYALALALKQQQENEEVKLDLSAFRGYKKHGGFQLVQCFGTTL
149



oulorum;

004380180.1

[Prevotella


PAATWQEVAQLAWYYPHYQLWRLGHRVLPVCKTMLKEPDNGAFLPEVLQRKGDAYYEG




Prevotella




oulorum]



CWQDERYFSHYRPAILQAFTFPTFTNPRNLAMQQQINTTESVAIHVRRGDYLHDALFR




oulorum F0390






NICGLAYFQRAITCILQHVAHPVFYVFSDDMAWCRQHIQPLLQINEAVFVDWNHGKAS









ICDLHLMTLCRHHIIANSSFSWWGAWLSPHQAGWIIAPKQWYAHEEKMSPAAERWLKL







Spirosoma

WP_
522084965
protein
25.33

MNRRVAVQLKGGLGNQLFQYALGRRLSLQLEAELLFDCSVLENRIPVINFTFRSFDLD
150



panaciterrae

020596174.1

[Spirosoma


MFRIAGRVATPSDLPLFPKSASIRSPWPHLVQLARLWKQGYSYVYERGFAYNPKMLRQ







panaciterrae]



LSDRVYLNGYWQSYRYFEDIAATLRADCSFPDPLPDSAVGLAGQINATNSICLHIRRT









DFLQVPLHQVSNADYVGRAIAYMAERVNDPHFFVFSDDIAWCQTNLRLSYPVVFVPNE









LAGPKNSLHFRLMRYCKHFITANSTFSWWAAWLSEPSDGKVIVTPQTWFSDSRSIDDL









IPANWIRL







Butyrivibrio

YP_
302669866
glycosyl
25.26

MNYVEVKGGLGNQLFQYTFYKYLEKKSGHKVLLHTDFFKNIDSFEEATKRKLGLDRFD
151



proteoclasticus;

003829826.1

transferase 11


CDFVAVSGFISCEKLVKESDYKDSMLSQDEVEYSGYWQNKRFFLEVMDDIRKDLLLKD




Butyrivibrio



[Butyrivibrio


ENIQDEVKELAKELRAVDSVAIHFRRGDYLSEQNKKIFTSLSVDYYQKAIAQLAERNG




proteoclasticus




proteoclasticus



ADLKGYIFTDEPEYVSGIIDQLGSIDIKLMPVREDYEDLYLMSCARHHIIANSSFSWW



B316


B316]


GAALGDTESGITIAPAKWYVDGRTPDLYLRNWISI







Butyrivibrio sp.

WP_
551021623
protein
25.26

MIIIQLKGGLGNQMFQYALYKELKHRGREVKIDDVSGFVNDKLRVPVLDREGVEYERA
152


XPD2006
022765786.1

[Butyrivibrio


TREEVVELTDSRMDIFSRIRRKLTGRKTYRIDEMEGIFDPAILETENAYLVGYWQSEK






sp.


YFTSPEVIEQIQEAFGKRPQEIMHDSVSWSTLQQIECCESVSIHVRRIDYVDAEHIKI






XPD2006]


HNLCSEKYYKNAIGKIREKHPNAVFFIFTDDKEWCKDHFKGPNFITVELQEGEFTDVA









DMLLMSRCKHHIIANSSFSWWSAWLNDSPEKMVIAPSKWINNKKMDDIYTERMTRVAI







Bacteroides sp.

WP_
496041586
protein
25.24

MKIVNITGGLGNQMFQYAFAMALKYRNPQEEVFVDIQHYNTIFFKKFKGINLHNGYEI
153


1_1_6
008766093.1

[Bacteroides


DKVFPKAKLPVAGVRQLMKFSYWIPNYILSRLGRKFLPIRKKEYIPPYSMNYSYDEKA






sp.


LNWKGDGYFEGYWQSYNHFGDIKEELQKVYAHPKPNQYNAALISNLESCNSVGIHVRR






1_1_6]


GDYLAEPEFRGICGLDYYEKGIKEILSDEKKYVFFIFSNDMQWCQENIAPLVGDNRIV









FISGNKGKDSCWDMFLMTHCKDLIIANSSFSWWGAFLNKKVDRVICPKPWLNRDCNID









IYNPSWILVPCYSEDW







Bacteroides

YP_
53713865
alpha-1,2-
25.17

MKIVTFQGGLGNQLFQYVFYLWLDMRCDKDNIYGYYPKKGLRAHNGLEIEKVFEVKLP
154



fragilis;

099857.1

fucosyl-


NSSLSTDLIVKSIKLINKIFKNRQYISTDGRLDVNGVLFEGFWQDKYFWEDVDIVLNF




Bacteroides



transferase


RWPLKLDVINSFIMTKIQANNSISIHIRRGDYLLPKYRNIYGDICNEEYYQKAIEYIL




fragilis YCH46



[Bacteroides


KCVDDPFFFVFSDDIDWAKSIINVSNVTFVNNNKGKDSYIDMFLMSLCHHNIIANSTF







fragilis YCH46]



SWWAAQLNKHSDKIMIAPIRWFKSLFKDPNIFTESWIRI







Bacteroides sp.

WP_
495947264
alpha-1,2-
25.17

MIKIVSFSGGLGNQLFQYLLVVYLRECGHQVYGYYNRKWLIGHNGLEVNNVFDIYLPK
155


9_1_42FAA
008671843.1

fucosyl-


TNFIVNALVKVIRVLRCLGFKKYVATDTYNNPIAIFYDGYWQDQKYFNIIDSKLSFKK






transferase 


FDLSAENKSILSKIKSNISVALHIRCGDYLSSSNVEIYGGVCTKEYYEKALELVCKIK






[Bacteroides


NVMFFVFSDDIEYAKLLLNLPNAIYVNANVGNSSFIDMYLMANCKVNVIANSTFSYWA






sp. 9_1_42FAA]


ARLNQDNILTIYPKKWYNSKYAVPDIFPSEWVGV







Coraliomargarita

WP_
548260617
glycosyl
25.17

MIIVKVQGGLGNQMFQYAFGRALSEKHSQDLYLDCSEYLRPSCKREYGLDHFNIRAKK
156


sp.
022477844.1

transferase


ASCGDVKSMVTPHFALRKKLKKIFAVPYSLSPTHILERNENFQPSILEFNCGYFDGFW



CAG:312


family 11


QTQKYFSGISDIVRKDLTFKDAVKYSGGETFAKITSLNSVSLHIRRGDYVKVKRTRKR






[Coralio-


FSVIRAGYFKRAVEYMRSKLDTPHFFIFTDDPKWVSENFPAGEDYTLVSSSGMYEDLF







margarita



LMAQCRHNIIFNSSFSWWGAWLNGNPGKIVVAPDMWFTPHYKLDYSDVVPEEWIKLNT






sp. CAG:312]


GYFESKEF







Pseudorhodobacter

WP_
550957292
alpha-1,2-
25.17

MIVMQIKGGLGNQMFQYAAGRALSLQTGMPLHLDLRYYRREREHGYGLGAFNIEASPL
157



ferrugineus

022705649.1

fucosyl-


DESLLPPLPRESPLAWLIWRLGRRGPNLVRENGMGENPTLSNVTKPAWITGYFQSERY






transferase


FAAHAATIRAELTPVAAPDLVNARWLAEIAAEPRAVSLHVRRGDYVRDAKAAAKHGSC






[Pseudo-


IPAYYERALAHITARMGTAPVVYAFSDDPAWVRENLRLPAEIRVPGHNDTAGNVEDLR







rhodobacter



LMSACRHHIVANSSFSWWGAWLNPRADKIVASPARWFADPAFTNPDIWPEAWARIEG







ferrugineus]











Escherichia

YP_
215487252
fucosyl-
25.16

MMYCCLSGGLGNQMFQYAAAYILKQHFPDTILVLDDSYYFNQPQKDTIRHLELDQFKI
158


coli; Escherichia
002329683.1

transferase


IFDRFSSKDEKVKINRLRKHKKIPLLNSFLQFTAIKLCNKYSLNDASYYNPESIKNID




coli



[Escherichia


VACLFSFYQDSKLLNEHRDLILPLFEIRDDLRVLCHNLQIYSLITDSKNITSIHVRRG



O127:H6 str.


coli O127:H6


DYVNNKHAAKFHGTLSMDYYISAMEYIESECGSQTFIIFTDDVIWAKEKFSKYSNCLV



E2348/69


str.


ADADENKFSVIDMYLMSLCNNNIIANSTYSWWGAWLNRSEDKLVIAPKQWYISGNECS






E2348/69]


LKNENWIAM







Lachnospiraceae

WP_
511537894
protein
25.16

MIIIKVMGGLGNQMQQYALYEKEKSIGKNVKLDISWEEDSSVCIEKVFARRSLELRQF
159



bacterium

016359991.1

[Lachno-


KDLQFDTCSAEEKEALLGKSGILGKLERKLIPARNKHEYESDIYHSEVFNMSDAYLEG



3_1_57FAA_CT1



spiraceae



HWACEKYYHDIMPLLQEKIQFPESANSQNITVKKRMKAENSVSIHIRRGDYLDPENEA







bacterium



MFGGICTNSYYKAAEEYIKSRVPDTHFYLFSDDTAYLRENYHGDEYTIVDWNKGEDSF






3_1_57FAA_CT1]


YDMELMSCCRHNICANSTFSFWGARLNRTPDKIVIRPAKHKNSQEIEPQLLHELWDNW









VIIDGDGRIV







Butyrivibrio

WP_
551010878
glycosyl
25.09

MKPLVSLIVPVLNVEKYLECICLTSISSQTYDNFEVILVVGKCIDNSENICKKWCEKD
160



fibrisolvens

022755397.1

transferase


HRFRIEPQLKSCLGYARNVGIDAAKGEYIAFCDSDDCITSDFLSCFVDTALKNSSDIV






[Butyrivibrio


ETQFTLCDQNLSPIYDYDRNILGHILGHGFLEYTSAPSVWKYFVKRDIFTSNNLHYPE







fibrisolvens]



IRFGEDISMYSLLFSYCNKIDYVEKPTYLYRQVPSSLMNNPQGKRKRYESLFDIIDFV









TNEFKIRLLFQKSWLKLLFQLEMHSASIISDSATSDDEAISMRQEISGYLKKVFPVKN









TIFEVTALGWGGEIVSSIASKENTLHGVSSSNMENRYFFELLEDSTRKKLEEMIINFS









PDIFLIDLISEADYLSSYKGNLGTFVKNWKIGFSIFMKMICITHSNNSSIFLLENYMQ









QAPDHVDNTNEILKMLYDDIKINHPDIICISPAPDILNRSSEPELPCIYQLKLVSDKL









HTMYSPVINCVETKGGLGNQIFQYVFSKYIEKMTGYRPLLHIGFFDYVKAIPGGTKRI









FSLDKLFPDIETTSGKIPCSHVVEEKSFISNPGSDIFYRGYWQDIRYFSDVKDEVLES









ENVDTSSMSKDVIDFADTIRNANSIAMHIRRQDYLNENNVSLFEQLSIDYYKSAVDMI









RKEYADDLVLFIFSDDPEYANSIADSFDIEGFVMPLHKDYEDLYLITLAHHHIIANST









FSLWGALLSARKDGIRIAPRNWFKGTPATNLYPDKWLIL







Anaeromusa

WP_
517532751
protein
25.08

MFCVRIYGGLGNQMFQYALGRAMAKHYSETAAFDLSWYEQKIKPGFEASVCQYNIELS
161



acidaminophila

018702959.1

[Anaeromusa


RKDRPKAWYEPILKRISRHTDKLEMWEGLFFEKKYHYDSTVFERGLCKKNITLDGYWC







acidaminophila]



ISYKYFSAIEDDLRRELTIPKEREELIAISRSLPENSVSIHVRRGDYVSNPKANAMHG









TCSWEYYQAAIEKMTGLVKEPQYVVFSDDITWTKENLPLPNAMYIGRELGLFDYEELI









LMSRCKHNIMANSTFSWWGAWLNSNPNKVVIAPRKWFRHKKIKVNDLFPSSWVVL







Bacteroides sp.

WP_
496044479
glycosyl
25.08

MDIVVIFNGLGNQMSQYAFYLAKKKDNLNCHVIFDPKSTNVHNGAELKRVFGIELNRN
162


2_1_16
008768986.1

transferase


YLDKIISYFYGYIFNKRIVNKLFSLVGIRMIYEPKNYDYREELLKPSSNFISFYWGGW






family 11


HSEKYFKDIELEVKKVFKFPEVINSPYFTEWFNKIFLDNNSVSIHIRRGDYLDKPSDP






[Bacteroides


YYQFNGVCTIDYYEKAILYLKERILEPNFYIFSNDINWCMKTFGTENMYYVDCNKGKD






sp. 2_1_16]


SWRDMYLMSECRHHINANSTFSWWAAWLSPYSNGIVLHPKYFIKDIETKDYYPQKWIM









IE







Chlorobium

YP_
189500849
glycosyl
25.08

MDKVVVHLTGGLGNQMFQYALGRSISINRNCPLLLNTSFYDTYDKFSCGLSRYNVKAE
163



phaeobacteroides;

001960319.1

transferase


FIKKNSYYNNKYYRYVIRLLSRYGVACYFGSYYEKKIFSYDEKVYKRSCVSYYGTWQS




Chlorobium



family protein


YGYFDSIRDILLRDYEMVGCLEEEVEKYVSDIKRVDSVSLHIRRGDYFDNKRLQSIFI




phaeobacteroides



[Chlorobium


GILTMEYYYKAMSLFPDSSVFYVFSDDIEWVRENLITNTNIVYVVLESDNPENEIYLM



BS1



phaeo-



SLCKNNIISNSTFSWWGAWLNKNKYKKVIAPRMWYKDNQSSSDLMPSDWCLI







bacteroides










BS1]










Treponema

WP_
551312724
protein
25.08

MIVISMGGGLGNQMFEYAFYTQLKHLYPKSEIKVDTKYAFPYSHNGIEVFKIFGLNPP
164



bryantii

022932606.1

[Treponema


EANWKEVHSLVKTYPIEGNKAHFIKFFLYRILRKANLVEREPTSFCKQKDFTEFYNSF







bryantii]



FELPQNKSFYLYGPFVNYNYFAAIHNEIMDLYTFPEITDVINIEYKRKIESSHSISIH









IRRGDYITEGVPLVPDAYYREALVYINKKIEDPHFFVFTDDKDYCKSLFSDNQNFTIV









EGNTGANSFRDMQLMSLCKHNIIANSTFSFWGAFLNKNSEKIVIAPNIAFKDCSCPYI









CPDWIIL







Bacteroides

YP_
375358171
LPS
25

MVIAKLFGGLGNQMFIYAAAKGIAQISNQKLIFDIYTGFEDDSRFRRVYELKQFNLSV
165


fragilis;
005110943.1

biosynthesis


QESRRWMSFRYPLGRILRKISRKIGFCIPLVNFKFIVEKKPYHFQNEIMRIASFSSIY




Bacteroides



alpha-1,2-


LEGYFQSYKYFSKIEAQIREDFKFTKEVIGSVEKEASFITNSRYTPVAIGVRRYSEMK




fragilis 638R



fucosyl-


GEFGELAVVEHDYYDAAIKYIANKVPNLIFIVFSEDIDWVKKNLKLDYPVYFVTSKKG






transferase


ELAAIQDMYLMSLCNHHIISNSSFYWWGAYLASTNNHIVIAPSVFLNKDCTPIDWVII






[Bacteroides










fragilis 638R]











Firmicutes

WP_
547951298
protein
25

MSGGLGNQMFQYALYMKLTAMGREVKFDDINEYRGEKAWPIMLAVEGIEYPRATWDEI
166



bacterium

022352105.1

[Firmicutes


VAFTDGSMDFSKRLKRLFRGRHPIEYVEQGFYDPKVLSFENMYLKGSFQSQRYFEDIL



CAG:534



bacterium



EEVQETFRFPELKDMNLPAPLYETTEKYLLRIEGCNAVGLHMYRGDSRSNEELYDGIC






CAG:534]


TEKYYEGAVRFIQDKCPDAKFFIFSNEPKWVKGWVISLMKSQIREDMSREEIRALEDH









FVLIENNTEYTGYLDMFLMSRCRHNIISNSSFSWWAAFINENPDKLVTAPSRWVNGVP









SEDVYVKGMTLIDEKGRVERTIKE







Firmicutes

WP_
547971670
glycosyl
25

MVIVKIGDGLGNQMFNYVCGYSVAKHDNDILLLDTSDVDNSTLRTYDLDKFNIDFTDR
167



bacterium

022368748.1

transferase


ESFTNKGFFHKVYKRLRRSLKYNVIYESRTENCPCVLDVYRRKFIRDKYLHGYFQNLC



CAG:882


family 11


YFKTCKEDIMRQFTPKEPFSAKADELIHRFATENTCSVHVRGGDIKPLSIKYYKDALD






[Firmicutes


KIGEAKKDMRFIVFSNVRNLAEEYIKELGVDAEFIWDLGEFTDIEELFLMKACRRHIL







bacterium



SDSTFSRWAALLDEKSEEVFVPFSPDADKIYMPEWIMEEYDGNEEKR






CAG:882]










Vibrio

WP_
491639353
glycosyl
25

MVIVKVSGGLGNQLFQYAIGCAISNRLSCELLLDTSFYPKQSLRKYELDKFNIKAKVA
168



parahaemolyticus;

005496882.1

transferase


TQKEVESCGGGDDLLSRFLRKLNLSSLFFPNYIKEKESLVYLAEISHCKSGSFLDGYW




Vibrio



family 11


QNPQYFSDIKDELVKQIVPIMPLSSPALEWQNIIINTKNCVSLHVRRGDYVNNAHTNS




parahaemolyticus



[Vibrio


VHGVCDLSYYREAITNIHETVEKPKFFVFSDDISWCKDNLGSLGHFTYVDNTLSAIDD



10329; Vibrio



para-



LMLMSFCEHHIIANSTFSWWGAWLNDHGITIAPKRWFSSVERNNKDLFPEKWLIL




parahaemolyticus




haemolyticus]







10296; Vibrio










parahaemolyticus










12310; Vibrio










parahaemolyticus










10290













Herbaspirillum

WP_
493509348
glycosyl
24.92

MIVSRLIGGLGNQMFQYAAGRALALRRGVPFAIDSRAFADYKTHAFGMQCFCADQTEA
169



frisingense;

006463714.1

transferase


PSRLLPNPPAEGRLQRLLRRFLPNPLRVYTEKTFTFDEAVLSLPDGIYLDGYWQSEKY




Herbaspirillum



family protein


FADFADDIRKDFAVKAAPSAPNQAWLELIGRTHSVSLHIRRGDYVSNAAAAAVHGTCD




frisingense



[Herbaspirillum


LGYYERAVAHLHQVTGQAPELFVFSDDLDWVATNLQLPYTMHLVRDNDAATNFEDLRL



GSF30



frisingense



MTACRHHIVANSSFSWWGAWLDGRSESITIAPARWEVADTPDARDLVPQRWVRL







Rhizobium sp.

WP_
495034125
Glycosyl
24.92

MIITRILGGLGNQMFQYAAGRALAIANEAELKLDLIEMGAYKLRPFALDQFNIKAAIA
170


CF080
007759661.1

transferase


QPDEVPAKPKRGLLRKFTSAFKPDRSSCERIVENGLIFDSRVPALRGSLHLSGYWQSE






family 11


QYFASSADAIRSDFSLKSPLGPARQDVLARIGAATTPVSIHVRRGDYVINPSANAVHG






[Rhizobium sp.


TCEPPWYHEAMRRMLDRAGDASFFVFSDEPQWARDNLQSSRPMVFIEPQNNGRDGEDM






CF080]


HLMAACHAHIIANSSFSWWGAWLNPRPNKHVIAPRQWFRAPDKDDRDIVPATWERL







Verrucomicrobium

WP_
497645196
glycosyl
24.85

MVISHISEGLGNQMFQYAAGRRLSYHLGTTLKLDDYHYRLHPFRSFQLDRFLITSPIA
171



spinosum

009959380.1

transferase,


TDAEISHLCPLEGLARAIRARLPGKLRGATLRLLGNLGLGSPYQPRLHSFKEETPKQP






family 11


LLIGKVVSERHFHFDPDVLECPDNVCLVGYWQDERYFGEIRDILLRELTLKSPPAGAT






[Verru-


KAVLERIQRSSSVSLHVRRGDKIKSSSYHCTSLEYCLAAMSEMRARLQAPTFFVFSDD







comicrobium



WDWVREQIPCSSSVIHVDHNRAEDVSEDFRLMKSCDHHIIASSSLSWWAAWLGTNENS







spinosum]



FVFSPPADRWLNFSNHFTADVLPPHWIQLDGSSLLPAQ







Fibrella

YP_
436833833
glycosyl
24.83

MTANRVLVNSPMVIAKITSGLGNQLFQYALGRHLALQGNTSLWFDLRYFHQEYATDTP
172



aestuarina;

007319049.1

transferase


RKFKLDRFNVRYNLLDSSPWLYASKATRLLPGRSLRPLIDTRFEADFHFDPTVIRPAA




Fibrella



family 11


PLTILWGFWQSEKYFAQSTPQIRQELTFNRPLSDIFVGYQQQIEQAEVPISVHVRRGD




aestuarina BUZ 2



[Fibrella


YVTHPEFSQSFGFVGLAYYQKALAHLQDLFPNATLFFFSDDPDWVRANIVTEQPHVFV







aestuarina BUZ



QNSGPDADVDDLQLMSLCHHHVIANSSFSWWGAWLNPRPDKVVIGPQRWFANKPWDTK






2]


DLLPSGWLRL







Rhodobacter sp.

WP_
563380195
alpha-1,2-
24.83

MIHMRLVGGLGNQLFQYACGRAVALRHGTELVLDTRELSRGAAHAVEGLDHFAIRARM
173


CACIA14H1
023665745.1

fucosyl-


RGASADLPPPRSVLAYGLWRAGFMAPRFLRERGLGVNPAVLAAGDGTYLHGYFQSEAY






transferase


WFRDVVPQIRPELEIVIPPSDDNLRASRIAGDDRAVSLHVRRGDYVASAKGQQVHGTC






[Rhodobacter


DADYYARAVAAIRARAGIDPRLYVFSDDPHWARDNLALDAETVVLDHNPPGAAVEDMR






sp. CACIA14H1]


LMGVCRHHIIANSSFSWWGAWRNPSAGKVVVAPVRWFADPKLHNPDICPPEWLRV







Rhodopirellula

NP_868779.1
32475785
fucosyl
24.83

MATSAHLHLSDEKQTLDSKASDRDCATTEASASDKICTISISGGLGNQMLQYAAGRAL
174



baltica



transferase


SIHHDCSLQLDLKFYSSKRHRSYELDAFPIQAHRSIKPSFFSQILSKIQSESKHVPTY



SH 1;


[Rhodopirellula


QEQSKRFDPAFFNTEPPVKIRGYFFSEKYFSPYADQIRTELTPPIPPDQPARDMAIRL




Rhodopirellula




baltica SH 1]



KECVSTSLHVRRGDYVTNANARQRFWCCTSEYFEAAIERLPTDSTVFVFSDDIEWAKQ




baltica






NIRSSRTTVYVNDELKKAGSPETGLRDLWLMTHAKSHIIANSSFSWWGAWLANSEANL









TIAPKKWENDPEIDDSDIVPSSWHRI







Spirosoma

WP_
522092845
protein
24.83

MVVVELMGGLGNQMFQYAFGMQLAHQRQDTLTVSTFLLSNKLLANLRNYTYRPFELCI
175



spitsbergense

020604054.1

[Spirosoma


FGIDKPKASPFNLLRALLPFDLNTSLLRETDDPEAVIPAASARIVCVGYWQSEHYFEE







spitsbergense]



VIVHVREKFIFRQPFNSFTSRLANNLNGIPNSVFVHIRRGDYVINKGANAHHGLCDRT









YYERAVTFMREHLENPLFFIFSDDLEWVSQELGPILEPATYVGGNQKNDSWQDMYLMS









LCRHAIVANSSFSWWGAWLSPHASKIVVAPKEWFGKPLLPVKINDLIPNSWIRI






uncultured
EKD71402.1
406938106
protein
24.76

MNAIIPRLIGGIGNQLFIYAAARRMAIANSMNLVIDDTSGFKYDVLYKRFYQLEKFNI
176


bacterium


ACD_46C00193


TSRMATPTERLEPFSKIRRYLKRKINKTYPFAQRAYITQEKSGFDPRLLVERPKGNVY






G0003


LDGYWQSENYFKDIEGIIRQDLIIKSPSDSLNIATAERIKNTLAIAVHVRFFDMVDIS






[uncultured


DSSNCQSNYYHTAIAKMEEKIPNAHYFIFSDKPVLARLAMPLPDDRITIIDHNIGDMN






bacterium]


AYADLWLMSLCKHEVIANSTFSWWGAWLSDNKEKIVIAPDIKITSGVTQWGEDGLIPD









EWIKL







Prevotella

WP_
494008437
protein
24.75

MDVIVIFNGLGNQMSQYAFYLEKRLRNRQTTYFVLNPRSTYELERLFGIPYRSNLMCR
177



micans;

006950883.1

[Prevotella


MIYKLLDKAYFSNHIRLKKILRTALNAVGIRLIVEPITRNYSLSNFTHHPGLIFYRGG




Prevotella




micans]



WHSELNFTSVVTELRRKFIFPPSDDEEFKRISALIIRTQSISLHIRRGDYLDYSEYQG




micans F0438






VCTEEYYERAIEYIRSHVENPVFFVFSDDKEYAINKFSGDDSFRIVDENTGENSWRDM









QLMSLCRHHILANSTFSWWGAWLDSAPEKIVLHPIYHMRDVPTRDFYPHNWIGISGE







Thermo-

AHB87954.1
564737556
alpha-1,2-
24.75

MIIVRLYGGLGNQMFQYAAGLALSLRHAVPLRFDLDWFDGVRLHQGLELHRVFDLDLP
178



synechococcus



fucosyl-


RAAPSEMRQVLGSFSHPLVRRLLVRRRLRWLLPQGYALEPHFHYWPGFEALGPKAYLD



sp. NK55


transferase


GYWQSERYFSEYQDAVRAAFRFAQPLDERNRQIVEEMAACESVSLHVRRGDFVQDPVV






[Thermo


RRVHGVDLSAYYPRAVALLMERMREPRFYVFSDDPDWVRANLKLPAPMIVIDHNRGEH







synechococcus



SFRDMQLMSACRHHILANSSFSWWGAWLNSQPHKLVIAPKRWFNVDDFDTRDLYCSGW







ococcus sp.



TVL






NK55]










Coleofasciculus

WP_
493031416
Glycosyl
24.73

MLSLNKNFLFVHIPKSCILKEVYIYMISFPNLGKGVRLGNQMFQYAFLRSTARRLGVK
179



chthonoplastes;

006100814.1

transferase


FYCPAWSGDSLFTLNDQEERVSQPEGITKQYRQGLNPGFSENALSIQDGTEISGYFQS




Coleofasciculus



family 11


DKYYDNPDLVRQWFSLKEEKIASIRDRFSRLNFANSVGMHLRFGDVVGQLKRPPMRRS




chthonoplastes



[Coleo-


YYKKALSYIPNQELILVFSDEPERTKKMLDGLSGNFLFLSGHKNYEDLYLMTKCQHFI



PCC 7420



fasciculus



CSYSTFSWWGAWLGGERERTVIYPKEGQYRPGYGRKAEGVSCESWIEVQSLRGFLDDY







chthonoplastes]



RLVSRLEKRLPKSLMNFFY







Bacteroides

WP_
517496220
glycosyl
24.66

MRLIKMTGGLGNQMFIYAFYLRMKKRHTNTRIDLSDMMHYNVHHGYEMHHVFNLPKTE
180



gallinarum

018666797.1

transferase


FCINQPLKKVIEFLFFKKIYERKQDSSNLLPFDKKYFWPLLYFKGFYQSERFFADMEN






[Bacteroides


DIRKAFTENSGLFNEKTQTMLKQIEHNEHAVSLHVRRGDYLEPKHWKTIGSVCQLPYY







gallinarum]



INAIAEMNRRIEQPFYYVFSDDIAWVKENLPLPQAVFIDWNKGVESWQDMMLMSHCRH









HIICNSTFSWWGAWLNPKENKTVIMPERWFQHCETPNIYPAGWIKVPIN







Firmicutes

WP_
547967507
glycosyl
24.66

MNNVEIMGGLGKQLFQYAFSRYLQKLGVKNVVLRKDFFTIQFPENNGITKREFVLDKY
181



bacterium

022367483.1

transferase


NTRYVAAAGEKTYRDYCDENDYRDDYAIGSDEVLYEGYWQNIDFYNVVRKEMQEELKL



CAG:882


GT11 family


KPEFIDNSMAAVEKDMSSCNSVALHIRRSDYLTQVNAQIFEQLTQDYYASAVSIIEQY






[Firmicutes


THEKPVLYIFSDDPEYAAENMKDFMGCRTVIMPPCEPYQDMYLMTRAKHNIIANSTFS







bacterium



WWGATLNANPDNITVAPSRWMKGRIVNLYHKDWITL






CAG:882]










Bacteroides

WP_
495296741
protein
24.6

MIAVNVNAGLANQMFHYAFGRGLMAKGLDVCFDQSNFKPRSQWAFELVRLQDAFPSID
182



xylanisolvens;

008021494.1

[Bacteroides


IKVMPEGHFKWVFPSLPRNGLERRFQEFMKKWHNFIGDEVYIDEPMYGYVPDMEKCAT




Bacteroides




xylanisolvens]



RNCIYKGFWQSEKYFRHCEDDIRKQFTFLPFDELKNIEVAAKMSQENSVAIHLRKGDD




xylanisolvens






YMQSELMGKGLCTVDYYMKAIDYMRKHINNPHFYVFIDNPCWVKDNLPEFEYILVDWN



CL03T12C04





EVSGKRNFRDMQLMSCAKHNIIGNSTYSWWAAWLNANQDKIVVGPKRFFNPINSFFST









CDIMCEDWISL







Geobacter sp. M18

YP_

glycosyl
24.58

MIGMVIFRAYNGLGNQMFQYALGRHLALLNEAELKIDTTAFADDPLREYELHRLKVQG
183



004197726.1
322418503
transferase


MSIATPDEIAFFREENTHPQAYLRLTQKSRLFDPAILSARGNIYLHGFWQTEKYFADI






family protein


REILLDEFEPIVPAGEDSIKVLSHMKATNAVALHVRRSDYVSNPMTLRHHGVLPLDYY






[Geobacter sp.


REAVRRIAGMVPDPVFFIFSDDPQWAKDNIRLEYPAFCVDAHDASNGHEDLRLMRNCK






M18]


HFIIANSSFSWWGAWLSQNTGKKVVAPLKWFAKPEIDTRDIVPLQWIRI







Ruegeria pomeroyi

YP_168587.1
56698215
alpha-1,2-
24.57

MITTRLHGRLGNQMFQYAAARGLAARLGTQVALDTRLAESRGEGVLTRVFDLDLAQPD
184


DSS-3


fucosyl-


QLPPLKGDGLLRHGAWRLLGLAPRFRREHGLGYNAAIETWDDGTYLHGYWQSERYFAH






transferase,


IAARIRADFAFPAFSNSQNAEMAARIGDTDAISLHVRRGDYVALAAHTLCDQRYYAAA






[Ruegeria


LTRLLEGVAGDPVVYLFSDDPAWARDNLALPVQKVVVDFNGPETDFEDMRLMSLCRHN







pomeroyi DSS-3]



IIGNSSFSWWAAWLNAHPGKRIAAPASWFGDAKLHNPDLLPPDWLKIEV







Lachnospiraceae

WP_
511037973
protein
24.52

MIIIQLAGGLGNQMQQYAMYQKLLSLGKKVKLDISWFEEKNRQKNVYARRELELNYFK
185



bacterium 28-4

016291997.1

[Lachno-


KAEYEACTEEERKALVGEGGFAGKIKGKLFPGTRKIFRETEMYHPEIFDFEDRYLYGY







spiraceae



FACEKYYADIMEILQEQFVFPPSGNPENQKMAERIADGESVSLHIRRGDYLDAENMAM







bacterium 28-



FGNICTEEYYAGAIREMKKIYPSAHFFVFSDDIPYAKETYSGEEFTVVDINRGKDSFF






4]


DIWLMSGCRHNICANSTFSFWGARLNRNKGKVVMRPFIHKNSQKFEPELMHELWKGWV









FIDNRGNIC







Prevotella sp.

WP_
547254188
glycosyl
24.49

MRILVFTGGLGNQMFEYAFYKHLKSCFPKESFYGHYGVKLKEHYGLEINKWFDVTLPP
186


CAG:1092
021989703.1

transferase


AKWWTLPVVGLFYLYKKLVPNSKWLDLFQREWKHKDAKVFFPFKFTKQYFPKENGWLK






family 11


WKVDEASLCEKNKKLLQVIHDEETCFVHVRRGDYLASNFKSIFEGCCTLDYYKRALEY






[Prevotella sp.


MNKNNPKVRFICFSDDLEWMRKNLPMDDSAIYVDWNTGTDSPLDMYMMSQCDNGIIAN






CAG:1092]


SSFSYWGAYLGGKKTTVIYPQKWWNMEGGNPNIFMDEWLGM







Spirosomaluteum

WP_
517447743
protein
24.41

MVISVLSGGLGNQLFQYAFGLKLAAQLQTELRLERHLLESKAIARLRQYTPRTYELDT
187



018618567.1

[Spirosoma


FGVEAPAASLMDTVSCLSRVALSDKTALLLRESTLTPNAINNLNNRVRDVVCLGYWQS







luteum]



EEYFRPATEQLRKHLVERKNPAQSRSMADTILSCQNAAFVHIRRGDYVTNTHANQHHG









LCDVSYYRRACEYVKECIPDVQFFVFSDDPDWAKRELGIHLQPARFIDHNRGADSWQD









MYLMSLCRHAIVANSSFSWWGAWLNPVAERLVVAPGQWFVNQPVLSQQIIPPHWHCL







Marinomonas

YP_
333906886
glycosyl
24.34

MIIVDLSGGLGNQMFQYACARSLSIELNLPLKVVYGSLASQTVHNGYELNRVFGLDLE
188



posidonica

004480472.1

transferase


FATENDMQKNLGFFLSKPILRKIFSKKPLNNLKFQNFFPENSFNYNSSLFSYIKDSGF



IVIA-Po-


family protein


LQGYWQTEKYFLNHKSQILKDFCFVNMDDETNISIANDIQSGHSISIHVRRGDYLTNL



181; Marinomonas


[Marinomonas


KAKAIFIGHCSLDYYLKAIEFLQEKIGESRLFIFSDDPEWVSENIATRFSDVSVIQHN




posidonica




posidonica



RGVKSFNDMRLMSMCDHHIIANSSFSWWGAWLNPSQNKKIIAPKNWFVTDKMNTIDLI






IVIA-P0-181]


PSSWILK







Bacteroides;

WP_
492425792
glycosyl
24.32

MKIVVFKGGLGNQLFQYAFYKYLSRKDETFYFYNDAWYNVSHNGFELDKYFKTDDLKK
189



Bacteroides sp.

005839979.1

transferase


CSRFWIILFKTILSKLYHWKIYVVGSVEYQYPNHLFQAGYFLDKKYYDENTIDFKHLL



4_3_47FAA;


family 11


LSEKNQSLLKDIQNSNSVGVHIRRGDYMTKQNLVIFGNICTQKYYHDAIRIITEKVND




Bacteroides sp.



[Bacteroides]


AVFYVFSDDISWVQTHLDIPNAVYVNWNTGESSIYDMYLMSSCKYNIIANSTFSYWAA



3_1_40A;





RLNKKTNMVIYPSKWYNTFTPDIFPESWCGI




Bacteroides dorei










5_1_36/D4;










Bacteroides











vulgatus










PC510;










Bacteroides dorei










CL03T12C01;










Bacteroides











vulgatus dnLKV7














Candidatus

WP_
519013556
protein
24.32

MTIRIKLIGGLGNQMFQFATGFAIAKKKNVRLSLDLKYINKRKIINGFELQKIFNIYS
190



Pelagibacter

020169431.1

[Candidatus


KVSFLNKTLSEKSINFTEILNRIDTTFYNFKEPHFHYTSNILNLPKHSFLDGYWQSEL




ubique




Pelagibacter



YFNEFATEIKRIFNFSGKLDKSNLLVADDINRNNSISIHIRRGDFLLKQNNNHHTDLK







ubique]



EYYLKAINETSKIFKNPKYFIFSDDTSWTVDNEVIDHPYIIVDINFGARSFLDMYLMS









LCKSNIIANSSFSWWSAWLNNNKDKIIYAPKNWENDKSICTDDLIPESWNIIL







Bacteroides sp.

WP_
547952428
uncharacterized
24.29

MSVIINMACGLANRMFQYAFYLYLQKEGYDAYVDYFTRADLVHENVDWLRIFPEATFR
191


CAG:875
022353174.1

protein


RATARDIRKMGGGHDCFSRLRRKLLPMTTKVLETSGAFEIILPPKNRDSYLLGAFQSA






[Bacteroides


KMVESVDAEVRRIFTFPEFESGKNQYFQTRLAQENSVGLHIRKGKDYQERIWYKNICG






sp. CAG:875]


VEYYRKAVDLMKEKVDSPSFYVFMNPAWVKENLSWLEYKLVDGNPGSGWGSHCDMQLM









SLCKHNIISNSSYSWWGAYLNNTLNKIVVCPRIWFNPESTKDFSSNPLLAEGWISL







Butyrivibrio

WP_
551011911
protein
24.29

MIIIKLQGGLGNQLFLYGLYKNLKHLKRDVKMDIESGFEGDELRKPCLDCMNLEYAIA
192



fibrisolvens

022756327.1

[Butyrivibrio


TRDEVTDIRDSYMDIFSRIRRKITGRKTFDYYEPEDGNYDPKVLEMTKAYLNGYFQSE







fibrisolvens]



KYFGDEESVKALKDELTKGKEDILTSTDLITKIYHDIKNSESVSLHIRRGDYLTPGII









ETYGGICTDEYYDKAIAMIRETFPEARFFIFSNDIEWCKEKFAGDKNILFVNTIGINL









DSEDNIKIGKSDKDISEYRDLAELYLMSACKHHILANSSFSWWGAWLSDHEGMTIAPS









KWLNNKNMTDIYTKDMLLI







Roseburia

YP_
347532692
glycosyl
24.22

MVIVKIGDGMGNQMYNYACGYAAAKRSGEKLRLDISECDNSTLRDYELDHFRVVYDEK
193



hominis;

004839455.1

transferase


ESFPNRTFWQKLYKRLRRDIRYHVIRERDMYAVDARVFVPARRGRYLHGYWQCLGYFE




Roseburia



family protein


EYLDDLREMFTPAYEQTDAVRELMQQFTQTPTCALHVRGGDLGGPNRAYFQQAIARMQ




hominis A2-183



[Roseburia


KEKPDVTFIVFTNDLPKAKECLDDGEARMRYIAEFGEALSDIDEFFLMSACQNQIISN







hominis A2-183]



STYSTWAAYLNTLPGRIVIVPKFHGVEQMALPDWIVLDGGACQKGEIDAV







Rhodopirellula

WP_
495934621
alpha-1,2-
24.16

MATSVHPHLSDGKQALDSKAAQQVCSTQAASASDRACTISISGGLGNQMLQYAAGRAL
194



europaea;

008659200.1

fucosyl-


SIHHDCPLQLDLKFYSSKRHRSYELDAFPIQAQRWIKPSFFSQVLDKIQGESKSAPTY




Rhodopirellula



transferase


EEQSKRFDRAFFDIELPARIRGYFFSEKYFLPYADQIRTELTPPVPLDQPARDMAQRL






[Rhodo-


SEGMSTSLHVRRGDYVSNANARQRFWSCTSEYFEAAIEQMPADSTVFVFSDDIEWAKQ



europaea 6C



pirellula



NIRSSRPTVYVNDELKLAGSPETGLRDLWLMTHAKSHIIANSSFSWWGAWLSGSEANL







europaea]



TIAPKKWENDPEIDDSDIVPTSWRRI







Rudanella lutea

WP_
518832653
protein
24.16

MVIAKITSGLGNQLFQYALGRHLAIQNQTRLWFDLRYYHRTYETDTPRQFKLDRFSID
195



019988573.1

[Rudanella


YDLLDYSPWLYVSKATRLLPGRSLRPLFDTRKEPHFHLDPAVPNAKGAFITLDGFWQS







lutea]



EGYFASNAATIRRELTFTRQPGPMYARYRQQIEQTQTPVSVHIRRGDYVSHPEFSQSF









GALDDTYYQTALAQINGQFPDATLLVFSDDPEWVRQHMRFERPHVLVENTGPDADVDD









LQLMSLCHHHIIANSSFSWWGAWLNPRPDKRVIAPKQWERNKPWNTADLIPAGWVRL







Bacteroidetes;

WP_
495893515
glycosyl
24.15

MRLIKMTGGLGNQMFIYAMYLKMKTIFPDVRIDLSDMVHYQVHYGYEMNKVFHLPRTE
196



Capnocytophaga

008618094.1

transferase


FCINRSLKKIIEFLISKTILERKQGGSLVPYTRKYHWPWIYFKGFYQSEKYFAGIEKE



sp. oral


[Bacteroidetes]


VREAFVFDIRRASRRSLRAMQEIKADPHAVSIHVRRGDYLLEKHWKALGCICQSSYYL



taxon 329 str.





NALAELEKRVKHPHYYVFSEDLNWVRQNLPLIKAEFIDWNKGEDSWQDMMLMSHCRHH



F0087;





IICNSTFSWWGAWLNPLPDKIVIAPERWTQTTDSADVVPESWLKVSIG




Paraprevotella











clara YIT 11840














Smaragdicoccus

WP_
516906936
protein
24.08

MADVVVTLAGGLGNQLFQTAYAKNLEARGHRVTLDGTVVRWTRGLHIDPQICGLKILN
197



niigatensis

018159152.1

[Smaragdicoccus


ATPPAPVPGRLAATVLRRALATRLRFGPDGRIVRTQRTLEFDEQYLNLNSPGRYRVEG







niigatensis]



YWQCERYFSDVGQTVRKVFLDMLGRHVSYNGLSRLPAMADPSSISLHVRRGDYVTANF









IDPLALEYYERALEELAVPSPRIFVFSDDLDWATRELGRICDVIPVEPDWTSHPGGEI









FLMSQCSHHIIANSSFSWWGAWLDGRTSSRVVAPRQWFSLETYSARDIVPDRWTKV







Bacteroides

WP_
547279005
family 11
24.05

MIHLILGGGLGNQMFQYAFARSLALQYNENISENTILYKELKNEERSFSLGHLNINTM
198



fragilis

022012576.1

glycosyl-


CIVETPDENKRIWELFNKQIFHQKIARKILPASIRWWWMSNRNIYANVCGPYKYYHPR



CAG:558


transferase


HRSQNTTIIHGGFQSWKYFKEHQSMIKAELKVITPISEPNKKILKEIQNSNSICVHIR






[Bacteroides


RGDFLSAQFSPHLEVCNKDYYEKAIKMISSQIENPTFFIFSNTHEDLVWIRKNYNIPQ







fragilis



NSVYVDLNNPDYEELRLMYNCKHFILSNSSFSWWAQYLSESKNKIIIAPKIWDKRKGI






CAG:558]


DFSDIYMPEWIIIK







Desulfovibrio

WP_
550904402
protein
24.05

MSFSIDVAAIQRMALVKVDGGLGSQMWQYALSLAVGKSSSFTVKHDLSWERHYAKDIR
199



desulfuricans

022657592.1

[Desulfovibrio


GIENRFFILNSVFTNINLRLASENERLFFHIALNRYPDSICNFDPDILALKQPTYLGG







desulfuricans]



YYVNAQYVISAEKEIREAYVFAPAVEESNQAMLQTIHAAPMPVAVHVRRGDYIGSMHE









VLTPRYFERAFKILAAALQPKPIFFVFSNGMEWTKKAFAGLPYDNYVDANDNDNVAGD









LFLMTQCKHFTISNSSLSWWGAWLSQRAENKTVIMPSKWRGGKSPIPGECMRVEGWHM









CPVE







Hoeflea

WP_
494373839
alpha-1,2-
24.05

MHGGLGNQLFQYAVGRAVALRIGSELLLDTREFTSSNPFQYDLGHFSIQAKVANSSEL
200



phototrophica;

007199917.1

fucosyl-


PPGKNRPLAYAWWRKFGRSPREVREQDLGYNARIETIEADCYLHGYFQSQKYFEDIAS




Hoeflea



transferase,


ILWKDLSFRQAISGENASMAERIQSAPSVSMHIRRGDYLTSAKARSTHGAPDLGYYGR




phototrophica



[Hoeflea


ALGEIRARSGSDPVVYLFSDDPDWVRNNMRMDANLVTVAINDGKTAFEDLRLMSLCDH



DEL-43



phototrophica]



NIIVNSTFSWWGAWLNPSLDKIVVAPKRWFADPKLSNPDITPPGWLRLGD







Vibrio

WP_
487957217
glycosyl
24.04

MKIISFSGGLGNQLFQYAFYLYLKDNSDFGNIFLDFSFYESQNKRDAVIRNFYGVDSL
201



cholerae; Vibrio

002030616.1

transferase,


DIIKQSSYVRGKFLILKLINKFRFFNNLLEFVDKENGLDETLLSTNKVFFDGYWQSYR




cholerae O1 str.



family 11


YVKDYKSNIKELFSFYDFKGNILEVRKKICQSNSVCMHVRRGDYVAEKNTKLVHGVCS



87395


[Vibrio


LQYYRDALNNIKNVDNSIDHIFIFSDDIDWVKNNISFDIPVTVVDFVGQSVPDYAEML







cholerae]



LFSCGKHKVIANSTFSWWGAFLSDRNGVIVSPKKWFAKEEKNYDEIFIEGSLRL







Lachnospiraceae

WP_
551041074
protein
24.03

MIIVRFRGGMGNQMFQYAFLRYLEMKGATLKADLSEFKCMKTHAGYELDKAFDLHPAE
202



bacterium NK4A179

022784718.1

[Lachno-


ASYKEIRAVADYIPVMHRFPFSRKVFEILYKKETKRVEAEGPKKSHISEEKYFDMSED







spiraceae



ERLHLASSSEDLYMDGFWIKPDMYDDEVLKCFTFSKTLDEKYKGTIEDEHSCSVHVRC







bacterium



GDYTGTGLDILGKEYYEKAAEKILSEDADVKFYVFSDDREKAEKLLSPFMKKMVFCDT






NK4A179]


PASHAYDDMYLMSRCRHHIIANSTFSFWGARLSADKSGITICPKYEDKNNTANRLVHE









GWQML







Cecembia

WP_
496476931
Glycosyl
24.01

MIIMKFMGGLGNQIYQYALGRKLSELHNSFLASDIHIYKNDPDREFVLDKFNIKVKHL
203



lonarensis;

009185692.1

transferase


PWKVIKLLNSDYALKFDKVFHTEFYHELVLEKALESKDIPRKNNLYLRGSWGNRKYYE




Cecembia



family 11


DYIDKISDEITLKEKEKTKDENTVNKKVKNSDSVGIHIRRGDYEKVAHFKNFYGLLPP




lonarensis LW9



[Cecembia


SYYSAAVDFIGNRIEKSNFFIFSDDIDWVKENLPFLKDSFFVSDIIGSVDYLEFELLK







lonarensis]



NCKHQIIANSTFSWWAARLNSNPAKIVIKPKRWFADDRQQAVYEIEDSYYIKEAIKL







Bacteroides

WP_
490423336
protein
24

MKIVNILGGLGNQMFVYAMYLALKEAHPEEEILLCRRSYKGYPLHNGYELERIFGVEA
204



ovatus;

004295547.1

[Bacteroides


PEAALSQLARVAYPFFNYKSWQLMRHFLPLRKSMASGTTQIPFDYSEVIRNDNVYYDG




Bacteroides




ovatus]



YWQNEKNFLSIRDKVIKAFTFPEFRDEKNKALSDKLKSVKTASCHIRRGDYLKDPIYG




ovatus ATCC 8483






VCNSDYYTRAITELNQSVNPDMYCIFSDDIGWCKENFKFLIGDKEVVFVDWNKGQESF









YDMQLMSLCHYNIIANSSFSWWGAWLNNNDDKVVVAPERWMNKTLENDPICDNWKRIK









VE







Bacteroides

WP_
547668508
glycosyl-
23.99

MRLIKMTGGLGNQMFIYAFYLKMKKLFPHTKIDLSDMMHYHVHHGYEMNRVFALPHTE
205



coprocola CAG:162

022125287.1

transferase


FCINRILKKLMEFLLCKVVYERKQKNGSMEAFEKKYAWPLIYFKGFYQSERFFADIED






family 11


DVRKTFCFNMELINSRSREMMKIIDADEHAVSIHIRRGDYLLPKFWANAGCVCQLPYY






[Bacteroides


KNAITELEKHESTPSFYVFSDDIEWVKQNLSLPNAHYIDWNQGNDSWQDMMLMSHCRN







coprocola



HIICNSTFSWWGAWLNPRKNKTVIVPSRWFMKEETPYIYPVSWIKVPIN






CAG:162]










Bacteroides

WP_
495110765
glycosyl
23.99

MRLIKVIGGLGNQMFIYAFYLRMKKYYPKVRIDLSDMMHYKVHYGYEMHRVFKLPHTE
206



dorei; Bacteroides

007835585.1

transferase


FCINQPLKKIIEFLFFKKIYERKQAPNSLRAFEKKYFWPLLYFKGFYQSERFFADIKD




dorei DSM




[Bacteroides



EVREAFTFDRSKANSRSLDMLDILDKDENAVSLHIRRGDYLQPKHWATTGSVCQLPYY



17855;



dorei]



QNAIAEMSKRVISPSYYIFSDDIVWVRENLPLQNAVYIDWNTGEDSWQDMMLMSHCKH




Bacteroides






HIICNSTFSWWGAWLNPSIDKTVIVPSRWFQYSETPDIYPTGWIKVPVD




dorei CL03T12C01














Bacteroides;

WP_
494936920
protein
23.97

MIIVRLWGGLGNQLFQYSFGQYLEIETDKKVEYDVASFGTSDQLRKLELCSFIPDIPL
207


Bacteroides
007662951.1

[Bacteroides]


YNAYFTRYTGVKNRLFKALFQWSNTYLSESMFDICLLEKARGKIFLQGYWQEEKYATY




intestinalis DSM






FPMQKVLSEWKNPNVLSEIEENIRSAKISVSLHVRRGDYFSPKNINVYGVCTEKYYEQ



17393; Bacteroides





AIDRANSEIEEDKQFFVFSDDILWVKNHVSLPESTVFVPNHEISQFAYIYLMSLCKVN



intestinalis





IISNSTFSWWGAYLNQHKNQLVIAPSRWTFTSNKTLALDSWTKI



CAG:564













Lachnospiraceae

WP_
511028838
protein
23.95

MIVIHVMGGLGNQLYQYALYEKLRALGREVKLDVYAYRQAEGAEREWRALELEWLEGI
208



bacterium A4

016283022.1

[Lachno-


RYEVCTAAERQQLLDNSMRLADRVRRRLTGRRDKTVRECAAYMPEIFEMDDVYLYGFW







spiraceae



GCEKYYEDIIPLLQEKIVFPESSNPKNADVLRAMAGENAVSVHIRRKDYLTVADGKRY







bacterium A4]



MGICTDAYYKGAFRYITERVERPVFYIFSDDPAFAKTQFCEENMHVVDWNTGRESLQD









MALMSRCRHNICANSTFSIWGARLNRHPDKIMIRPLHHDNYEALDARTVHEYWKGWVL









IDADGKV







Phaeobacter

YP_
399994425
protein
23.91

MIITRLHGRLGNQMFQYAAGRALADRLGVSVALDSRGAELRGEGVLTRVFDLDLATPD
209



gallaeciensis;

006574665.1

PGA1_c33070


ILPPLRQRAPLGYALWRGLGQHLGTGPKLRREVGLGYNPDFVDWSDNSYLHGYWQSER




Phaeobacter



[Phaeobacter


YFAQSAERIRRDFTFPEYSNQQNAEMAARIGETNAISLHVRRGDYLTLAAHVLCDQAY




gallaeciensis




gallaeciensis



YEAALAQVLDGLEGQPTVYVFSDDPQWAKENLPLPCDKVVVDFNGADTDYEDMRLMSL



DSM 17395 = CIP


DSM 17395 =


CKHNIIGNSSFSWWAAWLNQTPDRRVAGPTKWFGDPKLNNPDILPPDWLRISV



105210


CIP 105210]










Firmicutes

WP_
546362318
protein
23.88

MSGGLGNQMFQYALYLKLRSLGREVCFDDKSQYDEETFRNSSQKRRPKHLDIFGITYP
210



bacterium

021849028.1

[Firmicutes


SAGKEELEKLIDGAMDLPSRIRRKILGRKSLEKNDRDFMFDPSFLEETEGYFCGGFQS



CAG:791



bacterium



PRYFAGAEEEVRKAFTFPEELLCPKEGCSRQEQKMLEQSASYAERIRKANCEAADRGV






CAG:791]


PGGGSASIHLRFGDYVDKGDIYGGICTDAYYDTAIRCLKERDPGMIFFVFSNDEEKAG









EWIRYQAERSENLGRGHFVLVKGCDEDHGYLDLYLMTLCRNHVIANSSFSWWASFMCD









APDKMVFAPSIWNNQKDGSELARTDIYADFMQRISPRGTRLSDRPLISVIVTAYNVAP









YIGRALDSVCGQTWKNLEIIAVDDGSSDETGAILDRYAAGDSRIQVVHTENRGVSAAR









NEGIAHARGEYIGFVDGDDRAHPAMYEAMIRGILSSGADMAVVRYREVSAEETLTDAE









EQVASFDPVLRASVLLQQRDAVQCFIRAGMAEEEGKIVLRSAVWNKLFFIRRLLRDNR









FPEGTSAEDIPFTTRALCLSKKVLCVPEILYDYVVNRQESIMNTGRAERTLIQEIPAW









RTHLELLKESGLSDLAEESEYWFYRRMLSYEEEYRRCSETAKEAKELQERILKHRDRI









LELAEEHSFGRRGDRERLKLYVNSPRQYFLLSDLYEKTVVNWKNRPDKT







Butyrivibrio

YP_
302669773
glycosyl
23.84

MRKRIIALNGGLGNQMFQYAFARMLEDRKHCLIEFDTGFYSTVNDRKLAIQNYNIHKY
211



proteoclasticus;

003829733.1

transferase 11


DFCNHEYYNKIRLLFQKIPFVAWLAGTYKEYSEYQLDPRVFLENYRFYYGYWQNKQYF




Butyrivibrio



[Butyrivibrio


EENISNDIRNELSYIGNVSEKENALLNMLAHNAIAIHVRRGDYTQEGYNKIYISLSKE




proteoclasticus




proteoclasticus



YYKRAVSIACKELGDNNIPLYVFSDDIDWCKANLADIGNVTFVDNTISSSADIDMLMM



B316


B316]


KKSRCLITANSTFSWWSAWLSDRDDKIVLVPDKWLQDEEKNTKLMKAFICDKWKIVPV







Bacteroides sp.

WP_
496043738
protein
23.81

>gi|496043738|ref|WP_008768245.1| protein [Bacteroides sp.]
212


2_1_16
008768245.1

[Bacteroides


2_1_16]MQVVARIIGGLGNQMFIYATARALALRIDADLILDTQSGYKNDLFKRNFLL






sp.


DSFCISYRKANCFQKYDYYLGEKVKSLGKKTHFSVIPFMKYISENTSCDFVDGLLKKH






2_1_16]


ILSVYLDGYWQNEAYFKDYASIIKKDFQFCQVNDLRILSEAEIIKKSITPVAIGVRRY









QELNSHQNTKVIDLDFYQKAINYIESKVDNPTFFIFSEDQEWVKNNLEQKSNFIMISP









KEGNYSALNDMYLISLCKHHIVSNSSFYWWGAWLANNKNKIVVASDCFLNPQSIPDSW









IKF







Desulfomicrobium

YP_
256830317
glycosyl
23.76

>gi|256830317|ref|YP_003159045.1| glycosyl transferase 
213



baculatum;

003159045.1

transferase


family protein [Desulfomicrobiumbaculatum DSM




Desulfomicrobium



family protein


4028]MAKIVTRIMGGIGNQLFCYAAARRLALVNHAELVIDDVTGFSRDRVYRRRYML




baculatum



[Desulfo-


DHFNISARKATNYERMEPFERYRRGLAKYISKKLPFFEREYIEQERIEFDPRFLEYRT



DSM 4028



microbium



YNNIYIDGLWQSENYFKDVEDIIRDDLKIIPPTDLENINIAKKIKNIQNTIAMHVRWF







baculatum



DLPGINLGNNVSTYYYHRAIAMMEQRINAPHYFLFSDNLEAVHSKLDLPEGRVTFVSN






DSM 4028]


NDGDDNAYADLWLMSQCKHFITANSTFSWWGAWLGESRDSVVLVPRFSPDGGVISWCF









TGLIPERWEQVSSIR







Prevotella

WP_
545304945
galactoside 2-
23.76

MDIVLIFNGLGNQMSQYAFYLAKRQRNNHTVYCVFGPRTQYSLDKLFDIPYRHNAVLV
214



pleuritidis;

021584236.1

alpha-L-


LLYRALDKAHFSNHRWLRRLLRPTLQLLGVKMIVEPLSRDFDMRHFTHQKGIVFYRGG




Prevotella



fucosyl-


WHSELNFTAVADAVKRRFRFPEIQDAAVLAVIDRIKSCQSVSLHLRRGDYLGLSEFQG




pleuritidis F0068



transferase 


VCTEAYYEHAIAYFESQIESPEYFVFSDDPTYAREQFGADPNFHIIDLNHGEDAWCDL






[Prevotella


LMMTQCRYNIIANSTFSWWGAWLNDNPSKIVVHPRYHLNGVETRDFYPRNWICIE






pleuritidis]










Bacteroides sp.

WP_
496038684
glycosyl
23.75

MKVIWENGNLGNQVFYCKYKEFLHNKYPNETIKYYSNSRSPKICVEQYFRLSLPDRID
215


1_1_14
008763191.1

transferase,


SFKVRFVFEFLGKFFRRIPLKFVPKWYCTRKSLNYEASYFEHYLQDKSFFEKEDSSWL






family 11


KAKKPDNFSEKYLIFENLICNINSVAVHIRRGDYIKPGSDYEDLSATDYYEQAIKKAT






[Bacteroides


EVYLDSQFFFFSDDLEFVKNNFKGDNIYYVDCNRGADSYLDILLMSQAKINIIANSTF






sp. 1_1_14]


SYWGAYMNHEKKKVMYSDLWFRNESGRQMPNIMLDSWICIETKRK







Agromyces

WP_
551273588
protein
23.65

MVGRVGIARRQAADVSCIDGEGLVAWRIRTGEIVLGLQGGIGNQLFEWAFAMALRSIG
216



subbeticus

022893737.1

[Agromyces


RRVLFDAVRCRGDRPLMIGPLLPASDWLAAPVGLALAGATKAGLLSDRSWPRLVRQRR







subbeticus]



SGYDPSVLERLGGTSYLLGTFQSARYFDGVEHEVRAAVRALLEGMLIPSGRRFADELR









ADPHRVAVHVRRGDYVSDPNAAVRHGVLGAGYYDQALEHAAALGHVRRVWFSDDLDWV









REHLARDDDLLCPADATRHDGGEIALIASCATRIIANSSFSWWGGWLGAPSSPAHPVI









APSTWFADGHSDAAELVPRDWVRL







Prevotella

WP_
494220705
alpha-1,2-
23.59

MIATTLFGGLGNQMFIYATAKALSLHYRIPMAFNLRQGFEQDYKYQRHLELNHFKCQL
217



salivae;

007133870.1

fucosyl-


PTAKWITFNYKGELNIKRISRRIGRNLLCPHYQFIKEKEPFHYEKRLFEFTNKNIFLE




Prevotella



transferase


GYWQSPRYFENYSDEIRRDFQLKSILPHTITDELQMLKGTGKPLVMLGIRRYQEVKDK




salivae DSM 15606



[Prevotella


KDSPYPLCNKDYYAKAISHVQEQLPAPLFVVFTQEQAWAMNNLPTNANLYFVKEKDNA







salivae]



WATIADMYLMTQCQHAIISNSTFYWWGAWLQHPIENHIVVAPNNFINRDCVCDNWIIL









D







Carnobacterium

YP_
554649641
glycosyl
23.57

MIFVDLSEGLGNQMFQYAYSRYLQELYGGTLYLNTSSFKRKNSTRSYSLNNFYLYENV
218


sp.
008718687.1

transferase


KLPSKFRRVIYNFYSKTIRMFIKKVIRMNPYSDKYYFSMIPYGFYVSSQVFKYLTVPI



WN1359


[Carno-


TKRHNIFVMGTWQINKYFQSINDKIKDELKVKTEPNELNKKLITEINSNQSVCVHIRL







bacterium



GDYTNPEFDYLHVCTSDYYLKGMDYIVSKVKEPNFYIFSNSSSDIEWIKNNYNFKYKV






sp. WN1359]


KYIDLNNPDFEDFRLMYNCKHFIISNSTFSWWAQFLSNNDKKIIVAPSKWQKSNENEA









KDIYLDHWKLIEIE







Butyrivibrio sp.

WP_
551018062
glycosyl
23.55

MLIIQIAGGLGNQMQQYAMYRKLLKAGADRNIKLDTKWFDEDKQSGVLAKRKLELEYF
219


AD3002
022762290.1

transferase


TGLPLPVCSESERARFTDRSVARKVVEKLVPGMGSRFTESCMYHPEIFELKDKYIEGY






[Butyrivibrio


FACQKYYDDIMGELQELFVFPTHPDEEINIKNMNLMNEMEMVPSVSVHIRRGDYLDPE






sp.


NAALFGNIATDAYYDSAMEYFKAIDPDTHFYIFINDPEYAREKYADPGRYTIVDHNIG






AD3002]


KYSLLDIQLMSHCRGNICANSTFSFWGARLNRRKDKIPVRTLVMRNNQPVTPELMHEY









WPGWVLVDKDGKVR







Clostridium sp.

WP_
545396682
glycosyl-
23.55

MIVIRVMGGLGNQMQQYALYEKFKALGKETRLDTSWFDNASMQENVLARRSLELRFFD
220


KLE
021636935.1

transferase,


NLTYEACTPQEREALLGKEGFFNKLERKLEPSKNKHEYESEMFHPEIFKLDNVYLEGH



1755


family 11


WACEKYYHDIMPLLQSKIIFPKTDNIQNNMLKNKMNSENSVSIHIRRGDYLDPENAAM






[Clostridium


FGGICTDSYYKSAEGYIRNRVINPHFYLFSDDPAYLREHYKGEEYTVVDWNHGADSFY






sp. KLE 1755]


DMELMSCCKHNVCANSTFSFWGARLNRTEKKIVIRPAKHKNSQQAEPERMHELWENWV









IIDEEGRIV







Bacteroides;

YP_
150005950
glycosyl
23.47

MKFFVFGGGLGNQLFQYSYYRYLKKKYPSERILGIYPDSLKAHNGIEIDKWFDIELPP
221



Bacteroides

001300694.1

transferase


TSYLYNKLGILLYRVNRFLYNHGYRLLFCNRVYPQSMKHFFQWGDWQDYSIIKQINIF




vulgatus ATCC



family protein


EFRSELPIGKENMEFLKKMETCNSISVHIRRGDYLKTDLIHIYGGICTSKYYREAIKF



8482; Bacteroides


[Bacteroides


MEQEVEEPFFFFFSDDCLYVETEFADIRNKIIISHNRDDRSFEDMYLMAHAKNMILAN




dorei DSM




vulgatus ATCC



STFSCWAAYLNRTAKIIITPDRWVNTDFSKLEALPNEWIKIRV



17855; Bacteroides


8482]







massiliensis










dnLKV3













Paraprevotella

WP_
495902050
glycosyl
23.47

MRLIKMTGGLGNQMFIYAMYLKMRAVFPDTRIDLSDMVHYRVHYGYEMNKVFNLPRTE
222



xylaniphila;

008626629.1

transferase


FRINRSLKKIIEFLISKTILERKQGGSLVPYIRKYHWPWIYFKGFYQSEEYFAGVEKE




Paraprevotella



[Paraprevotella


VREAFVFDVRRVNRKSLCAMQEIMADPDAVSIHVRRGDYLQGKHWKSLGCICQRSYYL




xylaniphila 




xylaniphila]



NALSELEKRIVHPHYYVFSEDLDWVRQYLPLENAVFIDWNKGEDSWQDMMLMSHCRHH



YIT 11841





IICNSTFSWWGAWLNPSPDKIVIAPERWTQTTNSADVVPESWLKVSIG







Thauera sp. 28

WP_
489020296
glycosyl
23.47

MTDRALIAIVKGGLGNQLFIYAAARAMALRTGRQLYLDAVRGYLADDYGRSFRLNRFP
223



002930798.1

transferase


IEAELMPEQWRVASTLRHPRAKLVRALNKYLPEAWRFYVAERGDTRPGALWNHGRNVK






family protein


RVTLMGYWQDEAYFLDYAELLRRELGPPMPDAPEVRARGERFAGTESVFLHVRRCRYS






[Thauera


PLLDAGYYQKAVDLACAELNKPVFMIFGDDIEWVVNNIDFRGAGYERQDYDESDELAD






sp. 28


LWLMTRCRHAIIANSSFSWWAAWLGGAAGSGRHVWAPGQSGLALKCAKSWEAVDAQPE







Subdoligranulum

WP_
494107522
alpha-1,2-
23.44

MIYAELAGGLGNQMFIYAFARALGLRCGEAVTLLDRQDWRDGAPAHTACALEGLNLVP
224



variabile;

007048308.1

fucosyl-


EVKILAEPGFAKRHLPRQNTAKALMIKYEQRQGLMARDWHDWERRCAPVLNLLGLHFA




Subdoligranulum



transferase


TDGYTPVRRGPARDFLAWGYFQSEAYFADFAPTIRAELRAKQAPAGVWAEKIRAAACP




variabile DSM



[Subdo-


VALHLRRGDYCRPENEILQVCSPAYYARAAAAAAAAYPEATLFVFSDDIDWAKEHLDT



15176



ligranulum



AGLPAVWMPRGDAVGDLNLMALCRGFILSNSTYSWWAQYLAGEGRTVWAPDRWFAHTK







variabile]



QTALYQPGWHLIETR







Firmicutes

WP_
547127527
protein
23.4

MIIVEVMGGLGNQMQQYALYRKLESLGKDARLDVSWELDKERCQTKVLASRKLELSWE
225



bacterium

021916223.1

[Firmicutes


ENLPAKYCTQEEKQAILGKNNLIGKLKKKLLGGSNRHFTESDMYHPEIFDLEDAYLSG



CAG:24



bacterium



FWACEAVYADILPMLRSQIHFPDPEKGEGWDLEAAAKNKETMERMKQETSVSIHIRRG






CAG:24]


DYLDAKNAEMFGGICTDAYYEAAISYIKEQTPDAHFYVFSDDSAYVKNAYPGKEFTVV









DWNTGKNSLFDMQLMSCCNHNICANSTFSFWGARLNPSPDKVMIRPSKHKNSQNIVPE









EMKRLWDGWVLIDGKGRII







Prevotella sp.

WP_
547906803
glycosyl
23.39

MIITKLNGGLGNQLFEYACARNLQLKYNDVLYLDIEGFKRSPRHYSLEKFKLSSDVRM
226


CAG:474
022310139.1

transferase


LPEKDSKSLILLQAISKLNRNLAFKLGPLFGTYIWKSSNYRPLKIKNTRGKKLYLYGY






family 11


WQSYEYFKENEAIIKQELNVKTEIPIECSELLKEINKPHSICVHVRRGDYVSCGFLHC






[Prevotella sp.


DEAYYNRGINHIFDKHPDSNVVVFSDDIKWVKANMNFDHPVAYVEVDVPDYETLRLMY






CAG:474]


MCKHFVMSNSSFSWWASYLSDNKEKIVVAPSYWLPANKDNKSMYLDNWTIL






Roseburia
WP_
493910390
glycosyl
23.38

intestinalis]MRGNRGMIAVKIGDGMGNQLFNYACGYAQARRDGDSLVLDISECD
227



intestinalis;

006855899.1

transferase


NSTLRDFELDKFHLKYDKKESFPNRNLGQKIYKNLRRALKYHVIKEREVYHNRDHRYD




Roseburia



family 11


VNDIDPRVYKKKGLRNKYLYGYWQHLAYFEDYLDEITAMMTPAYEQSETVKKLQEEFK




intestinalis



[Roseburia


KTPTCAVHVRGGDIMGPAGAYFKHAMERMEQEKPGVRYIVFTNDMERAEEALAPVLES



L1-82



intestinalis]



QKKDAVGQAENRLEFVSEMGEFSDVDEFFLMAACQNQILSNSTFSTWAAYLNQNPDKT









VIMPDDLLSERMRQKNWIILK







Bacteroides

WP_
490424433
protein
23.29

MKIVLFTPGLGNQMFQYLFYLYLRDNYPNQNIYGYYNRNILNKHNGLEVDKVFDIQLP
228



ovatus;

004296622.1

[Bacteroides


PHTVISDASAFFIRALGGLGLKYFIGKDQLSPWKVYFDGYWQNKEYFQNNVDKMRFRE




Bacteroides




ovatus]



GFLNKKNDDILSLIRNTNSVSVHVRRGDYCDSCRKDLFLQSCIPQYYESAISVMKEKF




ovatus ATCC 8483






QKPVFFVFSDDIPWVKVNLNIPNAYYIDWNKKENSYLDMYLMSLCTASIIANSTFSFW









GAMLGNKKELVIKPKKWIGDEIPEIFPPSWLSL







Butyrivibrio sp.

WP_
551035785
glycosyl
23.25

MLIIQIAGGLGNQMQQYALYRKLLKYHPDGVRLDLSWFDSEVQKNMLAKREFELALFK
229


AE3009
022779599.1

transferase


GLPYIECKPEERAAFLDRNAAQKLSGKVLKKLGLRDNANPNVFEESRMFHPEIFELDN






[Butyrivibrio


KYIIGYFACQKYYDDIMGDLCNLFEFPEHLDPELEKKNLELISKMEKENSVSVHIRRG






sp.


DYLDPENFKILGNIATDEYYESAMKYFEDRYEKVHFYIFTSDHEYAREHFADESKYTI






AE3009]


VDWNTGKDSLQDVRLMNHCLGNICANSTFSFWGARLNQRQDKVMIRTYKMRNNQPVDP









DTMHDYWKGWILIDETGREV







Butyrivibrio

YP_
302669752
glycosyl
23.23

MTKNEKKLIVKFQGGLGNQLYEYAFCEWLRQQYSDYEVLADLSYYKIRSAHGELGIWN
230



proteoclasticus;

003829712.1

transferase 11


IFPNINIEVASNWDIIKYSDQIPIMYGGKGADRLNSVRTNVNDRFFSKRKHSYYTEIS




Butyrivibrio



[Butyrivibrio


NTDVSEVINALNNGIRYFDGYWQNIDYFKGNIEDLRNKLKFSEKCDKYITDEMLRDNA




proteoclasticus




proteoclasticus



VSLHVRRGDYVGSEYEKEVGLSYYKKAVEYVLDRVDQAKFFIFSDDKYYAETAFEWID



B316


B316]


NKTVVAGYDNELAHVDMLLMSRMKNNIIANSTFSLWAAYLNDSMNPLIVYPDVESLDK









KTFSDWNGIK







Prevotella

WP_
517173838
protein
23.23

MDSQFLKHIKLSGGEGNQLFQYFFGEYLKEKYNCSISFFSEPALDINQLQIHRFFPAL
231



nanceiensis

018362656.1

[Prevotella


RISHNTELRPYHYSFTQQLAYRCMRKLLLLFPFLNRKVKIENGSNYQNQSFNDTYCED







nanceiensis]



GYWQSYRYLSAFTPSLQFEDQLINDISADYINAIEQSEAVFLHIRRGDYLNKENQKVF









AECPLNYFENAANRIKEDIKNVHFFVFSNDIQWVKSHLKLNDNEVTFIQNEGNSCDLK









DFYLMTRCKHAIISNSTFSWWAAYLINNSDKKVIAPKHWYNDISMNNATKDLIPPTWI









RL







Ruegeria sp. R11

WP_
495838392
alpha-1,2-
23.23

MIITRLHGRLGNQMFQYAAGRALADRAGVPLALDSRGAILRGEGVLTRVEDLELADPV
232



008562971.1

fucosyl-


HLPPLKQTNPLRYAIWRGIGQKVGAKPYFRRERGLGYNPAFEDWGDNSYLHGYWQSQK






transferase


YFQNSAERIRSDFTFPAFSNQQNAEMAARIAESTAISLHVRRGDYLTFAAHVLCDQAY






[Ruegeria sp.


YDAALAKVLDGLQGDPIVYVFSDDPQWAKDNLSLPCEKVVVDENGPETDFEDMRLMSL






R11]


CQHNIIGNSSFSWWAAWLNQTPGRRVAGPAKWFGDPKLSNPDIFPHDWLRISV







Winogradskyella

WP_
527072096
alpha-1,2-
23.21

MGNQLYEYATAKAMAVALNKKLVIDPRPILKEAPQRHYDLGLFNIQDEDFGSPFVQWL
233



psychrotolerans 

020895733.1

fucosyl-


VRWVASVRLGKFFKTIMPFAWSYQMIRDKEEGFDESLLQQKSRNIVIEGYWQSFKYFE



RS-3;


transferase


SIRPTLLKELSFKDKPNAINQKYLDEIESVNAVAVHIRRGDYVANPVANAVHGLCDMD




Winogradskyella



[Wino-


YYKKAIAIIKDKVENPYFFIFTDDPDWAEDNFKISEHQKIIKHNIGKQDHEDFRLLIN




psychrotolerans




gradskyella



CKYFIIANSSFSWWGAWLSDYKNKIVISPNKWENVDAVPITERIPESWIRV







psychro-











tolerans]











Lachnospiraceae

WP_
551041720
protein
23.2

MITVRIDGGEGNQMFQYAFFLHLKKTITDNKISVDLNCYNPHGSGDIFTRFKLAPEQA
234



bacterium NK4A179

022785342.1

[Lachno-


APSEIKRFHRNSIYHLLRPLDSAGITTNPYYREEDIDDLNSVLNKKRVYLRGYWQDKR







spiraceae



YPFSVKDQLIDCFDLGKMDMTGASAENNVILEQIASEESRSVGVHLRGGDYIGDPVYS







bacterium



GICTPEYYEAAFKHVSEKIKDPVFHIFINDISMIEKCGLSGKYDLKITDINDEAHGWA






NK4A179]


DLKLMSACRHHIISNSSFSWWAAFLGEATTEASADVINVIPEYMRQGVSAETLRCPCW









TTVTSDGRVYPS







Prevotella sp.

WP_
496522549
alpha-1,2-
23.13

MKIVCIKGGLGNQLFEYCRYRSLHRHDNRGVYLHYDRRRTKQHGGVWLDKAFHITLPN
235


oral
009230832.1

fucosyl-


EPLRVKLLVMVLKTLRRLHLFKRLYREEDPRAVLIDDYSQHKQYITNAAEILNFRPFE



taxon 317 str.


transferase


QLDYAEEIQTTPFAVSVHVRRGDYLLLANKSNEGVCSVHYYLSAAVAVRERHPESRFF



F0108;


[Prevotella sp. 


VFSDDMEWAKENLNLPNCVFVEHAQAQPDHADLYLMSLCKGHIIANSTFSFWGAYLSK




Prevotella sp.



oral taxon 317]


GSSAIAIYPKQWFAEPTWNVPDIFPAHWMAL



oral taxon 317













Butyrivibrio sp.

WP_
551021633
glycosyl

23.1
MLIIQIAGGLGNQMQQYAVYTKLRGMGKDVRLDLSWFDPSVQKNMLAPREFELSMFEG
236


XPD2006
022765796.1

transferase


VDYTECTAEERDSFLKQGMIANVIGKMLKKLGLRDEANPKVFSEKEMYHPEIFELEDR






[Butyrivibrio


YIKGYFACQKYYDDIMGELWEKYTFPAHSDPDLHTRNMALVERMEKETSVSVHIRRGD






sp.


YLDPSNVEILGNIATEEYYQGAMDYFSVKDPDTHFYIFTSDHEYAREKFSDESKYTIV






XPD2006]


DWNSGRNSVQDLMLMSHCKGNICANSTFSFWGARLNRRPDKTVIRTYKMRNNQPVNPD









IMHDYWKGWILMDEKGSII







Butyrivibrio

WP_
551008140
protein
23.08

MIIIKLQGGLGNQLFLYGLYKNLKHLKRDVKMDIESGFEEDKLRVPCLKSMGLDYEVA
237



fibrisolvens

022752717.1

[Butyrivibrio


TRDEIVAIRDSYMDIFSRIRRKITGRKTFDYYEPEDGNFDPRVLEQTHAYLDGYFQSE







fibrisolvens]



KYFGDSDDRKKLKDELLKEKIRVLDSSDILKDLYNMMSSGSSVSLHIRRGDYLTPGIM









ETYGGICTDEYYDIAMNRIKNEYPDSKFFIFSNDIDWCKEKYGSRDDVIFVDSCDEHE









GLINVSGDQDDIQVQGDIKEHGNNSLRDAAELYLMSACKHHILANSSFSWWGAWLSDH









EGMTIAPSKWLNNKNMTDIYTKDMLLI







Cylindro-

WP_
493321658
Glycosyl
23.05

MKKTVVLLKGGLGNQMFQYAFARSISLKNSSKLVIDNWSGFTFDYKYHRQYELGTFSI
238



spermopsis

006278973.1

transferase


VGRPANLTEKFPFWFVELKSKFFPRLPKVFQQQFYGLLINEVGGEYIPEIEETKISQN




raciborskii;



family 11


CWLNGYWQSPLYFQKHSDSITRELMPPEPMEKHFLELGKLLRETESVALGIRLYEESK




Cylindro-



[Cylindro-


NPGSHSSSGELKSHFEINQAILKLRELCNGAKFFVFCTHRSPLLQELALPENTIFVTH




spermopsis




spermopsis



DDGYVGSMERMWLLTQCKHHIFTNSTFYWWGAWLSQKFYIQGSQIVFAADNFINSDAI




raciborskii




raciborskii]



PKHWKPF



CS-505













Prevotella

WP_
494609908
alpha-1,2-
23.05

MKIVNFQGGLGNQMFIYAFSRYLSRLYPQEKIYGSYWSRSLYVHSAFQLDRIFSLQLP
239



multiformis;

007368154.1

fucosyl-


PHNLFTDCISKLARFFERLRLVPVEETPGSMFYNGYWLDKKYWEGIDLSEMFCFRNPD




Prevotella



transferase


LSAEAGAVLSMIERSNAVSVHIRRGDYQSEEHIEKFGRFCPPDYYRIATERIRQREDD




multiformis DSM



[Prevotella


PLFFVFSDDMMWVKSNMDVPNAVYVDCHHGDDSWKDMFLMAKCRHNIIANSTFSFWAA



16608



multiformis]



MLNANPDKVVVYPQRWFCWPSPDIFPEMWLPVTEKEIKSSF







Bacteroides sp.

WP_
548151455
protein
23

MIIVNMACGLANRMFQYAFYLSLKERGYNVKVDFYKSATLPHENVPWNDIFPYAEIDQ
240


CAG:462
022384635.1

[Bacteroides


VSNFRVLILGGGANLLSKLRRKYLPSLINVITMSTAFDTDLQIDDDRKDKYIIGVFQS






sp.


AAMVEGVCKKVKQCFSFLPFTDLRHLQLEKEMQECESVAIHVRKGNDYQQRIWYQNTC






CAG:462]


TMDYYRKAIAEIKGKVKDPRFYVFTDNADWVRRNFTDFDYKMVEGNPVYGWGSHFDMQ









LMSRCKYNIISNSTYSWWGAYLNANRNKIVICPNIWFNPESCNEYTSCKLLCKGWIAL







Desulfovibrio

WP_
492830222
Glycosyl
23

MRIGILYICTGKYTVFWNHFFTSCEQHFLREHEKHYYIFTDGEIAHLNCNRVHRIEQQ
241



africanus;

005984176.1

transferase


HLGWPDSTLKRFHMFERIADTLRQNSDFIVFFNANMVFLRDVGKEFLPTREQALVEHR




Desulfovibrio



family 11/


HPGLFRRPAWLLPYERRPESTAYIPYGSGSIYVCGGVNGGYTQPYLDEVAMLRRNIDI




africanus PCS



Glycosyl-


DVERGIIARWHDESHINREVIGRHYKIGHPGYVYPDRRNLPFPRIIRVIDKASVGGHT






transferase


FLRGQTPEPAPEEQSKTVAKKLRSQLKRPCMPRAAQDEPIILARMMGGLGNQMFIYAA






family 6


ARVLAERQGAQLHLDTGKLSGDSIRQYDLPAFSIDAPLWHIPCGCDRIVQAWFALRHV






[Desulfovibrio


AAGCGMPKPTMQVLRSGFHLDQRFFSIRHSAYLIGYWQSPHYWRGHEDRVRSSFDLTR







africanus]



FERPHLREALAAVSQPNTISVHLRRGDFRAPKNSDKHLLIDGSYYERARKLLLEMTPQ









SHFYIFSDEPEEAQRLFAHWENTSFQPRRSQEEDLLLMSRCSASIIANSSFSWWGAWL









GRPKQHVIAPRMWFTRDVLMHTYTLDLFPEKWILL







Roseburia sp.

WP_
548374190
protein
22.98

MILIHVMGGLGNQLYQYALYEKMKSLGKKVKLDTYAYNDAAGEDKEWRSLELDRFPAI
242


CAG:100
022518697.1

[Roseburia sp.


EYDKATSEDRTKLLDNSGLLTAKIRRKLLGRKDKTIRESKEYMPEIFHMDDVYLYGEW






CAG:100]


NCERYYEDIIPLLQDKLQFPISNNPRNQQCEQMQKENAVSIHIRRIDYLTVADGARYM









GICTEDYYKGAMAYIEERVSNPVYYIFSDDVEYAKQHYHQDNMHVVDWNSKADSIYDM









QLMSKCKHNICANSTFSMWAARLNQNKEKIMIRPLHHDNYETTTATQVKQNWKNWILL









DQNGQVCE







Lachnospiraceae

WP_
550997676
protein
22.96

MTMNIIRMSGGLGSQMFQYALYLKLKSMGKEVKFDDINEYRGEKARPIMLAVEGIEYP
243



bacterium 10-1

022742385.1

[Lachno-


RATWDEITSFIDGSMDLLKRLRRKIFGRKAIEYEEQGFYDPNVLNFDSMYLRGNFQSE







spiraceae



KYFQDIKEEVRKLYRFSTLEDMRLPERLYKATKACLDGIESSESVGLHMYRSDSRVDG







bacterium 10-



ELYDGICIGNYYKGAVRFIQDKVPDAKFYIFSNEPKWVRGWVVDLIQSQIQEGMSPSQ






1]


VKEMEKRFVMVEANTEYTGYLDMMLMSKCKHNIISNSSFSWWSAWMNDHPEKVVVAPD









RWSSDKEGNEIYTTGMTLVNEKGRVNYTIHENSTVK







Prevotella

WP_
490496500
protein
22.96

MILSYITGRLGNQLFEYAYARSLLLKRGKNEELILNFSLVRAAGKEIEGFDDNLRYFN
244



nigrescens;

004362670.1

[Prevotella


VYSYTELDKDIVLSKGDLLQLFIYILFKLDQKLFRIIKKEKWFSFERREGIIFQDYLD




Prevotella




nigrescens]



NISNLIIPRTKNVECYGKYENPKYFDDIRSILLKEFTPRIPPLKNNDQLYSVIESTNS




nigrescens F0103






VCISIRRGDFLCDKFKDRFLVCDKEYFLEAMEEAKKRISNSTFIFFSDDIEWVRENIH









SDVPCYYESGKDPVWEKLRLMYSCKHFIISNSTFSWWAQYLSRNEEKVVIAPDRWSNV









PGEKSFLLSNSFIKIPIGILP







Bacteroides sp.

WP_
547952493
fucosyl
22.95

MIYVEINGRLGNNMFEIAAAKSLTDEVTLWCKGDWQLNCIKMYSDTLFKNYPIVKSLP
245


CAG:875
022353235.1

transferase


NNIRIYEEPEFTFHPIPYKENQDLLIKGYFQSYKYLDREKVLKLYPCPMPVKLDIEKR






[Bacteroides


FGDILSQYTVVSINVRRGDYLNLPHRHPFVGKKFLERAMLWFGDKVHYIISSDDIEWC






sp. CAG:875]


KAHFKQEDNVHYLINSYPLLDLYIQTACHHNIISNSSFSWWGAYLNNHPQKIVIAPHR









WEGMSTNINTQDLLPPEWMIEQCVYEPKVFLKALPLHAKYLLKRVLK







Prevotella sp.

YP_
532354444
protein
22.9

MDSQLLKHIKLSGGEGNQLFQYFFGEYLKEKYNCSISFFSEPALDINQLQIHRFFPTL
246


oral
008444280.1

HMPREF0669_


RISHNTELRREHYAFTQQLAYRCMRKLLLLFPFLNRKVKIENGSNYQNQSFNDTYCED



taxon 299 str.


00176


GYWQSYRYLSAFTPSLQFEDQLINDISADYINAIEQSEAVFLHIRRGDYLNKENQKVF



F0039;


[Prevotella


AECPLNYFENAVNKIKEGNKTYHFFVFSNDIEWVKCHLKLNNNEVTFIQNEGSSCDLK




Prevotella sp.



sp. oral taxon


DFYLMTRCKHAIISNSTFSWWAAYLINNNDKKVIAPKRWYNDLSMNNATKDLIPPTWI



oral taxon 299


299 str. F0039]


RL







Paraprevotella

WP_
495904204
alpha-1,2-
22.87

MKIVCLKGGLGNQMFEYCRFRDLMDSGNGKVYLFYDRRRLKQHDGLRLSDCFELELPS
247



xylaniphila;

008628783.1

fucosyl-


CPWGIRLVVWGLKICRAIGVLKRLYDDEKPDAVLIDDYSQHRRFIPNARRYFSFRQFL




Paraprevotella



transferase


AELQSGFVQMIRAVDYPVSVHVRRGDYLHPSNSSFVLCGVDYFRQAIAYVRKKRPDAR




xylaniphila 



[Paraprevotella


FFFFSDDMEWVRENLWMEDAVYVEHTELMPDYMDLYLMTLCRGHIISNSTFSFWGAYL



YIT 11841



xylaniphila]



AVDGNGMKIYPRRWERDPTWITPPIFSEEWVGL







Dethiosulfovibrio

WP_
491897177
glycosyl
22.84

MFQYAFGRALALDLGLDLKLDISNEGSDSRPFSLGIYSLTKNIPFGCYLSTSTRLKVK
248



peptidovorans;

005658864.1

transferase


MTKKLRRWGVWGMDKNMPGVLVEPFPPVLVSLDEVLSEKLSHLFVDGYWQSEKYFSRY




Dethiosulfovibrio



family 11


SDVIRSDFRVIEESSAFLAWKKRMLSEPGGSISVHVRRGDYVTDSSANRVHGVLPIEY




peptidovorans DSM



[Dethio-


YLRAKEILNTISDGLVFYVFTDDPVWARNNLCLGDKTIYVSGEDLKDYEELALMSCCD



11002



sulfovibrio



HHVVANSSFSWWGAWLGQDTSTVTIAPGRWERKMDSSFVIPDNWIKIWT







peptidovorans]











Lachnospiraceae

WP_
510896192
protein
22.83

MIIIQVMGGLGNQLQQYALYRKFVRMGKEARLDISWELDKEKRGEVLAERELELDYFD
249



bacterium 10-1

016229292.1

[Lachno-


RLIYETCTPEEKEQLIGSEGVAGKLKRKFLPGRIRWFHESKIYHPELLQMENMYLSGY







spiraceae



FACEKYYADILYDLREKIQFPVNDHPKNIKMAQEMQERESVSVHLRRGDYLDEKNTAM







bacterium 10-



FGNICTDAYYCKAIEYMKTLCSKPHFYIFSDDIPYVRQRFTGEEYTVVDINHGRDSFE






1]


DMWLMSRCRHNICANSTFSFWGARLNSNDNKIMIRPTIHKNSQVFVKEEMEQLWPGWK









FISPDGGIK







Treponema

WP_
513872223
protein
22.82

MFCAAFVEALKHAGQKVFVDTSLYNKGTVRSGIDFCHNGLETEHLFGIKFDEADKADV
250



maltophilum;

016525279.1

[Treponema


HRLSTSAEGLLNRIRRKYFIKKTHYIDTVERYTPEVLSDKSDRYLEGFWQTEKYFLPI




Treponema



maltophilum]


ESDIRTLFRFRQPLSEKSAAVQSALQAQEPASLSASIHVRRGDFLHTKILNVCTETYY




maltophilum






NNAIEYAAKKYAVSAFYVFSDDIQWCREHLNFFGARSVFIDWNIGADSWQDMVLMSMC



ATCC 51939





RCNIIANSSFSWWAAWLNAASDKIVLAPAIWNRRQLEYADRYYGYDYSDVIPETWIRI









PI







Bacteroides

WP_
511022363
protein
22.79

MKLVSFTAGLGNQLFQYCFYRYLLNKFPNEKIYGYYNKKWLKKHGGIIIEHFFDVKLP
251



massiliensis;

016276676.1

[Bacteroides


RSTRWINLYGQYLRIIYKCFSCGVSKDDDFEMNRTMFVGYWQDQCFFSGINISYKKNL




Bacteroides




massiliensis]



VISEKNTWLLGEILKCNSVAIHFRRGDYMLPQFKKIFGEVCIVKYYLKSIRKVEEKIS




massiliensis






EPVFFVFSDDIDWVKQNFTENKVYFVDWNKGQNSFWDMYLMSQCSANIIANSTFSFWG



dnLKV3





AYLNKNNPFVIYPQKWVRTNLKQPNIFPKTWMAL







Enterococcus

YP_
389869137
family 11
22.71

MIVLTLGGGLGNQMFQYGYARYIQKIHREKFIYINDSEVIKEADRENSLGNLNIVNIK
252



faecium;

006376560.1

glycosyl-


VLPRIISKPLNETERLVRKIMVRLFGVAGFNESAIFQSLNKFGIYYHPSVYKEYESLK




Enterococcus



transferase


TGFPIKIIEGGFQSWKYLETCPEIKQELRVKYEPMGENLRLLNLISQSESVCVHIRRG




faecium



[Enterococcus


DYLSPKYKHLNVCDYQYYFESMNYIISKLNNPIFFIFSNTSDDLDWIKENYSLPGKIV



DO; Enterococcus



faecium DO]



YVKNDNPDYEELRLMYSCKHFIISNSTFSWWAQYLSNNSGIVIAPEIWNRLNHDGIAD




faecium EnGen0035






LYMPNWITMKVNR







Bacteroides;

WP_
490442319
glycosyl
22.67

MDVVVIENGLGNQMSQYAYYLAKKKVNPNTKVIFDIMSKHNHYGYDLERAFGIEVNKT
253



Bacteroides sp.

004313284.1

transferase


LLIKVLQIIYVLSRKFRLFKSVGVRTIYEPLNYDYTPLLMQKGPWGINYYVGGWHSEK



2_1_22; 


family 11


NFMNVPDEVKKAFMFREQPNEDRFNEWLQVIRGDNSSVSVHIRRGDYMNIEPTGYYQL




Bacteroides sp.



[Bacteroides]


NGVATLDYYHEAIDYIRQYVDTPHFYVESNDLDWCKEQFGVENFFYIECNQGVNSWRD



2_2_4; Bacteroides





MYLMSECHYHINANSTFSWWGAWLCKFEDSITVCPERFIRNVVTKDFYPERWHKIKSC



sp. D1;










Bacteroides











xylanisolvens










SD CC 2a;










Bacteroides











xylanisolvens










SD CC 1b;










Bacteroides











ovatus CAG:22














Synechococcus

YP_
326781960
glycosyl-
22.6

MIGFNALGRMGRLANQMFQYASLKGIARNTGVDFCVPYHEEAVNDGIGNMLRTEIFDS
254



phage

004322362.1

transferase


FDLQVNVGLLNKGHAPVVQERFFHFDEELFRMCPDHVDIRGYFQTEKYFKHIEDEIRE



S-SM2


family 11


DFTFKDEILNPCKEMIAGVDNPLALHVRRIDYVINSANHPPCTLEYYEAALKHFDDDR






[Synechococcus


NVIVFSDDPAWCKEQELFSDDRFMISENEDNRIDLCLMSLCDDFIIANSTYSWWGAWL







phage S-SM2]



SANKDKKVIAPVQWFGTGYTKDHDTSDLIPDGWTRIATA







Geobacter

YP_
404496189
glycosyl-
22.58

MDIHVLSYGLGNQLSQYAFFINRRQLMQRAYAFYAFKQHNGYELDRIFGLKEGLPWYL
255



metallireducens;

006720295.1

transferase


QFVRVVERLGISRRFYSKRTADFVLSLFRIKVIDEAYNYEFDPSLLKPWFGIRILYGG




Geobacter



[Geobacter


WHDSRYFHPSEAAVRTAFSFPPLDDVNDAILQQIDAVYGVSIHVRRGDYLKGINSNLF




metallireducens




metallireducens



GGIATLEYYRNAIGWAITYCKHRSLEIKFYVFSDDIDWCKQNLGLRDAVYVSGNSKTD



GS-15; Geobacter


GS-15]


SWKDILLMSHCRANIIANSTFSWWAAWLNQQPNKVVICPTKFINTDSPNQTIYPAAWH




metallireducens






QIEG



RCH3













Lachnospiraceae

WP_
551037245
protein
22.58

MIIVRFHGGLGNQMFEYAFYRYMINKYGADNVIGDMTWFDRNYSEHQGYELKKVFDID
256



bacterium NK4A136

022780989.1

[Lachno-


IPAIDYKTLAKIHEYYPRYHRFAGLRYLSRMYAKYKNKHLKPTGEYIMDFGPSQYIHN







spiraceae



DAFDKLDINKDYYIEGVFCSDAYIKYYENQIKKDLTFKPNYSQHTKDMLPKIEETNSV







bacterium



AIHVRRGDYVGNVFDIVTPDYYRQAVNYIRERVENPVFFVFSDDMDYIKANFDFLGDF






NK4A136]


VPVHNCGKDSFQDMYLISRCRHMIIANSSFSYFGALLGEKDSTIVIAPKKYKADEDLA









LARENWVLL







Bacteroides

WP_
495419937
protein
22.56

MGFIVNMACGLANRMFQYSYYLFLKKQGYKVIVDFYRSAKLAHEKVAWNSIFPYAEIK
257



coprophilus;

008144634.1

[Bacteroides


QASRLKVFLWGGGSDLCSKVRRRYFPSSINVRITTGAFDASLPANTARNEYIIGVFLN




Bacteroides




coprophilus]



ASIVEAVDDEIKKCFTFLPFTDEMNLRLKKEIEECESVAIHVRKGKDYQSRIWYQNTC




coprophilus DSM






SMEYYRKAILQMKEKLQHSKFYVFIDNVDWVKENFQEIDYTLVEGNPADGYGSHFDMQ



18228 = JCM 13818





LMSLCKHNIISNSTYSWWSAFLNRNPEKVVIAPEIWFNPDSCDEFRSDRALCKGWIVL






Bacteroidetes;
WP_
495895157
alpha-1,2-
22.53

MKIVCLKGGLGNQMFEYCRFRDLMESGHDEVYLFYDHRRLKQHNGLRLSDCFELELPS
258



Capnocytophaga

008619736.1

fucosyl-


CPWGIKLVVWGLKICRAVGVLKRLYDDEKPEAVLIDDYSQHRRFIPNARRYFFFRQFL



sp. oral


transferase


AELQSGFVQMIRAVDYPVSVHVRRGDYLHPSNSSFGLCGVDYFQQAIAYVRKKRPDAR



taxon 329 str.


[Bacteroidetes]


FFFFSDDMEWVRENLWMEDAVYVEHTELLPDYVDLYLMTLCRGHIISNSTFSFWGAYL



F0087;





AVDGNGMKIYPRRWERDPIWTSPPIFSEEWVGL




Paraprevotella











clara YIT 11840














Butyrivibrio sp.

WP_
551026242
glycosyl
22.47

MLIIQIAGGLGNQMQQYAVYTKLREMGKDVKLDLSWFDPQVQKNMLAPREFELPIFGG
259


NC2007
022770361.1

transferase


IDYEECSAYERDALLKQGAFAAIAGKVLKKLGLRDEANPKVFSEKEMYHPEVFELEDK






[Butyrivibrio


YIKGYFACQKYYGDIMDKLQEKFIFPEHSDPDLHARNMALVERMEREPSVSVHIRRGD






sp.


YLDPSNVEILGNIATEQYYQGAMDYFTVKEPDTHFYIFTSDHEYAREKFSDESKYTIV






NC2007]


DWNNGKNSVQDLMLMSHCKGNICANSTFSFWGARLNKRPDKTVIRTYKMRNNQPVNPQ









IMHDYWKGWILMDEKGSII







Paraprevotella

WP_
495903957
glycosyl
22.45

MKILVFIGGLGNQMFAYAFYLYLKRLFPQERFYGLYGKKLSEHYGLEIDKWFKVSLPR
260



xylaniphila;

008628536.1

transferase


QPWWVLPVTGLEYLYKQCVPNSKWLDLNQEICKNPRAIVFFPFKFTKKYIPDDNIWLE




Paraprevotella



[Paraprevotella


WKVDESGLSEKNRLLLSEIRSSDCCFVHVRRGDYLSPTEKSLFEGCCTLSYYQRALKS




xylaniphila YIT




xylaniphila]



MKEISPFVKFVCFSDDIQWVKQNLELGNRAVFVDWNSGTDSPLDMYLMSQCRYGIMAN



11841





STFSYWGARLGRKKKRIYYPQKWWNHGTGLPDIFPNTWVKI







Blautia

WP_
492742598
protein
22.44

MEIHVYLTGRLGNQLFQYAFARHLQKEYGGKIICNIYELEHRSEKAAWVPGKENYEMS
261



hydrogenotrophica

005944761.1

[Blautia]


NYKLNDSILIEDIKLPWFADFSNPIIRIVKKVIPRIYFNLMASKGYLLWQKNSYINIP



DSM





AIRNNEIIVNGWWQDVRFFHDVEAELSNEIVPITKPISENEYLYNIAERENSVCVSIR



10507; Blautia;





GGNYLVPKVKKKLFVCDKEYFYNAIELIKSKVRNAIFIVFSDDLEWVKSYIKLEEKFP




Blautia






ECKFYYESGKDTVEEKLRMMTKCKHFIISNSSFSWWAQYLAKNENKIVIAPDAWFTNG




hydrogenotrophica






DKNGLYIDDWILIPTQTKDM



CAG:147













Geobacter

YP_
189425804
glycoside
22.44

MITVLLNGGLGNQLFQYAAGRALAEKHDVELLLDLSRLQHPKPGDTPRCFELAPFNIK
262



lovleyi;

001952981.1

hydrolase


ASLLAEEGRQPLGSYQACMHRLLLKASIPLWGSIILKEQGCGFDPLIFRAPSSCILDG




Geobacter



family protein


FWQSECYFKQITSLLQQELSLKAPSPALRKASSVLSDATVAVHVRRGDYVINPAAASF



lovleyi SZ


[Geobacter


HGICSQDYYQAAVANILTSYPDSQFLVFSDDPAWCQEHLDLGQPFRLAADFGLNGSAE






lovleyi SZ]


ELVLISRCAHQIIANSSFSWWGAWLNPSPHKLVVAPCRWFTDPAITTNDLLPETWVRL









P







Lachnospiraceae

WP_
551037435
protein
22.41

MVISHLSGGEGNQLYSYAFAYAVAKARKEELWIDTAIQDAPWFFRNPDILNLNIKYDK
263



bacterium NK4A136

022781176.1

[Lachno-


RVSYKIGEKKIDKIFNRINFRNAIGWNTKIINESDMPNIDDWFDTCVNQKGNIYIKGN







spiraceae



WSYEKLFISVKQEIIDMFTEKNELSKEANDIAQDINSQETSVGIHYRLGDYVKIGIVI







bacterium



NPDYFISAMTSMVEKYGNPVEYSFSEDNDWVKKQFEGLPYNIKYVEYSSDDKGLEDER






NK4A136]


LYSMCKHQIASNSSYSWWGAYLNNNPNKYIIAPTDYNGGWKSEIYPKHWDVRPFEFLK







Bacteroides

WP_
492426440
glycosyl
22.37

MEHYKELLEGGGLGNQIFEYYFYLWLRKKYPNIVELGCYRKASFKAHNGLEISDVEDV
264



vulgatus;

005840359.1

transferase


DLPNDGGLSGRFISYVLSVLSRIIPSLSMKANTEYSSKYLLINAYQPNLLFYLNEEKI




Bacteroides



family 11


KERPFKLDEVNRRLLNSIKMESSVSIHVRRGDYLFGQYRDIYSNICTLAYYQKAVDKC




vulgatus PC510



[Bacteroides


KGILESPREFVFSDDIEWARDVEVGREYEEVSNNIGKNSFIDMELMSNCKIQIIANST







vulgatus]



ESYWAAYLSNSLVKIYPAKWINGIERPNIFPDNWIGL







Planctomyces

YP_
325110698
glycosyl
22.37

MIIARIENGLGNQLFKYAAGRALSLKHRTSLYTIPGSVRKPHETFILSKYENVQAKSV
265



brasiliensis;

004271766.1

transferase


SPFLLQTGERLRLLKGYENHSEGFDPRFETTRNNTVVSGNEQSARYFLPFEDQINREL




Planctomyces



family protein


TLKPEVVDGLESVYPHVLESLRTPNSVCVHIRLGDYVSSGYDICGPEYYAKAISRLQQ




brasiliensis DSM



[Planctomyces


LHGELRAFVFSDTPQAASRFLPADIDAQIMSEEPEVRDAARSLTVERSTIRDYFLMQQ



5305



brasiliensis



CRHEVIPNSSFSYWAALLSSSDGDVIYPNRWYIDIDTSPRDLGLAPAEWTPIPLT






DSM 5305]










Butyrivibrio sp.

WP_
551028648
glycosyl
22.36

MIILQIAGGLGNQMQQYALYRKLLKCGKTVKLDLSWEGPEIQKNMLAPREFELVISKD
266


AE2015
022772730.1

transferase


LPFEICTKEEKDALIKQNLFQKIAGKVSQKLGKSASSNAKVEVETKMYHEEIFDLDDV






[Butyrivibrio


YITGYFACQYYYDDVMAELQDLEVEPSHSIPELDQRNAVLASKMEKENSVSVHIRRGD






sp.


YLSPENVGILGNIASDKYYESAMNYFLEKDENTHEYIFTNDHEYAREHYSDESRYTII






AE2015]


DWNTGKNSLQDLMLMSHCKGNICANSTESFWGARLNKRPDRELVRTLKMRNNQEAQPE









IMHEYWKNWILIDENGVIV







Roseovarius

WP_
497499658
alpha-1,2-
22.34

MIDTPPPSQVITSRLFGGAGNQLFQYAAGRALADRLGCDLMIDARYVAGSRDRGDCFT
267



nubinhibens

009813856.1

fucosyl-


HEAKARLRRDVALPPAKSDGPLRYALWRKFGRSPREHRERGLGVDPEFFNLPRGTYLH



ISM; Roseovarius


transferase,


GYWQSEQYFGPDTDALRRDLTLTTALDAPNAAMAAQIDAAPCPVSFHVRRGDYIAAGA




nubinhibens



[Roseovarius


YAACTPDYYRAAADHLATTLGKPLICEIFSNDPAWARDNLDLGQDQVIVDLNDEATGH







nubinhibens]



EDMALMARCAHHVIANSTFSWWGAWLNPDPDKLVVAPRNWFATQALHNPDLIPEQWHR









L







Eubacterium sp.

WP_
548315094
protein
22.33

MIEVNIVGQLGNQMFEYACARQLQKKYGGEIVLNTYEMRKETPNEKLSILDYKLSENV
268


CAG:581
022505071.1

[Eubacterium


KIISDKPLSSANANNYLVKIMRQYFPNWYENFMAKRGTFVWKSARKYKELPELNEQLS






sp. CAG:581]


KHIVLNGYWQCDKYENDVVDTIREDFTPKYPLKAENEQLLEKIKSTESVCVTIRRGDF









MNEKNKDIFYICDDDYENKALSKIKELCPDCTFFGESDDVEWIKKNVNFPGEVYFESG









NDPVWEKLRLMSACKHEVLSNSSFSWWAQYLSDNNNKIVVAPDIWYKTGDPKKTALYQ









DGWNLIHIGD







Providencia

AFH02807.1
383289327
glycosyl-
22.26

MKINGKESSMKIKQKKIISHLIGGLGNQLFQYATSYALAKENNAKIVIDDRLFKKYKL
269



alcalifaciens



transferase


HGGYRLDKLNIIGEKISSIDKLLFPLILCKLSQKENFIFKSTKKFILEKKTSSFKYLT






[Providencia


FSDKEHTKMLIGYWQNAIYFQKYFSELKEMFVPLDISQEQLDLSIQIHAQQSVALHVR







alcalifaciens]



RGDYISNKNALAMHGICSIDYYKNSIQHINAKLEKPFFYIFSNDKLWCEENLTPLEDG









NFHIVENNSQEIDLWLISQCQHHIIANSTFSWWGAWLANSDSQIVITPDPWENKEIDI









PSPVLSHWLKLKK







Salmonella

AFW04804.1
411146173
glycosyl-
22.26

MFSCLSGGLGNQMFQYSAAYILKKNICHAQLIIDDSYFYCQPQKDTPRNFEINQFNIV
270



enterica



transferase


FDRVITDEEKRAISKLRKFKKIPLPISKSNVITEFLFGKSLLTDEDFYKVLKKNQFTV






[Salmonella


KMNACLFSLYQDSSLINKYRDLILPLFTINDELLQVCQQLDSYGFICEHTNITSLHIR







enterica]



RGDYVINPHAAKFHGTLSMNYYSQAMNYVDHKLGKQLFIIFSDDVQWAAEKFGGRSDC









YIVNNVNCQFSAIDMYLMSLCNNNIIANSTYSWWGAWLNKSEEKLVIAPRKWFAEDKE









SLLAVNDWISI







Sulfurospirillum

YP_
268680398
protein
22.18

MIIIKIMGGLASQLHKYSVGRALSLKYNTELKLDIFWFDNISGSDTIREYHLDKYNVV
271



deleyianum;

003304829.1

Sdel_1779


AKIATEQEIKQFKPNKYLLKINNLFQKFTNWKINYRNYCNESFISLENFNLLPDNIYV




Sulfurospirillum



[Sulfuro-


EGEWSGDRYFSHIKEILQKELTLKSEYMDSTNHFLAKQSSDFAHDDNASKLHCICSLE




deleyianum




spirillum



YYKKALQYISKNLLKMKLLIFSDDLDWLKPNENFLDNVEFEFVEGFQDYEEFHLMTLS



DSM 6946



deleyianum



KHNIIANSGFSLFFAWLNINHNKIIISLSEWVFEEKLNKYIIDNIKDKNILFLENLE






DSM 6946]










Pseudovibrio sp.

YP_
374329930
alpha-1,2-
22.15

MSVASQVRISGAARRRKLKPTLIVRIRGGIGNQLFQYALGRKIALETGMKLRFDRSEY
272


FO-
005080114.1

fucosyl-


DQYFNRSYCLNISKTQGLSATESEMSAVLWPAQSFGQTVKLCRKFYPFYQRRYIREDE



BEG1


transferase


LLQDSETPVLKQSAYLDGYWQTWEIPFSIMEQLRDEITLKKPMVLERLKLLQRIKSGP






[Pseudovibrio


SAALHVRYGDYSQAHNLQNFGLCSAGYYKGAMDFLTERVPGLTFYVFSDSPERAREVV






sp. FO-BEG1]


PQQENVYFSDPMQDGKDHEDLMVMSSCDHIVTANSTFSWWAAFLNGNEDKHVIAPLKW









FKNPNLDDSLIVPPHWQRL







Prevotella 

WP_
496529942
alpha-1,2-
22.11

MKIVCIKGGLGNQLFEYCRYHGLLRQHNNHGVYLHYDRRRTKQHGGVWLDKAFLITLP
273


sp. oral
009236633.1

fucosyl-


TEPWRVKLMVMALKMLRKLHLFKRLYREDDPRAVLIDDYSQHKQFITNAAEILNFRPF



taxon 472 str.


transferase


AQLDYVDEITSEPFAVSVHVRRGDYLLPANKANFGVCSVHYYLSAAVAVRERHPDARF



F0295;


[Prevotella


FVFSDDIEWAKMNLNLPNCVFVEHAQPQPDHADLYLMSLCKGHIIANSTFSFWGAYLS




Prevotella sp.



sp. oral taxon


MGSSAIAIYPKQWFAEPTWNAPDIFLGHWIAL



oral taxon 472


472]










Butyrivibrio

WP_
551008155
glycosyl
22.08

MLIIRVAGGLGNQMQQYAMYRKLKSLGKEVKLDLSWFDVENQEGQLAPRKCELKYFDG
274



fibrisolvens

022752732.1

transferase


VDFEECTDAERAYFTKRSILTKALNKVFPATCKIFEETEMFHPEIYSFKDKYLEGYFL






[Butyrivibrio


CNKYYDDILPFIQNEIVFPKHSDPKMQKRNEELMERMDGWHTASIHLRRGDYITEPQN







fibrisolvens]



EALFGNIATDAYYDAAIRYVLDKDYQTHFYIFSNDPEYAREHYSDESRYTIVIGNDGD









NSLLDMELMSHCRYNICANSTFSFWGARLNKRSDKEMIRTFKMRNNQEVTAREMTDYW









KDWILIDEKGNRIF







Lewinella persica

WP_
522059857
protein
22.04

MVISRLFISGLGNQMFQYAFARRIQLQLNVKLRIDLSILLDSRPPDGYIKREYDLDIF
275



020571066.1

[Lewinella


KLSPAYHCNPTSLRILYAPGKYRWSQVVRDLARKGYPVYMEKSFSVDNILLDSPPDNV







persica]



IYQGYWCISERYFSEVANTIRKDFAFQHSIQPQSESLAREIRKEDSVCLNIRRKDYLA









SPTHNVTDETYYENCIQQMRERFSGARFFLESDDLVWCREFFADFHDVVIVGHDHAGP









KEGNYLCILMAQCHFIVIIPNSTFAWWAAWLGERTGSVIMAPERWEGTDEFDYRDVVP









ERWLKVPN









OTHER EMBODIMENTS

While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.


The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. Genbank and NCBI submissions indicated by accession number cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.


While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A method for producing a fucosylated oligosaccharide in a bacterium comprising providing bacterium comprising an exogenous lactose-utilizing α(1,2) fucosyltransferase enzyme, wherein said α(1,2) fucosyltransferase enzyme has at least 90% sequence identity to amino acid sequence SEQ ID NO: 17; andculturing said bacterium in the presence of lactose.
  • 2. (canceled)
  • 3. The method of claim 1, wherein said α(1,2) fucosyltransferase enzyme comprises Prevotellaa sp. FutW , or a functional variant or fragment thereof.
  • 4. (canceled)
  • 5. The method of claim 1, further comprising retrieving the fucosylated oligosaccharide from said bacterium or from a culture supernatant of said bacterium.
  • 6. The method of claim 1, wherein said fucosylated oligosaccharide comprises 2′-fucosyllactose (2′-FL), lactodifucotetraose (LDFT), or lacto-N-difucohexaose I (LDFH I).
  • 7. The method of claim 1, wherein the bacterium further comprises an exogenous lactose-utilizing α(1,3) fucosyltransferase enzyme and/or an exogenous lactose-utilizing α(1,4) fucosyltransferase enzyme, or wherein said bacterium further comprises a reduced level of β-galactosidase activity, a defective colanic acid synthesis pathway, an inactivated adenosine-5′-triphosphate (ATP)-dependent intracellular protease, or an inactivated endogenous lacA gene, or any combination thereof.
  • 8. The method of claim 7, wherein the exogenous lactose-utilizing α(1,3) fucosyltransferase enzyme comprises a Helicobacter pylori 26695 futA gene.
  • 9. The method of claim 7, wherein the exogenous lactose-utilizing α(1,4) fucosyltransferase enzyme comprises a Helicobacter pylori UA948 FucTa gene or a Helicobacter pylori strain DMS6709 FucT III gene.
  • 10. (canceled)
  • 11. The method of claim 10, wherein said method further comprises culturing said bacterium in the presence of tryptophan and in the absence of thymidine.
  • 12. The method of claim 10, wherein said reduced level of β-galactosidase activity comprises a deleted or inactivated endogenous lacZ gene and/or a deleted or inactivated endogenous lacI gene of said bacterium.
  • 13. The method of claim 12, wherein said reduced level of β-galactosidase activity further comprises an exogenous lacZ gene or variant thereof, wherein said exogenous lacZ gene or variant thereof comprises an β-galactosidase activity level less than wild-type bacterium.
  • 14. The method of claim 10, wherein said reduced level of β-galactosidase activity comprises an activity level less than wild-type bacterium.
  • 15. The method of claim 14, wherein said reduced level of β-galactosidase activity comprises less than 6,000 units of β-galactosidase activity.
  • 16. The method of claim 14, wherein said reduced level of β-galactosidase activity comprises less than 1,000 units of β-galactosidase activity.
  • 17. The method of claim 10, wherein said bacterium comprises a lacIq gene promoter immediately upstream of a lacY gene, or wherein said bacterium further comprises a functional lactose permease gene, or wherein said bacterium comprises E. coli lacY, or wherein said bacterium further comprises an exogenous E. coli rcsA or E. coli rcsB gene, or wherein said bacterium further comprises a mutation in a thyA gene, or wherein said bacterium accumulates intracellular lactose in the presence of exogenous lactose, or wherein said bacterium accumulates intracellular GDP-fucose.
  • 18. The method of claim 10, wherein said defective colanic acid synthesis pathway comprises an inactivation of a wcaJ gene of said bacterium.
  • 19. The method of claim 10, wherein said inactivated ATP-dependent intracellular protease is a null mutation, inactivating mutation, or deletion of an endogenous Ion gene.
  • 20. The method of claim 19, wherein said inactivating mutation of an endogenous Ion gene comprises the insertion of a functional E. coli lacZ+ gene.
  • 21.-26. (canceled)
  • 27. The method of claim 1, wherein said bacterium is E. coli.
  • 28. The method of claim 1, wherein said production strain is a member of the Bacillus, Pantoea, Lactobacillus, Lactococcus, Streptococcus, Proprionibacterium, Enterococcus, Bifidobacterium, Sporolactobacillus, Micromomospora, Micrococcus, Rhodococcus, or Pseudomonas genus.
  • 29. The method of claim 1, wherein said production strain is selected from the group consisting of Bacillus licheniformis, Bacillus subtilis, Bacillus coagulans, Bacillus thermophiles, Bacillus laterosporus, Bacillus megaterium, Bacillus mycoides, Bacillus pumilus, Bacillus lentus, Bacillus cereus, and Bacillus circulans, Erwinia herbicola (Pantoea agglomerans), Citrobacter freundii, Pantoea citrea, Pectobacterium carotovorum, Xanthomonas campestris Lactobacillus acidophilus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus jensenii, Lactococcus lactis, Streptococcus thermophiles, Proprionibacterium freudenreichii, Enterococcus faecium, Enterococcus thermophiles), Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium bifidum, Pseudomonas fluorescens and Pseudomonas aeruginosa.
  • 30. The method of claim 1, wherein said bacterium comprises a nucleic acid construct comprising an isolated nucleic acid encoding said α(1,2) fucosyltransferase enzyme.
  • 31. The method of claim 30, wherein said nucleic acid is operably linked to one or more heterologous control sequences that direct the production of the enzyme in the bacterium.
  • 32. The method of claim 31, wherein said heterologous control sequence comprises a bacterial promoter and operator, a bacterial ribosome binding site, a bacterial transcriptional terminator, or a plasmid selectable marker.
  • 33.-47. (canceled)
  • 48. The method of claim 1, wherein the amino acid sequence of said enzyme comprises the amino acid sequence of FutW (SEQ ID NO: 17).
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/307,914 filed Oct. 31, 2016, now U.S. Pat. No. 11,046,984 issued on Jun. 29, 2021, which is a national stage application, filed under 35 U.S.C. § 371, of PCT International Patent Application No. PCT/US2015/030823, filed on May 14, 2015, and claims benefit of priority to U.S. Provisional Patent Application No. 61/993,742, filed on May 15, 2014, both of which, including their contents, are incorporated herein by reference in their entireties.

Provisional Applications (1)
Number Date Country
61993742 May 2014 US
Continuations (1)
Number Date Country
Parent 15307914 Oct 2016 US
Child 17354819 US