Alpha (1,2) fucosyltransferase syngenes for use in the production of fucosylated oligosaccharides

Information

  • Patent Grant
  • 11643675
  • Patent Number
    11,643,675
  • Date Filed
    Tuesday, June 22, 2021
    3 years ago
  • Date Issued
    Tuesday, May 9, 2023
    a year ago
Abstract
The invention provides compositions and methods for engineering E. coli or other host production bacterial strains to produce fucosylated oligosaccharides, and the use thereof in the prevention or treatment of infection.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted via EFS-Web. The content of the text file named “37847-517001US_ST25.txt”, which was created on Oct. 20, 2017 and is 791 KB in size, is hereby incorporated by reference in its entirety.


FIELD OF THE INVENTION

The invention provides compositions and methods for producing purified oligosaccharides, in particular certain fucosylated oligosaccharides that are typically found in human milk.


BACKGROUND OF THE INVENTION

Human milk contains a diverse and abundant set of neutral and acidic oligosaccharides. More than 130 different complex oligosaccharides have been identified in human milk, and their structural diversity and abundance is unique to humans. Although these molecules may not be utilized directly by infants for nutrition, they nevertheless serve critical roles in the establishment of a healthy gut microbiome, in the prevention of disease, and in immune function. Prior to the invention described herein, the ability to produce human milk oligosaccharides (HMOS) inexpensively was problematic. For example, their production through chemical synthesis was limited by stereo-specificity issues, precursor availability, product impurities, and high overall cost. As such, there is a pressing need for new strategies to inexpensively manufacture large quantities of HMOS.


SUMMARY OF THE INVENTION

The invention features an efficient and economical method for producing fucosylated oligosaccharides. Such production of a fucosylated oligosaccharide is accomplished using an isolated nucleic acid comprising a sequence encoding a lactose-utilizing α (1,2) fucosyltransferase gene product (e.g., polypeptide or protein), which is operably linked to one or more heterologous control sequences that direct the production of the recombinant fucosyltransferase gene product in a host production bacterium such as Escherichia coli (E. coli).


The present disclosure provides novel α (1,2) fucosyltransferases (also referred to herein as α(1,2) FTs) that utilize lactose and catalyzes the transfer of an L-fucose sugar from a GDP-fucose donor substrate to an acceptor substrate in an alpha-1,2-linkage. In a preferred embodiment, the acceptor substrate is an oligosaccharide. The α(1,2) fucosyltransferases identified and described herein are useful for expressing in host bacterium for the production of human milk oligosaccharides (HMOS), such as fucosylated oligosaccharides. Exemplary fucosylated oligosaccharides produced by the methods described herein include 2′-fucosyllactose (2′FL), lactodifucotetraose (LDFT), lacto-N-fucopentaose I (LNF I), or lacto-N-difucohexaose I (LDFH I). The “α(1,2) fucosyltransferases” disclosed herein encompasses the amino acid sequences of the α(1,2) fucosyltransferases and the nucleic acid sequences that encode the α(1,2) fucosyltransferases, as well as variants and fragments thereof that exhibit α(1,2) fucosyltransferase activity. Also within the invention is a nucleic acid construct comprising an isolated nucleic acid encoding a lactose-accepting α (1,2) fucosyltransferase enzyme, said nucleic acid being optionally operably linked to one or more heterologous control sequences that direct the production of the enzyme in a host bacteria production strain.


The amino acid sequence of the lactose-accepting α(1,2) fucosyltransferases described herein is at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identity to Helicobacter pylori 26695 alpha-(1,2) fucosyltransferase (futC or SEQ ID NO: 1). Preferably, the lactose-accepting α(1,2) fucosyltransferases described herein is at least 22% identical to H. pylori FutC, or SEQ ID NO: 1.


In another aspect, the amino acid sequence of the lactose-accepting α(1,2) fucosyltransferases described herein is at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identity to Bacteroides vulgatus alpha-(1,2) fucosyltransferase (FutN or SEQ ID NO: 3). Preferably, the lactose-accepting α(1,2) fucosyltransferases described herein is at least 25% identical to B. vlugatos FutN, or SEQ ID NO: 3.


Alternatively, the exogenous α (1,2) fucosyltransferase preferably comprises at least at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identity to any one of the novel α (1,2) fucosyltransferases disclosed herein, for example, to the amino acid sequences in Table 1.


Exemplary α(1,2) fucosyltransferases include, but are not limited to, Prevotella melaninogenica FutO, Clostridium bolteae FutP, Clostridium bolteae+13 FutP, Lachnospiraceae sp. FutQ, Methanosphaerula palustris FutR, Tannerella sp. FutS, Bacteroides caccae FutU, Butyrivibrio FutV, Prevotella sp. FutW, Parabacteroides johnsonii FutX, Akkermansia muciniphilia FutY, Salmonella enterica FutZ, Bacteroides sp. FutZA. For example, the α(1,2) fucosyltransferases comprise the amino acid sequences comprising any one of the following: Prevotella melaninogenica FutO (SEQ ID NO: 10), Clostridium bolteae FutP (SEQ ID NO: 11), Clostridium bolteae+13 FutP (SEQ ID NO: 292), Lachnospiraceae sp. FutQ (SEQ ID NO: 12), Methanosphaerula palustris FutR (SEQ ID NO: 13), Tannerella sp. FutS (SEQ ID NO: 14), Bacteroides caccae FutU (SEQ ID NO: 15), Butyrivibrio FutV (SEQ ID NO: 16), Prevotella sp. FutW (SEQ ID NO: 17), Parabacteroides johnsonii FutX (SEQ ID NO: 18), Akkermansia muciniphilia FutY (SEQ ID NO: 19), Salmonella enterica FutZ (SEQ ID NO: 20), and Bacteroides sp. FutZA (SEQ ID NO: 21), or a functional variant or fragment thereof. Other exemplary α(1,2) fucosyltransferases include any of the enzymes listed in Table 1, or functional variants or fragments thereof.


The present invention features a method for producing a fucosylated oligosaccharide in a bacterium by providing bacterium that express at least one exogenous lactose-utilizing α(1,2) fucosyltransferase. The amino acid sequence of the exogenous lactose-utilizing α(1,2) fucosyltransferase is preferably at least 22% identical to H. pylori FutC or at least 25% identical to B. vulgatus FutN. In one aspect, the bacterium also expresses one or more exogenous lactose-utilizing α(1,3) fucosyltransferase enzymes and/or one or more exogenous lactose-utilizing α(1,4) fucosyltransferase enzymes. The combination of fucosyltransferases expressed in the production bacterium is dependent upon the desired fucosylated oligosaccharide product. The method disclosed herein further includes retrieving the fucosylated oligosaccharide from said bacterium or from a culture supernatant of said bacterium.


Examples of suitable α(1,3) fucosyltransferase enzymes include, but are not limited to Helicobacter pylori 26695 futA gene (GenBank Accession Number HV532291 (GI:365791177), incorporated herein by reference), H. hepaticus Hh0072, H. pylori 11639 FucT, and H. pylori UA948 FucTa (e.g., GenBank Accession Number AF194963 (GI:28436396), incorporated herein by reference) (Rasko, D. A., Wang, G., Palcic, M. M. & Taylor, D. E. J Biol Chem 275, 4988-4994 (2000)). Examples of suitable α(1,4) fucosyltransferase enzymes include, but are not limited to H. pylori UA948 FucTa (which has has relaxed acceptor specificity and is able to generate both α(1,3)- and α(1,4)-fucosyl linkages). An example of an enzyme possessing only α(1,4) fucosyltransferase activity is given by the FucT III enzyme from Helicobacter pylori strain DMS6709 (e.g., GenBank Accession Number AY450598.1 (GI:40646733), incorporated herein by reference) (S. Rabbani, V. Miksa, B. Wipf, B. Ernst, Glycobiology 15, 1076-83 (2005).)


The invention also features a nucleic acid construct or a vector comprising a nucleic acid enconding at least one α (1,2) fucosyltransferase or variant, or fragment thereof, as described herein. The vector can further include one or more regulatory elements, e.g., a heterologous promoter. By “heterologous” is meant that the control sequence and protein-encoding sequence originate from different bacterial strains. The regulatory elements can be operably linked to a gene encoding a protein, a gene construct encoding a fusion protein gene, or a series of genes linked in an operon in order to express the fusion protein. In yet another aspect, the invention comprises an isolated recombinant cell, e.g., a bacterial cell containing an aforementioned nucleic acid molecule or vector. The nucleic acid is optionally integrated into the genome of the host bacterium. In some embodiments, the nucleic acid construct also further comprises one or more α(1,3) fucosyltransferases and/or α(1,4) fucosyltransferases. Alternatively, the α (1,2) fucosyltransferase also exhibits α(1,3) fucosyltransferase and/or α(1,4) fucosyltransferase activity.


The bacterium utilized in the production methods described herein is genetically engineered to increase the efficiency and yield of fucosylated oligosaccharide products. For example, the host production bacterium is characterized as having a reduced level of β-galactosidase activity, a defective colanic acid synthesis pathway, an inactivated ATP-dependent intracellular protease, an inactivated lacA, or a combination thereof. In one embodiment, the bacterium is characterized as having a reduced level of β-galactosidase activity, a defective colanic acid synthesis pathway, an inactivated ATP-dependent intracellular protease, and an inactivated lacA.


As used herein, an “inactivated” or “inactivation of a” gene, encoded gene product (i.e., polypeptide), or pathway refers to reducing or eliminating the expression (i.e., transcription or translation), protein level (i.e., translation, rate of degradation), or enzymatic activity of the gene, gene product, or pathway. In the instance where a pathway is inactivated, preferably one enzyme or polypeptide in the pathway exhibits reduced or negligible activity. For example, the enzyme in the pathway is altered, deleted or mutated such that the product of the pathway is produced at low levels compared to a wild-type bacterium or an intact pathway. Alternatively, the product of the pathway is not produced. Inactivation of a gene is achieved by deletion or mutation of the gene or regulatory elements of the gene such that the gene is no longer transcribed or translated. Inactivation of a polypeptide can be achieved by deletion or mutation of the gene that encodes the gene product or mutation of the polypeptide to disrupt its activity. Inactivating mutations include additions, deletions or substitutions of one or more nucleotides or amino acids of a nucleic acid or amino acid sequence that results in the reduction or elimination of the expression or activity of the gene or polypeptide. In other embodiments, inactivation of a polypeptide is achieved through the addition of exogenous sequences (i.e., tags) to the N or C-terminus of the polypeptide such that the activity of the polypeptide is reduced or eliminated (i.e., by steric hindrance).


A host bacterium suitable for the production systems described herein exhibits an enhanced or increased cytoplasmic or intracellular pool of lactose and/or GDP-fucose. For example, the bacterium is E. coli and endogenous E. coli metabolic pathways and genes are manipulated in ways that result in the generation of increased cytoplasmic concentrations of lactose and/or GDP-fucose, as compared to levels found in wild type E. coli. Preferably, the bacterium accumulates an increased intracellular lactose pool and an increased intracellular GDP-fucose pool. For example, the bacteria contain at least 10%, 20%, 50%, or 2×, 5×, 10× or more of the levels of intracellular lactose and/or intracellular GDP-fucose compared to a corresponding wild type bacteria that lacks the genetic modifications described herein.


Increased intracellular concentration of lactose in the host bacterium compared to wild-type bacterium is achieved by manipulation of genes and pathways involved in lactose import, export and catabolism. In particular, described herein are methods of increasing intracellular lactose levels in E. coli genetically engineered to produce a human milk oligosaccharide by simultaneous deletion of the endogenous β-galactosidase gene (lacZ) and the lactose operon repressor gene (lad). During construction of this deletion, the lacIq promoter is placed immediately upstream of (contiguous with) the lactose permease gene, lacY, i.e., the sequence of the lacIq promoter is directly upstream and adjacent to the start of the sequence encoding the lacY gene, such that the lacY gene is under transcriptional regulation by the lacIq promoter. The modified strain maintains its ability to transport lactose from the culture medium (via LacY), but is deleted for the wild-type chromosomal copy of the lacZ (encoding β-galactosidase) gene responsible for lactose catabolism. Thus, an intracellular lactose pool is created when the modified strain is cultured in the presence of exogenous lactose.


Another method for increasing the intracellular concentration of lactose in E. coli involves inactivation of the lacA gene. A inactivating mutation, null mutation, or deletion of lacA prevents the formation of intracellular acetyl-lactose, which not only removes this molecule as a contaminant from subsequent purifications, but also eliminates E. coli's ability to export excess lactose from its cytoplasm (Danchin A. Cells need safety valves. Bioessays 2009, July; 31(7):769-73.), thus greatly facilitating purposeful manipulations of the E. coli intracellular lactose pool.


The invention also provides methods for increasing intracellular levels of GDP-fucose in a bacterium by manipulating the organism's endogenous colanic acid biosynthesis pathway. This increase is achieved through a number of genetic modifications of endogenous E. coli genes involved either directly in colanic acid precursor biosynthesis, or in overall control of the colanic acid synthetic regulon. Particularly preferred is inactivation of the genes or encoded polypeptides that act in the colanic acid synthesis pathway after the production of GDP-fucose (the donor substrate) and before the generation of colanic acid. Exemplary colanic acid synthesis genes include, but are not limited to: a wcaJ gene, (e.g., GenBank Accession Number (amino acid) BAA15900 (GI:1736749), incorporated herein by reference), a wcaA gene (e.g., GenBank Accession Number (amino acid) BAA15912.1 (GI:1736762), incorporated herein by reference), a wcaC gene (e.g., GenBank Accession Number (amino acid) BAE76574.1 (GI:85675203), incorporated herein by reference), a wcaE gene (e.g., GenBank Accession Number (amino acid) BAE76572.1 (GI:85675201), incorporated herein by reference), a weal gene (e.g., GenBank Accession Number (amino acid) BAA15906.1 (GI:1736756), incorporated herein by reference), a wcaL gene (e.g., GenBank Accession Number (amino acid) BAA15898.1 (GI:1736747), incorporated herein by reference), a wcaB gene (e.g., GenBank Accession Number (amino acid) BAA15911.1 (GI:1736761), incorporated herein by reference), a wcaF gene (e.g., GenBank Accession Number (amino acid) BAA15910.1 (GI:1736760), incorporated herein by reference), a wzxE gene (e.g., GenBank Accession Number (amino acid) BAE77506.1 (GI:85676256), incorporated herein by reference), a wzxC gene, (e.g., GenBank Accession Number (amino acid) BAA15899 (GI:1736748), incorporated herein by reference), a wcaD gene, (e.g., GenBank Accession Number (amino acid) BAE76573 (GI:85675202), incorporated herein by reference), a wza gene (e.g., GenBank Accession Number (amino acid) BAE76576 (GI:85675205), incorporated herein by reference), a wzb gene (e.g., GenBank Accession Number (amino acid) BAE76575 (GI:85675204), incorporated herein by reference), and a wzc gene (e.g., GenBank Accession Number (amino acid) BAA15913 (GI:1736763), incorporated herein by reference).


Preferably, a host bacterium, such as E. coli, is genetically engineered to produce a human milk oligosaccharide by the inactivation of the wcaJ gene, which encoding the UDP-glucose lipid carrier transferase. The inactivation of the wcaJ gene can be by deletion of the gene, a null mutation, or inactivating mutation of the wcaJ gene, such that the activity of the encoded wcaJ is reduced or eliminated compared to wild-type E. coli. In a wcaJ null background, GDP-fucose accumulates in the E. coli cytoplasm.


Over-expression of a positive regulator protein, RcsA (e.g., GenBank Accession Number M58003 (GI:1103316), incorporated herein by reference), in the colanic acid synthesis pathway results in an increase in intracellular GDP-fucose levels. Over-expression of an additional positive regulator of colanic acid biosynthesis, namely RcsB (e.g., GenBank Accession Number E04821 (GI:2173017), incorporated herein by reference), is also utilized, either instead of or in addition to over-expression of RcsA, to increase intracellular GDP-fucose levels.


Alternatively, colanic acid biosynthesis is increased following the introduction of a mutation into the E. coli lon gene (e.g., GenBank Accession Number L20572 (GI:304907), incorporated herein by reference). Lon is an adenosine-5′-triphosphate (ATP)-dependant intracellular protease that is responsible for degrading RcsA, mentioned above as a positive transcriptional regulator of colanic acid biosynthesis in E. coli. In a lon null background, RcsA is stabilized, RcsA levels increase, the genes responsible for GDP-fucose synthesis in E. coli are up-regulated, and intracellular GDP-fucose concentrations are enhanced. Mutations in lon suitable for use with the methods presented herein include null mutations or insertions that disrupt the expression or function of ion.


A functional lactose permease gene is also present in the bacterium. The lactose permease gene is an endogenous lactose permease gene or an exogenous lactose permease gene. For example, the lactose permease gene comprises an E. coli lacY gene (e.g., GenBank Accession Number V00295 (GI:41897), incorporated herein by reference). Many bacteria possess the inherent ability to transport lactose from the growth medium into the cell, by utilizing a transport protein that is either a homolog of the E. coli lactose permease (e.g., as found in Bacillus licheniformis), or a transporter that is a member of the ubiquitous PTS sugar transport family (e.g., as found in Lactobacillus casei and Lactobacillus rhamnosus). For bacteria lacking an inherent ability to transport extracellular lactose into the cell cytoplasm, this ability is conferred by an exogenous lactose transporter gene (e.g., E. coli lacY) provided on recombinant DNA constructs, and supplied either on a plasmid expression vector or as exogenous genes integrated into the host chromosome.


As described herein, in some embodiments, the host bacterium preferably has a reduced level of β-galactosidase activity. In the embodiment in which the bacterium is characterized by the deletion of the endogenous β-galactosidase gene, an exogenous β-galactosidase gene is introduced to the bacterium. For example, a plasmid expressing an exogenous β-galactosidase gene is introduced to the bacterium, or recombined or integrated into the host genome. For example, the exogenous β-galactosidase gene is inserted into a gene that is inactivated in the host bacterium, such as the lon gene.


The exogenous b-galactosidase gene is a functional b-galactosidase gene characterized by a reduced or low level of b-galactosidase activity compared to β-galactosidase activity in wild-type bacteria lacking any genetic manipulation. Exemplary β-galactosidase genes include E. coli lacZ and β-galactosidase genes from any of a number of other organisms (e.g., the lac4 gene of Kluyveromyces lactis (e.g., GenBank Accession Number M84410 (GI:173304), incorporated herein by reference) that catalyzes the hydrolysis of b-galactosides into monosaccharides. The level of β-galactosidase activity in wild-type E. coli bacteria is, for example, 6,000 units. Thus, the reduced β-galactosidase activity level encompassed by engineered host bacterium of the present invention includes less than 6,000 units, less than 5,000 units, less than 4,000 units, less than 3,000 units, less than 2,000 units, less than 1,000 units, less than 900 units, less than 800 units, less than 700 units, less than 600 units, less than 500 units, less than 400 units, less than 300 units, less than 200 units, less than 100 units, or less than 50 units. Low, functional levels of β-galactosidase include β-galactosidase activity levels of between 0.05 and 1,000 units, e.g., between 0.05 and 750 units, between 0.05 and 500 units, between 0.05 and 400 units, between 0.05 and 300 units, between 0.05 and 200 units, between 0.05 and 100 units, between 0.05 and 50 units, between 0.05 and 10 units, between 0.05 and 5 units, between 0.05 and 4 units, between 0.05 and 3 units, or between 0.05 and 2 units of β-galactosidase activity. For unit definition and assays for determining β-galactosidase activity, see Miller J H, Laboratory CSH. Experiments in molecular genetics. Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y.; 1972; (incorporated herein by reference). This low level of cytoplasmic β-galactosidase activity is not high enough to significantly diminish the intracellular lactose pool. The low level of β-galactosidase activity is very useful for the facile removal of undesired residual lactose at the end of fermentations.


Optionally, the bacterium has an inactivated thyA gene. Preferably, a mutation in a thyA gene in the host bacterium allows for the maintenance of plasmids that carry thyA as a selectable marker gene. Exemplary alternative selectable markers include antibiotic resistance genes such as BLA (beta-lactamase), or proBA genes (to complement a proAB host strain proline auxotropy) or purA (to complement a purA host strain adenine auxotrophy).


In one aspect, the E. coli bacterium comprises the genotype ΔampC::PtrpBcI, Δ(lacI-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA, and also comprises any one of the exogenous α(1,2) fucosyltransferases described herein.


The bacterium comprising these characteristics is cultured in the presence of lactose. In some cases, the method further comprises culturing the bacterium in the presence of tryptophan and in the absence of thymidine. The fucosylated oligosaccharide is retrieved from the bacterium (i.e., a cell lysate) or from a culture supernatant of the bacterium.


The invention provides a purified fucosylated oligosaccharide produced by the methods described herein. The fucosylated oligosaccharide is purified for use in therapeutic or nutritional products, or the bacterium is used directly in such products. The fucosylated oligosaccharide produced by the engineered bacterium is 2′-fucosyllactose (2′-FL) or lactodifucotetraose (LDFT). The new alpha 1,2-fucosyltransferases are also useful to synthesize HMOS of larger molecular weight bearing alpha 1,2 fucose moieties, e.g., lacto-N-fucopentaose (LNF I) and lacto-N-difucohexaose (LDFH I). For example, to produce LDFT, the host bacterium is engineered to express an exogenous α (1,2) fucosyltransferase that also possesses α (1,3) fucosyltransferase activity, or an exogenous α (1,2) fucosyltransferase and an exogenous α (1,3) fucosyltransferase. For the production of LNF I and LDFH I, the host bacterium is engineered to express an exogenous α (1,2) fucosyltransferase that also possesses α (1,3) fucosyltransferase activity and/or α (1,4) fucosyltransferase activity, or an exogenous α (1,2) fucosyltransferase, an exogenous α (1,3) fucosyltransferas, and an exogenous α (1,4) fucosyltransferase.


A purified fucosylated oligosaccharide produced by the methods described above is also within the invention. The purified oligosaccharide (2′-FL) obtained at the end of the process is a white/slightly off-white, crystalline, sweet powder. For example, an engineered bacterium, bacterial culture supernatant, or bacterial cell lysate according to the invention comprises 2′-FL, LDFT, LNF I or LDFH I produced by the methods described herein, and does not substantially comprise a other fucosylated oligosaccharides prior to purification of the fucosylated oligosaccharide products from the cell, culture supernatant, or lysate. As a general matter, the fucosylated oligosaccharide produced by the methods contains a negligible amount of 3-FL in a 2′-FL-containing cell, cell lysate or culture, or supernatant, e.g., less than 1% of the level of 2′-FL or 0.5% of the level of 2′-FL. Moreover, the fucosylated oligosaccharide produced by the methods described herein also have a minimal amount of contaminating lactose, which can often be co-purified with the fucosylated oligosaccharide product, such as 2′FL. This reduction in contaminating lactose results from the reduced level of β-galactosidase activity present in the engineered host bacterium.


A purified oligosaccharide, e.g., 2′-FL, LDFT, LNF I, or LDFH I, is one that is at least 90%, 95%, 98%, 99%, or 100% (w/w) of the desired oligosaccharide by weight. Purity is assessed by any known method, e.g., thin layer chromatography or other chromatographic techniques known in the art. The invention includes a method of purifying a fucosylated oligosaccharide produced by the genetically engineered bacterium described above, which method comprises separating the desired fucosylated oligosaccharide (e.g., 2′-FL) from contaminants in a bacterial cell lysate or bacterial cell culture supernatant of the bacterium.


The oligosaccharides are purified and used in a number of products for consumption by humans as well as animals, such as companion animals (dogs, cats) as well as livestock (bovine, equine, ovine, caprine, or porcine animals, as well as poultry). For example, a pharmaceutical composition comprises purified 2′-FL and a pharmaceutically-acceptable excipient that is suitable for oral administration. Large quantities of 2′-FL are produced in bacterial hosts, e.g., an E. coli bacterium comprising an exogenous α (1,2) fucosyltransferase gene.


A method of producing a pharmaceutical composition comprising a purified human milk oligosaccharide (HMOS) is carried out by culturing the bacterium described above, purifying the HMOS produced by the bacterium, and combining the HMOS with an excipient or carrier to yield a dietary supplement for oral administration. These compositions are useful in methods of preventing or treating enteric and/or respiratory diseases in infants and adults. Accordingly, the compositions are administered to a subject suffering from or at risk of developing such a disease.


The invention also provides methods of identifying an α (1,2) fucosyltransferase gene capable of synthesizing fucosylated oligosaccharides in a host bacterium, i.e., 2′-fucosyllactose (2′-FL) in E. coli. The method of identifying novel lactose-utilizing, α(1,2)fucosyltransferase enzyme comprises the following steps:


1) performing a computational search of sequence databases to define a broad group of simple sequence homologs of any known, lactose-utilizing α(1,2)fucosyltransferase;


2) using the list from step (1), deriving a search profile containing common sequence and/or structural motifs shared by the members of the list;


3) searching sequence databases, using a derived search profile based on the common sequence or structural motif from step (2) as query, and identifying a candidate sequences, wherein a sequence homology to a reference lactose-utilizing α(1,2)fucosyltransferase is a predetermined percentage threshold;


4) compiling a list of candidate organisms, said organisms being characterized as expressing α(1,2)fucosyl-glycans in a naturally-occurring state;


5) selecting candidate sequences that are derived from candidate organisms to generate a list of candidate lactose-utilizing enzymes;


6) expressing the candidate lactose-utilizing enzyme in a host organism; and


7) testing for lactose-utilizing α(1,2)fucosyltransferase activity, wherein detection of the desired fucosylated oligosaccharide product in said organism indicates that the candidate sequence comprises a novel lactose-utilizing α(1,2)fucosyltransferase. In another embodiment, the search profile is generated from a multiple sequence alignment of the amino acid sequences of more than one enzyme with known α(1,2)fucosyltransferase activity. The database search can then be designed to refine and iteratively search for novel α(1,2)fucosyltransferases with significant sequence similarity to the multiple sequence alignment query.


The invention provides a method of treating, preventing, or reducing the risk of infection in a subject comprising administering to said subject a composition comprising a purified recombinant human milk oligosaccharide, wherein the HMOS binds to a pathogen and wherein the subject is infected with or at risk of infection with the pathogen. In one aspect, the infection is caused by a Norwalk-like virus or Campylobacter jejuni. The subject is preferably a mammal in need of such treatment. The mammal is, e.g., any mammal, e.g., a human, a primate, a mouse, a rat, a dog, a cat, a cow, a horse, or a pig. In a preferred embodiment, the mammal is a human. For example, the compositions are formulated into animal feed (e.g., pellets, kibble, mash) or animal food supplements for companion animals, e.g., dogs or cats, as well as livestock or animals grown for food consumption, e.g., cattle, sheep, pigs, chickens, and goats. Preferably, the purified HMOS is formulated into a powder (e.g., infant formula powder or adult nutritional supplement powder, each of which is mixed with a liquid such as water or juice prior to consumption) or in the form of tablets, capsules or pastes or is incorporated as a component in dairy products such as milk, cream, cheese, yogurt or kefir, or as a component in any beverage, or combined in a preparation containing live microbial cultures intended to serve as probiotics, or in prebiotic preparations to enhance the growth of beneficial microorganisms either in vitro or in vivo.


Polynucleotides, polypeptides, and oligosaccharides of the invention are purified and/or isolated. Purified defines a degree of sterility that is safe for administration to a human subject, e.g., lacking infectious or toxic agents. Specifically, as used herein, an “isolated” or “purified” nucleic acid molecule, polynucleotide, polypeptide, protein or oligosaccharide, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. For example, purified HMOS compositions are at least 60% by weight (dry weight) the compound of interest. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight the compound of interest. Purity is measured by any appropriate standard method, for example, by column chromatography, thin layer chromatography, or high-performance liquid chromatography (HPLC) analysis. For example, a “purified protein” refers to a protein that has been separated from other proteins, lipids, and nucleic acids with which it is naturally associated. Preferably, the protein constitutes at least 10, 20, 50, 70, 80, 90, 95, 99-100% by dry weight of the purified preparation.


Similarly, by “substantially pure” is meant an oligosaccharide that has been separated from the components that naturally accompany it. Typically, the oligosaccharide is substantially pure when it is at least 60%, 70%, 80%, 90%, 95%, or even 99%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated.


By “isolated nucleic acid” is meant a nucleic acid that is free of the genes which, in the naturally-occurring genome of the organism from which the DNA of the invention is derived, flank the gene. The term covers, for example: (a) a DNA which is part of a naturally occurring genomic DNA molecule, but is not flanked by both of the nucleic acid sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner, such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein. Isolated nucleic acid molecules according to the present invention further include molecules produced synthetically, as well as any nucleic acids that have been altered chemically and/or that have modified backbones.


A “heterologous promoter” is a promoter which is different from the promoter to which a gene or nucleic acid sequence is operably linked in nature.


The term “overexpress” or “overexpression” refers to a situation in which more factor is expressed by a genetically-altered cell than would be, under the same conditions, by a wild type cell. Similarly, if an unaltered cell does not express a factor that it is genetically altered to produce, the term “express” (as distinguished from “overexpress”) is used indicating the wild type cell did not express the factor at all prior to genetic manipulation.


The terms “treating” and “treatment” as used herein refer to the administration of an agent or formulation to a clinically symptomatic individual afflicted with an adverse condition, disorder, or disease, so as to effect a reduction in severity and/or frequency of symptoms, eliminate the symptoms and/or their underlying cause, and/or facilitate improvement or remediation of damage. The terms “preventing” and “prevention” refer to the administration of an agent or composition to a clinically asymptomatic individual who is susceptible to a particular adverse condition, disorder, or disease, and thus relates to the prevention of the occurrence of symptoms and/or their underlying cause.


By the terms “effective amount” and “therapeutically effective amount” of a formulation or formulation component is meant a nontoxic but sufficient amount of the formulation or component to provide the desired effect.


The transitional term “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. By contrast, the transitional phrase “consisting of” excludes any element, step, or ingredient not specified in the claim. The transitional phrase “consisting essentially of” limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention.


The host organism used to express the lactose-accepting fucosyltransferase gene is typically the enterobacterium Escherichia coli K12 (E. coli). E. coli K-12 is not considered a human or animal pathogen nor is it toxicogenic. E. coli K-12 is a standard production strain of bacteria and is noted for its safety due to its poor ability to colonize the colon and establish infections (see, e.g., epa.gov/oppt/biotech/pubs/fra/fra004.htm). However, a variety of bacterial species may be used in the oligosaccharide biosynthesis methods, e.g., Erwinia herbicola (Pantoea agglomerans), Citrobacter freundii, Pantoea citrea, Pectobacterium carotovorum, or Xanthomonas campestris. Bacteria of the genus Bacillus may also be used, including Bacillus subtilis, Bacillus licheniformis, Bacillus coagulans, Bacillus thermophilus, Bacillus laterosporus, Bacillus megaterium, Bacillus mycoides, Bacillus pumilus, Bacillus lentus, Bacillus cereus, and Bacillus circulans. Similarly, bacteria of the genera Lactobacillus and Lactococcus may be modified using the methods of this invention, including but not limited to Lactobacillus acidophilus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus jensenii, and Lactococcus lactis. Streptococcus thermophiles and Proprionibacterium freudenreichii are also suitable bacterial species for the invention described herein. Also included as part of this invention are strains, modified as described here, from the genera Enterococcus (e.g., Enterococcus faecium and Enterococcus thermophiles), Bifidobacterium (e.g., Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium bifidum), Sporolactobacillus spp., Micromomospora spp., Micrococcus spp., Rhodococcus spp., and Pseudomonas (e.g., Pseudomonas fluorescens and Pseudomonas aeruginosa). Bacteria comprising the characteristics described herein are cultured in the presence of lactose, and a fucosylated oligosaccharide is retrieved, either from the bacterium itself or from a culture supernatant of the bacterium. The fucosylated oligosaccharide is purified for use in therapeutic or nutritional products, or the bacteria are used directly in such products. A suitable production host bacterial strain is one that is not the same bacterial strain as the source bacterial strain from which the fucosyltransferase-encoding nucleic acid sequence was identified.


Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All published foreign patents and patent applications cited herein are incorporated herein by reference. Genbank and NCBI submissions indicated by accession number cited herein are incorporated herein by reference. All other published references, documents, manuscripts and scientific literature cited herein are incorporated herein by reference. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration showing the synthetic pathway of the major neutral fucosyl-oligosaccharides found in human milk.



FIG. 2 is a schematic demonstrating metabolic pathways and the changes introduced into them to engineer 2′-fucosyllactose (2′-FL) synthesis in Escherichia coli (E. coli). Specifically, the lactose synthesis pathway and the GDP-fucose synthesis pathway are illustrated. In the GDP-fucose synthesis pathway: manA=phosphomannose isomerase (PMI), manB=phosphomannomutase (PMM), manC=mannose-1-phosphate guanylyltransferase (GMP), gmd=GDP-mannose-4,6-dehydratase,fcl=GDP-fucose synthase (GFS), and Δwcaf=mutated UDP-glucose lipid carrier transferase.



FIG. 3A and FIG. 3B show the sequence identity and a multiple sequence alignment of 4 previously known lactose-utilizing α(1,2)-fucosyltransferase protein sequences. FIG. 3A is a table showing the sequence identity between the 4 known lactose-utilizing α(1,2)-fucosyltransferases: H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). FIG. 3B shows multiple sequence alignment of the 4 known α(1,2)-fucosyltransferases. The ovals highlight regions of particularly high sequence conservation between the four enzymes in the alignment.



FIG. 4A through FIG. 4F show the sequence alignment of the 12 identified α(1,2)-fucosyltransferase syngenes identified, along with the 4 previously known lactose-utilizing α(1,2)-fucosyltransferase protein sequences. The 4 known lactose-utilizing α(1,2)-fucosyltransferases are boxed and include H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). The 12 identified α(1,2)-fucosyltransferase are as follows: Prevotella melaninogenica FutO (SEQ ID NO: 10), Clostridium bolteae+13 FutP (SEQ ID NO: 292), Lachnospiraceae sp. FutQ (SEQ ID NO: 12), Methanosphaerula palustris FutR (SEQ ID NO: 13), Tannerella sp. FutS (SEQ ID NO: 14), Bacteroides caccae FutU (SEQ ID NO: 15), Butyrivibrio FutV (SEQ ID NO: 16), Prevotella sp. FutW (SEQ ID NO: 17), Parabacteroides johnsonii FutX (SEQ ID NO: 18), Akkermansia muciniphilia FutY (SEQ ID NO: 19), Salmonella enterica FutZ (SEQ ID NO: 20), Bacteroides sp. FutZA (SEQ ID NO: 21). The sequence for Clostridium bolteae FutP (without the 13 additional amino acids in the N-terminus) (SEQ ID NO: 11) is also shown in the alignment.



FIG. 5A and FIG. 5B are two pictures of gels showing the construction of the syngenes for each of the 12 novel α(1,2)-fucosyltransferases. FIG. 5A shows post-Gibson assembly PCR. FIG. 5B shows gel-purified RI/Xho1 syngene fragments.



FIG. 6A and FIG. 6B are two photographs showing thin layer chromatograms of fucosylated oligosaccharide products produced in E. coli cultures using the 12 novel α(1,2)-fucosyltransferase syngenes. FIG. 6A shows fucosylated oligosaccharide products from 2 μl of culture supernatant. FIG. 6B shows fucosylated oligosaccharide products from 0.2 OD600 cell equivalents of whole cell heat extracts.



FIG. 7 is a graph showing the growth curve of the host bacterium expressing plasmids containing the α(1,2) fucosyltransferase genes WbgL, FutN, FutO, FutQ, and FutX after tryptophan induction in the presence of lactose in the culture medium (i.e. lac+trp).



FIG. 8 is a photograph of a SDS-PAGE gel showing the proteins produced from host bacterium expressing α(1,2) fucosyltransferase genes WbgL, FutN, FutO, FutQ, and FutX after induction.



FIG. 9A and FIG. 9B are two photographs of thin layer chromatograms showing the production of fucosylated oligosaccharide products from in E. coli cultures expressing select α(1,2)-fucosyltransferase syngenes WbgL, FutN, FutO, FutQ, and FutX at 7 hours or 24 hours after induction. FIG. 9A shows fucosylated oligosaccharide products from 2 μl of culture supernatant. FIG. 9B shows fucosylated oligosaccharide products from 0.2 OD600 cell equivalents of whole cell heat extracts.



FIG. 10A and FIG. 10B are two photographs of thin layer chromatograms showing the fucosylated oligosaccharide products after two different 1.5 L fermentation runs from E. coli expressing FutN: FIG. 10A) 36B and FIG. 10B) 37A. The culture yield for run 36B was 33 g/L while the yield for run 37A was 36.3 g/L.



FIG. 11 is a plasmid map of pG217 carrying the B. vulgatus FutN gene.



FIG. 12 is a schematic diagram showing the insertion of the LacIq promoter, the functional lacY gene, and the deletion of lacA.



FIG. 13 is a schematic diagram showing the deletion of the endogenous wcaJ gene using FRT recombination.



FIG. 14 is a schematic diagram of the E. coli W3110 chromosome, showing the insertion of a DNA fragment carrying kanamycin resistance gene (derived from transposon Tn5) and wild-type lacZ into the lon gene.





DETAILED DESCRIPTION OF THE INVENTION

While some studies suggest that human milk glycans could be used as antimicrobial anti-adhesion agents, the difficulty and expense of producing adequate quantities of these agents of a quality suitable for human consumption has limited their full-scale testing and perceived utility. What has been needed is a suitable method for producing the appropriate glycans in sufficient quantities at reasonable cost. Prior to the invention described herein, there were attempts to use several distinct synthetic approaches for glycan synthesis. Some chemical approaches can synthesize oligosaccharides (Flowers, H. M. Methods Enzymol 50, 93-121 (1978); Seeberger, P. H. Chem Commun (Camb) 1115-1121 (2003)), but reactants for these methods are expensive and potentially toxic (Koeller, K. M. & Wong, C. H. Chem Rev 100, 4465-4494 (2000)). Enzymes expressed from engineered organisms (Albermann, C., Piepersberg, W. & Wehmeier, U. F. Carbohydr Res 334, 97-103 (2001); Bettler, E., Samain, E., Chazalet, V., Bosso, C., et al. Glycoconj J 16, 205-212 (1999); Johnson, K. F. Glycoconj J 16, 141-146 (1999); Palcic, M. M. Curr Opin Biotechnol 10, 616-624 (1999); Wymer, N. & Toone, E. J. Curr Opin Chem Biol 4, 110-119 (2000)) provide a precise and efficient synthesis (Palcic, M. M. Curr Opin Biotechnol 10, 616-624 (1999)); Crout, D. H. & Vic, G. Curr Opin Chem Biol 2, 98-111 (1998)), but the high cost of the reactants, especially the sugar nucleotides, limits their utility for low-cost, large-scale production. Microbes have been genetically engineered to express the glycosyltransferases needed to synthesize oligosaccharides from the bacteria's innate pool of nucleotide sugars (Endo, T., Koizumi, S., Tabata, K., Kakita, S. & Ozaki, A. Carbohydr Res 330, 439-443 (2001); Endo, T., Koizumi, S., Tabata, K. & Ozaki, A. Appl Microbiol Biotechnol 53, 257-261 (2000); Endo, T. & Koizumi, S. Curr Opin Struct Biol 10, 536-541 (2000); Endo, T., Koizumi, S., Tabata, K., Kakita, S. & Ozaki, A. Carbohydr Res 316, 179-183 (1999); Koizumi, S., Endo, T., Tabata, K. & Ozaki, A. Nat Biotechnol 16, 847-850 (1998)). However, prior to the invention described herein, there was a growing need to identify and characterize additional glycosyltransferases that are useful for the synthesis of HMOS in metabolically engineered bacterial hosts.


Human Milk Glycans


Human milk contains a diverse and abundant set of neutral and acidic oligosaccharides (Kunz, C., Rudloff, S., Baier, W., Klein, N., and Strobel, S. (2000). Annu Rev Nutr 20, 699-722; Bode, L. (2006). J Nutr 136, 2127-130). More than 130 different complex oligosaccharides have been identified in human milk, and their structural diversity and abundance is unique to humans. Although these molecules may not be utilized directly by infants for nutrition, they nevertheless serve critical roles in the establishment of a healthy gut microbiome (Marcobal, A., Barboza, M., Froehlich, J. W., Block, D. E., et al. J Agric Food Chem 58, 5334-5340 (2010)), in the prevention of disease (Newburg, D. S., Ruiz-Palacios, G. M. & Morrow, A. L. Annu Rev Nutr 25, 37-58 (2005)), and in immune function (Newburg, D. S. & Walker, W. A. Pediatr Res 61, 2-8 (2007)). Despite millions of years of exposure to human milk oligosaccharides (HMOS), pathogens have yet to develop ways to circumvent the ability of HMOS to prevent adhesion to target cells and to inhibit infection. The ability to utilize HMOS as pathogen adherence inhibitors promises to address the current crisis of burgeoning antibiotic resistance. Human milk oligosaccharides produced by biosynthesis represent the lead compounds of a novel class of therapeutics against some of the most intractable scourges of society.


One alternative strategy for efficient, industrial-scale synthesis of HMOS is the metabolic engineering of bacteria. This approach involves the construction of microbial strains overexpressing heterologous glycosyltransferases, membrane transporters for the import of precursor sugars into the bacterial cytosol, and possessing enhanced pools of regenerating nucleotide sugars for use as biosynthetic precursors (Dumon, C., Samain, E., and Priem, B. (2004). Biotechnol Prog 20, 412-19; Ruffing, A., and Chen, R. R. (2006). Microb Cell Fact 5, 25). A key aspect of this approach is the heterologous glycosyltransferase selected for overexpression in the microbial host. The choice of glycosyltransferase can significantly affect the final yield of the desired synthesized oligosaccharide, given that enzymes can vary greatly in terms of kinetics, substrate specificity, affinity for donor and acceptor molecules, stability and solubility. A few glycosyltransferases derived from different bacterial species have been identified and characterized in terms of their ability to catalyze the biosynthesis of HMOS in E. coli host strains (Dumon, C., Bosso, C., Utille, J. P., Heyraud, A., and Samain, E. (2006). Chembiochem 7, 359-365; Dumon, C., Samain, E., and Priem, B. (2004). Biotechnol Prog 20, 412-19; Li, M., Liu, X. W., Shao, J., Shen, J., Jia, Q., Yi, W., Song, J. K., Woodward, R., Chow, C. S., and Wang, P. G. (2008). Biochemistry 47, 378-387). The identification of additional glycosyltransferases with faster kinetics, greater affinity for nucleotide sugar donors and/or acceptor molecules, or greater stability within the bacterial host significantly improves the yields of therapeutically useful HMOS. Prior to the invention described herein, chemical syntheses of HMOS were possible, but were limited by stereo-specificity issues, precursor availability, product impurities, and high overall cost (Flowers, H. M. Methods Enzymol 50, 93-121 (1978); Seeberger, P. H. Chem Commun (Camb) 1115-1121 (2003); Koeller, K. M. & Wong, C. H. Chem Rev 100, 4465-4494 (2000)). The invention overcomes the shortcomings of these previous attempts by providing new strategies to inexpensively manufacture large quantities of human milk oligosaccharides (HMOS) for use as dietary supplements. Advantages include efficient expression of the enzyme, improved stability and/or solubility of the fucosylated oligosaccharide product (2′-FL, LDFT, LNF I, and LDFH I) and reduced toxicity to the host organism. The present invention features novel α(1,2) FTs suitable for expression in production strains for increased efficacy and yield of fucosylated HMOS compared to α(1,2) FTs currently utilized in the field.


As described in detail below, E. coli (or other bacteria) is engineered to produce selected fucosylated oligosaccharides (i.e., 2′-FL, LDFT, LDHF I, or LNF I) in commercially viable levels. For example, yields are >5 grams/liter in a bacterial fermentation process. In other embodiments, the yields are greater than 10 grams/liter, greater than 15 grams/liter, greater than 20 grams/liter, greater than 25 grams/liter, greater than 30 grams/liter, greater than 35 grams/liter, greater than 40 grams/liter, greater than 45 grams/liter, greater than 50 grams/liter, greater than 55 grams/liter, greater than 60 grams/liter, greater than 65 grams/liter, greater than 70 grams/liter, or greater than 75 grams/liter of fucosylated oligosaccharide products, such as 2′-FL, LDFT, LDHF I, and LNF I.


Role of Human Milk Glycans in Infectious Disease


Human milk glycans, which comprise both unbound oligosaccharides and their glycoconjugates, play a significant role in the protection and development of the infant gastrointestinal (GI) tract. Neutral fucosylated oligosaccharides, including 2′-fucosyllactose (2′-FL), protect infants against several important pathogens. Milk oligosaccharides found in various mammals differ greatly, and the composition in humans is unique (Hamosh M., 2001 Pediatr Clin North Am, 48:69-86; Newburg D. S., 2001 Adv Exp Med Biol, 501:3-10). Moreover, glycan levels in human milk change throughout lactation and also vary widely among individuals (Morrow A. L. et al., 2004 J Pediatr, 145:297-303; Chaturvedi P et al., 2001 Glycobiology, 11:365-372). Approximately 200 distinct human milk oligosaccharides have been identified and combinations of simple epitopes are responsible for this diversity (Newburg D. S., 1999 Curr Med Chem, 6:117-127; Ninonuevo M. et al., 2006 J Agric Food Chem, 54:7471-74801).


Human milk oligosaccharides are composed of 5 monosaccharides: D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine (GlcNAc), L-fucose (Fuc), and sialic acid (N-acetyl neuraminic acid, NeuSAc, NANA). Human milk oligosaccharides are usually divided into two groups according to their chemical structures: neutral compounds containing Glc, Gal, GlcNAc, and Fuc, linked to a lactose (Galβ1-4G1c) core, and acidic compounds including the same sugars, and often the same core structures, plus NANA (Charlwood J. et al., 1999 Anal Biochem, 273:261-277; Martin-Sosa et al., 2003 J Dairy Sci, 86:52-59; Parkkinen J. and Finne J., 1987 Methods Enzymol, 138:289-300; Shen Z. et al., 2001 J Chromatogr A, 921:315-321).


Approximately 70-80% of oligosaccharides in human milk are fucosylated, and their synthetic pathways are believed to proceed as shown in FIG. 1. A smaller proportion of the oligosaccharides are sialylated or both fucosylated and sialylated, but their synthetic pathways are not fully defined. Understanding of the acidic (sialylated) oligosaccharides is limited in part by the ability to measure these compounds. Sensitive and reproducible methods for the analysis of both neutral and acidic oligosaccharides have been designed. Human milk oligosaccharides as a class survive transit through the intestine of infants very efficiently, being essentially indigestible (Chaturvedi, P., Warren, C. D., Buescher, C. R., Pickering, L. K. & Newburg, D. S. Adv Exp Med Biol 501, 315-323 (2001)).


Human Milk Glycans Inhibit Binding of Enteropathogens to their Receptors


Human milk glycans have structural homology to cell receptors for enteropathogens and function as receptor decoys. For example, pathogenic strains of Campylobacter bind specifically to glycans containing H-2, i.e., 2′-fucosyl-N-acetyllactosamine or 2′-fucosyllactose (2′FL); Campylobacter binding and infectivity are inhibited by 2′-FL and other glycans containing this H-2 epitope. Similarly, some diarrheagenic E. coli pathogens are strongly inhibited in vivo by human milk oligosaccharides containing 2-linked fucose moieties. Several major strains of human caliciviruses, especially the noroviruses, also bind to 2-linked fucosylated glycans, and this binding is inhibited by human milk 2-linked fucosylated glycans. Consumption of human milk that has high levels of these 2-linked fucosyloligosaccharides was associated with lower risk of norovirus, Campylobacter, ST of E. coli-associated diarrhea, and moderate-to-severe diarrhea of all causes in a Mexican cohort of breastfeeding children (Newburg D. S. et al., 2004 Glycobiology, 14:253-263; Newburg D. S. et al., 1998 Lancet, 351:1160-1164). Several pathogens utilize sialylated glycans as their host receptors, such as influenza (Couceiro, J. N., Paulson, J. C. & Baum, L. G. Virus Res 29, 155-165 (1993)), parainfluenza (Amonsen, M., Smith, D. F., Cummings, R. D. & Air, G. M. J Virol 81, 8341-8345 (2007), and rotoviruses (Kuhlenschmidt, T. B., Hanafin, W. P., Gelberg, H. B. & Kuhlenschmidt, M. S. Adv Exp Med Biol 473, 309-317 (1999)). The sialyl-Lewis X epitope is used by Helicobacter pylori (Mandavi, J., Sondén, B., Hurtig, M., Olfat, F. O., et al. Science 297, 573-578 (2002)), Pseudomonas aeruginosa (Scharfman, A., Delmotte, P., Beau, J., Lamblin, G., et al. Glycoconj J 17, 735-740 (2000)), and some strains of noroviruses (Rydell, G. E., Nilsson, J., Rodriguez-Diaz, J., Ruvoen-Clouet, N., et al. Glycobiology 19, 309-320 (2009)).


Identification of Novel α(1,2) Fucosyltransferases


The present invention provides novel α(1,2) fucosyltransferase enzymes. The present invention also provides nucleic acid constructs (i.e., a plasmid or vector) carrying the nucleic acid sequence of a novel α(1,2) fucosyltransferases for the expression of the novel α(1,2) fucosyltransferases in host bacterium. The present invention also provides methods for producing fucosylated oligosaccharides by expressing the novel α(1,2) fucosyltransferases in suitable host production bacterium, as further described herein.


Not all α(1,2)fucosyltransferases can utilize lactose as an acceptor substrate. An acceptor substrate includes, for example, a carbohydrate, an oligosaccharide, a protein or glycoprotein, a lipid or glycolipid, e.g., N-acetylglucosamine, N-acetyllactosamine, galactose, fucose, sialic acid, glucose, lactose, or any combination thereof. A preferred alpha (1,2) fucosyltransferase of the present invention utilizes GDP-fucose as a donor, and lactose is the acceptor for that donor.


A method of identifying novel α(1,2)fucosyltransferase enzymes capable of utilizing lactose as an acceptor was previously carried out (as described in PCT/US2013/051777, hereby incorporated by reference in its entirety) using the following steps: 1) performing a computational search of sequence databases to define a broad group of simple sequence homologs of any known, lactose-utilizing α(1,2)fucosyltransferase; 2) using the list of homologs from step 1 to derive a search profile containing common sequence and/or structural motifs shared by the members of the broad group, e.g. by using computer programs such as MEME (Multiple Em for Motif Elicitation available at http://meme.sdsc.edu/meme/cgi-bin/meme.cgi) or PSI-BLAST (Position-Specific Iterated BLAST available at ncbi.nlm.nih.gov/blast with additional information at cnx.org/content/m11040/latest/); 3) searching sequence databases (e.g., using computer programs such as PSI-BLAST, or MAST (Motif Alignment Search Tool available at http://meme.sdsc.edu/meme/cgi-bin/mast.cgi); using this derived search profile as query, and identifying “candidate sequences” whose simple sequence homology to the original lactose-accepting α(1,2)fucosyltransferase is 40% or less; 4) scanning the scientific literature and developing a list of “candidate organisms” known to express α(1,2)fucosyl-glycans; 5) selecting only those “candidate sequences” that are derived from “candidate organisms” to generate a list of “candidate lactose-utilizing enzymes”; and 6) expressing each “candidate lactose-utilizing enzyme” and testing for lactose-utilizing α(1,2)fucosyltransferase activity.


The MEME suite of sequence analysis tools (meme.sdsc.edu/meme/cgi-bin/meme.cgi) can also be used as an alternative to PSI-BLAST. Sequence motifs are discovered using the program “MEME”. These motifs can then be used to search sequence databases using the program “MAST”. The BLAST and PSI-BLAST search algorithms are other well known alternatives.


To identify additional novel α(1,2)fucosyltransferases, a multiple sequence alignment query was generated using four previously identified lactose-utilizing α(1,2)fucosyltransferase protein sequences: H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). These sequence alignment and percentage of sequence identity is shown in FIG. 3. An iterative PSI-BLAST was performed, using the FASTA-formatted multiple sequence alignment as the query, and the NCBI PSI-BLAST program run on a local copy of NCBI BLAST+ version 2.2.29. An initial position-specific scoring matrix file (.pssm) was generated by PSI-BLAST, which the program then used to adjust the score of iterative homology search runs. The process is iterated to generate an even larger group of candidates, and the results of each run were used to further refine the matrix.


This PSI-BLAST search resulted in an initial 2515 hits. There were 787 hits with greater than 22% sequence identity to FutC. 396 hits were of greater than 275 amino acids in length. Additional analysis of the hits was performed, including sorting by percentage identity to FutC, comparing the sequences by BLAST to existing α(1,2) fucosyltransferase inventory (of known α(1,2) fucosyltransferases), and manual annotation of hit sequences to identify those originating from bacteria that naturally exist in the gastrointestinal tract. An annotated list of the novel α(1,2) fucosyltransferases identified by this screen are listed in Table 1. Table 1 provides the bacterial species from which the candidate enzyme is found, the GenBank Accession Number, GI Identification Number, amino acid sequence, and % sequence identity to FutC.


Of the identified hits, 12 novel α(1,2) fucosyltransferases were further analyzed for their functional capacity: Prevotella melaninogenica FutO, Clostridium bolteae FutP, Clostridium bolteae+13 FutP, Lachnospiraceae sp. FutQ, Methanosphaerula palustries FutR, Tannerella sp. FutS, Bacteroides caccae FutU, Butyrivibrio FutV, Prevotellaa sp. FutW, Parabacteroides johnsonii FutX, Akkermansia muciniphilia FutY, Salmonella enterica FutZ, and Bacteroides sp. FutZA. For Clostridium bolteae FutP, the annotation named the wrong initiation methionine codon. Thus, the present invention includes FutP with an additional 13 amino acids at the N-terminus of the annotated FutP (derived in-frame from the natural upstream DNA sequence), which is designated herein as Clostridium bolteae+13 FutP. The sequence identity between the 12 novel α(1,2) fucosyltransferases identified and the 4 previously identified α(1,2) fucosyltransferases is shown in Table 2 below.









TABLE 2







Sequence Identity


























1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16






H. pylori futC

 1

70.10
21.99
20.82
27.68
27.36
23.56
23.28
23.62
25.75
23.72
24.05
22.29
24.19
22.92
22.29



H. mustelae futL

 2
70.10

23.87
19.88
26.38
28.21
24.30
23.38
24.62
25.31
25.31
24.47
23.56
25.15
23.55
23.26



Bacteroides vulgatus

 3
21.99
23.87

25.16
32.05
28.71
28.94
25.79
37.46
32.27
26.11
61.27
71.63
27.67
25.15
84.75


futN




















E. coli 0126 wbgL

 4
20.82
19.88
25.16

24.25
22.73
22.32
26.04
25.45
24.77
21.49
23.29
26.71
24.63
21.45
25.16



Prevotella

 5
27.68
26.38
32.05
24.25

36.96
31.63
35.74
35.16
55.74
30.28
30.03
32.80
30.09
26.28
31.83



melaninogenica Fut0




















YP_003814512.1




















Clostridium

 6
27.36
28.21
28.71
22.73
36.96

37.87
35.10
33.77
36.91
35.74
29.58
31.39
27.67
26.33
29.13



bolteae + 13 FutP




















WP_002570768.1




















Lachnospiraceae sp.

 7
23.56
24.30
28.94
22.32
31.63
37.87

29.87
29.17
32.90
51.02
28.53
30.00
27.69
24.00
27.74


FutQ



















WP_009251343.1




















Methanosphaerula

 8
23.28
23.38
25.79
26.04
35.74
35.10
29.87

28.71
38.24
31.41
25.39
28.08
30.65
23.93
25.55



palustris FutR




















YP_002467213.1




















Tannerella sp. FutS

 9
23.62
24.62
37.46
25.45
35.16
33.77
29.17
28.71

34.41
30.03
35.71
36.27
26.48
21.75
36.60


WP_021929367.1




















Bacteroides caccae

10
25.75
25.31
32.27
24.77
55.74
36.91
32.90
38.24
34.41

31.21
29.94
33.33
29.28
24.46
33.01


FutU



















WP_005675707.1




















Butyrivibrio FutV

11
23.72
25.31
26.11
21.49
30.28
35.74
51.02
31.41
30.03
31.21

27.62
26.20
26.46
22.15
26.52


WP_022772718.1




















Prevotella sp. FutW

12
24.05
24.47
61.27
23.29
30.03
29.58
28.53
25.39
35.71
29.94
27.62

57.60
25.79
22.15
59.01


WP_022481266.1




















Parabacteroides

13
22.29
23.56
71.63
26.71
32.80
31.39
30.00
28.08
36.27
33.33
26.20
57.60

28.71
24.00
74.02



johnsonii FutX




















WP_008155883.1




















Akkermansia

14
24.19
25.15
27.67
24.63
30.09
27.67
27.69
30.65
26.48
29.28
26.46
25.79
28.71

21.45
28.08



muciniphilia FutY




















YP_001877555




















Salmonella enterica

15
22.92
23.55
25.15
21.45
26.28
26.33
24.00
23.93
21.75
24.46
22.15
22.15
24.00
21.45

24.62


FutZ



















WP_023214330




















Bacteroides sp.

16
22.29
23.26
84.75
25.16
31.83
29.13
27.74
25.55
36.60
33.01
26.52
59.01
74.02
28.08
24.62



FutZA



















WP_022161880.1









Based on the amino acid sequences of the identified α(1,2) fucosyltransferases (i.e., in Table 1), syngenes can be readily designed and constructed by the skilled artisan using standard methods known in the art. For example, the syngenes include a ribosomal binding site, are codon-optimized for expression in a host bacterial production strain (i.e., E. coli), and have common 6-cutter restriction sites or sites recognized by endogenous restriction enzymes present in the host strain (i.e., EcoK restriction sites) removed to ease cloning and expression in the E. coli host strain. In a preferred embodiment, the syngenes are constructed with the following configuration: EcoRI site-T7g10 RBS-α(1,2) FT syngene-XhoI site. The nucleic acid sequences of sample syngenes for the 12 identified α(1,2) fucosyltransferases are shown in Table 3. (the initiating methionine ATG codon is bolded)









TABLE 3







Nucleic acid sequences of 12 novel α(1,2) fucosyltransferase syngenes









Bacteria/

SEQ


Gene

ID


name
Sequence
NO:





FutO
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGAAAATCGTCAAAATCCTGGGCGGT
276



CTGGGCAATCAGATGTTCCAGTATGCTCTGTACCTGAGCCTGCAAGAAAGTTTTCCAAAA




GAACGTGTGGCCCTGGACCTGTCCTCCTTCCACGGCTATCACCTGCATAATGGCTTTGAG




CTGGAGAACATTTTCTCCGTTACCGCTCAGAAAGCATCCGCCGCAGATATCATGCGTATT




GCTTATTACTACCCGAACTATCTGCTGTGGCGCATTGGCAAACGTTTTCTGCCGCGTCGT




AAAGGTATGTGCCTGGAATCTAGCTCCCTGCGTTTCGATGAAAGCGTTCTGCGTCAGGAA




GGTAACCGTTATTTTGACGGTTACTGGCAAGACGAACGCTACTTCGCAGCCTATCGTGAA




AAAGTGCTGAAGGCTTTCACCTTTCCTGCATTCAAACGCGCAGAAAACCTGAGCCTGCTG




GAAAAACTGGACGAAAACAGCATTGCTCTGCATGTTCGTCGCGGTGATTACGTAGGTAAT




AACCTGTACCAAGGCATCTGTGACCTGGACTACTACCGTACCGCTATCGAGAAAATGTGT




GCACACGTTACTCCGTCTCTGTTTTGTATCTTTTCCAACGACATCACGTGGTGCCAGCAG




CACCTGCAACCGTACCTGAAGGCCCCTGTGGTGTACGTTACTTGGAACACCGGTGTTGAA




TCCTACCGCGATATGCAGCTGATGTCCTGCTGCGCACATAACATCATCGCGAATAGCTCC




TTCTCTTGGTGGGGTGCTTGGCTGAATCAGAACCGTGAAAAAGTTGTTATCGCCCCGAAA




AAATGGCTGAACATGGAAGAATGTCACTTCACGCTGCCGGCAAGCTGGATCAAAATTTAG




CTCGAGTGACTGACTG






FutP
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGGTGATTATCAAAATGATGGGTGGT
277



CTGGGCAACCAGATGTTCCAGTACGCACTGTACAAAGCATTCGAGCAGAAGCACATCGAT




GTGTATGCAGACCTGGCATGGTACAAAAACAAATCCGTGAAATTTGAACTGTACAACTTC




GGCATTAAAATCAACGTAGCATCCGAGAAAGACATCAACCGTCTGAGCGATTGCCAGGCG




GACTTTGTTTCCCGCATCCGCCGTAAAATCTTTGGTAAAAAAAAGAGCTTCGTATCTGAA




AAAAATGACTCCTGCTATGAAAACGACATCCTGCGTATGGACAACGTTTATCTGAGCGGT




TATTGGCAGACCGAAAAATACTTCTCTAACACGCGTGAGAAGCTGCTGGAGGATTATTCC




TTCGCTCTGGTAAACTCTCAGGTGTCCGAATGGGAAGACTCCATTCGCAACAAAAACAGC




GTTAGCATCCATATCCGTCGTGGTGATTATCTACAGGGCGAACTGTATGGTGGTATTTGC




ACCTCTCTGTACTACGCCGAAGCAATCGAGTACATTAAAATGCGTGTTCCGAACGCAAAA




TTCTTCGTTTTCTCTGATGACGTTGAATGGGTTAAACAGCAAGAAGACTTCAAAGGCTTC




GTAATCGTTGATCGCAACGAGTATTCTAGCGCTCTGTCCGATATGTACCTGATGTCCCTG




TGCAAGCATAACATTATTGCTAACTCCTCTTTCAGCTGGTGGGCAGCTTGGCTGAACCGT




AACGAAGAAAAAATTGTAATCGCGCCGCGCCGTTGGCTGAACGGCAAGTGCACCCCAGAT




ATCTGGTGTAAAAAATGGATTCGTATCTAGCTCGAGTGACTGACTG






FutQ
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGGTGATCGTACAGCTGAGCGGCGGT
278



CTGGGCAACCAGATGTTCGAATACGCGCTGTACCTGAGCCTGAAAGCAAAAGGCAAAGAA




GTGAAAATTGACGATGTTACGTGTTACGAGGGCCCTGGCACCCGTCCGCGTCAACTGGAT




GTTTTTGGTATCACGTACGATCGCGCGTCTCGTGAGGAGCTGACTGAGATGACGGACGCG




AGCATGGATGCGCTGTCTCGTGTTCGTCGCAAACTGACCGGTCGCCGCACTAAAGCGTAC




CGCGAACGCGACATCAACTTCGATCCACTGGTTATGGAAAAAGACCCGGCACTGCTGGAA




GGCTGTTTCCAGTCTGACAAATACTTTCGTGATTGCGAAGGCCGCGTGCGCGAAGCGTAT




CGTTTCCGCGGCATTGAATCCGGCGCGTTCCCGCTGCCGGAAGACTATCTGCGCCTGGAA




AAGCAGATCGAAGATTGTCAGTCCGTATCCGTACACATCCGTCGTGGCGACTACCTGGAC




GAATCTCATGGTGGTCTGTACACCGGCATTTGTACTGAGGCGTACTATAAAGAGGCTTTT




GCTCGCATGGAACGTCTGGTTCCGGGCGCACGTTTCTTCCTGTTCTCTAACGATCCAGAA




TGGACTCGTGAGCACTTTGAGAGCAAGAACTGCGTTCTGGTTGAAGGTAGCACCGAAGAC




ACGGGTTACATGGACCTGTACCTGATGAGCCGCTGCCGCCACAATATTATTGCCAACTCT




TCTTTCAGCTGGTGGGGCGCTTGGCTGAATGAGAACCCTGAGAAAAAAGTCATCGCACCG




GCTAAATGGCTGAACGGTCGTGAGTGCCGTGATATCTATACCGAACGCATGATTCGTCTG




TAGCTCGAGTGACTGACTG






FutR
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGATCATTGTTCGTCTGAAAGGCGGT
279



CTGGGCAACCAACTGTCTCAGTATGCACTGGGCCGTAAGATCGCGCATCTGCACAATACC




GAACTGAAACTGGACACCACTTGGTTCACCACTATCTCCTCCGACACTCCACGTACCTAC




CGTCTGAACAATTATAACATCATCGGCACTATTGCATCCGCAAAGGAAATCCAGCTGATC




GAACGTGGTCGCGCGCAAGGCCGTGGCTACCTGCTGTCTAAAATTTCTGATCTGCTGACT




CCGATGTACCGTCGTACCTACGTCCGTGAACGTATGCATACCTTCGATAAAGCTATCCTG




ACCGTTCCGGACAACGTGTACCTGGATGGTTACTGGCAGACCGAAAAGTACTTCAAAGAC




ATCGAAGAAATCCTGCGCCGTGAGGTTACGCTGAAAGATGAACCGGATAGCATCAACCTG




GAAATGGCTGAACGTATTCAGGCTTGCCACAGCGTTTCCCTGCACGTGCGTCGTGGCGAC




TACGTTTCCAACCCGACCACTCAACAATTCCACGGCTGTTGCTCCATTGACTACTACAAC




CGCGCTATCTCTCTGATTGAAGAAAAAGTGGATGACCCGTCTTTCTTTATTTTTTCTGAC




GATCTGCCGTGGGCTAAAGAAAACCTGGACATCCCTGGCGAAAAAACCTTCGTTGCGCAT




AACGGCCCGGAAAAAGAGTATTGCGATCTGTGGCTGATGTCTCTGTGCCAGCACCATATC




ATCGCAAACTCTTCTTTCAGCTGGTGGGGTGCCTGGCTGGGTCAAGACGCCGAAAAGATG




GTGATCGCGCCGCGTCGCTGGGCCCTGTCCGAGAGCTTTGACACTTCTGACATCATTCCG




GACTCTTGGATTACTATCTAGCTCGAGTGACTGACTG






FutS
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGGTACGCATTGTGGAAATCATCGGC
280



GGTCTGGGTAACCAGATGTTCCAGTACGCATTCTCCCTGTACCTGAAAAACAAATCTCAC




ATCTGGGACCGTCTGTATGTGGACATCGAGGCGATGAAAACCTACGATCGTCACTATGGT




CTGGAACTGGAGAAAGTTTTCAATCTGAGCCTGTGTCCAATCTCTAACCGTCTGCACCGC




AACCTGCAAAAACGCTCCTTCGCAAAACACTTTGTAAAGAGCCTGTACGAGCACTCTGAA




TGCGAGTTCGACGAACCGGTGTACCGTGGCCTGCGTCCTTATCGCTATTATCGCGGCTAC




TGGCAAAACGAAGGTTACTTCGTTGATATTGAACCGATGATCCGTGAGGCTTTTCAGTTC




AACGTTAACATCCTGAGCAAAAAGACTAAAGCGATCGCATCCAAAATGCGCCGTGAACTG




TCCGTATCTATCCATGTTCGCCGTGGTGATTACGAAAACCTGCCGGAAGCGAAAGCGATG




CATGGCGGTATTTGTTCTCTGGACTATTACCACAAAGCGATCGACTTCATCCGCCAGCGT




CTGGATAATAACATCTGTTTCTATCTGTTCTCCGACGATATCAATTGGGTAGAAGAAAAC




CTGCAACTGGAAAACCGTTGCATCATCGACTGGAACCAGGGCGAAGATAGCTGGCAGGAC




ATGTACCTGATGAGCTGCTGCCGCCACCACATTATCGCAAACAGCTCTTTCTCCTGGTGG




GCGGCATGGCTGAATCCAAACAAGAACAAAATCGTACTGACCCCGAACAAATGGTTCAAC




CATACTGACGCAGTGGGTATCGTCCCAAAGTCCTGGATTAAAATTCCTGTGTTTTAGCTC




GAGTGACTGACTG






FutU
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGAAAATCGTTAAAATCCTGGGCGGC
281



CTGGGTAACCAGATGTTTCAGTACGCCCTGTTCCTGTCTCTGAAAGAACGCTTCCCGCAT




GAACAGGTGATGATTGACACCAGCTGCTTCCGCAATTACCCACTGCACAACGGTTTCGAA




GTGGATCGTATCTTCGCCCAGAAAGCACCGGTTGCCTCTTGGCGTAACATCCTGAAGGTT




GCCTACCCGTACCCGAACTACCGTTTCTGGAAAATCGGTAAATACATCCTGCCTAAACGT




AAAACCATGTGTGTAGAGCGTAAAAACTTCAGCTTTGACGCCGCAGTCCTGACCCGTAAA




GGCGATTGCTACTATGATGGCTACTGGCAGCATGAGGAATATTTCTGTGATATGAAAGAA




ACGATTTGGGAGGCTTTCTCCTTCCCTGAGCCGGTTGATGGTCGTAACAAGGAGATCGGT




GCCCTGCTACAGGCATCTGATAGCGCTTCCCTGCACGTTCGTCGCGGTGACTACGTGAAC




CACCCACTGTTTCGTGGTATTTGTGACCTGGACTATTATAAACGTGCCATCCACTACATG




GAAGAACGCGTCAACCCACAGCTGTACTGCGTTTTCAGCAACGATATGGCCTGGTGCGAG




TCCCACCTGCGTGCACTGCTGCCAGGCAAAGAAGTAGTTTATGTTGACTGGAACAAGGGT




GCGGAATCTTACGTTGATATGCGTCTGATGAGCCTGTGCCGTCACAACATCATCGCTAAC




TCTTCTTTCAGCTGGTGGGGCGCATGGCTGAACCGTAACCCGCAGAAAGTGGTGGTAGCG




CCGGAACGTTGGATGAACAGCCCGATTGAAGACCCAGTGAGCGACAAATGGATTAAACTG




TAGCTCGAGTGACTGACTG






FutV
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGATCATCATCCAGCTGAAAGGTGGC
282



CTGGGCAACCAAATGTTCCAGTACGCGCTGTACAAATCCCTGAAAAAACGTGGTAAAGAA




GTTAAAATTGATGACAAAACTGGCTTCGTGAACGACAAACTGCGTATCCCGGTACTGTCC




CGTTGGGGTGTTGAGTACGATCGTGCAACCGACGAAGAGATTATTAACCTGACCGACTCC




AAAATGGACCTGTTCTCTCGCATCCGCCGTAAACTGACTGGCCGCAAAACGTTCCGTATC




GACGAAGAATCCGGTAAATTCAACCCGGAAATCCTGGAAAAAGAGAACGCTTATCTGGTG




GGTTATTGGCAGTGCGACAAGTACTTCGACGACAAAGATGTGGTTCGCGAAATTCGTGAA




GCGTTCGAGAAAAAACCGCAGGAGCTGATGACCGACGCCAGCTCTTGGTCTACTCTACAG




CAGATTGAATGCTGCGAGTCCGTATCCCTGCACGTACGTCGTACTGATTACGTGGACGAG




GAACATATTCATATCCATAACATCTGTACGGAAAAATACTATAAAAACGCCATTGATCGT




GTGCGTAAACAGTACCCGAGCGCAGTGTTCTTCATCTTCACCGATGATAAAGAATGGTGC




CGCGACCACTTTAAAGGTCCGAACTTCATCGTAGTCGAACTGGAAGAAGGCGACGGTACC




GACATCGCTGAAATGACTCTGATGTCCCGCTGTAAACATCACATCATCGCTAATTCTAGC




TTTAGCTGGTGGGCGGCGTGGCTGAACGACTCCCCGGAAAAAATCGTGATCGCTCCTCAG




AAATGGATTAACAACCGCGACATGGACGATATTTACACCGAGCGTATGACTAAAATCGCA




CTGTAGCTCGAGTGACTGACTG






FutW
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGCGCCTGGTTAAAATGATCGGCGGT
283



CTGGGTAATCAGATGTTCATCTACGCGTTTTACCTACAGATGCGTAAGCGTTTCTCCAAC




GTTCGTATCGACCTGACCGATATGATGCACTACAACGTACACTATGGCTACGAACTGCAC




AAAGTTTTCGGTCTGCCGCGCACCGAGTTCTGTATGAACCAGCCTCTGAAAAAGGTTCTG




GAGTTCCTGTTCTTCCGTACCATTGTTGAACGTAAACAGCACGGTCGTATGGAGCCGTAT




ACTTGCCAGTATGTTTGGCCGCTGGTTTACTTTAAGGGCTTCTATCAGTCCGAACGTTAC




TTCTCCGAAGTTAAGGACGAAGTTCGTGAGTGTTTCACCTTCAATCCGGCACTGGCGAAT




CGTTCTTCCCAACAGATGATGGAACAGATCCAGAATGATCCTCAGGCTGTCTCTATCCAC




ATCCGTCGTGGCGACTATCTGAATCCGAAGCACTACGACACTATCGGTTGTATCTGTCAG




CTGCCGTATTACAAGCACGCCGTTTCCGAAATTAAAAAGTACGTTTCTAACCCTCACTTT




TACGTTTTCTCCGAAGACCTGGATTGGGTCAAAGCAAACCTGCCGCTGGAAAACGCACAG




TACATCGATTGGAACAAAGGCGCAGATAGCTGGCAGGATATGATGCTGATGAGCTGTTGC




AAACACCACATTATCTGTAACTCCACCTTTAGCTGGTGGGCGGCGTGGCTGAACCCATCT




GTCGAAAAAACCGTGATCATGCCGGAACAGTGGACGTCTCGTCAAGATTCCGTGGACTTT




GTGGCTAGCTGTGGCCGTTGGGTCCGTGTTAAAACGGAGTAGCTCGAGTGACTGACTG






FutX
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGCGTCTGATCAAGATGATCGGCGGC
284



CTGGGTAACCAGATGTTTATCTACGCGTTCTACCTGAAAATGAAACACCATTACCCGGAT




ACGAACATCGATCTGTCTGACATGGTTCATTATAAAGTTCACAACGGTTATGAGATGAAC




CGTATCTTTGACCTGAGCCAGACTGAATTTTGCATCAACCGTACCCTGAAAAAAATCCTG




GAGTTCCTGTTCTTCAAAAAAATCTACGAACGTCGCCAGGACCCGTCTACTCTGTATCCA




TACGAAAAACGTTATTTTTGGCCGCTGCTGTACTTTAAAGGTTTCTACCAGTCTGAACGC




TTCTTCTTCGATATCAAAGACGACGTTCGTAAAGCCTTCTCTTTTAACCTGAACATCGCT




AACCCGGAAAGCCTGGAACTGCTGAAACAGATCGAAGTTGACGACCAAGCTGTTTCTATC




CACATCCGCCGTGGTGACTACCTGCTGCCGCGTCACTGGGCAAACACGGGTTCCGTGTGC




CAGCTGCCGTATTACAAGAACGCGATCGCGGAAATGGAGAACCGTATTACTGGCCCGAGC




TACTACGTGTTCTCTGATGATATCTCTTGGGTTAAAGAAAACATCCCGCTGAAGAAAGCG




GTCTACGTGACGTGGAACAAGGGCGAAGACAGCTGGCAGGATATGATGCTGATGAGCCAC




TGTCGTCACCACATTATCTGTAATTCTACGTTCTCCTGGTGGGGTGCTTGGCTGAACCCA




CGTAAAGAGAAAATCGTCATCGCGCCGTGTCGCTGGTTCCAGCATAAAGAAACCCCGGAC




ATGTACCCGAAAGAATGGATCAAAGTACCGATTAACTAGCTCGAGTGACTGACTG






FutZ
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGTATTCTTGCCTGTCTGGTGGCCTG
285



GGTAACCAAATGTTTCAATACGCAGCAGCGTATATCCTGAAGCAGTATTTTCAGTCTACC




ACTCTGGTCCTGGATGATAGCTATTACTATTCCCAGCCGAAACGTGATACCGTTCGTAGC




CTGGAACTGAATCAGTTCAACATCTCTTATGATCGTTTTAGCTTCGCGGATGAAAAAGAG




AAGATCAAACTGCTGCGCAAATTCAAACGTAACCCGTTCCCTAAACAGATTTCCGAGATC




CTGTCTATTGCGCTGTTCGGCAAATACGCGCTGTCCGACCGTGCATTTTACACCTTCGAA




ACTATCAAAAACATCGACAAAGCGTGCCTGTTCTCCTTTTACCAGGACGCCGATCTGCTG




AATAAATATAAGCAGCTGATCCTGCCGCTGTTCGAACTGCGCGATGACCTGCTGGATATC




TGCAAGAACCTGGAACTGTATTCCCTGATCCAACGCAGCAACAATACCACTGCACTGCAT




ATCCGCCGTGGCGACTACGTGACCAACCAGCACGCCGCGAAATACCACGGCGTGCTGGAC




ATCAGCTACTATAACCACGCAATGGAATACGTGGAACGTGAACGCGGCAAACAGAACTTC




ATTATCTTCAGCGATGATGTACGTTGGGCACAGAAAGCGTTTCTGGAGAACGATAATTGC




TACGTGATTAACAACTCCGACTACGATTTCTCTGCGATCGATATGTATCTGATGTCTCTG




TGCAAAAACAACATCATCGCAAATTCCACCTACTCCTGGTGGGGTGCGTGGCTGAACAAA




TACGAGGACAAACTGGTTATCTCTCCGAAACAATGGTTTCTGGGTAACAACGAAACCTCT




CTGCGTAACGCGTCTTGGATCACCCTGTAGCTCGAGTGACTGACTG






FutZA
CAGTCAGTCAGAATTCAAGAAGGAGATATACATATGCGTCTGATCAAGATGACCGGTGGC
286



CTGGGTAACCAGATGTTCATCTACGCGTTTTATCTGCGTATGAAAAAACGTTATCCGAAA




GTTCGTATTGATCTGTCTGATATGGTTCATTATCACGTTCACCACGGCTATGAAATGCAC




CGTGTTTTCAATCTGCCGCACACCGAATTTTGCATCAACCAGCCGCTGAAAAAAGTGATC




GAGTTCCTGTTTTTCAAAAAGATTTACGAACGTAAACAGGACCCTAATTCTCTGCGTGCA




TTCGAGAAGAAGTATCTGTGGCCGCTGCTGTACTTCAAAGGTTTCTATCAATCTGAGCGC




TTCTTTGCTGACATCAAAGACGAGGTTCGTAAAGCATTCACCTTTGACTCTTCTAAAGTG




AACGCTCGCTCTGCCGAACTGCTGCGTCGCCTGGATGCCGATGCTAACGCGGTTAGCCTG




CACATTCGTCGCGGTGACTATCTACAGCCGCAGCATTGGGCTACCACTGGTTCTGTCTGC




CAGCTGCCGTACTACCAGAACGCGATCGCTGAAATGAACCGTCGCGTTGCTGCCCCGAGC




TACTACGTTTTCAGCGATGACATCGCGTGGGTGAAGGAAAACATCCCTCTACAGAACGCA




GTGTACATCGACTGGAATAAAGGCGAAGAAAGCTGGCAGGATATGATGCTGATGAGCCAC




TGCCGCCACCACATTATCTGTAACAGCACCTTCTCTTGGTGGGGCGCGTGGCTGGACCCG




CACGAGGACAAAATTGTAATCGTTCCGAATCGTTGGTTCCAGCATTGCGAAACTCCTAAC




ATCTATCCGGCAGGCTGGGTGAAAGTTGCGATTAATTAGCTCGAGTGACTGACTG









In any of the methods described herein, the α(1,2) fucosyltransferase genes or gene products may be variants or functional fragments thereof. A variant of any of genes or gene products disclosed herein may have 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to the nucleic acid or amino acid sequences described herein.


Variants as disclosed herein also include homolog, orthologs, or paralogs of the genes or gene products described herein that retain the same biological function as the genes or gene products specified herein. These variants can be used interchangeably with the genes recited in these methods. Such variants may demonstrate a percentage of homology or identity, for example, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity conserved domains important for biological function, preferably in a functional domain, e.g. catalytic domain.


The term “% identity,” in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. For example, % identity is relative to the entire length of the coding regions of the sequences being compared, or the length of a particular fragment or functional domain thereof.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.


Percent identity is determined using search algorithms such as BLAST and PSI-BLAST (Altschul et al., 1990, J Mol Biol 215:3, 403-410; Altschul et al., 1997, Nucleic Acids Res 25:17, 3389-402). For the PSI-BLAST search, the following exemplary parameters are employed: (1) Expect threshold was 10; (2) Gap cost was Existence:11 and Extension:1; (3) The Matrix employed was BLOSUM62; (4) The filter for low complexity regions was “on”.


Changes can be introduced by mutation into the nucleic acid sequence or amino acid sequence of any of the genes or gene products described herein, leading to changes in the amino acid sequence of the encoded protein or enzyme, without altering the functional ability of the protein or enzyme. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of any of sequences expressly disclosed herein. A “non-essential” amino acid residue is a residue at a position in the sequence that can be altered from the wild-type sequence of the polypeptide without altering the biological activity, whereas an “essential” amino acid residue is a residue at a position that is required for biological activity. For example, amino acid residues that are conserved among members of a family of proteins are not likely to be amenable to mutation. Other amino acid residues, however, (e.g., those that are poorly conserved among members of the protein family) may not be as essential for activity and thus are more likely to be amenable to alteration. Thus, another aspect of the invention pertains to nucleic acid molecules encoding the proteins or enzymes disclosed herein that contain changes in amino acid residues relative to the amino acid sequences disclosed herein that are not essential for activity (i.e., fucosyltransferase activity).


An isolated nucleic acid molecule encoding a protein essentially retaining the functional capability compared to any of the genes described herein can be created by introducing one or more nucleotide substitutions, additions or deletions into the corresponding nucleotide sequence, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


Mutations can be introduced into a nucleic acid sequence by standard techniques such that the encoded amino acid sequence is altered, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. Certain amino acids have side chains with more than one classifiable characteristic. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, tryptophan, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tyrosine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a given polypeptide is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a given coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for given polypeptide biological activity to identify mutants that retain activity. Conversely, the invention also provides for variants with mutations that enhance or increase the endogenous biological activity. Following mutagenesis of the nucleic acid sequence, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined. An increase, decrease, or elimination of a given biological activity of the variants disclosed herein can be readily measured by the ordinary person skilled in the art, i.e., by measuring the capability for mediating oligosaccharide modification, synthesis, or degradation (via detection of the products).


The present invention also provides for functional fragments of the genes or gene products described herein. A fragment, in the case of these sequences and all others provided herein, is defined as a part of the whole that is less than the whole. Moreover, a fragment ranges in size from a single nucleotide or amino acid within a polynucleotide or polypeptide sequence to one fewer nucleotide or amino acid than the entire polynucleotide or polypeptide sequence. Finally, a fragment is defined as any portion of a complete polynucleotide or polypeptide sequence that is intermediate between the extremes defined above.


For example, fragments of any of the proteins or enzymes disclosed herein or encoded by any of the genes disclosed herein can be 10 to 20 amino acids, 10 to 30 amino acids, 10 to 40 amino acids, 10 to 50 amino acids, 10 to 60 amino acids, 10 to 70 amino acids, 10 to 80 amino acids, 10 to 90 amino acids, 10 to 100 amino acids, 50 to 100 amino acids, 75 to 125 amino acids, 100 to 150 amino acids, 150 to 200 amino acids, 200 to 250 amino acids, 250 to 300 amino acids, 300 to 350 amino acids, 350 to 400 amino acids, 400 to 450 amino acids, or 450 to 500 amino acids. The fragments encompassed in the present invention comprise fragments that retain functional fragments. As such, the fragments preferably retain the catalytic domains that are required or are important for functional activity. Fragments can be determined or generated by using the sequence information herein, and the fragments can be tested for functional activity using standard methods known in the art. For example, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined. The biological function of said fragment can be measured by measuring ability to synthesize or modify a substrate oligosaccharide, or conversely, to catabolize an oligosaccharide substrate.


Within the context of the invention, “functionally equivalent”, as used herein, refers to a gene or the resulting encoded protein variant or fragment thereof capable of exhibiting a substantially similar activity as the wild-type fucosyltransferase. Specifically, the fucosyltransferase activity refers to the ability to transfer a fucose sugar to an acceptor substrate via an alpha-(1,2)-linkage. As used herein, “substantially similar activity” refers to an activity level within 5%, 10%, 20%, 30%, 40%, or 50% of the wild-type fucosyltransferase.


To test for lactose-utilizing fucosyltransferase activity, the production of fucosylated oligosaccharides (i.e., 2′-FL) is evaluated in a host organism that expresses the candidate enzyme (or syngene) and which contains both cytoplasmic GDP-fucose and lactose pools. The production of fucosylated oligosaccharides indicates that the candidate enzyme-encoding sequence functions as a lactose-utilizing α(1,2)fucosyltransferase.


Engineering of E. coli to Produce Human Milk Oligosaccharide 2′-FL


Described herein is a gene screening approach, which was used to validate the novel α (1,2) fucosyltransferases (α (1,2) FTs) for the synthesis of fucosyl-linked oligosaccharides in metabolically engineered E. coli. Of particular interest are α (1,2) FTs that are capable of the synthesis of the HMOS 2′-fucosyllactose (2′-FL). 2′-FL is the most abundant fucosylated oligosaccharide present in human milk, and this oligosaccharide provides protection to newborn infants against infectious diarrhea caused by bacterial pathogens such as Campylobacter jejuni (Ruiz-Palacios, G. M., et al. (2003). J Biol Chem 278, 14112-120; Morrow, A. L. et al. (2004). J Pediatr 145, 297-303; Newburg, D. S. et al. (2004). Glycobiology 14, 253-263). Other α (1,2) FTs of interest are those capable of synthesis of HMOS lactodifucotetraose (LDFT), laco-N-fucopentaose I (LNFI), or lacto-N-difucohexaose I (LDFH I).


The synthetic pathway of fucosyl oligosaccharides of human milk is illustrated in FIG. 1. Structurally, 2′-FL consists of a fucose molecule a 1,2 linked to the galactose portion of lactose (Fucα1-2Galβ1-4G1c). An α (1,2) FT from H. pylori strain 26695 termed FutC has been utilized to catalyze the synthesis of 2′-FL in metabolically engineered E. coli (Drouillard, S. et al. (2006). Angew Chem Int Ed Engl 45, 1778-780).


Candidate α(1,2) FTs (i.e., syngenes) were cloned by standard molecular biological techniques into an expression plasmid. This plasmid utilizes the strong leftwards promoter of bacteriophage λ (termed PL) to direct expression of the candidate genes (Sanger, F. et al. (1982). J Mol Biol 162, 729-773). The promoter is controllable, e.g., a trp-cI construct is stably integrated the into the E. coli host's genome (at the ampC locus), and control is implemented by adding tryptophan to the growth media. Gradual induction of protein expression is accomplished using a temperature sensitive cI repressor. Another similar control strategy (temperature independent expression system) has been described (Mieschendahl et al., 1986, Bio/Technology 4:802-808). The plasmid also carries the E. coli rcsA gene to up-regulate GDP-fucose synthesis, a critical precursor for the synthesis of fucosyl-linked oligosaccharides. In addition, the plasmid carries a β-lactamase (bla) gene for maintaining the plasmid in host strains by ampicillin selection (for convenience in the laboratory) and a native thyA (thymidylate synthase) gene as an alternative means of selection in thyA hosts. Alternative selectable markers include the proBA genes to complement proline auxotrophy (Stein et al., (1984), J Bacteriol 158:2, 696-700 (1984) or purA to complement adenine auxotrophy (S. A. Wolfe, J. M. Smith, J Biol Chem 263, 19147-53 (1988)). To act as plasmid selectable markers each of these genes are first inactivated in the host cell chromosome, then wild type copies of the genes are provided on the plasmid. Alternatively a drug resistance gene may be used on the plasmid, e.g. beta-lactamase (this gene is already on the expression plasmid described above, thereby permitting selection with ampicillin). Ampicillin selection is well known in the art and described in standard manuals such as Maniatis et al., (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring, N.Y.


The nucleic acid sequence of such an expression plasmid, pEC2-(T7)FutX-rcsA-thyA (pG401) is provided below. The underlined sequence represents the FutX syngene, which can be readily replaced with any of the novel α(1,2) FTs described herein using standard recombinant DNA techniques.










(SEQ ID NO: 287)



TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGT






CTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGG





CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACC





GCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCTCCTCAACCTGTATATTCGTAAACCACGCC





CAATGGGAGCTGTCTCAGGTTTGTTCCTGATTGGTTACGGCGCGTTTCGCATCATTGTTGAGTTTTTC





CGCCAGCCCGACGCGCAGTTTACCGGTGCCTGGGTGCAGTACATCAGCATGGGGCAAATTCTTTCCAT





CCCGATGATTGTCGCGGGTGTGATCATGATGGTCTGGGCATATCGTCGCAGCCCACAGCAACACGTTT





CCTGAGGAACCATGAAACAGTATTTAGAACTGATGCAAAAAGTGCTCGACGAAGGCACACAGAAAAAC





GACCGTACCGGAACCGGAACGCTTTCCATTTTTGGTCATCAGATGCGTTTTAACCTGCAAGATGGATT





CCCGCTGGTGACAACTAAACGTTGCCACCTGCGTTCCATCATCCATGAACTGCTGTGGTTTCTGCAGG





GCGACACTAACATTGCTTATCTACACGAAAACAATGTCACCATCTGGGACGAATGGGCCGATGAAAAC





GGCGACCTCGGGCCAGTGTATGGTAAACAGTGGCGCGCCTGGCCAACGCCAGATGGTCGTCATATTGA





CCAGATCACTACGGTACTGAACCAGCTGAAAAACGACCCGGATTCGCGCCGCATTATTGTTTCAGCGT





GGAACGTAGGCGAACTGGATAAAATGGCGCTGGCACCGTGCCATGCATTCTTCCAGTTCTATGTGGCA





GACGGCAAACTCTCTTGCCAGCTTTATCAGCGCTCCTGTGACGTCTTCCTCGGCCTGCCGTTCAACAT





TGCCAGCTACGCGTTATTGGTGCATATGATGGCGCAGCAGTGCGATCTGGAAGTGGGTGATTTTGTCT





GGACCGGTGGCGACACGCATCTGTACAGCAACCATATGGATCAAACTCATCTGCAATTAAGCCGCGAA





CCGCGTCCGCTGCCGAAGTTGATTATCAAACGTAAACCCGAATCCATCTTCGACTACCGTTTCGAAGA





CTTTGAGATTGAAGGCTACGATCCGCATCCGGGCATTAAAGCGCCGGTGGCTATCTAATTACGAAACA





TCCTGCCAGAGCCGACGCCAGTGTGCGTCGGTTTTTTTACCCTCCGTTAAATTCTTCGAGACGCCTTC





CCGAAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGC





TATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCC





CAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTTCTTTAATGAAGCAGGGCATCAGGACGGT





ATCTTTGTGGAGAAAGCAGAGTAATCTTATTCAGCCTGACTGGTGGGAAACCACCAGTCAGAATGTGT





TAGCGCATGTTGACAAAAATACCATTAGTCACATTATCCGTCAGTCGGACGACATGGTAGATAACCTG





TTTATTATGCGTTTTGATCTTACGTTTAATATTACCTTTATGCGATGAAACGGTCTTGGCTTTGATAT





TCATTTGGTCAGAGATTTGAATGGTTCCCTGACCTGCCATCCACATTCGCAACATACTCGATTCGGTT





CGGCTCAATGATAACGTCGGCATATTTAAAAACGAGGTTATCGTTGTCTCTTTTTTCAGAATATCGCC





AAGGATATCGTCGAGAGATTCCGGTTTAATCGATTTAGAACTGATCAATAAATTTTTTCTGACCAATA





GATATTCATCAAAATGAACATTGGCAATTGCCATAAAAACGATAAATAACGTATTGGGATGTTGATTA





ATGATGAGCTTGATACGCTGACTGTTAGAAGCATCGTGGATGAAACAGTCCTCATTAATAAACACCAC





TGAAGGGCGCTGTGAATCACAAGCTATGGCAAGGTCATCAACGGTTTCAATGTCGTTGATTTCTCTTT





TTTTAACCCCTCTACTCAACAGATACCCGGTTAAACCTAGTCGGGTGTAACTACATAAATCCATAATA





ATCGTTGACATGGCATACCCTCACTCAATGCGTAACGATAATTCCCCTTACCTGAATATTTCATCATG





ACTAAACGGAACAACATGGGTCACCTAATGCGCCACTCTCGCGATTTTTCAGGCGGACTTACTATCCC





GTAAAGTGTTGTATAATTTGCCTGGAATTGTCTTAAAGTAAAGTAAATGTTGCGATATGTGAGTGAGC





TTAAAACAAATATTTCGCTGCAGGAGTATCCTGGAAGATGTTCGTAGAAGCTTACTGCTCACAAGAAA





AAAGGCACGTCATCTGACGTGCCTTTTTTATTTGTACTACCCTGTACGATTACTGCAGCTCGAGCTAG






TTAATCGGTACTTTGATCCATTCTTTCGGGTACATGTCCGGGGTTTCTTTATGCTGGAACCAGCGACA







CGGCGCGATGACGATTTTCTCTTTACGTGGGTTCAGCCAAGCACCCCACCAGGAGAACGTAGAATTAC







AGATAATGTGGTGACGACAGTGGCTCATCAGCATCATATCCTGCCAGCTGTCTTCGCCCTTGTTCCAC







GTCACGTAGACCGCTTTCTTCAGCGGGATGTTTTCTTTAACCCAAGAGATATCATCAGAGAACACGTA







GTAGCTCGGGCCAGTAATACGGTTCTCCATTTCCGCGATCGCGTTCTTGTAATACGGCAGCTGGCACA







CGGAACCCGTGTTTGCCCAGTGACGCGGCAGCAGGTAGTCACCACGGCGGATGTGGATAGAAACAGCT







TGGTCGTCAACTTCGATCTGTTTCAGCAGTTCCAGGCTTTCCGGGTTAGCGATGTTCAGGTTAAAAGA







GAAGGCTTTACGAACGTCGTCTTTGATATCGAAGAAGAAGCGTTCAGACTGGTAGAAACCTTTAAAGT







ACAGCAGCGGCCAAAAATAACGTTTTTCGTATGGATACAGAGTAGACGGGTCCTGGCGACGTTCGTAG







ATTTTTTTGAAGAACAGGAACTCCAGGATTTTTTTCAGGGTACGGTTGATGCAAAATTCAGTCTGGCT







CAGGTCAAAGATACGGTTCATCTCATAACCGTTGTGAACTTTATAATGAACCATGTCAGACAGATCGA







TGTTCGTATCCGGGTAATGGTGTTTCATTTTCAGGTAGAACGCGTAGATAAACATCTGGTTACCCAGG







CCGCCGATCATCTTGATCAGACGCATATGTATATCTCCTTCTTGAATTCTAAAAATTGATTGAATGTA






TGCAAATAAATGCATACACCATAGGTGTGGTTTAATTTGATGCCCTTTTTCAGGGCTGGAATGTGTAA





GAGCGGGGTTATTTATGCTGTTGTTTTTTTGTTACTCGGGAAGGGCTTTACCTCTTCCGCATAAACGC





TTCCATCAGCGTTTATAGTTAAAAAAATCTTTCGGAACTGGTTTTGCGCTTACCCCAACCAACAGGGG





ATTTGCTGCTTTCCATTGAGCCTGTTTCTCTGCGCGACGTTCGCGGCGGCGTGTTTGTGCATCCATCT





GGATTCTCCTGTCAGTTAGCTTTGGTGGTGTGTGGCAGTTGTAGTCCTGAACGAAAACCCCCCGCGAT





TGGCACATTGGCAGCTAATCCGGAATCGCACTTACGGCCAATGCTTCGTTTCGTATCACACACCCCAA





AGCCTTCTGCTTTGAATGCTGCCCTTCTTCAGGGCTTAATTTTTAAGAGCGTCACCTTCATGGTGGTC





AGTGCGTCCTGCTGATGTGCTCAGTATCACCGCCAGTGGTATTTATGTCAACACCGCCAGAGATAATT





TATCACCGCAGATGGTTATCTGTATGTTTTTTATATGAATTTATTTTTTGCAGGGGGGCATTGTTTGG





TAGGTGAGAGATCAATTCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGG





CGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGC





TCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAA





AAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCC





CCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA





CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACC





TGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCG





GTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT





ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTG





GTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTAC





GGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGT





TGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGA





TTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG





AACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTT





AAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAAT





GCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCC





GTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGA





CCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTG





GTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCG





CCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGG





TATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAA





AAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATG





GTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA





GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATAC





GGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGA





AAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATC





TTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAA





AGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATT





TATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGT





TCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCT





ATAAAAATAGGCGTATCACGAGGCCCTTTCGTC






The expression constructs were transformed into a host strain useful for the production of 2′-FL. Biosynthesis of 2′-FL requires the generation of an enhanced cellular pool of both lactose and GDP-fucose (FIG. 2). The wild-type Escherichia coli K12 prototrophic strain W3110 was selected as the parent background to test the ability of the candidates to catalyze 2′-FL production (Bachmann, B J (1972). Bacteriol Rev 36, 525-557). The particular W3110 derivative employed was one that previously had been modified by the introduction (at the ampC locus) of a tryptophan-inducible PtrpB cI+ repressor cassette, generating an E. coli strain known as GI724 (LaVallie, E. R. et al. (2000). Methods Enzymol 326, 322-340). Other features of GI724 include lacIq and lacPL8 promoter mutations. E. coli strain GI724 affords economical production of recombinant proteins from the phage λ PL promoter following induction with low levels of exogenous tryptophan (LaVallie, E. R. et al. (1993). Biotechnology (N Y) 11, 187-193; Mieschendahl, et al. (1986). Bio/Technology 4, 802-08). Additional genetic alterations were made to this strain to promote the biosynthesis of 2′-FL. This was achieved in strain GI724 through several manipulations of the chromosome using λ Red recombineering (Court, D. L. et al. (2002). Annu Rev Genet 36, 361-388) and generalized P1 phage transduction.


First, the ability of the E. coli host strain to accumulate intracellular lactose was engineered by simultaneous deletion of the endogenous β-galactosidase gene (lacZ) and the lactose operon repressor gene (lad). During construction of this deletion, the lacIq promoter was placed immediately upstream of the lactose permease gene, lacY. The modified strain maintains its ability to transport lactose from the culture medium (via LacY), but is deleted for the wild-type copy of the lacZ (β-galactosidase) gene responsible for lactose catabolism. Therefore, an intracellular lactose pool is created when the modified strain is cultured in the presence of exogenous lactose. A schematic of the PlacIq lacY+ chromosomal construct is shown in FIG. 12.


Genomic DNA sequence of the PlacIq lacY+ chromosomal construct is set forth below (SEQ ID NO: 288):










CACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAAGTGTAGGCTGGAGC






TGCTTCGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTTCGGAATAGGAACTAAGGAGGAT





ATTCATATGTACTATTTAAAAAACACAAACTTTTGGATGTTCGGTTTATTCTTTTTCTTTTACTTTTTTATCATG





GGAGCCTACTTCCCGTTTTTCCCGATTTGGCTACATGACATCAACCATATCAGCAAAAGTGATACGGGTATTATT





TTTGCCGCTATTTCTCTGTTCTCGCTATTATTCCAACCGCTGTTTGGTCTGCTTTCTGACAAACTCGGGCTGCGC





AAATACCTGCTGTGGATTATTACCGGCATGTTAGTGATGTTTGCGCCGTTCTTTATTTTTATCTTCGGGCCACTG





TTACAATACAACATTTTAGTAGGATCGATTGTTGGTGGTATTTATCTAGGCTTTTGTTTTAACGCCGGTGCGCCA





GCAGTAGAGGCATTTATTGAGAAAGTCAGCCGTCGCAGTAATTTCGAATTTGGTCGCGCGCGGATGTTTGGCTGT





GTTGGCTGGGCGCTGTGTGCCTCGATTGTCGGCATCATGTTCACCATCAATAATCAGTTTGTTTTCTGGCTGGGC





TCTGGCTGTGCACTCATCCTCGCCGTTTTACTCTTTTTCGCCAAAACGGATGCGCCCTCTTCTGCCACGGTTGCC





AATGCGGTAGGTGCCAACCATTCGGCATTTAGCCTTAAGCTGGCACTGGAACTGTTCAGACAGCCAAAACTGTGG





TTTTTGTCACTGTATGTTATTGGCGTTTCCTGCACCTACGATGTTTTTGACCAACAGTTTGCTAATTTCTTTACT





TCGTTCTTTGCTACCGGTGAACAGGGTACGCGGGTATTTGGCTACGTAACGACAATGGGCGAATTACTTAACGCC





TCGATTATGTTCTTTGCGCCACTGATCATTAATCGCATCGGTGGGAAAAACGCCCTGCTGCTGGCTGGCACTATT





ATGTCTGTACGTATTATTGGCTCATCGTTCGCCACCTCAGCGCTGGAAGTGGTTATTCTGAAAACGCTGCATATG





TTTGAAGTACCGTTCCTGCTGGTGGGCTGCTTTAAATATATTACCAGCCAGTTTGAAGTGCGTTTTTCAGCGACG





ATTTATCTGGTCTGTTTCTGCTTCTTTAAGCAACTGGCGATGATTTTTATGTCTGTACTGGCGGGCAATATGTAT





GAAAGCATCGGTTTCCAGGGCGCTTATCTGGTGCTGGGTCTGGTGGCGCTGGGCTTCACCTTAATTTCCGTGTTC





ACGCTTAGCGGCCCCGGCCCGCTTTCCCTGCTGCGTCGTCAGGTGAATGAAGTCGCTTAAGCAATCAATGTCGGA





TGCGGCGCGAGCGCCTTATCCGACCAACATATCATAACGGAGTGATCGCATTGTAAATTATAAAAATTGCCTGAT





ACGCTGCGCTTATCAGGCCTACAAGTTCAGCGATCTACATTAGCCGCATCCGGCATGAACAAAGCGCAGGAACAA





GCGTCGCA






Second, the ability of the host E. coli strain to synthesize colanic acid, an extracellular capsular polysaccharide, was eliminated by the deletion of the wcaJ gene, encoding the UDP-glucose lipid carrier transferase (Stevenson, G. et al. (1996). J Bacteriol 178, 4885-893). In a wcaJ null background GDP-fucose accumulates in the E. coli cytoplasm (Dumon, C. et al. (2001). Glycoconj J 18, 465-474). A schematic of the chromosomal deletion of wcaJ is shown in FIG. 13.


The sequence of the chromosomal region of E. coli bearing the ΔwcaJ::FRT mutation is set forth below (SEQ ID NO: 289):










GTTCGGTTATATCAATGTCAAAAACCTCACGCCGCTCAAGCTGGTGATCAACTCCGGGAACGGCGCAGCGGGTCC






GGTGGTGGACGCCATTGAAGCCCGCTTTAAAGCCCTCGGCGCGCCCGTGGAATTAATCAAAGTGCACAACACGCC





GGACGGCAATTTCCCCAACGGTATTCCTAACCCACTACTGCCGGAATGCCGCGACGACACCCGCAATGCGGTCAT





CAAACACGGCGCGGATATGGGCATTGCTTTTGATGGCGATTTTGACCGCTGTTTCCTGTTTGACGAAAAAGGGCA





GTTTATTGAGGGCTACTACATTGTCGGCCTGTTGGCAGAAGCATTCCTCGAAAAAAATCCCGGCGCGAAGATCAT





CCACGATCCACGTCTCTCCTGGAACACCGTTGATGTGGTGACTGCCGCAGGTGGCACGCCGGTAATGTCGAAAAC





CGGACACGCCTTTATTAAAGAACGTATGCGCAAGGAAGACGCCATCTATGGTGGCGAAATGAGCGCCCACCATTA





CTTCCGTGATTTCGCTTACTGCGACAGCGGCATGATCCCGTGGCTGCTGGTCGCCGAACTGGTGTGCCTGAAAGA





TAAAACGCTGGGCGAACTGGTACGCGACCGGATGGCGGCGTTTCCGGCAAGCGGTGAGATCAACAGCAAACTGGC





GCAACCCGTTGAGGCGATTAACCGCGTGGAACAGCATTTTAGCCGTGAGGCGCTGGCGGTGGATCGCACCGATGG





CATCAGCATGACCTTTGCCGACTGGCGCTTTAACCTGCGCACCTCCAATACCGAACCGGTGGTGCGCCTGAATGT





GGAATCGCGCGGTGATGTGCCGCTGATGGAAGCGCGAACGCGAACTCTGCTGACGTTGCTGAACGAGTAATGTCG





GATCTTCCCTTACCCCACTGCGGGTAAGGGGCTAATAACAGGAACAACGATGATTCCGGGGATCCGTCGACCTGC





AGTTCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCCTACAGTTAACAAAGCGGCATA





TTGATATGAGCTTACGTGAAAAAACCATCAGCGGCGCGAAGTGGTCGGCGATTGCCACGGTGATCATCATCGGCC





TCGGGCTGGTGCAGATGACCGTGCTGGCGCGGATTATCGACAACCACCAGTTCGGCCTGCTTACCGTGTCGCTGG





TGATTATCGCGCTGGCAGATACGCTTTCTGACTTCGGTATCGCTAACTCGATTATTCAGCGAAAAGAAATCAGTC





ACCTTGAACTCACCACGTTGTACTGGCTGAACGTCGGGCTGGGGATCGTGGTGTGCGTGGCGGTGTTTTTGTTGA





GTGATCTCATCGGCGACGTGCTGAATAACCCGGACCTGGCACCGTTGATTAAAACATTATCGCTGGCGTTTGTGG





TAATCCCCCACGGGCAACAGTTCCGCGCGTTGATGCAAAAAGAGCTGGAGTTCAACAAAATCGGCATGATCGAAA





CCAGCGCGGTGCTGGCGGGCTTCACTTGTACGGTGGTTAGCGCCCATTTCTGGCCGCTGGCGATGACCGCGATCC





TCGGTTATCTGGTCAATAGTGCGGTGAGAACGCTGCTGTTTGGCTACTTTGGCCGCAAAATTTATCGCCCCGGTC





TGCATTTCTCGCTGGCGTCGGTGGCACCGAACTTACGCTTTGGTGCCTGGCTGACGGCGGACAGCATCATCAACT





ATCTCAATACCAACCTTTCAACGCTCGTGCTGGCGCGTATTCTCGGCGCGGGCGTGGCAGGGGGATACAACCTGG





CGTACAACGTGGCCGTTGTGCCACCGATGAAGCTGAACCCAATCATCACCCGCGTGTTGTTTCCGGCATTCGCCA





AAATTCAGGACGATACCGAAAAGCTGCGTGTTAACTTCTACAAGCTGCTGTCGGTAGTGGGGATTATCAACTTTC





CGGCGCTGCTCGGGCTAATGGTGGTGTCGAATAACTTTGTACCGCTGGTCTTTGGTGAGAAGTGGAACAGCATTA





TTCCGGTGCTGCAATTGCTGTGTGTGGTGGGTCTGCTGCGCTCCG






Third, the magnitude of the cytoplasmic GDP-fucose pool was enhanced by the introduction of a null mutation into the lon gene. Lon is an ATP-dependant intracellular protease that is responsible for degrading RcsA, which is a positive transcriptional regulator of colanic acid biosynthesis in E. coli (Gottesman, S. & Stout, V. Mol Microbiol 5, 1599-1606 (1991)). In a lon null background, RcsA is stabilized, RcsA levels increase, the genes responsible for GDP-fucose synthesis in E. coli are up-regulated, and intracellular GDP-fucose concentrations are enhanced. The lon gene was almost entirely deleted and replaced by an inserted functional, wild-type, but promoter-less E. coli lacZ+ gene (Δlon::(kan, lacZ+). λ Red recombineering was used to perform the construction. A schematic of the kan, lacZ+ insertion into the lon locus is shown in FIG. 14.


Genomic DNA sequence surrounding the lacZ+ insertion into the lon region in the E. coli strain is set forth below (SEQ ID NO: 290):










GTGGATGGAAGAGGTGGAAAAAGTGGTTATGGAGGAGTGGGTAATTGATGGTGAAAGGAAAGGGTTGGTGATTTA






TGGGAAGGGGGAAGGGGAAGAGGGATGTGGTGAATAATTAAGGATTGGGATAGAATTAGTTAAGGAAAAAGGGGG





GATTTTATGTGGGGTTTAATTTTTGGTGTATTGTGGGGGTTGAATGTGGGGGAAAGATGGGGATATAGTGAGGTA





GATGTTAATAGATGGGGTGAAGGAGAGTGGTGTGATGTGATTAGGTGGGGGAAATTAAAGTAAGAGAGAGGTGTA





TGATTGGGGGGATGGGTGGAGGTGGAGTTGGAAGTTGGTATTGTGTAGAAAGTATAGGAAGTTGAGAGGGGTTTT





GAAGGTGAGGGTGGGGGAAGGAGTGAGGGGGGAAGGGGTGGTAAAGGAAGGGGAAGAGGTAGAAAGGGAGTGGGG





AGAAAGGGTGGTGAGGGGGGATGAATGTGAGGTAGTGGGGTATGTGGAGAAGGGAAAAGGGAAGGGGAAAGAGAA





AGGAGGTAGGTTGGAGTGGGGTTAGATGGGGATAGGTAGAGTGGGGGGTTTTATGGAGAGGAAGGGAAGGGGAAT





TGGGAGGTGGGGGGGGGTGTGGTAAGGTTGGGAAGGGGTGGAAAGTAAAGTGGATGGGTTTGTTGGGGGGAAGGA





TGTGATGGGGGAGGGGATGAAGATGTGATGAAGAGAGAGGATGAGGATGGTTTGGGATGATTGAAGAAGATGGAT





TGGAGGGAGGTTGTGGGGGGGGTTGGGTGGAGAGGGTATTGGGGTATGAGTGGGGAGAAGAGAGAATGGGGTGGT





GTGATGGGGGGGTGTTGGGGGTGTGAGGGGAGGGGGGGGGGGTTGTTTTTGTGAAGAGGGAGGTGTGGGGTGGGG





TGAATGAAGTGGAGGAGGAGGGAGGGGGGGTATGGTGGGTGGGGAGGAGGGGGGTTGGTTGGGGAGGTGTGGTGG





AGGTTGTGAGTGAAGGGGGAAGGGAGTGGGTGGTATTGGGGGAAGTGGGGGGGGAGGATGTGGTGTGATGTGAGG





TTGGTGGTGGGGAGAAAGTATGGATGATGGGTGATGGAATGGGGGGGGTGGATAGGGTTGATGGGGGTAGGTGGG





GATTGGAGGAGGAAGGGAAAGATGGGATGGAGGGAGGAGGTAGTGGGATGGAAGGGGGTGTTGTGGATGAGGATG





ATGTGGAGGAAGAGGATGAGGGGGTGGGGGGAGGGGAAGTGTTGGGGAGGGTGAAGGGGGGATGGGGGAGGGGGA





GGATGTGGTGGTGAGGGATGGGGATGGGTGGTTGGGGAATATGATGGTGGAAAATGGGGGGTTTTGTGGATTGAT





GGAGTGTGGGGGGGTGGGTGTGGGGGAGGGGTATGAGGAGATAGGGTTGGGTAGGGGTGATATTGGTGAAGAGGT





TGGGGGGGAATGGGGTGAGGGGTTGGTGGTGGTTTAGGGTATGGGGGGTGGGGATTGGGAGGGGATGGGGTTGTA





TGGGGTTGTTGAGGAGTTGTTGTAATAAGGGGATGTTGAAGTTGGTATTGGGAAGTTGGTATTGTGTAGAAAGTA





TAGGAAGTTGGAAGGAGGTGGAGGGTAGATAAAGGGGGGGGTTATTTTTGAGAGGAGAGGAAGTGGTAATGGTAG





GGAGGGGGGGTGAGGTGGAATTGGGGGGATAGTGAGGGGGTGGAGGAGTGGTGGGGAGGAATGGGGATATGGAAA





GGGTGGATATTGAGGGATGTGGGTTGTTGGGGGTGGAGGAGATGGGGATGGGTGGTTTGGATGAGTTGGTGTTGA





GTGTAGGGGGTGATGTTGAAGTGGAAGTGGGGGGGGGAGTGGTGTGGGGGATAATTGAATTGGGGGGTGGGGGAG





GGGAGAGGGTTTTGGGTGGGGAAGAGGTAGGGGGTATAGATGTTGAGAATGGGAGATGGGAGGGGTGAAAAGAGG





GGGGAGTAAGGGGGTGGGGATAGTTTTGTTGGGGGGGTAATGGGAGGGAGTTTAGGGGGTGTGGTAGGTGGGGGA





GGTGGGAGTTGAGGGGAATGGGGGGGGGATGGGGTGTATGGGTGGGGAGTTGAAGATGAAGGGTAATGGGGATTT





GAGGAGTAGGATGAATGGGGTAGGTTTTGGGGGTGATAAATAAGGTTTTGGGGTGATGGTGGGAGGGGTGAGGGG





TGGTAATGAGGAGGGGATGAGGAAGTGTATGTGGGGTGGAGTGGAAGAAGGGTGGTTGGGGGTGGTAATGGGGGG





GGGGGTTGGAGGGTTGGAGGGAGGGGTTAGGGTGAATGGGGGTGGGTTGAGTTAGGGGAATGTGGTTATGGAGGG





GTGGAGGGGTGAAGTGATGGGGGAGGGGGGTGAGGAGTTGTTTTTTATGGGGAATGGAGATGTGTGAAAGAAAGG





GTGAGTGGGGGTTAAATTGGGAAGGGTTATTAGGGAGGTGGATGGAAAAATGGATTTGGGTGGTGGTGAGATGGG





GGATGGGGTGGGAGGGGGGGGGGAGGGTGAGAGTGAGGTTTTGGGGGAGAGGGGAGTGGTGGGAGGGGGTGATGT





GGGGGGGTTGTGAGGATGGGGTGGGGTTGGGTTGGAGTAGGGGTAGTGTGAGGGAGAGTTGGGGGGGGGTGTGGG





GGTGGGGTAGTTGAGGGAGTTGAATGAAGTGTTTAGGTTGTGGAGGGAGATGGAGAGGGAGTTGAGGGGTTGGGA





GGGGGTTAGGATGGAGGGGGAGGATGGAGTGGAGGAGGTGGTTATGGGTATGAGGGAAGAGGTATTGGGTGGTGA





GTTGGATGGTTTGGGGGGATAAAGGGAAGTGGAAAAAGTGGTGGTGGTGTTTTGGTTGGGTGAGGGGTGGATGGG





GGGTGGGGTGGGGAAAGAGGAGAGGGTTGATAGAGAAGTGGGGATGGTTGGGGGTATGGGGAAAATGAGGGGGGT





AAGGGGAGGAGGGGTTGGGGTTTTGATGATATTTAATGAGGGAGTGATGGAGGGAGTGGGAGAGGAAGGGGGGGT





GTAAAGGGGGATAGTGAGGAAAGGGGTGGGAGTATTTAGGGAAAGGGGGAAGAGTGTTAGGGATGGGGTGGGGGT





ATTGGGAAAGGATGAGGGGGGGGGTGTGTGGAGGTAGGGAAAGGGATTTTTTGATGGAGGATTTGGGGAGAGGGG





GGAAGGGGTGGTGTTGATGGAGGGGGGGGTAGATGGGGGAAATAATATGGGTGGGGGTGGTGTGGGGTGGGGGGG





GTTGATAGTGGAGGGGGGGGGAAGGATGGAGAGATTTGATGGAGGGATAGAGGGGGTGGTGATTAGGGGGGTGGG





GTGATTGATTGGGGAGGGAGGAGATGATGAGAGTGGGGTGATTAGGATGGGGGTGGAGGATTGGGGTTAGGGGTT





GGGTGATGGGGGGTAGGGAGGGGGGATGATGGGTGAGAGGATTGATTGGGAGGATGGGGTGGGTTTGAATATTGG





GTTGATGGAGGAGATAGAGGGGGTAGGGGTGGGAGAGGGTGTAGGAGAGGGGATGGTTGGGATAATGGGAAGAGG





GGAGGGGGTTAAAGTTGTTGTGGTTGATGAGGAGGATATGGTGGAGGATGGTGTGGTGATGGATGAGGTGAGGAT





GGAGAGGATGATGGTGGTGAGGGTTAAGGGGTGGAATGAGGAAGGGGTTGGGGTTGAGGAGGAGGAGAGGATTTT





GAATGGGGAGGTGGGGGAAAGGGAGATGGGAGGGTTGTGGTTGAATGAGGGTGGGGTGGGGGGTGTGGAGTTGAA





GGAGGGGAGGATAGAGATTGGGGATTTGGGGGGTGGAGAGTTTGGGGTTTTGGAGGTTGAGAGGTAGTGTGAGGG





GATGGGGATAAGGAGGAGGGTGATGGATAATTTGAGGGGGGAAAGGGGGGGTGGGGGTGGGGAGGTGGGTTTGAG





GGTGGGATAAAGAAAGTGTTAGGGGTAGGTAGTGAGGGAAGTGGGGGGAGATGTGAAGTTGAGGGTGGAGTAGAG





GGGGGGTGAAATGATGATTAAAGGGAGTGGGAAGATGGAAATGGGTGATTTGTGTAGTGGGTTTATGGAGGAAGG





AGAGGTGAGGGAAAATGGGGGTGATGGGGGAGATATGGTGATGTTGGAGATAAGTGGGGTGAGTGGAGGGGAGGA





GGATGAGGGGGAGGGGGTTTTGTGGGGGGGGTAAAAATGGGGTGAGGTGAAATTGAGAGGGGAAAGGAGTGTGGT





GGGGGTAAGGGAGGGAGGGGGGGTTGGAGGAGAGATGAAAGGGGGAGTTAAGGGGATGAAAAATAATTGGGGTGT





GGGGTTGGTGTAGGGAGGTTTGATGAAGATTAAATGTGAGGGAGTAAGAAGGGGTGGGATTGTGGGTGGGAAGAA





AGGGGGGATTGAGGGTAATGGGATAGGTGAGGTTGGTGTAGATGGGGGGATGGTAAGGGTGGATGTGGGAGTTTG





AGGGGAGGAGGAGAGTATGGGGGTGAGGAAGATGGGAGGGAGGGAGGTTTGGGGGAGGGGTTGTGGTGGGGGAAA





GGAGGGAAAGGGGGATTGGGGATTGAGGGTGGGGAAGTGTTGGGAAGGGGGATGGGTGGGGGGGTGTTGGGTATT





AGGGGAGGTGGGGAAAGGGGGATGTGGTGGAAGGGGATTAAGTTGGGTAAGGGGAGGGTTTTGGGAGTGAGGAGG





TTGTAAAAGGAGGGGGAGTGAATGGGTAATGATGGTGATAGTAGGTTTGGTGAGGTTGTGAGTGGAAAATAGTGA





GGTGGGGGAAAATGGAGTAATAAAAAGAGGGGTGGGAGGGTAATTGGGGGTTGGGAGGGTTTTTTTGTGTGGGTA





AGTTAGATGGGGGATGGGGGTTGGGGTTATTAAGGGGTGTTGTAAGGGGATGGGTGGGGTGATATAAGTGGTGGG





GGTTGGTAGGTTGAAGGATTGAAGTGGGATATAAATTATAAAGAGGAAGAGAAGAGTGAATAAATGTGAATTGAT





GGAGAAGATTGGTGGAGGGGGTGATATGTGTAAAGGTGGGGGTGGGGGTGGGTTAGATGGTATTATTGGTTGGGT





AAGTGAATGTGTGAAAGAAGG






Fourth, a thyA (thymidylate synthase) mutation was introduced into the strain by P1 transduction. In the absence of exogenous thymidine, thyA strains are unable to make DNA and die. The defect can be complemented in trans by supplying a wild-type thyA gene on a multicopy plasmid (Belfort, M., Maley, G. F., and Maley, F. (1983). Proc Natl Acad Sci USA 80, 1858-861). This complementation was used here as a means of plasmid maintenance.


An additional modification that is useful for increasing the cytoplasmic pool of free lactose (and hence the final yield of 2′-FL) is the incorporation of a lacA mutation. LacA is a lactose acetyltransferase that is only active when high levels of lactose accumulate in the E. coli cytoplasm. High intracellular osmolarity (e.g., caused by a high intracellular lactose pool) can inhibit bacterial growth, and E. coli has evolved a mechanism for protecting itself from high intra cellular osmlarity caused by lactose by “tagging” excess intracellular lactose with an acetyl group using LacA, and then actively expelling the acetyl-lactose from the cell (Danchin, A. Bioessays 31, 769-773 (2009)). Production of acetyl-lactose in E. coli engineered to produce 2′-FL or other human milk oligosaccharides is therefore undesirable: it reduces overall yield. Moreover, acetyl-lactose is a side product that complicates oligosaccharide purification schemes. The incorporation of a lacA mutation resolves these problems. Sub-optimal production of fucosylated oligosaccharides occurs in strains lacking either or both of the mutations in the colanic acid pathway and the lon protease. Diversion of lactose into a side product (acetyl-lactose) occurs in strains that do not contain the lacA mutation. A schematic of the lacA deletion and corresponding genomic sequence is provided above (SEQ ID NO: 288).


The strain used to test the different α(1,2) FT candidates incorporates all the above genetic modifications and has the following genotype: ΔampC::PtrpBcI, A(lacI-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA


The E. coli strains harboring the different α(1,2) FT candidate expression plasmids were analyzed. Strains were grown in selective media (lacking thymidine) to early exponential phase. Lactose was then added to a final concentration of 0.5%, and tryptophan (200 μM) was added to induce expression of each candidate α(1,2) FT from the PL promoter. At the end of the induction period (˜24 h) equivalent OD 600 units of each strain and the culture supernatant was harvested. Lysates were prepared and analyzed for the presence of 2′-FL by thin layer chromatography (TLC).


A map of plasmid pG217 is shown in FIG. 11, which carries the B. vulgatus FutN. The sequence of plasmid pG217 is set forth below (SEQ ID NO: 291):










TCTAGAATTCTAAAAATTGATTGAATGTATGCAAATAAATGCATACACCATAGGTGTGGTTTAATTTGATGCCCT






TTTTCAGGGCTGGAATGTGTAAGAGCGGGGTTATTTATGCTGTTGTTTTTTTGTTACTCGGGAAGGGCTTTACCT





CTTCCGCATAAACGCTTCCATCAGCGTTTATAGTTAAAAAAATCTTTCGGAACTGGTTTTGCGCTTACCCCAACC





AACAGGGGATTTGCTGCTTTCCATTGAGCCTGTTTCTCTGCGCGACGTTCGCGGCGGCGTGTTTGTGCATCCATC





TGGATTCTCCTGTCAGTTAGCTTTGGTGGTGTGTGGCAGTTGTAGTCCTGAACGAAAACCCCCCGCGATTGGCAC





ATTGGCAGCTAATCCGGAATCGCACTTACGGCCAATGCTTCGTTTCGTATCACACACCCCAAAGCCTTCTGCTTT





GAATGCTGCCCTTCTTCAGGGCTTAATTTTTAAGAGCGTCACCTTCATGGTGGTCAGTGCGTCCTGCTGATGTGC





TCAGTATCACCGCCAGTGGTATTTATGTCAACACCGCCAGAGATAATTTATCACCGCAGATGGTTATCTGTATGT





TTTTTATATGAATTTATTTTTTGCAGGGGGGCATTGTTTGGTAGGTGAGAGATCAATTCTGCATTAATGAATCGG





CCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGT





CGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGC





AGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCA





TAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATA





AAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCT





GTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGT





CGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCG





TCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG





GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTAT





CTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGG





TAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTT





TTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGAT





CTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA





CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACT





CCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCC





ACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAAC





TTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCG





CAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTC





CCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGT





TGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCC





ATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAG





TTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAA





ACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACC





CAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAA





AAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCA





GGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATT





TCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCAC





GAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCAC





AGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGG





CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACCGCACAGA





TGCGTAAGGAGAAAATACCGCATCAGGCGCCTCCTCAACCTGTATATTCGTAAACCACGCCCAATGGGAGCTGTC





TCAGGTTTGTTCCTGATTGGTTACGGCGCGTTTCGCATCATTGTTGAGTTTTTCCGCCAGCCCGACGCGCAGTTT





ACCGGTGCCTGGGTGCAGTACATCAGCATGGGGCAAATTCTTTCCATCCCGATGATTGTCGCGGGTGTGATCATG





ATGGTCTGGGCATATCGTCGCAGCCCACAGCAACACGTTTCCTGAGGAACCATGAAACAGTATTTAGAACTGATG





CAAAAAGTGCTCGACGAAGGCACACAGAAAAACGACCGTACCGGAACCGGAACGCTTTCCATTTTTGGTCATCAG





ATGCGTTTTAACCTGCAAGATGGATTCCCGCTGGTGACAACTAAACGTTGCCACCTGCGTTCCATCATCCATGAA





CTGCTGTGGTTTCTGCAGGGCGACACTAACATTGCTTATCTACACGAAAACAATGTCACCATCTGGGACGAATGG





GCCGATGAAAACGGCGACCTCGGGCCAGTGTATGGTAAACAGTGGCGCGCCTGGCCAACGCCAGATGGTCGTCAT





ATTGACCAGATCACTACGGTACTGAACCAGCTGAAAAACGACCCGGATTCGCGCCGCATTATTGTTTCAGCGTGG





AACGTAGGCGAACTGGATAAAATGGCGCTGGCACCGTGCCATGCATTCTTCCAGTTCTATGTGGCAGACGGCAAA





CTCTCTTGCCAGCTTTATCAGCGCTCCTGTGACGTCTTCCTCGGCCTGCCGTTCAACATTGCCAGCTACGCGTTA





TTGGTGCATATGATGGCGCAGCAGTGCGATCTGGAAGTGGGTGATTTTGTCTGGACCGGTGGCGACACGCATCTG





TACAGCAACCATATGGATCAAACTCATCTGCAATTAAGCCGCGAACCGCGTCCGCTGCCGAAGTTGATTATCAAA





CGTAAACCCGAATCCATCTTCGACTACCGTTTCGAAGACTTTGAGATTGAAGGCTACGATCCGCATCCGGGCATT





AAAGCGCCGGTGGCTATCTAATTACGAAACATCCTGCCAGAGCCGACGCCAGTGTGCGTCGGTTTTTTTACCCTC





CGTTAAATTCTTCGAGACGCCTTCCCGAAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATC





GGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCC





AGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTTCTTTAATGAAGCAGGGCATCAGGAC





GGTATCTTTGTGGAGAAAGCAGAGTAATCTTATTCAGCCTGACTGGTGGGAAACCACCAGTCAGAATGTGTTAGC





GCATGTTGACAAAAATACCATTAGTCACATTATCCGTCAGTCGGACGACATGGTAGATAACCTGTTTATTATGCG





TTTTGATCTTACGTTTAATATTACCTTTATGCGATGAAACGGTCTTGGCTTTGATATTCATTTGGTCAGAGATTT





GAATGGTTCCCTGACCTGCCATCCACATTCGCAACATACTCGATTCGGTTCGGCTCAATGATAACGTCGGCATAT





TTAAAAACGAGGTTATCGTTGTCTCTTTTTTCAGAATATCGCCAAGGATATCGTCGAGAGATTCCGGTTTAATCG





ATTTAGAACTGATCAATAAATTTTTTCTGACCAATAGATATTCATCAAAATGAACATTGGCAATTGCCATAAAAA





CGATAAATAACGTATTGGGATGTTGATTAATGATGAGCTTGATACGCTGACTGTTAGAAGCATCGTGGATGAAAC





AGTCCTCATTAATAAACACCACTGAAGGGCGCTGTGAATCACAAGCTATGGCAAGGTCATCAACGGTTTCAATGT





CGTTGATTTCTCTTTTTTTAACCCCTCTACTCAACAGATACCCGGTTAAACCTAGTCGGGTGTAACTACATAAAT





CCATAATAATCGTTGACATGGCATACCCTCACTCAATGCGTAACGATAATTCCCCTTACCTGAATATTTCATCAT





GACTAAACGGAACAACATGGGTCACCTAATGCGCCACTCTCGCGATTTTTCAGGCGGACTTACTATCCCGTAAAG





TGTTGTATAATTTGCCTGGAATTGTCTTAAAGTAAAGTAAATGTTGCGATATGTGAGTGAGCTTAAAACAAATAT





TTCGCTGCAGGAGTATCCTGGAAGATGTTCGTAGAAGCTTACTGCTCACAAGAAAAAAGGCACGTCATCTGACGT





GCCTTTTTTATTTGTACTACCCTGTACGATTACTGCAGCTCGAGTTAGGATACCGGCACTTTGATCCAACCAGTC





GGGTAGATATCCGGTGCTTCGGAGTGCTGGAACCAACGGCTCGGCACAATAACAGTCTTATCCATATTAGGGTTC





AGCCAGGCACCCCACCAAGAAAACGTGCTGTTACAAATGATGTGATGTTTGCAATGAGACATCAGCATCATATCC





TGCCAGGAGTCTTCATCAGTGTTCCAGTCAATATAAACCGCATTCTGCAGTGGCAGATTTTCTTTAACCCACGCG





ATATCGTCGGAGAAGATATAGTAAGATGGGCTAGCAACACGACGGGACATTTCCGCGATAGCATTCTGGTAATAC





GGCAGCTGGCACACGGAACCGGTAGTAGCCCAGTGTTTCGGCTGCAGATAGTCACCACGACGAATGTGCAGGGAA





ACCGCGTTTTCATCTTTGTCCAGGATTTCCAGCATGTTCAGGCTGCGGGAATTTGCTTTGTTCTTATCAAAGGTG





AAGGATTCACGCACTTCGTCTTTGATATCAGCGAAGAAACGCTCGCTCTGATAGAAACCTTTAAAGTACAGCAGC





GGCCAGAAATACTTCTTCTCGAACGCACGCAGAGAGTTCGGCGCCTGCTTGCGTTCGTAGATTTTTTTAAAAAAC





AGGAATTCGATAACTTTTTTCAGCGGTTGGTTGATGCAGAATTCGGTGTGCGGCAGGTTGAACACGCGGTGCATT





TCGTAACCGTAATGGACTTTGTAATGCATCATGTCGCTCAGGTCGATACGGACCTTCGGGTAATACTTTTTCATA





CGCAGATAGAAAGCATAGATAAACATCTGGTTGCCCAGACCGCCAGTCACTTTGATCAGACGCATTATATCTCCT





TCTTG






Fucosylated oligosaccharides produced by metabolically engineered E. coli cells are purified from culture broth post-fermentation. An exemplary procedure comprises five steps. (1) Clarification: Fermentation broth is harvested and cells removed by sedimentation in a preparative centrifuge at 6000×g for 30 min. Each bioreactor run yields about 5-7 L of partially clarified supernatant. (2) Product capture on coarse carbon: A column packed with coarse carbon (Calgon 12×40 TR) of ˜4000 ml volume (dimension 5 cm diameter×60 cm length) is equilibrated with 1 column volume (CV) of water and loaded with clarified culture supernatant at a flow rate of 40 ml/min. This column has a total capacity of about 120 g of sugar. Following loading and sugar capture, the column is washed with 1.5 CV of water, then eluted with 2.5 CV of 50% ethanol or 25% isopropanol (lower concentrations of ethanol at this step (25-30%) may be sufficient for product elution.) This solvent elution step releases about 95% of the total bound sugars on the column and a small portion of the color bodies. In this first step capture of the maximal amount of sugar is the primary objective. Resolution of contaminants is not an objective. (3) Evaporation: A volume of 2.5 L of ethanol or isopropanol eluate from the capture column is rotary-evaporated at 56 C.° and a sugar syrup in water is generated. Alternative methods that could be used for this step include lyophilization or spray-drying. (4) Flash chromatography on fine carbon and ion exchange media: A column (GE Healthcare HiScale50/40, 5×40 cm, max pressure 20 bar) connected to a Biotage Isolera One FLASH Chromatography System is packed with 750 ml of a Darco Activated Carbon G60 (100-mesh): Celite 535 (coarse) 1:1 mixture (both column packings were obtained from Sigma). The column is equilibrated with 5 CV of water and loaded with sugar from step 3 (10-50 g, depending on the ratio of 2′-FL to contaminating lactose), using either a celite loading cartridge or direct injection. The column is connected to an evaporative light scattering (ELSD) detector to detect peaks of eluting sugars during the chromatography. A four-step gradient of isopropanol, ethanol or methanol is run in order to separate 2′-FL from monosaccharides (if present), lactose and color bodies. Fractions corresponding to sugar peaks are collected automatically in 120-ml bottles, pooled and directed to step 5. In certain purification runs from longer-than-normal fermentations, passage of the 2′-FL-containing fraction through anion-exchange and cation exchange columns can remove excess protein/DNA/caramel body contaminants. Resins tested successfully for this purpose are Dowex 22.


The gene screening approach described herein was successfully utilized to identify new α(1,2) FTs for the efficient biosynthesis of 2′-FL in metabolically engineered E. coli host strains. The results of the screen are summarized in Table 1.


Production Host Strains



E. coli K-12 is a well-studied bacterium which has been the subject of extensive research in microbial physiology and genetics and commercially exploited for a variety of industrial uses. The natural habitat of the parent species, E. coli, is the large bowel of mammals. E. coli K-12 has a history of safe use, and its derivatives are used in a large number of industrial applications, including the production of chemicals and drugs for human administration and consumption. E. coli K-12 was originally isolated from a convalescent diphtheria patient in 1922. Because it lacks virulence characteristics, grows readily on common laboratory media, and has been used extensively for microbial physiology and genetics research, it has become the standard bacteriological strain used in microbiological research, teaching, and production of products for industry and medicine. E. coli K-12 is now considered an enfeebled organism as a result of being maintained in the laboratory environment for over 70 years. As a result, K-12 strains are unable to colonize the intestines of humans and other animals under normal conditions. Additional information on this well known strain is available at http://epa.gov/oppt/biotech/pubs/fra/fra004.htm. In addition to E. coli K12, other bacterial strains are used as production host strains, e.g., a variety of bacterial species may be used in the oligosaccharide biosynthesis methods, e.g., Erwinia herbicola (Pantoea agglomerans), Citrobacter freundii, Pantoea citrea, Pectobacterium carotovorum, or Xanthomonas campestris. Bacteria of the genus Bacillus may also be used, including Bacillus subtilis, Bacillus licheniformis, Bacillus coagulans, Bacillus thermophilus, Bacillus laterosporus, Bacillus megaterium, Bacillus mycoides, Bacillus pumilus, Bacillus lentus, Bacillus cereus, and Bacillus circulans. Similarly, bacteria of the genera Lactobacillus and Lactococcus may be modified using the methods of this invention, including but not limited to Lactobacillus acidophilus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus jensenii, and Lactococcus lactis. Streptococcus thermophiles and Proprionibacterium freudenreichii are also suitable bacterial species for the invention described herein. Also included as part of this invention are strains, modified as described here, from the genera Enterococcus (e.g., Enterococcus faecium and Enterococcus thermophiles), Bifidobacterium (e.g., Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium bifidum), Sporolactobacillus spp., Micromomospora spp., Micrococcus spp., Rhodococcus spp., and Pseudomonas (e.g., Pseudomonas fluorescens and Pseudomonas aeruginosa).


Suitable host strains are amenable to genetic manipulation, e.g., they maintain expression constructs, accumulate precursors of the desired end product, e.g., they maintain pools of lactose and GDP-fucose, and accumulate endproduct, e.g., 2′-FL. Such strains grow well on defined minimal media that contains simple salts and generally a single carbon source. The strains engineered as described above to produce the desired fucosylated oligosaccharide(s) are grown in a minimal media. An exemplary minimal medium used in a bioreactor, minimal “FERM” medium, is detailed below.


Ferm (10 liters): Minimal medium comprising:


40 g (NH4)2HPO4


100 g KH2PO4


10 g MgSO4.7H2O


40 g NaOH


1× Trace elements:


1.3 g NTA (nitrilotriacetic acid)


0.5 g FeSO4.7H2O


0.09 g MnCl2.4H2O


0.09 g ZnSO4.7H2O


0.01 g CoCl2.6H2O


0.01 g CuCl2.2H2O


0.02 g H3BO3


0.01 g Na2MoO4.2H2O (pH 6.8)


Water to 10 liters


DF204 antifoam (0.1 ml/L)


150 g glycerol (initial batch growth), followed by fed batch mode with a 90% glycerol-1% MgSO4-1× trace elements feed, at various rates for various times.


A suitable production host strain is one that is not the same bacterial strain as the source bacterial strain from which the fucosyltransferase-encoding nucleic acid sequence was identified.


Bacteria comprising the characteristics described herein are cultured in the presence of lactose, and a fucosylated oligosaccharide is retrieved, either from the bacterium itself or from a culture supernatant of the bacterium. The fucosylated oligosaccharide is purified for use in therapeutic or nutritional products, or the bacteria are used directly in such products.


EXAMPLES
Example 1: Identification of Novel α(1,2) Fucosyltransferases

To identify additional novel α(1,2)fucosyltransferases, a multiple sequence alignment query was generated using the alignment algorithm of the CLCbio Main Workbench package, version 6.9 (CLCbio, 10 Rogers Street #101, Cambridge, Mass. 02142, USA) using four previously identified lactose-utilizing α(1,2)fucosyltransferase protein sequences: H. pylori futC (SEQ ID NO: 1), H. mustelae FutL (SEQ ID NO: 2), Bacteroides vulgatus futN (SEQ ID NO: 3), and E. coli 0126 wbgL (SEQ ID NO: 4). This sequence alignment and percentages of sequence identity between the four previously identified lactose-utilizing α(1,2)fucosyltransferase protein sequences is shown in FIG. 3. An iterative PSI-BLAST was performed, using the FASTA-formatted multiple sequence alignment as the query, and the NCBI PSI-BLAST program run on a local copy of NCBI BLAST+ version 2.2.29. An initial position-specific scoring matrix file (.pssm) was generated by PSI-BLAST, which was then used to adjust the score of iterative homology search runs. The process is iterated to generate an even larger group of candidates, and the results of each run were used to further refine the matrix.


A portion of the initial position-specific scoring matrix file used is shown below:












Last position-specific scoring matrix computed






























A
R
N
D
C
Q
E
G
H
I
L
K
M
F
P
S
T
W
Y
V































 1
M
−1
−1
−2
−3
−2
0
−2
−3
−2
1
2
−1
6
0
−3
−2
−1
−2
−1
1


 2
A
2
−2
0
4
−2
−1
1
−1
−1
−2
−3
−1
−2
−3
−1
1
−1
−3
−3
−1


 3
F
−2
−3
−3
−4
−3
−3
−3
−3
−1
0
0
−3
0
7
−4
−3
−2
1
1
−1


 4
K
0
3
0
−3
−2
1
0
−1
−1
−3
−3
3
−2
−3
−1
2
0
−3
−2
−2


 5
V
−1
−3
−3
−4
−1
−3
−3
−4
−3
4
2
−3
1
0
−3
−2
−1
−3
−1
3


 6
V
−1
−3
−3
−3
−1
−3
−3
−4
−3
4
1
−3
1
−1
−3
−2
0
−3
−1
3


 7
Q
−1
4
0
−1
−3
4
1
−2
0
−3
−2
3
−1
−3
−2
0
−1
−3
−2
−3


 8
I
−1
−3
−3
−4
−1
−2
−3
−4
−3
3
2
−3
1
0
−3
−2
−1
−3
−1
3


 9
C
−1
−1
0
−1
5
3
6
−2
4
−2
−2
0
−1
−2
−2
0
2
−2
−1
−1


10
G
0
−3
−1
−1
−3
−2
−2
6
−2
−4
−4
−2
−3
−3
−2
0
−2
−3
−3
−3


11
G
0
−3
−1
−1
−3
−2
−2
6
−2
−4
−4
−2
−3
−3
−2
0
−2
−3
−3
−3


12
L
−2
−2
−4
−4
−1
−2
−3
−4
−3
2
4
−3
2
0
−3
−3
−1
−2
−1
1


13
G
0
−3
−1
−1
−3
−2
−2
6
−2
−4
−4
−2
−3
−3
−2
0
−2
−3
−3
−3


14
N
−2
−1
6
1
−3
0
0
−1
1
−4
−4
0
−2
−3
−2
1
0
−4
−2
−3


15
Q
−1
1
0
0
−3
6
2
−2
0
−3
−2
1
−1
−3
−1
0
−1
−2
−2
−2


16
N
−1
−2
−3
−4
−2
−1
−2
−3
−2
1
3
−2
5
0
−3
−2
−1
−2
−1
1


17
F
−2
−3
−3
−4
−3
−3
−4
−3
−1
0
0
−3
0
7
−4
−3
−2
1
3
−1


18
Q
−1
0
−1
−1
−3
5
1
−2
0
1
−1
1
0
−2
−2
−1
−1
−2
−2
0


19
Y
−2
−2
−3
−3
−3
−2
−3
−3
1
−1
−1
−2
−1
5
−3
−2
−2
2
6
−1


20
A
4
−1
−1
−1
−1
−1
−1
0
−2
−2
−2
−1
−1
−2
−1
2
0
−3
−2
−1


21
F
−2
−3
−3
−4
−3
−3
−4
−3
−1
0
0
−3
0
2
−4
−3
−2
1
3
−1


22
A
3
−2
−1
−2
−1
−1
−1
4
−2
−2
−2
−1
−2
−3
−1
1
−1
−3
−2
−1


23
K
−1
0
−1
−2
−3
0
−1
−3
−1
−2
−2
3
−1
2
−2
−1
−1
1
5
−2


24
S
2
−1
−1
−2
−1
−1
−1
−1
−2
−1
1
−1
0
−1
−1
3
0
−3
−2
0


25
L
−2
3
−2
−3
−2
−1
−2
−3
−2
1
3
0
1
0
−3
−2
−1
−2
−1
0


26
Q
0
0
0
−1
−2
4
1
−2
−1
−1
0
0
3
−2
−2
2
0
−2
−2
−1


27
K
−1
2
0
−1
−3
1
0
−2
−1
−2
−2
4
−1
−3
−1
0
2
−3
−2
−2


28
H
−1
0
0
−2
−3
0
0
−2
6
1
−1
2
−1
−1
−2
−1
−1
−3
0
0


29
S
−1
−1
3
−1
−2
−1
−1
−2
0
−1
1
−1
0
1
−2
1
0
0
4
−1


30
N
−1
−1
4
0
−3
−1
−1
3
0
−3
−3
−1
−2
0
−3
0
−1
−1
4
−3


31
T
−1
−2
−1
−2
−2
−1
−2
−2
−2
1
−1
−1
−1
−2
5
0
3
−3
−2
0


32
P
−1
0
−2
−1
−3
0
−1
−2
−2
−3
−3
2
−2
−4
7
−1
−1
−4
−3
−3


33
V
−1
−3
−3
−4
−1
−2
−3
−4
−3
2
2
−3
1
−1
−3
−2
0
−3
−1
4


34
L
−2
3
−2
−3
−2
−1
−2
−3
0
0
2
0
1
1
−3
−2
−1
0
4
−1


35
L
−2
−3
−4
−4
−2
−3
−3
−4
−3
3
3
−3
1
3
−3
−3
−1
−1
1
1


36
D
−2
−2
1
6
−4
0
1
−2
−1
−4
−4
−1
−3
−4
−2
0
−1
−5
−3
−4









The command line of PSI-BLAST that was used is as follows: psiblast-db<LOCAL NR database name>-max_target_seqs 2500-in_msa<MSA file in FAST format>-out<results output file>-outfmt “7sskingdoms sscinames scomnames sseqid stitle evalue length pident”-out_pssm<PSSM file output>-out_ascii_pssm<PSSM (ascii) output>-num_iterations 6-num_threads 8


This PSI-BLAST search resulted in an initial 2515 hits. There were 787 hits with greater than 22% sequence identity to FutC. 396 hits were of greater than 275 amino acids in length. Additional analysis of the hits was performed, including sorting by percentage identity to FutC, comparing the sequences by BLAST to an existing α(1,2) fucosyltransferase inventory (of known α(1,2) fucosyltransferases, to eliminate known lactose-utilizing enzymes and duplicate hits), and manual annotation of hits to identify those originating from bacteria that naturally exist in the gastrointestinal tract. An annotated list of the novel α(1,2) fucosyltransferases identified by this screen are listed in Table 1. Table 1 provides the bacterial species from which the enzyme is found, the GenBank Accession Number, GI Identification Number, amino acid sequence, and % sequence identity to FutC.


Multiple sequence alignment of the 4 known α(1,2) FTs used for the PSI-BLAST query and 12 newly identified α(1,2) FTs is shown in FIG. 4.


Example 2: Validation of Novel α(1,2) FTs

To test for lactose-utilizing fucosyltransferase activity, the production of fucosylated oligosaccharides (i.e., 2′-FL) is evaluated in a host organism that expresses the candidate enzyme (i.e., syngene) and which contains both cytoplasmic GDP-fucose and lactose pools. The production of fucosylated oligosaccharides indicates that the candidate enzyme-encoding sequence functions as a lactose-utilizing α(1,2)fucosyltransferase. Of the identified hits, 12 novel α(1,2) fucosyltransferases were further analyzed for their functional capacity to produce 2′-fucosyllactose: Prevotella melaninogenica FutO, Clostridium bolteae FutP, Clostridium bolteae+13 FutP, Lachnospiraceae sp. FutQ, Methanosphaerula palustries FutR, Tannerella sp. FutS, Bacteroides caccae FutU, Butyrivibrio FutV, Prevotellaa sp. FutW, Parabacteroides johnsonii FutX, Akkermansia muciniphilia FutY, Salmonella enterica FutZ, and Bacteroides sp. FutZA.


Syngenes were constructed comprising the 12 novel α(1,2) FTs in the configuration as follows: EcoRI-T7g10 RBS-syngene-XhoI. FIG. 5A and FIG. 5B show the syngene fragments after PCR assembly and gel-purification.


The candidate α(1,2) FTs (i.e., syngenes) were cloned by standard molecular biological techniques into an exemplary expression plasmid pEC2-(T7)-Fut syngene-rcsA-thyA. This plasmid utilizes the strong leftwards promoter of bacteriophage λ (termed PL) to direct expression of the candidate genes (Sanger, F. et al. (1982). J Mol Biol 162, 729-773). The promoter is controllable, e.g., a trp-cI construct is stably integrated the into the E. coli host's genome (at the ampC locus), and control is implemented by adding tryptophan to the growth media. Gradual induction of protein expression is accomplished using a temperature sensitive cI repressor. Another similar control strategy (temperature independent expression system) has been described (Mieschendahl et al., 1986, Bio/Technology 4:802-808). The plasmid also carries the E. coli rcsA gene to up-regulate GDP-fucose synthesis, a critical precursor for the synthesis of fucosyl-linked oligosaccharides. In addition, the plasmid carries a β-lactamase (bla) gene for maintaining the plasmid in host strains by ampicillin selection (for convenience in the laboratory) and a native thyA (thymidylate synthase) gene as an alternative means of selection in thyA hosts.


The expression constructs were transformed into a host strain useful for the production of 2′-FL. The host strain used to test the different α(1,2) FT candidates incorporates all the above genetic modifications described above and has the following genotype: ΔampC::PtrpBcI, A(lacI-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA


The E. coli strains harboring the different α(1,2) FT candidate expression plasmids were analyzed. Strains were grown in selective media (lacking thymidine) to early exponential phase. Lactose was then added to a final concentration of 0.5%, and tryptophan (200 μM) was added to induce expression of each candidate α(1,2) FT from the PL promoter. At the end of the induction period (˜24 h) the culture supernatants and cells were harvested. Heat extracts were prepared from whole cells and the equivalent of 0.2OD600 units of each strain analyzed for the presence of 2′-FL by thin layer chromatography (TLC), along with 2 μl of the corresponding clarified culture supernatant for each strain.



FIG. 6 shows the oligosaccharides produced by the α(1,2) FT-expressing bacteria, as determined by TLC analysis of the culture supernatant and extracts from the bacterial cells. 2′FL was produced by exogenous expression of WbgL (used as control), FutO, FutP, FutQ, FutR, FutS, FutU, FutW, FutX, FutZ, and FutZA.


Table 4 summarizes the fucosyltransferase activity for each candidate syngene as determined by the 2′FL synthesis screen described above. 11 of the 12 candidate α(1,2) FTs were found to have lactose-utilizing fucosyltransferase activity.









TABLE 4







2′FL synthesis screen results

















2′FL
2′FL








culture
cell







24 h OD
me-
ex-






Syngene
(induced)
dium
tract


















Escherichia coli

WbgL
9.58
5
5
pG204
pEC2-WbgL-rcsA-thyA
E640



Prevotella

FutO
12.2
3
2
pG393
pEC2-(T7)FutO-rcsA-thyA
E985



melaninogenica











Clostridium bolteae

FutP
10.4
1
2
pG394
pEC2-(T7)FutP-rcsA-thyA
E986



Lachnospiraceae sp.

FutQ
10.6
3
4
pG395
pEC2-(T7)FutQ-rcsA-thyA
E987



Methanosphaerula

FutR
11.9
0
1
pG396
pEC2-(T7)FutR-rcsA-thyA
E988



palustris











Tannerella sp.

FutS
11.3
2
3
pG397
pEC2-(T7)FutS-rcsA-thyA
E989



Bacteroides caccae

FutU
12.1
0
2
pG398
pEC2-(T7)FutU-rcsA-thyA
E990



Butyrivibrio

FutV
11.3
0
1
pG399
pEC2-(T7)FutV-rcsA-thyA
E991



Prevotella sp.

FutW
10.5
3
3
pG400
pEC2-(T7)FutW-rcsA-thyA
E992



Parabacteroides

FutX
10.7
3
5
pG401
pEC2-(T7)FutX-rcsA-thyA
E993



johnsonii











Akkermansia

FutY
9.1
0
0
pG402
pEC2-(T7)FutY-rcsA-thyA
E994



muciniphilia











Salmonella enterica

FutZ
11.0
0
3
pG403
pEC2-(T7)FutZ-rcsA-thyA
E995



Bacteroides sp.

FutZA
9.9
3
3
pG404
pEC2-(T7)FutZA-rcsA-thyA
E996









Example 3: Characterization of Cultures Expressing Novel α(1,2) FTs

Further characterization of the bacterium expressing novel α(1,2) FTs FutO, FutQ, and FutX was performed. Specifically, proliferation rate and exogenous α(1,2) FT expression was examined.


Expression plasmids containing fucosyltransferases WbgL (plasmid pG204), FutN (plasmid pG217), and novel α(1,2) FTs FutO (plasmid pG393), FutQ (plasmid pG395), and FutX (pG401) were introduced into host bacterial strains. For example, the host strains utilized has the following genotype: ΔampC::PtrpBcI, A(lacI-lacZ)::FRT, PlacIqlacY+, ΔwcaJ::FRT, thyA::Tn10, Δlon:(npt3, lacZ+), ΔlacA


Bacterial cultures expressing each exogenous fucosyltransferase were induced by addition of tryptophan (to induce expression of the exogenous fucosyltransferases) in the presence of lactose. Growth of the cultures was monitored by spectrophotometric readings at A600 at the following timepoints: 4 hours and 1 hour before induction, at the time of induction (time 0), and 3 hours, 7 hours, and 24 hours after induction. The results are shown in FIG. 7, and indicate that expression of the exogenous fucosyltransferase did not prevent cell proliferation. Furthermore, the growth curve for the bacterial cultures expressing the novel α(1,2) fucosyltransferases FutO, FutQ, and FutX is similar to those expressing the known α(1,2)FT enzymes WbgL and FutN.


Protein expression was also assessed for the bacterial cultures expressing each fucosyltransferase after induction. Cultures were induced as described previously, and protein lysates were prepared from the bacterial cultures at the time of induction (0 hours), 3 hours, 7 hours, and 24 hours after induction. The protein lysates were run on an SDS-PAGE gel and stained to examine the distribution of proteins at each time point. As shown in FIG. 8, induction at 7 hours and 24 hours showed increases in a protein band at around 20-28 kDa for bacterial cultures expressing exogenous FutN, FutO, and FutX. These results indicate that induction results in significant expression of the exogenous fucosyltransferases.


Finally, additional TLC analysis to assess the efficiency and yield of 2′FL production in bacterial cultures expressing novel α(1,2) FTs FutO, FutQ, and FutX compared to known fucosyltransferases WbgL and FutN. Cultures were induced at 7 hours and 24 hours, and run out on TLC. FIG. 9A shows the level of 2′FL in the cell supernatant. The level of 2′FL found in the bacterial cells were also examined. As shown in FIG. 9B, 2′FL was produced in cell lysates from bacteria expressing the novel α(1,2) FTs FutO, FutQ, and FutX at 7 hours and 24 hours after induction.


Example 4: FutN Exhibits Increased Efficiency for Production of 2′FL

Fucosylated oligosaccharides produced by metabolically engineered E. coli cells to express B. vulgatus FutN was purified from culture broth post-fermentation.


Fermentation broth was harvested and cells were removed by sedimentation in a preparative centrifuge at 6000×g for 30 min. Each bioreactor run yields about 5-7 L of partially clarified supernatant. A column packed with coarse carbon (Calgon 12×40 TR) of ˜1000 ml volume (dimension 5 cm diameter×60 cm length) was equilibrated with 1 column volume (CV) of water and loaded with clarified culture supernatant at a flow rate of 40 ml/min. This column had a total capacity of about 120 g of sugar. Following loading and sugar capture, the column is washed with 1.5 CV of water, then was eluted with 2.5 CV of 50% ethanol or 25% isopropanol (lower concentrations of ethanol at this step (25-30%) may be sufficient for product elution.) This solvent elution step released about 95% of the total bound sugars on the column and a small portion of color bodies (caramelized sugars). A volume of 2.5 L of ethanol or isopropanol eluate from the capture column was rotary-evaporated at 56 C.° and a sugar syrup in water was generated. A column (GE Healthcare HiScale50/40, 5×40 cm, max pressure 20 bar) connected to a Biotage Isolera One FLASH Chromatography System was packed with 750 ml of a Darco Activated Carbon G60 (100-mesh): Celite 535 (coarse) 1:1 mixture (both column packings were obtained from Sigma). The column was equilibrated with 5 CV of water and loaded with sugar from step 3 (10-50 g, depending on the ratio of 2′-FL to contaminating lactose), using either a celite loading cartridge or direct injection. The column was connected to an evaporative light scattering (ELSD) detector to detect peaks of eluting sugars during the chromatography. A four-step gradient of isopropanol, ethanol or methanol was run in order to separate 2′-FL from monosaccharides (if present), lactose and color bodies. Fractions corresponding to sugar peaks were collected automatically in 120-ml bottles, pooled.


The results from two fermentation runs are shown in FIG. 10A and FIG. 10B. The cultures were grown for 136 (run 36B) or 112 hours (run 37A), and the levels of 2′-FL produced was analyzed by TLC analysis. As shown in both FIG. 10A and FIG. 10B, the 2′-fucosyllactose was produced at 40 hours of culture, and production continued to increase until the end point of the fermentation process. The yield of 2′-FL produced from run 36B was 33 grams per liter. The yield of 2′-FL produced from run 37A was 36.3 grams per liter. These results indicate that expression of exogenous FutN is suitable for high yield of 2′-fucosyllactose product.









TABLE 1







Hits from PSI-BLAST multiple sequence alignment query for novel α(1,2)fucosyltransferases


















%









iden-


SEQ



Accession

Gene name
tity


ID


Bacterium names
No.
GI No.
[bacterium]
FutC
Alias
SEQUENCE
NO


















Helicobacter

AAD29869.1
4808599
alpha-1,2-
98
FutC
MAFKVVQICGGLGNQMFQYAFAKSLQKHSNTPVLLDITSFDWSDRKMQLELFPINLPYASAKEIAIAKMQ
  1



pylori



fucosyl-


HLPKLVRDALKCMGFDRVSQEIVFEYEPELLKPSRLTYFYGYFQDPRYFDAISPLIKQTFTLPPPPENNKNNN






transferase


KKEEEYHRKLSLILAAKNSVFVHIRRGDYVGIGCQLGIDYQKKALEYMAKRVPNMELFVFCEDLEFTQNLDLG






[Helicobacter


YPFMDMTTRNKEEEAYWDMLLMQSCQHGIIANSTYSWWAAYLIENPEKIIIGPKHWLFGHENILCKEWVK







pylori]



IESHFEVKSQKYNA







Helicobacter

YP_003517185.1
291277413
alpha-1,2-
70.85
FutL
MDFKIVQVHGGLGNQMFQYAFAKSLQTHLNIPVLLDTTWFDYGNRELGLHLFPIDLQCASAQQIAAAHM
  2



mustelae; 



fucosyl-


QNLPRLVRGALRRMGLGRVSKEIVFEYMPELFEPSRIAYFHGYFQDPRYFEDISPLIKQTFTLPHPTEHAEQY




Helicobacter



transferase


SRKLSQILAAKNSVFVHIRRGDYMRLGWQLDISYQLRAIAYMAKRVQNLELFLFCEDLEFVQNLDLGYPFVD




mustelae 12198



[Helicobacter


MTTRDGAAHWDMMLMQSCKHGIITNSTYSWWAAYLIKNPEKIIIGPSHWIYGNENILCKDWVKIESQFET







mustelae



KS






12198]










Bacteroides; 

YP_001300461.1
150005717
glycosyl
24.83
FutN
MRLIKVTGGLGNQMFIYAFYLRMKKYYPKVRIDLSDMMHYKVHYGYEMHRVFNLPHTEFCINQPLKKVIEF
  3



Bacteroides



transferase


LFFKKIYERKQAPNSLRAFEKKYFWPLLYFKGFYQSERFFADIKDEVRESFTFDKNKANSRSLNMLEILDKD




vulgatus



family protein


ENAVSLHIRRGDYLQPKHWATTGSVCQLPYYQNAIAEMSRRVASPSYYIFSDDIAWVKENLPLQNAVYIDWN



ATCC 8482; 


[Bacteroides


TDEDSWQDMMLMSHCKHHIICNSTFSWWGAWLNPNMDKTVIVPSRWFQHSEAPDIYPTGWIKVPVS




Bacteroides




vulgatus ATCC







sp. 4_3_47FAA; 


8482]







Bacteroides










sp. 3_1_40A; 










Bacteroides











vulgatus










PC510; 










Bacteroides











vulgatus










CL09T03C04; 










Bacteroides











vulgatus










dnLKV7; 










Bacteroides











vulgatus










CAG: 6












Escherichia
WP_021554465.1
545259828
protein
23.13
WbgL
MSIIRLQGGLGNQLFQFSFGYALSKINGTPLYFDISHYAENDDHGGYRLNNLQIPEEYLQYYTPKINNIYKLLV
  4



coli;  



[Escherichia


RGSRLYPDIFLFLGFCNEFHAYGYDFEYIAQKWKSKKYIGYWQSEHFFHKHILDLKEFFIPKNVSEQANLLAAK




Escherichia




coli]



ILESQSSLSIHIRRGDYIKNKTATLTHGVCSLEYYKKALNKIRDLAMIRDVFIFSDDIFWCKENIETLLSKKYN




coli






IYYSEDLSQEEDLWLMSLANHHIIANSSFSWWGAYLGSSASQIVIYPTPWYDITPKNTYIPIVNHWINVDKHS



UMEA 3065-1





SC







Helicobacter

WP_005219731.1
491361813
predicted
36.79
FutD
MGDYKIVELTCGLGNQMFQYAFAKALQKHLQVPVLLDKTWYDTQDNSTQFSLDIFNVDLEYATNTQIEKA
  5



bilis; 



protein


KARVSKLPGLLRKMFGLKKHNIAYSQSFDFHDEYLLPNDFTYFSGFFQNAKYLKGLEQELKSIFYYDSNNFSN




Helicobacter



[Helicobacter


FGKQRLELILQAKNSIFIHIRRGDYCKIGWELGMDYYKRAIQYIMDRVEEPKFFIFGATDMSFTEQFQKNLGL




bilis




bilis]



NENNSANLSEKTITQDNQHEDMFLMCYCKHAILANSSYSFWSAYLNNDANNIVIAPTPWLLDNDNIICDD



ATCC 43879





WIKISSK







Escherichia

AAO37698.1
37788088
fucosyl-
25.94
WbsJ
MEVKIIGGLGNQMFQYATAFAIAKRTHQNLTVDISDAVKYKTHPLRLVELSCSSEFVKKAWPFEKYLFSEKIP
  6



coli



transferase


HFMKKGMFRKHYVEKSLEYDPDIDTKSINKKIVGYFQTEKYFKEFRHELIKEFQPKTKFNSYQNELLNLIKEND






[Escherichia


TCSLHIRRGDYVSSKIANETHGTCSEKYFERAIDYLMNKGVINKKTLLFIFSDDIKWCRENIFFNNQICFVQGD







coli]



AYHVELDMLLMSKCKNNIISNSSFSWWAAWLNENKNKTVIAPSKWFKKDIKHDIIPESWVKL







Vibrio

BAA33632.1
3721682
probable beta-
25.94
WblA
MIVMKISGGLGNQLFQYAVGRAIAIQYGVPLKLDVSAYKNYKLHNGYRLDQFNINADIANEDEIFHLKGSSN
  7



cholerae



D-galactoside 


RLSRILRRLGWLKKNTYYAEKQRTIYDVSVFMQAPRYLDGYWQNEQYFSQIRAVLLQELWPNQPLSINAQA






2-alpha-L-


HQIKIQQTHAVSIHVRRGDYLNHPEIGVLDIDYYKRAVDYIKEKIEAPVFFVFSNDVAWCKDNFNFIDSPVFI






fucosyl


EDTQTEIDDLMLMCQCQHNIVANSSFSWWAAWLNSNVDKIVIAPKTWMAENPKGYKWVPDSWREI






transferase









[Vibrio










cholerae]











Bacteroides

YP_099118.1
53713126
alpha-1,2-
24.58
Bft2
MIVSSLRGGLGNQMFIYAMVKAMALRNNVPFAFNLTTDFANDEVYKRKLLLSYFALDLPENKKLTFDFSYG
  8



fragilis; 



fucosyl-


NYYRRLSRNLGCHILHPSYRYICEERPPHFESRLISSKITNAFLEGYWQSEKYFLDYKQEIKEDFVIQKKLEY




Bacteroides



transferase


TSYLELEEIKLLDKNAIMIGVRRYQESDVAPGGVLEDDYYKCAMDIMASKVTSPVFFCFSQDLEWVEKHLAGK




fragilis



[Bacteroides


YPVRLISKKEDDSGTIDDMFLMMHFRNYIISNSSFYWWGAWLSKYDDKLVIAPGNFINKDSVPESWFKLNVR



NCTC 9343; 



fragilis








Bacteroides



YCH46]







fragilis










YCH46; 










Bacteroides











fragilis










HMW 615













Escherichia

WP_001592236.1
486356116
protein
24.25
WbgN
MSIVVARLAGGLGNQMFQYAKGYAESVERNSYLKLDLRGYKNYTLHGGFRLDKLNIDNTFVMSKKEMCIF
  9



coli;  



[Escherichia


PNFIVRAINKFPKLSLCSKRFESEQYSKKINGSMKGSVEFIGFWQNERYFLEHKEKLREIFTPININLDAKE




Escherichia




coli]



LSDVIRCTNSVSVHIRRGDYVSNVEALKIHGLCTERYYIDSIRYLKERFNNLVFFVFSDDIEWCKKYKNEIF




coli






SRSDDVKFIEGNTQEVDMWLMSNAKYHIIANSSFSWWGAWLKNYDLGITIAPTPWFEREELNSFDPCPEKWV



KTE84





RIEK







Prevotella

YP_003814512.1
302346214
glycosyl-
31.1
FutO
MKIVKILGGLGNQMFQYALYLSLQESFPKERVALDLSSFHGYHLHNGFELENIFSVTAQKASAADIMRIAYYY
 10



melaninogenica;



transferase


PNYLLWRIGKRFLPRRKGMCLESSSLRFDESVLRQEGNRYFDGYWQDERYFAAYREKVLKAFTFPAFKRAE



Prevotella


family 11


NLSLLEKLDENSIALHVRRGDYVGNNLYQGICDLDYYRTAIEKMCAHVTPSLFCIFSNDITWCQQHLQPYLK




melaninogenica



[Prevotella


APVVYVTWNTGVESYRDMQLMSCCAHNIIANSSFSWWGAWLNQNREKVVIAPKKWLNMEECHFTLPA



ATCC 25845



melaninogenica



SWIKI






ATCC 25845]










Clostridium

WP_002570768.1
488634090
protein
29.86
FutP
MFQYALYKAFEQKHIDVYADLAWYKNKSVKFELYNFGIKINVASEKDINRLSDCQADFVSRIRRKIFGKKKSF
 11



bolteae; 



[Clostridium


VSEKNDSCYENDILRMDNVYLSGYWQTEKYFSNTREKLLEDYSFALVNSQVSEWEDSIRNKNSVSIHIRRGD




Clostridium




bolteae]



YLQGELYGGICTSLYYAEAIEYIKMRVPNAKFFVFSDDVEWVKQQEDFKGFVIVDRNEYSSALSDMYLMSLC




bolteae






KHNIIANSSFSWWAAWLNRNEEKIVIAPRRWLNGKCTPDIWCKKWIRI



90A9; 










Clostridium











bolteae










90B3; 










Clostridium











bolteae 90B8














Lachnospiraceae

WP_009251343.1
496545268
protein
29.25
FutQ
MVIVQLSGGLGNQMFEYALYLSLKAKGKEVKIDDVTCYEGPGTRPRQLDVFGITYDRASREELTEMTDASM
 12



bacterium



[Lachnospiraceae


DALSRVRRKLTGRRTKAYRERDINFDPLVMEKDPALLEGCFQSDKYFRDCEGRVREAYRFRGIESGAFPLPE



3_1_57FAA_CT1



bacterium



DYLRLEKQIEDCQSVSVHIRRGDYLDESHGGLYTGICTEAYYKEAFARMERLVPGARFFLFSNDPEWTREHF






3_1_57FAA_CT1]


ESKNCVLVEGSTEDTGYMDLYLMSRCRHNIIANSSFSWWGAWLNENPEKKVIAPAKWLNGRECRDIYTER









MIRL







Methanosphaerula

YP_002467213.1
219852781
glycosyl
28.52
FutR
MIIVRLKGGLGNQLSQYALGRKIAHLHNTELKLDTTWFTTISSDTPRTYRLNNYNIIGTIASAKEIQLIERG
 13



palustris; 



transferase


RAQGRGYLLSKISDLLTPMYRRTYVRERMHTFDKAILTVPDNVYLDGYWQTEKYFKDIEEILRREVTLKDEP




Methanosphaerula



family protein


DSINLEMAERIQACHSVSLHVRRGDYVSNPTTQQFHGCCSIDYYNRAISLIEEKVDDPSFFIFSDDLPWAKE




palustris E1-9c



[Methanosphaerula


NLDIPGEKTFVAHNGPEKEYCDLWLMSLCQHHIIANSSFSWWGAWLGQDAEKMVIAPRRWALSESFDTSDII







palustris E1-



PDSWITI






9c]










Tannerella sp.

WP_021929367.1
547187521
glycosyl
28.38
FutS
MVRIVEIIGGLGNQMFQYAFSLYLKNKSHIWDRLYVDIEAMKTYDRHYGLELEKVFNLSLCPISNRLHRNLQ
 14


CAG: 118


transferase


KRSFAKHFVKSLYEHSECEFDEPVYRGLRPYRYYRGYWQNEGYFVDIEPMIREAFQFNVNILSKKTKAIASK






family 11


MRRELSVSIHVRRGDYENLPEAKAMHGGICSLDYYHKAIDFIRQRLDNNICFYLFSDDINWVEENLQLENRC






[Tannerella sp.


IIDWNQGEDSWQDMYLMSCCRHHIIANSSFSWWAAWLNPNKNKIVLTPNKWFNHTDAVGIVPKSWIKI






CAG: 118]


PVF







Bacteroides

WP_005675707.1
491925845
protein
28.09
FutU
MKIVKILGGLGNQMFQYALFLSLKERFPHEQVMIDTSCFRNYPLHNGFEVDRIFAQKAPVASWRNILKVAY
 15



caccae; 



[Bacteroides


PYPNYRFWKIGKYILPKRKTMCVERKNFSFDAAVLTRKGDCYYDGYWQHEEYFCDMKETIWEAFSFPEPV




Bacteroides




caccae]



DGRNKEIGALLQASDSASLHVRRGDYVNHPLFRGICDLDYYKRAIHYMEERVNPQLYCVFSNDMAWCESH



caccae 





LRALLPGKEVVYVDWNKGAESYVDMRLMSLCRHNIIANSSFSWWGAWLNRNPQKVVVAPERWMNSPI



ATCC43185





EDPVSDKWIKL







Butyrivibrio sp.

WP_022772718.1
551028636
protein
27.8
FutV
MIIIQLKGGLGNQMFQYALYKSLKKRGKEVKIDDKTGFVNDKLRIPVLSRWGVEYDRATDEEIINLTDSKMD
 16


AE2015


[Butyrivibrio


LFSRIRRKLTGRKTFRIDEESGKFNPEILEKENAYLVGYWQCDKYFDDKDVVREIREAFEKKPQELMTDASS






sp. AE2015]


WSTLQQIECCESVSLHVRRTDYVDEEHIHIHNICTEKYYKNAIDRVRKQYPSAVFFIFTDDKEWCRDHFKGP









NFIWELEEGDGTDIAEMTLMSRCKHHIIANSSFSWWAAWLNDSPEKIVIAPQKWINNRDMDDIYTERMTKIAL







Prevotella sp.

WP_022481266.1
548264264
uncharacterized
27.4
FutW
MRLVKMIGGLGNQMFIYAFYLQMRKRFSNVRIDLTDMMHYNVHYGYELHKVFGLPRTEFCMNQPLKKVL
 17


CAG: 891


protein


EFLFFRTIVERKQHGRMEPYTCQYVWPLVYFKGFYQSERYFSEVKDEVRECFTFNPALANRSSQQMMEQI






[Prevotella sp.


QNDPQAVSIHIRRGDYLNPKHYDTIGCICQLPYYKHAVSEIKKYVSNPHFYVFSEDLDWVKANLPLENAQYI






CAG: 891]


DWNKGADSWQDMMLMSCCKHHIICNSTFSWWAAWLNPSVEKTVIMPEQWTSRQDSVDFVASCGRW









VRVKTE







Parabacteroides

WP_008155883.1
495431188
glycosyl
26.69
FutX
MRLIKMIGGLGNQMFIYAFYLKMKHHYPDTNIDLSDMVHYKVHNGYEMNRIFDLSQTEFCINRTLKKILEFL
 18



johnsonii; 



transferase


FFKKIYERRQDPSTLYPYEKRYFWPLLYFKGFYQSERFFFDIKDDVRKAFSFNLNIANPESLELLKQIEVDD




Parabacteroides



[Parabacteroides


QAVSIHIRRGDYLLPRHWANTGSVCQLPYYKNAIAEMENRITGPSYYVFSDDISWVKENIPLKKAVYVTWNK




johnsonii




johnsonii]



GEDSWQDMMLMSHCRHHIICNSTFSWWGAWLNPRKEKIVIAPCRWFQHKETPDMYPKEWIKVPIN



CL02T12C29













Akkermansia

YP_001877555.1
187735443
glycosyl
25.67
FutY
MRLFGGLGNQLFQYAFLFALSRQGGKARLETSSYEHDDKRVCELHHFRVSLPIEGGPPPWAFRKSRIPACLR
 19



muciniphila; 



transferase


SLFAAPKYPHFREEKRHGFDPGLAAPPRRHTYFKGYFQTEQYFLHCREQLCREFRLKTPLTPENARILEDIRSC




Akkermansia



family protein


CSISLHIRRTDYLSNPYLSPPPLEYYLRSMAEMEGRLRAAGAPQESLRYFIFSDDIEWARQNLRPALPHVHVD




muciniphila



[Akkermansia


INDGGTGYFDLELMRNCRHHIIANSTFSWWAAWLNEHAEKIVIAPRIWFNREEGDRYHTDDALIPGSWLRI



ATCCBAA-835



muciniphila










ATCCBAA-835]










Salmonella

WP_023214330.1
555221695
fucosyl-
25.99
FutZ
MYSCLSGGLGNQMFQYAAAYILKQYFQSTTLVLDDSYYYSQPKRDTVRSLELNQFNISYDRFSFADEKEKIKL
 20



enterica; 



transferase


LRKFKRNPFPKQISEILSIALFGKYALSDRAFYTFETIKNIDKACLFSFYQDADLLNKYKQLILPLFELRDDL




Salmonella



[Salmonella


LDICKNLELYSLIQRSNNTTALHIRRGDYVTNQHAAKYHGVLDISYYNHAMEYVERERGKQNFIIFSDDVRWA




enterica subsp.




enterica]



QKAFLENDNCYVINNSDYDFSAIDMYLMSLCKNNIIANSTYSWWGAWLNKYEDKLVISPKQWFLGNNETSLRN




enterica






ASWITL



serovar










Poona str. 










ATCCBAA-









1673













Bacteroides sp.

WP_022161880.1
547748823
glycosyl-
26.01
FutZA
MRLIKMTGGLGNQMFIYAFYLRMKKRYPKVRIDLSDMVHYHVHHGYEMHRVFNLPHTEFCINQPLKKVIE
 21


CAG: 633


transferase


FLFFKKIYERKQDPNSLRAFEKKYLWPLLYFKGFYQSERFFADIKDEVRKAFTFDSSKVNARSAELLRRLDA






family 11


DANAVSLHIRRGDYLQPQHWATTGSVCQLPYYQNAIAEMNRRVAAPSYYVFSDDIAWVKENIPLQNAVYID






[Bacteroides


WNKGEESWQDMMLMSHCRHHIICNSTFSWWGAWLDPHEDKIVIVPNRWFQHCETPNIYPAGWVKVAIN






sp. CAG: 633]










Clostridium sp.

WP_022247142.1
547839506
alpha-1 2-
34.28

MEKIKIVKLQGGMGNQMFQYAFGKGLESKFGCKVLFDKINYDELQKTIINNTGKNAEGICVRKYELGIFNLN
 22


CAG: 306


fucosyl-


IDFATAEQIQECIGEKLNKACYLPGFIRKIFNLSKNKTVSNRIFEKKYGEYDEEILKDYSLAYYDGYFQNPKY






transferase


FEDISDKIKKEFTLPEIKNHDIYNKKLLEKITQFENSVFIHVRRDDYLNINCEIDLDYYQKAVKYILKHIENP






[Clostridium


KFFVFCAEDPDYIKNHFDIGYDFELVGENNKTQDTYYENMRLMMACKHAIIANSSYSWWAAWLSDYDNKIVIA






sp. CAG: 306]


PTPWLPGISNEIICKNWIQIKRGISNE







Prevotella sp. 

WP_009434595.1
497004957
protein
32.11

MKIVKILGGLGNQMFQYALYLSLQESFPKERVALDLSCFNGYHLHNGFELERIFSLTAQKASAATIMRIAYYY
 23


oral taxon 306; 


[Prevotella sp.


PNYLLWRIGKRLLPRRKTMCLESSTFRYDESVLTREGNRYFDGYWQDERYFVACREKVLKAFTFPAFKRTEN




Prevotella



oral taxon 306]


LSLLRKLDKNSVAIHVRRGDYIGNQLYQGICDLDYYRAAIDKISTYVTPSVFCIFSNDIAWCQTHLQPYLKAP



sp. oral 





VVYVTWNTGTESYRDMQLMSCCAHNIIANSSFSWWGAWLNQNNEKVVIAPKRWLNMDDCQFPLPASW



taxon 306 str.





VKI



F0472













Brachyspira sp.

WP_021917109.1
547139308
glycosyl
30.14

MQLVKLMGGLGNQMFQYAFAKALGDKNILFYGDYKKHSLRKVELNRFKCKAVYIPRELFKYLKFVFTKFDKI
 24


CAG: 484


transferase


EYMRSGIYVPEYLNRDGNHIYIGFWQTEKYFKQIRPRLLKDFTPRKKLDRENAGIISKMQQINSVSVHIRRTD






family 11


YVDESHIYGDTNLDYYKRAIEYISSKIENPEFFFFSDDMAYVKEKFAGLKFPHSFIDINSGNNSYKDLILMKN






[Brachyspira sp.


CKHNIIANSTFSWWGAWLNENEEKIVIAPAKWFVTGENDKDIVPDEWIKL






CAG: 484]










Thalassospira

WP_008889330.1
496164823
glycosyl
30

MVIVKLLGGLGNQMFQYATGRAVASRLDVELLLDVSAFAHYDLRRYELDDWNITARLATSEELARSGVTAA
 25



profundimaris; 



transferase


PPSFFDRIARFLRIDLPVNCFREASFTYDPRILEVSSPVYLDGYWQSERYFLDIEKKLRQEFQLKASIDANNH




Thalassospira



family 11


SFKKKIDGLGKQAVSLHVRRGDYVTNPQTASYHGVCSLDYYRAAVDYIAEHVSDPCFFVFSDDLEWVQTNLNI




profundimaris



[Thalassospira


KQPIVLVDANGPDNGAADMALMMACRHHIIANSSFSWWGSWLNPLNDKIIVAPKKWFGRANHDTTDL



WP0211



profundimaris]



VPDSWVRL







Acetobacter sp.

WP_022078656.1
547459369
alpha-1 2-
29.9

MAVSPQESKYSAHVSPDKPLRIVRLGGGLGNQMFQYAFGLAAGDVLWDNTSFLTNHYRSFDLGLYNISGD
 26


CAG: 267


fucosyl-


FASNEQIKKCKNEIRFKNILPRSIRKKFNLGKFIYLKTNRVCERQINRYEPELLSKDGDVYYDGVFQTEKYFK






transferase


PLRERLLHDFTLTKPLDAANLDMLAKIRAADAVAVHIRRGDYLNPRSPFTYLDKDYFLNAMDYIGKRVDKPHF






[Acetobacter


FIFSSDTDWVRTNIQTAYPQTIVEINDEKHGYFDLELMRNCRHNIIANSTFSWWGAWLNTNPDKIVVAPKQ






sp. CAG: 267]


WFRPDAAEYSGDIVPNDWIKL







Dysgonomonas

WP_006842165.1
493896281
protein
29.9

MVTVLLSGGLGNQMFQYAAAKSLAIRLNTALSVDLYTFSKKTQATVRPYELGIFNIEDVVETSSLKAKAVIKA
 27



mossii; 



[Dysgonomonas


RPFIQRHRSFFQRFGVFTDTYAILYQPTFEALTGGVIMSGYFQNESYFKNISELLRKDFSFKYPLIGENKDVA




Dysgonomonas




mossii]



GQISENQSVAVHIRRGDYLNKNSQSNFAILEKDYYEKAINYISAHVKNPEFYVFSEDFDWIKDNLNFKEFPVT




mossii






FIDWNKGKDSYIDMQLMSLCKHNIIANSSFSWWSAWLNNSEERKIVAPERWFVDEQKNELLDCFYPQGWI



DSM 22836





KI






Clostridium sp. 
WP_021636924.1
545396671
glycosyl-
29.83

>gi|545396671|ref|WP_021636924.1|glycosyltransferase,family 11 
 28


KLE 1755


transferase,


[Clostridium sp. KLE 1755]






family 11


MIIIEISGGLGNQMFQYALGQKFISMGKEVKYDLSFYNDRVQTLRQFELDIFDLDCPVASNSELSRFG






[Clostridium


KGNSLKSRLKQKLGWDKEKIYEENLDLGYQPRIFELDDIYLSGYWQSELYFKDIREQILRLYTFPIQLDYMN






sp. KLE 1755]


GVFLRKIENSNSVSIHIRRGDYLNENNLKIYGNICTLNYYNKALQIIAKKITNPIIFVFTNDIEWVRKELEI









PNMVIVDCNSGKLSYWDMYLMSKCKANIVANSSFSWWGAWLNKNENRIIISPKRWLNNHEQTSTLCDNWIRC









GDD







Gillisia

WP_006988068.1
494045950
alpha-1,2-
29.28

MFISKNTVIIKLVGGLGNQMFQFAIAKIIAEKEKSEVLVDITFYTELTENTKKFPRHFSLGIFNSSFAIASKK
 29



limnaea; 



fucosyl-


EIDYFTKLSNFNKFKKKLGLNYPTIFHESSFNFKAQVLELKAPIYLNGYFQSFRYFLGKEYVIRKIFKFPDEA




Gillisia



transferase


LDKDNDNIKRKIIGKTSVSLHIRRGDYVNNKKTQQFHGNCTIDYYQSAIAYLSSKLTDFNLIFFSDDIHWVRQ




limnaea



[Gillisia


QFKNISNQKIYVSGNLNHNSWKDMYLMSLCDHNIIANSSFSWWGAWLNKNPEKIIIAPKRWFADTEQDKNSID



DSM 15749



limnaea]



LIPSEWYRI







Methylotenera

YP_003048467.1
253996403
glycosyl
29.19

MLVSRIIGGLGNQMFEYAAARAASLRISVQLKLDLSGFETYDLHAYGLNNFNIVEDVAKKDDYFIGAPESLLK
 30



mobilis;



transferase


KIKKYLRGLIQLESFRESDLSFDSKVLELNDNTYLDGYWQCERYFIDFDKQIRQDFSFKFAPDALNQRYLELI




Methylotenera



family protein


DSVNAVSVHIRRGDYVSNSTTNEIHGVCDLDYYQRAAEFMRARIGPENLHFFVFSDDTDWVKENISFGSDTTF




mobilis JLW8



[Methylotenera


ISHNDAAKNYEDMRLMSACKHHIIANSSFSWWAAWLNPSKQKVVIAPRQWFKSTLLNSDDIVPASWVRL







mobilis JLW8]











Runella

YP_004658567.1
338214504
glycosyl
29.14

MIIVKLSGGLGNQLFQYAFGRHLATVNQKELKLDTSALTKTSDWTNRSYALDAFNIRAQEATPEEIKALAGK
 31



slithyformis; 



transferase


PNRLLQRVGRKVGITPIQYFQEPHFHFYSSALSIKSSHYLEGYWQSEKYFEAITPILREEFAFTISPSTHAQTI




Runella



family protein


KEKISNGTSVSIHLRRGDYVKTSKANRYLRPLTMDYYQKAIDYINQRVKNPNFFLFSDDIKWAKSQVTFPPTTH




slithyformis



[Runella


FSTGTSAHEDLWLMTHCRHHIIANSTFSWWGAWLNQQPDKIVIAPQKWFSTERFDTKDLLPEPWIQL



DSM 19594



slithyformis










DSM 19594]










Pseudo-

WP_002958454.1
489048235
alpha-1,2-
29.1

MIKVKAIGGLGNQLFQYATARAIAEKRGDGVVVDMSDFSSYKTHPFCLNKFRCKATYESKPKLINKLLSNEKI
 32



alteromonas



fucosyl-


RNLLQKLGFIKKYYFETQLPFNEDVLLNNSINYLTGYFQSEKYFLSIRECLLDELTLIEDLNIAETAVSKAIK




haloplanktis; 



transferase


NAKNSISIHIRRGDYVSNEGANKTHGVCDSDYFKKALNYFSERKLLDEHTELFIFSDDIEWCRNNLSFDYKMN




Pseudo- 



[Pseudo-


FVDGSSERPEVDMVLMSQCKHQVISNSTFSWWGAWLNKNDEKVVVAPKEWFKSTDLDSTDIVPNQWIKL




alteromonas




alteromonas








haloplanktis




haloplanktis]







ANT/505












uncultured 
EKE06679.1
406985989
glycosyl
28.67

MLTLKLKGGLGNQMFQYAASHNLAKNKKTKINFDLSFFSDIEVRDIKRDYLLDKFNISADISFDQKNSISGFR
 33


bacterium


transferase


KFLVKVISKFFGEVFYYRLKFLSSKYLDGYFQSEKYFKNVEEDIRKDFTLKDEMGVEAKKIEQQIVNSKNSVSL






family 11


HIRRGDYVDDLKTNIYHGVCNLDYYKRSIKYLKENFGEINIFVFSDDIAWVKENLAFENLQFVSRPDIKDYEEL






[uncultured


MLMSKCEHNIIANSSFSWWGAWLNENKNKIIIAPKEWFQKFNINEKHIVPKSWIRL






bacterium]










Clostridium sp. 

WP_021636949.1
545396696
glycosyl-
28.57

MVIVQLSGGLGNQMFEYALYLSLKAKGKVVKIDDITCYEGPGTRPKQLDVFGVSYERATKQELTEMTDSSL
 34


KLE 1755


transferase,


DPVSRIRRKLTGRKTKAYREKDINFDPQVMERDPALLEGCFQSEKYFQDCREQVREAYRFRGIESGAYPLPE






family 11


AYRRLEKEIADCKSVSVHIRRGDYLEESHGGLYTGICTEQYYQEAFARMEKEVPGAKFFLFSNDPDWTREHF






[Clostridium


KGENRILVEGSTEDTGYLDLYLMSKCKHNIIANSSFSWWGAWLNDNPEKKVTAPARWLNGRECRDIYTER






sp. KLE 1755]


MIRI







Francisella

WP_004287502.1
490414974
alpha-1,2-
28.57

MKIIKIQGGLGNQMFQYAFYKSLKNNCIDCYVDIKNYDTYKLHYGFELNRIFKNIDLSFARKYHKKEVLGKLFS
 35



philomiragia;



fucosyl-


IIPSKFIVKFNKNYILQKNFAFDKAYFEIDNCYLDGYWQSEKYFKKITKDIYDAFTFEPLDSINFEFLKNIQDY




Francisella



transferase


NLVSIHVRRGDYVNHPLHGGICDLEYYNKAISFIRSKVANVHFLVFSNDILWCKDNLKLDRVTYIDHNRWMDS




philomiragia



[Francisella


YKDMHLMSLCKHNIIANSSFSWWGAWLNQNDDKIVIAPSKWFNDDKINQKDICPNSWVRI



subsp. 



philomiragia]








philomiragia










ATCC 25015













Pseudomonas

WP_017337316.1
515906733
protein
28.52

MVIAHLIGGLGNQMFQYAAARALSSAKKEPLLLDTSSFESYTLHQGFELSKLFAGEMCIARDKDINHVLSW
 36



fluorescens; 



[Pseudomonas


QAFPRIRNFLHRPKLAFLRKASLIIEPSFHYWNGIQKAPADCYLMGYWQSERYFQDAAEEIRKDFTFKLNMS




Pseudomonas




fluorescens]



PQNIATADQILNTNAISLHVRRGDYVNNSVYAACTVEYYQAAIQLLSKRVDAPTFFVFSDDIDWVKNNLNIG




fluorescens






FPHCYVNHNKGSESYNDMRLMSMCQHNIIANSSFSWWGAWLNSNADKIVVAPKQWFINNTNVNDLFP



NCIMB 11764





PAWVTL







Herbaspirillum

WP_008117381.1
495392680
glycosyl
28.48

MIATRLIGGLGNQMFQYAAGRALALRVGSPLLLDVSGFANYELRRYELDGFRIDATAASAQQLARLGVNAT
 37


sp. YR522


transferase


PGTSLLARVLRKVWPQPADRILREASFTYDARIEQASAPVYLDGYWQSERYFARIRQHLLDEFTLKGDWGS






family 11


DNAAMAAQIATAGAGAVSLHVRRGDYVSNAHTAQYHGVCSLDYYRDAVAHIGGRVEAPHFFVFSDDHE






[Herbaspirillum


WVRENLQIGHPATFVQINSADHGIYDMMLMKSCRHHIIANSSFSWWGAWLNPAEDKIVVAPQRWFKD






sp. YR522]


ATNDTRDLIPAAWVRL







Prevotella

WP_008822166.1
496097659
rotein
28.43

MKIVKILGGLGNQMFQYALYLSLKETFPQENVTVDLSCFHGYHLHNGFEIARIFSLHPDKATVMEILRIAYYY
 38



histicola; 



[Prevotella


PNYFFWQIGKRVLPQRKTMCTESTKLLFDKSVLQREGDRYFDGYWQDERYFIDCRRTILNTFKFPPFTDDN




Prevotella




histicola]



NLALLKKMDTNSVSIHVRRGDYVGNKLYQGICDLNYYREAIMKISSYISPSMFCVFSNDIEWCRDNLESFIKA




histicola






PIYYVDWNSGTESYRDMQLMSCCGHNIIANSSFSWWGAWLNQNSSKIVIAPKRWINLKNCGFMLPSRW



F0411





VKI







Flavobacterium

WP_017494954.1
516064371
protein
28.42

MIVVQLIGGLGNQLFQYAAAKALALQTKQKFSLDVSQFESYKLHNYALNHFNVISKNYKKPNRYLRKIKSFY
 39


sp. WG21


[Flavobacterium


QKNVFYKEVDFGYNPDLIHLKGGIIFLEGYFQSEKYFIKYEKEIREDFELRTPLKKETKAAIAKIESVNSVSI






sp. WG21]


HIRRGDYINNPLHNTSKEEYYNKALEIVENKINNPVYFVFSDDMEWVKANFSTKQETIFIDFNDASTNFEDLK









LMTSCKHNIIANSSFSWWGGWLNKNPDKIVIAPKRWFNDDSINTNDIIPTNWVKI







Polaribacter

WP_018944517.1
517774309
protein
28.42

MIIVRIVGGLGNQMFQYAYAKALQQKGYQVKIDITKFKKYNLHGGYQLDQFKIDLETSSPIANVLCRIGLRRS
 40


franzmannii


[Polaribacter


VKEKSLLFDEKFLEIPQREYIKGYFQTEKYFSSITPILRKQFIVQKELCNTTLRYLKEITIQKNACSLHIRRG







franzmannii]



DYISDEKANSVHGTCDLPYYKKSIKRIQDEYKDAHFFIFSDDISWAKKNLTNKNTTFIEHIVMPHEDMHLMSL









CKHNITANSSFSWWGAWLNQHENKTVIAPKNWFVNRENEVACANWIQL







Polaribacter

YP_007670847.1
472321325
glycosyl
28.42

MVVVRILGGLGNQMFQYAYAKSLAEKGYEVQIDISKFKSYKLHGGYHLDKFRIDLETANSSSAFLSKIGLKKT
 41


sp. MED152


transferase


IKEPNLLFHKDLLKVNNNAFIKGYFQAEQYFSDIREILINQFKIKKELAKSTLAIKNQIELLKTTCSLHVRRG






family 11


DYISDKKANKVHGTCDLDYYSSAIEHISKQNSNVHFFVFSDDIAWVKDNLNITNATYIDHNVIPHEDMYLMTL






[Polaribacter


CNHNITANSSFSWWGAWLNQNPDKIVIAPKNWFVDKENEVACKSWITL






sp. MED152]










Methanococcus

YP_001329558.1
150402264
glycosyl
28.19

MKIIQLKGGLGNQMFQYALYKSLKKRGQEVLLDISWYLKNNAHNGYELEWVFGLSPEYASIRQCFKLGDIPI
 42



maripaludis; 



transferase


NLIYNVKRKVFPKKTHFFEKSNFNYDNNVFEVTNGYFEGYWQNENYFKNFRSEILNDFSFKNIDKRNAEFSE




Methanococcus



family protein


YLKSINSVSVHVRRGDYVTNQKALNVHGNICNLEYYNKAINLANNNLKNPKFVIFSDDITWCKSNLGIDDPV




maripaludis



[Methanococcus


YVDWNTGPYSYQDMYLMSNCKNNIIANSSFSWWGAWLNQNTEKKVFSPKKWVNDRNNVNIVPNGWI



C7



maripaludis C7]



KIK







Gallionella

WP_018293379.1
517104561
protein
28.15

MIIAHIIGGLGNQMFQYAAGRALSLARGVPFKLDISGFEGYDLHQGFELQRVFNCAAGIASEAEVRDSLGW
 43


sp. SCGC


[Gallionella


QFSSPIRRIVARPSLAVLRRSTFVVEPHFHYWAGIKQVPDNCYLAGYWQSEQYFQSHAAVIRTDFAFKPPLS



AAA018-N21


sp. SCGC 


GQNSKLAMQIAQGNAVSLHIRRGDYANNPKTTATHGLCSLDYYRAAIQHIAERVQSPHFFIFSDDIAWVKS






AAA018-N21]


NLAINFPHQYVDHNQGTESYNDMRLMSLCQHNIIANSSFSWWGAWLNTNAHKIVIAPKQWFANTTHVA









DLIPSSWERL







Azospira

YP_005026324.1
372486759
Glycosyl
28.04

MQSPACIAGARAWWVGYGMAEAMQPVVVGLSGGLGNQMFQYAAGRALAHRLGHPLSLDLSWFQGR
 44



oryzae; 



transferase


GDRHFALAPFHIAASLERAWPRLPPAMQAQLSRLSRRWAPRIMGAPVFREPHFHYVPAFAALAAPVFLEG




Dechlorosoma



family 11


YWQSERYFRELREPLLQDFSLRQPLPASCQPILAAIGNSDAICVHVRRGDYLSNPVAAKVHGVCPVDYYQQ




suillum PS



[Dechlorosoma


GVAELSASLARPHCFVFSDDPEWVRGSLAFPCPMTVVDVNGPAEAHFDLALMAACQHFVIANSSLSWW







suillum PS]



GAWLGQAAGKRVIAPSRWFLTSDKDARDLLPPSWERR







Prevotella

WP_018463017.1
517274199
protein
28

MKIVKIIGGLGNQMFQYALAMALNKNFTDEEVKLDIHCFNGYTKHQGFEIDRVFGNEFELASYRDVAKVAY
 45



paludivivens



[Prevotella


PYFNFQLWRIGSRIFPDRRHMISEDTSFKIMPEVITSHNYKYYDGYWQHEEYFKNIHDEILDAFKFPKFQDER







paludivivens]



NKALAERLSDSNSISIHIRRGDYLNDELFKGTCGIEYYKKAIEEINERTVPTLFCVFSNDIHWCKENIEPLLN









GKETIYVDWNTGSDNYRDMQLMTKCKHNIIANSSFSWWGAWLNNTKDKIVIAPRIWYNTKEKVSPVANSWIKL







Gramella

YP_860609.1
120434923
alpha-1,2-
27.96

MSNKNPVIVEIMGGLGNQMFQFAVAKLLAEKNSSVLLVDTNFYKEISQNLKDFPRYFSLGIFDISYKMGTEN
 46



forsetii; 



fucosyl-


GMVNFKNLSFKNRVSRKLGLNYPKIFKEKSYRFDADLFNKKTPIYLKGYFQSYKYFIGVESKIRQWFEFPYE




Gramella



transferase


NLGVGNEEIKSKILEKTSVSVHIRRGDYVENKKTKEFHGNCSLEYYKNAITYFLDIVKEFNIVFFSDDISWV




forsetii



[Gramella


RDEFKDLPNEKVFVTGNLHENSWKDMYLMSLCDHNIIANSSFSWWAAWLNNNSEKNVIAPKKWFADIDQEQK



KT0803



forsetii



SLDLLPPSWIRM






KT0803]










Mariprofundus

WP_009849029.1
497534831
alpha-1,2-
27.92

MIIVQFTGGLGNQMFQYALGRRLSLLHDVELKFDLSFYQHDILRDFMLDRFQVNGQVATEKEIEAYTNTPIF
 47



ferrooxydans; 



fucosyl-


ALDRPLLDRLVRWGLYRGIVSVSDEPPGKQALMVYNSRVLQAPRNTYVQGYWQSEKYFMPIRQKLLDDFS




Mariprofundus



transferase


LVDKADQANGAMLEKIRQCHSVSLHVRRGDYVSNPLTNHSHGTCGLEYYEKAIALIGSKVDDPHFFVFSDD




ferrooxydans



[Mariprofundus


PEWTRDHLKCRFPMTYVTCNSADSCEWDMELMRHCRDHIIANSSFSWWGAWLNMNPDKVVVAPAA



PV-1



ferrooxydans]



WFNNFSADTSDLIPDSWVRI







Bacillus

WP_002174293.1
488102896
protein
27.91

MKIIQVSSGLGNQMFQYALYKKISLNDNDVFLDSSTSYMMYKNQHNGYELERIFHIKPRHAGKEIIDNLSDL
 48



cereus; 



[Bacillus


DSELISRIRRKLFGAKKSMYVELKEFEYDPIIFEKKETYFKGYWQNYNYFKDIEQELRKDFVFTEKLDKRNEK




Bacillus




cereus]



LANEIRNKNSVSIHIRRGDYYLNKVYEEKFGNIANLEYYLKAINLVKKKIEDPKFYIFSDDIDWAQKNINLTN




cereus VD107






DVVYISHNQGNESYKDMQLMSLCKHNIIANSTFSWWGAFLNNNDDKIVVAPKKWINIKGLEKVELFPENWITY







Firmicutes

WP_022352106.1
547951299
protein
27.81

MIIIRMTGGLGNQMFQYALYLKLRAMGKEVKMDDFTEYEGREARPLSLWAFGIEYDRASREELCRMTDGF
 49



bacterium



[Firmicutes


LDPVSRIRRKLFGRKSLEYMEKDCNFDPEILNRDPAYLTGYFQSEKYFADIEEEVRQAFRFSERIWEGIPSQL



CAG: 534



bacterium



LERIRSYEQQIKTTMAVSVHIRRGDYLQNEEAYGGICFERYYKTAIEYVKKRQQDASFFVFTNDPDYAGEWIL






CAG: 534]


KNFGQEKERFVLIEGTQEENGYLDLYLMSLCRHHILANSSFSWWGAYLNPSREKMVIVPHKWFGNQECRD









IYMENMIRIAKEQS







Sideroxydans

YP_003525501.1
291615344
glycosyl-
27.81

MVISNIIGGLGNQMFQYAAARALSLKLEVPLKLDISGFTNYALHQGFELDRIFGCKIEIASEADVHEILGWQS
 50



lithotrophicus;



transferase


ASGIRRVVSRPGMSIFRRKGFVVEPHFSYWNGIRKITGDCYLAGYWQSEKYFLDAAVEIRKDFSFKLPLDSH




Sideroxydans



family 11


NAELAEKIDQENAVSLHIRRGDYANNPLTAATHGLCSLDYYRKSIKHIAGQVRNPYFFVFSDDIAWVKDNLEI




lithotrophicus



[Sideroxydans


EFPSQYVDYNHGSMSFNDMRLMSLCKHHIIANSSFSWWGAWLNPNPEKVVIAPERWFANRTDVQDLLP



ES-1



lithotrophicus



PGWVKL






ES-1]









zeta 
WP_018281578.1
517092760
protein [zeta
27.81

MIVSQIIGGLGNQMFQYATGRALSHRLHDTFFLDLDGFSGYQLHQGFELSNVFQCEVNVATRSQMQALLG
 51


proteobacterium


proteo-


WRSFSSVRRLLMKRSLKWARGHRVMIEPHFHYWSRFAEINEGCYLSGYWQSERYFKPIENIIRQDFKFNHL



SCGC


bacterium  


LKGVNLDLAQQMTEVNSVSLHVRRGDYASDANTNHTHGLCPLDYYRDAILYIAQNTVAPSFFIFSDDIEWC



AB-137-C09


SCGC


REHLKLSFPATYIDHNKGSNSYCDMQLMSLCHHHIIANSSFSWWGAWLNTRLDKIVIAPKQWFANGNRT






AB-137-C09]


DDLIPAEWLVM







Pedobacter

YP_003090434.1
255530062
glycosyl
27.8

MKIIRFLGGLGNQMFQYAFYKSLQHRFPHVKADLQGYQEYTLHNGFELEHIFNIKVNSVSSFTSDLFYNKK
 52



heparinus; 



transferase


WLYRKLRRILNLRNTYIEEKKLFSFDPSLLNNPKSAYYWGYWQNFQYFEHIADDLRKDFQFRAPLSAQNQEV




Pedobacter



family protein


LDQTKLSNSISLHIRRGDYIKDPLLGGLCGPEYYQTAINYITSKVNAARFFIFSDDIDWCIANLKLQDCSFIS




heparinus



[Pedobacter


WNKGTSSYIDMQLMSSCKHHIVANSSFSWWAAWLNPNPDKIVIAPEKWTNDKDINVRMSFPQGWISL



DSM 2366



heparinus










DSM 2366]










Methylophilus

WP_018985060.1
517814852
protein
27.78

MFQYAMGLSLAENNQTPLKLDLSQFTDYKLHNGFELSKVFNCSAETASVTQIETLLGICKYSFIRRILKNTYL
 53


methylotrophus


[Methylophilus


KNLRPAQYVVEPFFGYWDGVNFLGDNVYLEGYWQSQKYFIDYESTIRTHFTFKNILSGENLKLSDRIKGSNSV







methylotrophus]



SLHIRRGDYVTNKNNAFIGTCSLIYYQNAIEYFSTKIADPIFFIFSDDITWAKSNLRLANEHYFVGHNQGEDS









HFDMQLMSLCKHHIIANSSFSWWGAWLNPSKDKIIIAPKKWFASGLNDQDLVPKDWLRI







Rhodobacterales

WP_008033953.1
495309205
alpha-1,2-
27.7

MIYTRIRGGLGNQLFQYSAARSLADYLNVSLGLDTREFDENSPYKMSLNHFNIRADLNPPDLIKHKKDGKIA
 54



bacterium



fucosyl-


YIIDHIKGNQKKVYKEPFLSFDKNLFSNVDGTYLKGYWQSEKYFLRNRKNILSDINLIKKTDKFNTINLKEIK



HTCC2255


transferase


KSTSISLHIRRGDYLSNESYNETHGICSLSYYTDAVEYIKNRLGENIKVFAFSDDPDWVLENLKLSVDIKIIN






[Rhodobacterales


NNTSANSFEDLRLMLNCDHNIIANSSFSWWGAWLNQNPEKIVISPKKWYNKKQLQNADIVPSSWLKY







bacterium










HTCC2255]










Spirulina

WP_017302658.1
515872075
protein
27.69

MAKIIARIRGGIGNQIFIYAAARRLELINNAELVLDSVSGFVHDLQYRQHYQLDHFHIPCRKATPAERFEPFSR
 55



subsalsa



[Spirulina


VRRYLKRQLNQRLPFEQRRYVIQESIDFDPRLIEFKPRGTVHLEGYWQSEDYFKDIEATIRQDLQIQPPTDPT







subsalsa]



NLAIVQHIHQHTSVAVHIRFFDQPNADTMNNAPSDYYHRAVEAMETFVPGAHYYLFSDQPEAAKSRIPLP









DERVTLVNHNRGNKLAYADLWLMTQCQHFIIANSTFSWWGAWLAENQKKQVIAPGFEKREGVSWWGF









KGLLPKQWIKL







Vibrio

WP_010433911.1
498119755
glycosyl
27.67

MVIVKITGGLGNQLFQYATGSALANKLSCELVLDLSFYPTQTLRKYELAKFNINARVATDREIFLAGGGNDFF
 56



cyclitrophicus



transferase


SKALKKLGLTSIIFPEYIKEQESIKYVGKIDLCKSGAYLDGYWQNPLYFSQNKIELTREFLPRAQLSPSALAW






family 11 


KDHISQASNSVSLHVRRGDYVENAHTNNIHGTCSLEYYQHAIEKIRSEVHNPVFFVFSDDIEWCKLNLSSLAE






[Vibrio


VEFVDNTTSAIDDLMLMRQCKHSIIANSTFSWWGAWLKLDGLVIAPRNWFSSASRNLKGIYPKEWHIL







cyclitrophicus]











Lachnospiraceae

WP_022783177.1
551039510
protein
27.65

MRSVVDIKGGYGNQLFCYSFGYAVSKETGSELIIDTSMLDMNNVKDRNYQLGVLGITYDSHISYKYGKDFLS
 57



bacterium




[
Lachnospiraceae



RKTGLNRLRKKSAIGFGTVVFKEKEQYVYDPSVFEIKRDTYFDGFWQSSRYFEKYSDDLRKMLKPKKISNAAE



NK4A179



bacterium



KLAEDARDCLSVSVHIRRGDYVSLGWTLKDDYYIKALDIIKERYGSEPVFFVFSDNKKYADDFFSAAGLKYRL






NK4A179]


MDYETDDAVRDDMFLMSRCSHNIMANSSYSWWGAFLNDNKDKTVICPETGVWGGDFYPEGWMKVTA









SSGK






uncultured 
EKE02186.1
406980610
glycosyl
27.57

MIIVNLYGGLGNQMFQYALGRHLAEKNNTELKLDISAFESYKLRKYELGNLNIIEKFALPEEISRLSTLPTGK
 58


bacterium


transferase


IERFIRKTLRKPVKKPESYIKENITGGFNPKILDLQNNIYLEGYWQSEKYFIEIEDIIRKEFSFKFPATGKNK






family protein


EILENILNINSVSLHIRRGDYVTNPEVNQVHGVCSLDYYKSCVDFIEKKLESPYFYIFSDDIEWVKNNLQIQS






[uncultured


QVYYVDHNTVDNAIEDMRLMFSCKHNILANSSFSWWGAWLNSNPDKMVITPRKWFNTTYDSNDLIPERWIKL






bacterium]










Bacteroides

WP_005822375.1
492366053
protein
27.46

MKIGIIYIVTGPYIKFWNEFYSSSQLYFCVEAEKNYEVFTDSSELASQRLPNVHMHLIEDKGWIVNVSSKSKFI
 59



fragilis; 



[Bacteroides


CEIRNQLTSYDYIFYLNGNFKFISPIYCDEILPQAEHNYLTALSFSHYLTIHPDHYPYDRNKNCNAFIPYGQGK




Bacteroides




fragilis]



YYFQGGFYGGRTQEVLSLSEWCRDAIEADFNKKVIARFHDESYINRYLLTQHPKVLNDKYAFQDIWPYEGEYKA




fragilis






IVLNKEEVPEDNNLQEMKQNYIDPSLSFLLNDELKFIPISIVQLYGGLGNQMFGYAFYLYIRHISTQERKLLID



HMW 616





PAPCKRYGNHNGYELPSIFSKICQDIHISDETKNNIRKLRKGTSLSIEEVRASMPQSFKEKKQPIIFYSGCWQC









VTYVETVKDEIKKDFIFDESKLNEPSAQMLRIIRRSNSVSVHIRRNDYLIGNNEFLYGGICFKSYYEKAISQMY









TLLKDEPIFIYFTDDPEWVRSNFALDKSYLVDWNKNKDNWQDMYLMSACRHHIIANSSFSWWAAWLGGF









PEKKVIAPSTWLNGMQTPDILPTEWIKIPITPDKKILDRICNHLILHSSYMKQLGLNSGKMGVVIFFFHYARYT









QNPLYENYAGDLFDELYEEIHKGISFSFLDGLCGIAWAVEYLVHEQFIEGNTDDSLAEIDFKVMQIDPRRFTD









YSFETGLEGIACYVLSRLLSPRVCSSSLTLDSVYLKDLTEACRKVPVDKANYTRLFLNYIESKEVGYSFKDVLM









QVLNHSEKAFGSDGLTWQTGLTMIMR







Butyrivibrio

WP_022778576.1
551034739
protein
27.46

MIIIQLKGGLGNQMFQYALYKELRSRGKEVKIDDVTGFVDDELRTPVLQRFGIEYDRATREEVVKLTDSKMD
 60


sp. AE3009


[Butyrivibrio


IFSRIRRKLTGRKTCRIDEESGTFNPDILELDEAYLVGYWQSDKYFRNEDVIAQLRQEFQKRPQEIMTDSASW






sp. AE3009]


ATLQQIECCQSVSLHIRRTDYIDEEHNHIHNLCFEKYYKGAIDRIRSQYPSAVFFIFTDDKEWCRNHFRGPNF









FVVELAEKENTDIAEMLLMSSCKHHICANSSFSWWSAWLNDSPEKMVIVPNKWINNRDMDDIYTDRMT









KMAI







Bacteroides

WP_004317929.1
490447027
protein
27.43

MKQTIILSGGLGNQMFQYAFFLSMKAKGKSCSLDTTLFQTNKMHNGFELKSVFDIPDSPNQASALHSLLIK
 61



ovatus; 



[Bacteroides


MLRRYKPKSILTIDEPYTFCPDALESKKSFLMGDWLSPKYFESIKDVVVNAYRFHNIGNKNVDTANEMHGN




Bacteroides




ovatus]



NSVSIHIRRGDYLKLPYYCVCNENYYRQAIEQIKDRVDNPIFYVFSNEPSWCDSFMKEFRVNFKIVNWNQG




ovatus






KDSYQDMYLMTQCKHNIIANSTFSWWGAWLNNNTDKIIVAPSKWFKNSEHNINCKEWLLIDTSK



CL02T12C04













Desulfospira

WP_022664368.1
550911345
protein
27.42

MGKKYVETVVNGGLGNQIFQFSAGFALSKRLNLDLVLNISTFDSCQKRNFELYTFPKIKNSFACIKDDDPGVF
 62



joergensenii



[Desulfospira


SRLRIPFLNFKEKIKQFHESHFFFDPAFFDIREPVRIEGYFQSYKYFEKYSDQLKDILLDIPLTSRLKTVLKV







joergensenii]



ISSKKESVSVHIRRGDYISDQGINEVHGTLNEAYYLNSIKLMEKMFPESFFFLFTDDPHYVEENFKFLEDTSC









IISDNDCLPYEDMYLMANCHHNIIANSSFSWWGAWLNQNPEKIVIAPRKWFSRKILMEKPVMDLLPDDWILL







Lachnospiraceae

EOS74299.1
507817890
protein
27.39

MNIIRMTGGLGNQMFQYALFLRLKAQGKEVKFDDRTEYKGEEARPILLWAFGIDYPAAGEEEVNELTDGV
 63



bacterium 10-1



C819_03052


MKFSHRLRRKLFGRKSKEYREKSCNFDQQILEKEPAYFTGYFQSERYFEEVKEQVRKAFQFSGKIWGSVSKEL






[Lachnospiraceae


EERIREYQTKIENKSQMPVSVHIRRGDYLENDEAYGGICFDAYYRKAIEMMEEKFPNTVFYIFSNDTGWAK







bacterium 10-1]



QWIDHFYKEKSRFIVIEGTTEDTGYLDLFLMSKCRAHIIANSSFSWWGAWLDPDQEKIVIAPSKWVNNQD









MKDIYTREMIKISPKGEVR







Bacteroides

WP_007832461.1
495107639
protein
27.33

MVVVYVGAGLANRMFQYAFALSLREKGLDVFIDEDSFIPRFDFERTKLDSVFVNVNIQRCDKNSFPLVLRED
 64



dorei; 



[Bacteroides


RFYKLLKRISEYMSDNRYIERWNLDYLPYIHKKASTNCIFIGFWISYKYFQSSEDAVRKAFTFKPLDSIRNVE




Bacteroides




dorei]



LATKLVTENSVAVHFRKNIDYLKNLPNTCPPSYYYEAINYIKKYVPNPKFYFFSDNWDWVRENIRGVEFTAVD




dorei






WNPSSGIHSHCDMQLMSLCKHNIIANSTYSWWSAYLNENNNKIVVCPKDWYGGMVKKLDTIIPESWIIING



DSM 17855












Firmicutes 
WP_021916201.1
547127421
protein
27.33

MVIVKMSGGLGNQMFQYALYRKIQQTGKDVKLDLFSFQDKNAFRRFSLDIFPIEYQTANLEECRKLGECSY
 65



bacterium



[Firmicutes


RPVDKIRRKMFGLKESYYQEDLDKGYQPEILEMNPVYLDGYWQCERYFQDIREKILEDYTFPKKISIESSRLQE



CAG: 24



bacterium



RIKNTESVSIHIRRGDYLDAANYKIYGNICTIEYYQSAISRMRKLCEKPNFYLFSNDPEWAKEIFGDTEDITIV






CAG: 24]


EEDKERPDYEDMFLMSRCKHNIIANSSFSWWAAWLNQNENKRVIAPVKWFNNHSVTDVICDDWIRIDGDH









KGA







Clostridium

WP_022031822.1
547299420
epsH
27.3

MIYVNIRGRLGNQLFIYAFARALQKSTNQQITLNYTSFRKHYNNTAMDLEQFNIPEDIMFENSKELPWFAN
 66



hathewayi



[Clostridium


TDGKVIRILRHYFPKLIRSILQKMNVLMWLGDEYVEVKVNKRRDIYIDGFWQSSRYFKSVYKELKNELIPKME



CAG: 224



hathewayi



MSKEIKTMGDLINQKESVCVSVRRGDYVTVKKNRDVYYICDEKYLNTSIMRMVELVPNVTWFIFSDDADW






CAG: 224]


VKDNIVFPGEVFYQPPRVTPLETLYLMKACKHFIISNSSFSWWGQYLSNNDNKIVIGPAKWYVDGRKTDIIE









EEWIKIEV







Syntrophus

YP_462663.1
85860461
alpha-1,2-
27.3

MVIVRLTGGIGNQMFQYAAARRVSLVNNAPLFLDLGWFQETGSWTPRKYELDAFRIAGESASVGDIKDFK
 67



aciditrophicus



fucosyl-


SRRQNAFFRRLPLFLKKRIFHTRQTHIIEKSYNFDPEILNLQGNVYLDGYWQSEKYFSDVDSEIRREFSFQTDP



SB; Syntrophus


transferase


AERNRKILERIASCESVSIHIRRGDYVTLPDANAFHGLCFPAYYRLAVEQISRKVVEPVFFVFSDDIAWARGNL




aciditrophicus



[Syntrophus


KLGFETCFMDQNGPDRGDEDLRLMIACRHHIIANSSFSWWGAWLCSNPEKIVYAPRKWFNNGLDTPDNI







aciditrophicus



PASWIRI






SB]










Bacteroides

WP_005678148.1
491931393
protein
27.27

MKIVKIIGGLGNQMFQYALYLSLKKKYPKEKIKIDISMFETYGLHNGFELKRIFDIDAEYASREEIRELSFYIK
 68



caccae; 



[Bacteroides


IYKLQRIFRKIFPVRKTECVEKYDFKFMSEVWSNCDRYYEGYWQNWEYFIEAQTEVRSTFTFKKELVGRNAKVI




Bacteroides




caccae]



REIQYAKMPVSLHIRRGDYLHHKLFGGLCDLNYYKKAIDYVLNNYDTPQFYLFSNDIEWCKTYILPLVQGYPFI




caccae






LVDWNSGVESYIDMQLMSCCRINIIANSSFSWWAAWLNDSSEKIVIAPKLWAHSPYGKEIQLKSWLLF



ATCC 43185













Butyrivibrio

WP_022756304.1
551011888
protein
27.24

MIIIEMSGGLGNQMFQYALYKSMLHKGLDVTIDKSIYRDVDHKEQVDLDRFPNVSYIEADRKLSSTLRGYGY
 69



fibrisolvens



[Butyrivibrio


NDSIIDKIRNKLNKSKRNLYHEDLDKGYQPEIFEFDNVYLNGYWQCERYFKDIKNEIKKDFIFPCFQSGDDKIK







fibrisolvens]



ALTIEMESCNSVSLHVRRGDYLKPGLIEIYGNICTEEYYKKSIEYIKERVDNPVFYIFSNDMAWVRDNFKSDDF









RYVNEDGAFDGMTDMYLMTRCRHNIVANSSFSWWGAWLNKHDDNIVICPNRWVNTHTVTDIICEDWI









RIDV







Parabacteroides

WP_005857874.1
492476819
protein
27.24

MIVGGNDYCKVKVVNIIGGLGNQMFQYAFALSLKEHFPKEEIRIDISHFNYLFVNKVGAANLHNGYELDKIF
 70



distasonis; 



[Parabacteroides


FNIELKKANAWQLMKLTWFIPNYLISRIARKILPVRNSEYIQNSSDCFFYDPMVYNKQGSCYYEGYWQAIGY




Parabacteroides



distasonis]


YESMRDKLCKIFQHPSPEGKNKQYIENMESSNSVGIHIRRGDYLLSDNFRGICEVDYYKRAIDKILQDGEKHV




distasonis






FYLFSNDQKWCEEYILPLLGNYEIIFVTGNIGRDSCWDMFLMTHCKDLIIANSSFSWWGAFLNKRGGRVVT



CL03T12C09





PKRWMNRNIRYDLWMPEWIRI







Geobacter

YP_001230447.1
148263741
glycosyl
27.21

MIIARLQGGLGNQMFQYAVGLHLALTHNVELKIDITMFSDYKWHTYSLRPFNIRESIATEEEIKALTDVKMD
 71



uraniireducens; 



transferase


RPYKKIDNFLCRLLRKSQKISATHVKEKHFHYDPDILKLPDNVYLDGYWQSEKYFKEIENIIRQTFIIKNPQL




Geobacter



family protein


GRDKELACKILSTESVCLHIRRGNYVTDKTTNSVLGPCDLSYYSNCIKSLAGNNKDPHFFVFSNDHEWVSKNL




uraniireducens



[Geobacter


KLDYPTIYVDHNNEDKDYEDLRLMSQCKHHIIANSTFSWWSAWLCSNPDKVIYAPQKWFRVDEYNTKDLLPS



Rf4



uraniireducens



NWLIL






Rf4]










Lachnospiraceae

WP_016280341.1
511026085
protein
27.21

MIIVKIYEGLGNQLFQYAFARSIQVNGKKVFLDTSGYTDQLFPLCRTSTRRRYQLNCFNIRIKEVEKKNIEKY
 72



bacterium A4



[Lachnospiraceae


SFLIQEDMFGKLISKLAKLHLWMYKVTIQQNAQEYKESYLNTRGNVYYKGWFQNPKYFSSIRRLLLKEITPKY







bacterium A4]



KIRIPAELRELLQEDNIVAVHCRRGDYQYIRNCLPVNYYKKAMAYMEKKLGVPRYLFFSDDLSWVKRQFGNKD









NNYYIEDYGKFEDYQELMIMSRCRNFIIANSTFSWWAAWLCSYENKVVIMPRVWTYVGGQGVEMSDFPA









DWIRI







Colwellia

YP_270849.1
71282201
alpha-1,2-
27.15

MKVVRVCGGFGNQLFQYAFYLAVKHKFNETTKLDIHDMASYELHNGYELERIFNLNENYCSAEEKLAVQST
 73



psychrerythraea;



fucosyl-


KNIFTKLLKEIKKYTPFIPRTYIKEKKHLHFSYQEVDLGTKDTSIYYRGSWQNPQYFNSIASEIREKLTFPEF




Colwellia



transferase


TEPKSLALHQEISEHETVAVHIRRGDYLKHKALGGICDLPYYQNAIKEIEGLVEKPLFVIFSDDITWCRANIN




psychrerythraea



[Colwellia


VEKVRFVDWNSGEQSFQDMHLMSLCFHNIIANSSFSWWGAWLNANPNKIVISPNKWIHYTDSMGIVPSEWIKV



34H



psychrerythraea



ETSI






34H]










Roseobacter sp.

WP_009810150.1
497495952
alpha-1,2-
26.96

MITSRLHGRLGNQMFQYAAARALAHRLGCGVALDGRGAELRGEGVLTRVFDLPLSAAPKLPPLKQHAPLR
 74


MED193


fucosyl-


YGLWRGLGLAPRFRRERGLGYNTAFETWEDGCYLHGYWQSERYFEEISDLIRADFTFPDFSNRQNAEMAA






transferase


RIMEDNAISLHVRRGDYVALSAHVLCDQAYYEAALTRLLEGLSQDAPTVYVFSDDPDWAKANLPLPCKKVV






[Roseobacter


VDFNGPETDFEDMRLMSLCKHNIIGNSSFSWWAAWLNANPQKRVAGPANWFGDPKLSNPDILPSQWLK






sp. MED193]


VAP







Cesiribacter

WP_009197396.1
496488826
Glycosyl
26.89

MMIVRLCGGLGNQLFQYAVGKQLSVKNNIPLKIDDSWLRLPDARKYRLQFFQIEEPLASPQEVERFVGPYES
 75



andamanensis; 



transferase


QSLYARLYRKVQNMLPRHRRRYFQESGFWAYEPELMRIRSQVFLEGFWQHHAYFTRLHPQVLEALQLREE




Cesiribacter



family 11


YRQEPYAVLDQIREDAASVSLHIRRGDYVSDPYNLQFFGVMPLSYYQQAVAYMQEQLHAPTFYIFSDDLD




andamanensis



[Cesiribacter


WARAHLKLQAPMVFVDIEGGRKEYLELEAMRLCRHNILANSSFSWWGAYLNTNPHKRVIAPRQWVADPE



AMV16



andamanensis]



LKDKVQIQMPDWILL







Rhodopirellula

WP_008679055.1
495954476
glycosyl
26.89

MIATRLIGGLGNQMFQYAYGFSLARRRSERLVLDVSAFESYDLHALAIDQFDISAARMTQAEFARIPGRYRG
 76



sallentina; 



transferase


KSRWAERVANFAGGLQSCDKRPLRLRREKPFGFAEKYLAEGSDLYLDGYWQSERYFPGLQAELKKEFQLKR




Rhodopirellula



family 11


GLSDESSRVLDEIQSSMSVAMHVRRGDYVTNAETLRIYRRLDAEYYRKCLNDLRQRFSNLNVFVFSNDIQW




sallentina



[Rhodopirellula


CQDHLDVGLKQRPVTHNDATTAIEDMFLMSQCDHSIIANSSFSWWAAFLGRSDAQRRVYYPDPWFNPG



SM41



sallentina]



TLNGDSLGCANWVSESSISVSRPSRAA







Butyrivibrio

WP_022762282.1
551018054
protein
26.85

MIIIRMMGGLGNQMFQYALYLQLKALGKEVKIDDVYGFRDDPQRDPVLEKMYGITYTKASDAEVVDITDS
 77


sp. AD3002


[Butyrivibrio


HLDIFSRIRRKLFGRKSHEYIEETGLFDPKVFEFETAYLNGYFQSDKYFPDKEVLAQLRREFVIKPDDVFTSA






sp. AD3002]


DSWELYRQIRETESVSIHVRRGDYLLPGTVETFGGICDNDYYKRAIDRMVSEHPDAIFFVFTSDKEWCEQNVS









GKKFRIVDTKEENDDAADLLLMSLCKHHILANSSYSWWSAWMNDSPEKTVIVPSKWLNTKPMDDIYTSRM









TKI







Segetibacter

WP_018611017.1
517440157
protein
26.78

MVVVKLIGGMGNQMFQYAIGRHLAIKNKCPLYFDHIELENKNTANTPRNYELDIFNVQYQKNPFLQSNRF
 78



koreensis



[Segetibacter


VAKVYHKLFSVQRIKEPDFTFHPHILNVQGNIHLNGYWQNENYFKEIEEIIRQDFTFKTPANEKIESILQQIA







koreensis]



ATNSVSLHVRRGDYITLTEANQFHGVCSDTYYQKAIAKIKEAIPAPHLFVFSDDIHWVKQNMPFTEEHTFVDG









NTGKNSFEDLRLMAACRHNILANSSFSWWAGWLNKNPEKMVIAPEKWFRAVHTDIVPPSWIKM







Amphritea

WP_019621022.1
518450815
protein
26.76

MVIVRLIGGLGNQLFQYAYALSLLEQGYDVKLDASAFESYTLHGGFGLGEYAERLEVATTEEVDMVSRVGRI
 79



japonica



[Amphritea


STLLRKLQGKKSRRVIKESNFSYDEKMLTPEDSHYLVGYFQSELYFNKIRGELLSALDLKHKLSPYTEASYLA







japonica]



IADASVSVSMHIRRGDYVSDKAAHNTHGVCSLDYYYAAVTFFEERYPDVDFYIFSDDIEWVKENLNVQRAHYI









SSEEKRFAGEDIYLMSQCDHNIVANSSFSWWGAWLNANEDKIVVAPRQWYADSNMQRLSKTLVPDTWI









RL







Desulfovibrio

YP_002437106.1
218887785
glycosyl
26.76

MRPWVDIFGGLGNQMFQYAAAKSLAERLGVRLELDVSMFSGDPLRAFSLGEFAITDHVRGKSRSSLLVRF
 80



vulgaris; 



transferase


ARSLGFGSSSKCVEPFFHYWEGINEIEAPVHMHGYWQSEKYFKAYEDLIRRTFSFSACEGVASSGKYAGVSS




Desulfovibrio



family protein


PMSVSVHLRRGDYKEQKNVVVHGILGREYYDAAYSIIKQGCPSACFFVFTDAINEAVDFFSHWNDVLFVDG




vulgaris str. 



[Desulfovibrio


NNQYQDMYLMSQCRHHIIANSSYSWWGAWLGAFSDGMTVAPKMWFAYDVLKEKSIKDLFPEDWIVL



′Miyazaki F′



vulgaris str.










′Miyazaki F′]










Spirosoma

WP_020606886.1
522095677
protein
26.76

MIISRITSGLGNQLFQYAVARHLSLKNKTSLYVDLSYYLYQYHDDTSRNFKLGNFSVPYHTLQQSPVEYVSKA
 81



spitsbergense



[Spirosoma


TKLLPNRSLRPFFLFQKERQFHFDEQILQSRAGCVILEGFWQSEAYFRDNADTIRRDLQLSGTPSPEFNQYRE







spitsbergense]



LIRETPMSVSIHVRRSDYVNHPEFSQTFGFVGIDYYKRAIELARKELANPRFFVFSDDKEWSKTNLPLGEDSV









FVQNTGLNGDVADLVLMSHCQHHIIANSSFSWWGAWLNPNAGKLVITPKNWYKNKPAWNTKDLLPPT









WLSI







Lachnospiraceae

WP_016292012.1
511037988
protein
26.73

MNIIRMSGGIGNQMFQYALYLKLVSLGKEVKFDDVTEYELDNARPIMLSVFGIDYPKASREELVELTDASM
 82



bacterium 28-4



[Lachnospiraceae


DFLSRVRRKIFGRKSGEYHEASADYDETVLEKEHAYLCGCFQSERYFKDIEYEVREAYRFRNVVVPEEIRGGI







bacterium 28-



ETYERQIGESLSVSIHIRRGDYLDAADVYGGICFDAYYNQAIRYMIKKYENPSFFVFTNDTFWAEKWCEVRER






4]


ETGKRFTVIKGTDEETGYIDLMLMSRCKAHIIANSSFSWWGAWLDASPDKCVVAPVKWINTRECRDIYTED









MVRIGSNGKISFSNCSSL







Lachnospiraceae

WP_016302211.1
511048325
protein
26.71

MVVVRIWEGLGNQLFQYAYARALSLRTKDRVYLDISEYEMSPKPVRKYELCHFKIKQPVINCGRIFPFVNKD
 83



bacterium COE1



[Lachnospiraceae


SFYTKNNQYLRYFPAGLIKEEDCYFKRDFCELKGLLYLKGWFQSEKYFKEFESHIREEIYPRNKIKITRGLRKI







bacterium



LNSDNTVSVHIRRGDFGKDHNILPIEYYENSKRVILERVDNPYFIIFSDDILWVKENMNFGLNCFYMDKEYSYK






COE1]


DYEELMIMSRCKHNIIANSTFSWWGAWLNPSKDKIVIAPKKWFLYNPKKDFDIVPNDWIRV







Parabacteroides;

WP_005867692.1
492502331
alpha-1,2-
26.69
FutZB
MKIVNIIGGLGNQMFQYAFAVALKAKYPNEEVFIDTQHYKNAFIKVYHGNNFYHNGYEIDKVFPNATLEPA
 84



Parabacteroides



fucosyl-


RPKDLMKVSFYIPNQVLARAVRRIFPKRKTEFVTDQQPYVFIPEALSVIDDCYFDGYWMTPLYFDKYRDRILK



sp. 20_3; 


transferase


EFTFRPFDTKENLELEPLLKQDNSVTVHIRRGDYVGSSSFGGICTLDYYRNAIREAYNLITSPEFFIFSNDQKW




Parabacteroides



[Parabacteroides]


CMENMRNEFGDAKVHFIAHNRGADSYRDMQLLSIARCNILANSSFSWWGAYLNQRKNCFIICPHKWHN




distasonis






TLEYSDLYLPTWIKI



CL09T03C24













Bacteroides sp.

WP_002561428.1
488624717
protein
26.62

MFVIRLIGGVGNQLFQYTFGQFLRHKFGVEVCYDIVAFDTVDKGRNLELQLLDESLPLFETSNFFFSKYKSWK
 85


HPS0048


[Bacteroides sp.


KRLFLYGFLLKKNNKYYTKYAPEEISLFTEKGLSYFDGWWQYPALLRDTINNMEDFFIPKQPIPVQIQKYYNEI






HPS0048]


LLNNFAVALHVRRGDYFTSKYAKTYAVCNVEYYTSAVNLMCEKLRSCKFYVFSDDLDWVKSNLILPSNTVYV









KNYDINSYWYIYLMSLCRHIIISNSSFSWWGATLNRNFHKIVIAPKYWSTKKNNTLCDNSWIKI







Bacteroides

WP_016267863.1
511013468
protein
26.58

MKIINILGGLGNQMFEYAMYLALKNAHSEEEILCSTRSFCGYGLHNGYELGRIFGIQVKEASLLQLTKLAYPFF
 86



thetaiotaomicron;



[Bacteroides


NYKSWQVMRHWLPVRKTMTRGAINIPFDYSQVMREDSVYYDGYWQNEKNFLHIREEILTAYTFPKFDDE




Bacteroides




thetaiotaomicron]



KNQELADIIVKSNAVSCHIRRGDYLKEINMCVCTSSYYAHAISYMNEEINPNLYCVFSDDIEWCRNNICELM




thetaiotaomicron






GEDKKIIFIDWNKGEKSFRDMQLMSLCKHNIIANSSFSWWGAWLNRNDKKIVVAPTRWIASEVKNDPLCD



dnLKV9





SWKRIE







Desulfovibrio

YP_389367.1
78357918
glycosyl
26.56

MKFVGVWILGGLGNQMFQFAAAYALAKRMGGELRLDLSGFKKYPLRSYSLDLFTVDTPLWHGLPMSQRR
 87



alaskensis;



transferase


FRIPMDAWTRGSRLPLVPSPPFVMAKEKNFAFSPIVYELQQSCYLYGYWQSYRYFQDVEDDIRTLFSLSRFA




Desulfovibrio



[Desulfovibrio


TLELAPVVAQLNEVESVAVHLRRGDYITDAASNAVHGVCGIDYYQRSMSLVRRSTTKPIFYIFSDEPEVAKKL




alaskensis G20




alaskensis G20]



FATEDDVVVMPSRRQEEDLLLMSRCKHHIIANSSFSWWAAWLGKRASGLCIAPRYWFARPKLESTYLFDLI









PDEWLLL







Prevotella

ETD21592.1
564721540
protein
26.56

MDIVVIFNGLGNQMSQYAFYLAKRKSGSRCHCIFHNVSTGFHNGSELDKVFGIKYEKGIFSKLLSKIYDIFDGI
 88



oralis



HMPREF1199_00667


PKLRKKLNSLGIHIIREPRNYDYTASLLPRVSRWGLNYFVGGWHSEKYYTEILQEIKNTFSFKIDDEIKDIDFY



CC98A


[Prevotella


EFYSLIHNDINSVSLHIRRGDYVGANEYSYFQFGGVATLEYYHKAIDEIYQRIENPTFYVFSDDIGWCKTTFLK







oralis CC98A]



NNFIFVDCNCGEKSWRDMFLISQCKHHIIANSTFSWWGAWLSIFHNSITICPKEFIKGVVIRDVYPDTWIKLSS







Comamonadaceae

YP_008680725.1
550990115
glycosyl-
26.54

MASKISKIIPRIFGGLGNQLFIYAAARRLALVNGAELALDDVSGFVRDHEYNRHYQLDHFNIPCRKATAAERL
 89



bacterium CR



transferase


EPFARVRRYLKRKWNQRLPFEQRKYLVQESVDFDERLLTFKPRGTVYLEGYWQSEDYFKDIEPQIRADLRIH






[Comamonadaceae


PPTDTVNQQMAERIRATNAVAVHVRFFDAPAQSALGVGGNNAPGDYYQRAIKVMQEQAPDAQYYIFSD







bacterium



QPQAARARIPLRDDHVTLVNHNQCDAVAYADLWLISQCQHFIIANSTFSWWGAWLGKTPESIVIAPGFEK






CR]


REGAMFWGFRGLLPDRWVKL







Vibrio

WP_022596860.1
550250577
WblA protein
26.51

MKDSRIVKLNGGLGNQMFQFALAFALKKKLNVAVKFDTELLDTNRTEFKLSLERFGLIVDKLTITEKFKYKGL
 90



nigripulchritudo; 



[Vibrio


ESCKYRKICNWISNFTTINIHKGYYKEKERGVYDRGIFDSNVKYIDGYWQNQEYFNDFRSELLNKFNLNGKV




Vibrio




nigripulchritudo]



SNHAIQYLKEITSVQNSVSIHVRRGDYLLLDVYRNLTLDYYSEAIKLVRITNPDSKFFIFSNDINWCKSNFKS



nigripulchritudo





VDNAIFVDSTVDEFDDMFLMSKCKTNIIANSTFSWWAAWLNNNSGKIVYCPKKWRNDTTEVHKGLPEGWNI



AM115;





IDK




Vibrio











nigripulchritudo










FTn2; Vibrio










nigripulchritudo










Pon4; Vibrio










nigripulchritudo










SO65













Sulfurospirillum

YP_003304837.1
268680406
glycosyl
26.48

MIIIKIMGGLTSQMHKYALGRVLSLKYNVPLKLDLTWFDNPKSDTPWEYQLDYFNINATIATVSEIKKLKGN
 91



deleyianum; 



transferase


NLFNRIARKIEKFFSIRIYKKSYINKSFISISDFHKLKSDIYLDGEWNGFKYFEDYQDTIKNELTLKRGSSIN




Sulfurospirillum



family protein


IQNTIKELKSSDNSVFLHIRRGDYLSNKNAAAFHAKCSLDYYYKAIQIVKEKIDNPIFYIFSDDILWVKKNFV




deleyianum



[Sulfurospirillum


INESCRFMEKNQNFEDLLLMSYCKHGITANSGFSLMAGWLNQNKDKMIIVPQTWVNDDRININILNSLEQDNF



DSM 6946



deleyianum



TIIR






DSM 6946]










Escherichiacoli;

WP_001581194.1
486318742
glycosyl
26.47

MTFIVRLTGGLGNQMFQYALARSLAKKYNARLKLDISYYHNQPHKDTPRTFELNQLCIVDNILNSSSFSEKFL
 92



Escherichiacoli



transferase 11


YIYDKLRVKLSKKISLPYFRNIVTPVNFNCIDFAEDKDYYFLGHFQELSNIYSIDESLRSEFKPNQEIMNLAHQ



Jurua 18/ll;


family protein


SKIYELIKQSRGSVALHIRRGDYVTNKNAAEHHGVIGLSYYVNALSYLENVSEFFDVFVFSDDPEWARKNIKNS




Escherichiacoli



[Escherichia


RNLFFCDEGNCRYSKKYSTIDMYLMSQCDHFIIANSTYSWWAAWLGNYPSKHVVAPARWNANNSPYPIL



180600; 



coli]



QNWKAIHE




Escherichiacoli










P0304777.1; 










Escherichiacoli










P0304777.2;










Escherichiacoli










P0304777.3;










Escherichiacoli










P0304777.4;










Escherichiacoli










P0304777.7;










Escherichiacoli










P0304777.9;










Escherichiacoli










P0304777.10;










Escherichiacoli










P0304777.11;










Escherichiacoli










P0304777.12;










Escherichiacoli










P0304777.13;










Escherichiacoli










P0304777.14;










Escherichiacoli










P0304777.15













Firmicutes

WP_021914998.1
547109632
protein
26.44

MVGVQLSGGLGNQMFEYALYLKLKSMGKDVRIDDVTCYGAQEKQRVNQLSVFGVSYEHMTKQEYEQITD
 93



bacterium



[Firmicutes


SSMSPLHRARRLLCGRKDLSYREASCNYDPEILRREPALLLGYFQTERYFADIKDQVREAFTFRNLTLTKESAA



CAG: 24



bacterium



MEQQMKECESVSVHIRRGDYLTPANQALFGGICDLDYYHRAVAEIRKRKPDVKFFLFSNDMEWTKEHFCG






CAG: 24]


SEFVPVEGNSEQAGEQDLYLMSCCKNHILANSSFSWWGAWLDNGKDKLVIAPEKWMNGRGCCDIYTDE









MIRV







Amphritea

WP_019622926.1
518452719
protein
26.42

MVKIKIIGGLGNQMFQYAAAKSLAVLNNTRVSANVSVFSNYKTHPLRLNKLNCDCEFDFTRDFRLVLSGFPL
 94



japonica



[Amphritea


LGSAFSKKSMLLNHYVEKDLLFDSSFFDLDDNVLLSGYFQSEKYFSNIRELLIQEFSLDDRLTEAELAINNKIE







japonica]



SCNSIAIHIRRGDYITDLSANNIHGICSEEYFEKALNYLDSINVLSDPTTTLFIFSDDILWCKDNLAFKYRTVF









VEGSVDRPEVDIHLMSKCKHQVISNSTFSWWGAWLNTNLDKCVIAPLKWFNSLHDSTDIVPKQWMRL







Bacteroides

WP_005923045.1
492689153
protein
26.41

MKQTIIMSGGLGNQMFQYALYCSMREKGIRVKIDISLYEFNRMHNGYMLDYAFGLNISHNKINKYSVLWT
 95



salyersiae;



[Bacteroides


RLIRSNRAPFLLFREDESRFCDDVFTTYKPYIDGCWIDERYFFNIKKKIISQFSFHNIDQKNLMVANMMKVCN




Bacteroides




salyersiae]



SVSLHIRRGDYLSQSMYNICNESYYKSAIEYIISRVEDSKFFIFSDDPEWCKYFMEKFNVDYEIIQHNFGKDS




salyersiae






YKDMYLMTQCKHNIIANSTFSWWGAWLNNNAGKNVVCPSVWINGRDFNPCLEEWYHI



WAL 10018 =









DSM 18765 =









JCM 12988













Bacteroides

WP_005786334.1
492241663
protein
26.38

MDIILLHNGLGNQMSQYAFYLSKKKNGIHTSYICLSNDHNGIELDKVFGVECQMGCKKIFLLFILRLLMSNRT
 96



fragilis; 



[Bacteroides


GFLIRKVNLLFSKIKIKLITENLDYSFHPSFLSASPYCLAFWVGGWHHPQYYSEISSQIKEAFTFKRSLLDERN




Bacteroides




fragilis]



ICIEKRMREPNSVCLHIRRGDYLTGINYELFGKVCNEQYYQKAIDYIEGKLSDICYYVFSNDMEWAKKILLGKN




fragilis






AVFVDWNRGEESWKDMYLMSKCSNLIIPNSTFSWWAAWLCEHPVNIVCPKLFVYGDEQSDIYLDNWHKIE



CL03T00C08;










Bacteroides











fragilis










CL03T12C07













Bacteroides

WP_007486843.1
494751435
protein
26.37

MMGIEKTNMVIVRLWGGIGNQLFQYSFGEFLREKYQVDVIYDIASFGKSDKLRKLELSVVVPGIPVTTDISFS
 97



nordii; 



[Bacteroides


KYVGTKNRLLRFIYGLKNSFIEEKYFSDEQLFKYLSKRGDVYLQGYWQKTIYAETLRRKGSFFLSQEEPIVLHT




Bacteroides




nordii]



IKAKIQEAEGAIALHVRRGDYFSSKHINTFGVCDAHYYEKAVDIMRGRVSNAMIFVFSDDLDWVRRYVNLPT




nordii






NVIYVPNYDIPQYWYIYLMSLCRHNIISNSSFSWWGAFLNMNTNKIVVSPSKWTLNSDKTIALDEWFKI



CL02T12C05













Butyrivibrio

YP_003829743.1
302669783
glycosyl
26.37

MECSMIIIKFCGALGNQLFQYALYEKMRILGKDVKADISAFGDGNEKRFFYLDELGIEFNIASADEIAEYLNR
 98



proteoclasticus;



transferase 11


KTIRFVPGFLQHRHYYFEKKPYVYNKKILSYDDCYLEGYWQNYRYFDDIKDELLKHMKFPCLPLEQKKLAEKM




Butyrivibrio



[Butyrivibrio


ENENSVAVHVRMGDYLNLQDLYGGICDADYYDRAFSYIEGNISNPVYYGFSDDVDKASALLAKHKINWIDY




proteoclasticus




proteoclasticus



NSEKGAIYDLILMSKCKNNIIANSSFSWWGAYLEYNNGKVVVSPNRWMNCFENSNIAYWGWISL



B316


B316]










Prevotella

YP_003574648.1
294674032
family 11
26.33

MRIVKVLGGLGNQMFQFALYKALQKQYPEERVLLDLHCFNGYHKHRGFEIDSVFGVTYEKATLKEVASLAY
 99



ruminicola; 



glycosyl


PYPNYQCWRIGSRILPVRKTMLKEEPNFTLEPSALSLPDSTYYDGYWQHEEYFMHIREEILSTYAFPAFDDER




Prevotella



transferase


NKTTAQLAASTNSCSIHIRRGDYLTDPLRKGTTNGNYVIAAIKEMQQEVKPEKWLVFSDDIAWCQQHLAST




ruminicola 23



[Prevotella


LDATNTIYIDWNTGANSIHDMHLMALCRHHIIANSSFSWWGAWLSQQDGITIAPSNWMNLKDVCSPVP







ruminicola 23]



DNWIKI







Prevotella

WP_007135533.1
494223898
protein
26.33

MKIIKIIGGLGNQMFQYALAIALQQQYKDEEIRLDLNCFRGYNKHQGYLLDEIFGRRFRAASLQEVARLAWP
100



salivae; 



[Prevotella


YPHYQLWRVGSRVLPRRQTMVCEPADGSFSPDVLTLEGNRYYDGYWQDERYFKAYRKEIIEAFKFSPFVGD




Prevotella




salivae]



GNRHVENMLRNERFASLHVRRGDYLNDALYQNTCGIDYYQRAISQMNAMANPSCYFIFSDDIAWCKTHIE




salivae






PLCEGHRPYYIDWNKGKEAYRDMQLMALCKYHIIANSSFSWWGAWLNDAEDGITIAPQQWYSHGNKPS



DSM 15606





PASESWIKV







Lachnospiraceae

WP_016299568.1
511045640
protein
26.3

MNIVRISDGLGNQMFQYAYARKISILSRQRTYLDIRFINNEDLVKKGNHVQFRKKLGHRKYGLSHFNVSLQI
101



bacterium COE1



[Lachnospiraceae


ADLKMLSHWEYLIQSNCMQQLIYSLSMQDKWIWRYRHEEVNYDGMLSKVELLFPTYYQGYFFALKYYDDI







bacterium



KHILQHDFSLKDKMKLLPELRDALYNRNTISLHVRRGDFLEINRDISGSEYYEKAVQMIGSKVESPIFLIFSDD






COE1]


IEWVKEHIRIPNDKIYVSGIGYEDYEELTIMKHCKHNIIANSTFSYWAAYLNSNKDKIVICPKHWRERIIPKDW









ICI







Bacteroides

WP_007842931.1
495118115
alpha-1,2-
26.28

MIVVNVNAGLANQMFHYAFGRGLEAKGWNIYFDQTNFKPRKEWSFENVQLQDAFPNLGLKMMPEGKF
102



dorei;



fucosyl-


KWICVNNTNKLSKGLHLAMINLHNLIGDEKYIFETTYGYDPDIEKEITKNCILKGFWQSEKYFAHCKDDIRKQ




Bacteroides



transferase


FSFLPFDEEKNIVIMNKMVKENSVAIHLRKGADYLKSELMGKGLCGVEYYIKAIEYIKKNIDNPVFYVFTDNP




dorei



[Bacteroides


VWVKNNLPKFDYILVDWNEVAGKKNFRDMQLMSCAKHNIIANSTYSWWGAWLNPNPNKIVIGPAKFFN



5_1_36/D4



dorei]



PINNFFSSSDIMCEDWVKI







Roseobacter sp.

WP_008210047.1
495485361
alpha-1,2-
26.28

MLSKDPGMITTRLHGRLGNQMFQYAAGRALAARLGVPLALDSRGAKLRGEGVLTRVFDLPLAQPLSLPPLK
103


SK209-2-6


fucosyl-


QDAPLRYAAWRLTGRTPRFRREQGLGYNPAFETWGDDSYLHGYWQSEAYFDSIADQIRQDFTFPEFSNSQ






transferase


NREMAQRIAGSTAISLHVRRGDYVALAAHVLCDQAYYEAALTRILEGVEGSPTVYVFSDDPNWAKENLPLP






[Roseobacter


CEKVVVDFNGPDTDFEDMRLMSLCQHNIIGNSSFSWWAAWLNTHNEKRVAGPAHWFGNPKLQNPDIL






sp. SK209-2-6]


PESWLKISV






alpha
WP_020056701.1
518900826
protein [alpha
26.26

MIYSRIRGGLGNQLFQYCVARSLADNLGTSLGLDVRDFNENSPYLMGLKHFNIRADFNPPGMIEHKKNGYF
104


proteobacterium


proteobacterium


RYLIDVVNGKQKFVYKEPHLNFDKNIFSLPNSSYLKGYWQTEKYFIKNKVNILNDLKIISHQSDKNKTISSKIA



SCGC AAA076-C03


SCGC


NNTSVSLHIRRGDYISNSAYNSTHGTCSLAYYTNAVNFLVNKIGGNFKVFAFSDDPEWVSSNLKLPVDICFVKN






AAA076-C03]


NSSEYNYEDLRLMSECNHNIIANSSFSWWGAWLNTNHNKTVITPCKWYADNSTKNADITPSNWIKI







Helicobacter

WP_004087499.1
490188900
protein
26.26

MGGGGQDLRLFELMLYNISLPLCFDYKTLVKYFYSNDKSLKYNFPLQYIRYATRSKYHKLYWLALKHYKYFYD
105



bilis;



[Helicobacter


EDPQGDNIVKMYLNNSLEKHAYPFGYFQNLIYFDEIDSIIREEFCLKIPLKPHNQALKEKIEKTENSVFLHVRL




Helicobacter




bilis]



GDYLKMEATDGGYVRLGKTYYQSALEILKTRLGQPHIFIFSNDIEWCEKNLCNLLDFTGCHIEFVKANGEGNA




bilis






AEEMELMRACKHAVIANSTFSWWASYLIDNPDKQIIMPTQVFNDTRRIPKSNMLAKKGYILIDPFWGMHS



WiWa





IV







Ralstonia sp. 

WP_010813809.1
498513378
glycosyl
26.26

MIVTRVIGGLGNQMFQYAAGRALARRLGVPLKIDSSGFADYPLHNYGLHHFALKAVQAGDREIPSGRAEN
106


GA3-3


transferase


RWAKALRRFGLGTELRVFRERGFAVDPEVMKLPDGTYLDGYWQSESYFAEMTQELRRDFQIATPPTSENA






family protein


EWLARIGGDEGAVSIHVRRGDYVTNASANAVHGICSLDYYMRAARYVAENIGVKPTFYVFSDDPDWVAG






[Ralstonia sp.


NLHLGHETRYVRHNDSARNYEDLRLMSACRHHIIANSTFSWWGAWLNASEKKVVIAPAQWFRDEKYDTR






GA3-3]


DLLPPTWTKL







Bacteroides

WP_004303999.1
490431888
protein
26.25

MVVVYIAAGLANKMFQYAFSRGLMSHGLDVFLDQTSFQPEWSFEDIALEEVFPNIEIKNAPNNMFSLAYKK
107



ovatus; 



[Bacteroides


DLLSRIYRRMSAFFPNNRYLMERPFIYDELIYKKATNNCIFCGLWQTELYFNFCERDVRRNFVFTPFQDDQNI




Bacteroides




ovatus]



KLAEKMKNENSVAIHIRKGADYLKRNIWDGTCSVEYYNQAINYLKEHVSNPVFYLFTDNPEWVEENLKNID




ovatus






YKLVDWNPVSGKQSYRDMQLMSCAKHNIIANSTYSWWGAWLNNNPQKIVVAPKIWFNPKIEKAPYIIPD



3_8_47FAA





RWIRL







Loktanella

WP_019955906.1
518799952
protein
26.23

MIITKLIGGLGNQMFQYAAGRSLAMRHGVPLLLDITELRSYPKHQGYQFEDVFAGRFEIAGLIPLIRVLGRKA
108



vestfoldensis



[Loktanella


RKVPKTVAVVSPKWPPMGDHVWVRQRTHDYDAAFESIGADCYLSGFWQSEKYFATIAPQIRESFRFKEAL







vestfoldensis]



TGANAAIASRMKEAPSAAIHIRRGDYVTDKGAHAFHGLCAWDYYDAAIDHISRHEPDARFFVFSDDVVAA









QERFANRQRAEVVAVNSGRHSYRDMMLMAQCKHQIIANSTFSWWAAWLNQNPDKIVVAPGTWFSGN









DGQIKDIYCKDWIVI







Flavobacterium

WP_016991189.1
515558304
protein
26.14

MDVVIIFNGLGNQMSQYAFYSQKKKINNSTYFVPFCKDHNGLELETVFSLNTKETLIQKSLYILFRILLTDRLK
109


sp. ACAM 123


[Flavobacterium


IVSDPLKWILNLFKCKIVKESFNYNYNPEYLKPSKGITFYYGGWHAEKYFAKENQQIKSVFEFTGDLGKINKEH






sp. ACAM 123]


VKDIASTNAVSLHVRRGDFMNEANIGLFGGVSTKAYFEGAIKLIATKVDHPHFFVFSNDMDWVKENLSMD









TVTYVTCNSGKDSWKDMCLMSLCQHNIIPNSTFSWWGAWLNKNPHKIVVCPSRFLNNDTYTDIYPDSWV









KISDY







Bacteroides

WP_005779407.1
492219620
glycosyl
26.1

MMKLVRMTGGLGNQMFIYAFYIQMKTIFPELRIDMSEMKKYKLHNGYELEDVFSIRPQTISAHKWLKRVIV
110



fragilis; 



transferase


YAFFSIIREKSEEELSIHKYTQHKRWPLVYYKGFFQSELFFKESSDTIRDIFSFNTENANFRTKEWAKIIKEQR




Bacteroides



family 11


SSVSIHIRRGDYTSAKNKIKYGNICTEEYYQKAISIILKKEPKAFFHIFSDDVEWTKAHLKIHHLPHQYISWNK




fragilis



[Bacteroides


GPDSWQDMMLMSLCRHNIIANSSFSWWGAWLNAYKDKTVIAPSRWSNVKKTPHILPESWISIDI



3_1_12



fragilis]











Spirosoma

WP_020598002.1
522086793
protein
26.09

MIISRVTSGLGNQLFQYAAARSLSLRNKTAFYVDLSYYLYEYPDDTSRSFKLGFFSVPYRILQESPVEYLSKST
111



panaciterrae



[Spirosoma


KLFPNRSLRPFFLFLKEKQFHFDPTILQAHAGCVIMEGFWQSECYFRDHAEIIRRELQLSKSPSSEFEGYHQQI







panaciterrae]



QATPVPVSVHVRRGDYVNHPEFSKTFGFIGLDYYKTAIRHLTKTIKNPHFYVFSDDKEWARANLPLPTDSVFVT









NTGPSGDVADLVLMSTCHHHIIANSSFSWWGAWLNPNPDKLVITPKLWYKNQPTWNTKDLLPPTWVSL






uncultured 
EKE06672.1
406985982
glycosyl
26.09

MIITKLTGGLGNQLFQYAIGRNLIYINGSDLKLDVSEYDVSNKGNFRHYALDKFNTIQNFASKKETNNFKFGV
112


bacterium


transferase


FKKWLYKSGIVKNKNYFLEKKFNFDKEILKIKDNAFLQGYWQSEKYFIGIRDILLQEFSLKENIELKFGEILKE






family 11


INESNSVSIHVRRGDYVKNPKNLSFHGVCSPKYYSESTSKIASLIEKPVFFVFSDDIEWVKENLNITFPVVYLS






[uncultured


GIKNIKSYEELVLMSKCKHNIIANSSFSWWGAWLNTNQKKIVIAPKRWFNDVKLDTTDLIPENWIRI






bacterium]









Thermo-
NP_681784.1
22298537
alpha-1,2-
26.07

MIIVHLCGGLGNQMFQYAAGLAAAHRIGSEVKFDTHWFDATCLHQGLELRRVFGLELPEPSSKDLRKVLGA
113



synechococcus



fucosyl-


CVHPAVRRLLAGHFLHGLRPKSLVIQPHFHYWTGFEHLPDNVYLEGYWQSERYFSNIADIIRQQFRFVEPLD




elongatus;



transferase


PHNAALMDEMQSGVSVSLHIRRGDYFNNPQMRRVHGVDLSEYYPAAVATMIEKTNAERFYVFSDDPQW




Thermo-



[Thermo-


VLEHLKLPVSYTVVDHNRGAASYRDMQLMSACRHHIIANSTFSWWGAWLNPRPDKVVIAPRHWFNVDV




synechococcus




synechococcus



FDTRDLYCPGWIVL




elongatus




elongatus







BP-1


BP-1]










Colwellia

WP_019028421.1
517858213
protein
26.03

MKIVKIAGGFGNQLFQYAFYLALDKKYAEQVCLDSLDMAKYRLHNGYELEGIFKLDARYCTEEQRIIVRKDN
114



piezophila



[Colwellia


NIFTKLLSSLKKKLGNNKNYILEPKQEHFTFHEKSFGQANTPTYYKGYWQDVKYLENIEEELKSSLVFPEFELG







piezophila]



KNIELANFISSNSSVSLHVRRGDYVQHKAFGGICDLSYYQRAVEQINTLVKDPIFIVFSDDIQWCKDNLNLEK









AKFVDWNIGENSFRDMQLMTLCKHNIIANSSFSWWGAWLNANDDKNVICPDKWVHYTSATGVLPSEWI









KIKASV







Prevotella

WP_019966794.1
518810840
protein
26

MKIVKIIGGLGNQMFQYALAIALQERWKDEEIKLDLHGFNGYHKHQGYQLDMLFGHRFEAATLTDVAQLA
115



maculosa



[Prevotella


WPYPHYQLWRVGSRLLPKRRSMLCEPSKGLLPSDVLKQKGSLYYDGYWQDERYFRAIRPQIMAAFKFPDF







maculosa]



TDRRNLETEKRLKASEAVSIHVRRGDYLDDVLFQGTCNIAYYQRAIARLCQLKTPVFCIFSNDMAWCKVHIE









PLLHGKEILYVDWNRGKESYRDLQLMTLCRHHIIANSSFSWWGAWLSKAEDGITIAPRHWYAHDAKPSPA









AERWIKV







Salmonella

YP_008261369.1
525860034
fucosyl-
25.99

MYSCLSGGLGNQMFQYAAAYILKQYFQSTTLVLDDSYYYSQPKRDTVRSLELNQFNISYDRFSFADEKEKIKL
116



enterica; 



transferase


LRKFKRNPFPKQISEILSIALFGKYALSDRAFYTFETIKNIDKACLFSFYQDADLLNKHKQLILPLFELRDDLL




Salmonella



[Salmonella


DICKNLELYSLIQRSNNTTALHIRRGDYVTNQHAAKYHGVLDISYYNHAMEYVERERGKQNFIIFSDDVRWAQK




enterica subsp.




enterica subsp.



AFLENDNCYVINNSDYDFSAIDMYLMSLCKNNIIANSTYSWWGAWLNKYEDKLVISPKQWFLGNNETSLR




enterica serovar




enterica serovar



NASWITL




Worthington str.




Cubana str.







ATCC


CFSAN002050]






9607; Salmonella










enterica subsp.











enterica serovar











Cubana str.










CFSAN001083; 










Salmonella











enterica subsp.











enterica serovar











Cubana str.










CFSAN002050; 










Salmonella











enterica subsp.











enterica serovar











Cubana str.










CVM42234













Bacteroides sp.

WP_008659600.1
495935021
protein
25.94

MKKVIFSGGLGNQMFQYAFYLFLKKKGIKAVIDNSLYSEFKMHNGFELIKVFDIKESIYRTYFLKVHLIFIKLL
117


3_2_5


[Bacteroides sp.


MKIPPVRKLSCKDDVIPIGDHEFDPPYARFYLGYWQSKKIVNYVIEELRAQFIFRNIPQMTIEKGDFLSSINSV






3_2_5]


SIHIRRGDYMGIPAYQGICNEIYYERAISFMKEHFLNPRFYVFSNDSIWAKLFLEKFDIDMEIIVTPPIYSYWD









MYLMSRCRNHIIANSTFSWWAAVLNINKDKIVISPTIFKKDECIDIIFDDWVKISNI







Clostridium sp.

WP_022124550.1
547662453
protein
25.86

MIMLQMTGGMGNQMFTYALYRSLRQKGKEVCIEDFTHYDTPEKNCLQTVFHLDYRKADREVYQRLTDSE
118


CAG: 510


[Clostridium sp.


PDFLHKVKRKLTGRKEKIYQEKDAIIFEPEVFQTDDVYMIGYFQSGRYFEKAVFDLRKDFTFAWNTFPEKAKK






CAG: 510]


LREQMQAESSVSLHIRRGDYMNGKFASIYGNICTDAYYEAARRYMKEHFGDCRFYLFTDDAEWGRQQESE









DTVYVDASEGAGAYVDMALMSCCRHHIIANSSFSWWGAWLDENPDKTVIAPAKWLNISEGKDIYAGLCN









CLIDANGSVQGE







Rhodopirellula

WP_008665459.1
495940880
glycosyl
25.86

MIVTRLIGGLGNQLFQYAFGHSLARSTYQTLLIDDSAFIDYRLHPLAIDHFTISASRLSDADRSRVPGKFLRTP
119



europaea; 



transferase


VGRALDKVSRFVPGYQGVLPVRREKPFGFRESLLARESDLYLDGYWQSEKFFPGLRGSLREEFQLREQPSETT




Rhodopirellula



family protein


RRLSAQMKSENSVAIHVRRGDYVTSAKAKQIYRTLDADYYRRCLLDLAAHETDLKLYLFSNDVPWCESNLDV




europaea SH398



[Rhodopirellula


GIPFTPVQHTDGATAHEDLHLIAQCRHVVIANSTFSWWGAYLGQLHPTRRVYYPEPWFHPGTLDGSAMG







europaea]



CDDWISEASLEEQSSLKSSRRAA






uncultured
EKD23702.1
406873590
glycosyl
25.82

MIIVKLKGGMGNQMFQYAIGRNLATKLGTQLRLDLTFLLDRSPRKDFVFRDYDLDIFALDVAFAGPTDLKPF
120


bacterium


transferase


TQFRISHLTKIYNIFPRLLGRPYVISEPHFHFSEAILKSSDNVYLDGYWQSEKYFKEIENSIRDDFKFRQPLE






family protein


GRAAEMAAQIKNEDRAVCLNVRRADFVTSKKAQEFHGFIGLDYYQKAVDLLVSKVGPLHLFIFSDDVDWCAAN






[uncultured


LKFNYPTTFVTKDYSGKKYEAYLQLMTLCRHYIIPNSTFAWWGAWLNSDPNKIVIAPKQWFKEASIDTTDIIP






bacterium]


STWIRL







Bacillus

WP_000587678.1
446510160
protein 
25.74

MIIVKLKGGLGNQMFQYALGKSLALYYDKPLKIDADYIKNNEGYVPRDFSLSKFNIELDLYQEADKERVGFILK
121



cereus; Bacillus



[Bacillus


NNFLAKKLRNYFLKKGKYKGKYIIENPDNLGLFKKELFENHNESMYIDGYWQSYLYFNNIRECLIKEFNLKPEY




cereus AH1271




cereus]



TKEMTEIMQRINETNSVAVHIRRGDYVKLGWTLDTTYYKKAIAEIVKNVDNPKFYVFSDDTDWVRSNLQEL









DNAVFIGECNLFDYQELWLMSTCKHNIISNSTFSWWGAWLNQNDHQVVVSPSAWINGMSVETTSLIPDS









WKRV







Firmicutes

WP_022499937.1
548309386
protein
25.74

MDIIRMEGGLGNQLFQYALYRQLQFMGRTVKMDVTTEYGREHDRQQMLWAFDVHYEEATQEEINRLTD
122



bacterium



[Firmicutes


GFMDLPSRIRRKLTGRRTKKYAEADSNFDPQVLLKTPVYLTGYFQSEKYFKDVEGILHTELGFSDRIYDGISEV



CAG: 95



bacterium



FADQIRNYQKQIRETESVSLHVRRGDYLEHPEIYGMSCFMEYYQAGVRYIRERHPDAEIFVFTNDPVFTEKW






CAG: 95]


LQENFLGDFTLIQGTSEETGYLDLMLMSQCKHQIMANSSFSWWGAWLNPNKDKIVVAPEPWFGDRNFH









DIYTEEMIRISPRGEVKKHG







Prevotellaoris;

WP_004374901.1
490508875
alpha-1,2-
25.74

MIAATLFGGLGNQMFIYATVKALSLHYQVPMAFNLNHGFANDYKYHRKLELCKFNCQLPTAKWITFDYRG
123



Prevotellaoris



fucosyl-


ELNIKRISRRIGRNLLCPNYQFVIEEEPFHYEKRLFEFTNKNIFLEGYWQSPCYFENYSKEIRADFQLKVPLSK



F0302


transferase


EMLEEIYALKATGKTLVMLGIRRYQEVEGRDICTYKLCDKEYYIKAITYIQERIPNALFVVFTQDKEWATTHLP






[Prevotella


KGAEFYFVKDKQDEYATVADMFLMTQCTHAIISNSTFYWWGAWLQCFTKNHIVIAPDSFINSDCVCKEWIIL







oris]



KRNSLC






Escherichia 
AAO37719.1
37528734
fucosyl-
25.73

MYSCLSGGLGNQMFQYAAAYILQRKLKQRSLVLDDSYFLDCSNRDTRRRFELNQFNICYDRLTTSKEKKEISII
124



coli



transferase


RHVNRYRLPLFVTNSIFGVLLKKNYLPEAKFYEFLNNCKLQVKNGYCLFSYFQDATLIDSHRDMILPLFQINED






[Escherichia


LLHLCNDLHIYKKVICENANTTSLHIRRGDYITNPHASKFHGVLPMDYYEKAIRYIEDVQGEQVIIVFSDDVK







coli]



WAENTFANQPNYYVVNNSECEYSAIDMFLMSKCKNNIIANSTYSWWGAWLNTFEDKIVVSPRKWFAGN









NKSKLTMDSWINL







Leeiaoryzae

WP_018150480.1
516890767
protein 
25.71

MIIVKIIGGLGNQMMQYAFAHACAKRLGVPFKLDITAFESYKLWPYGLHNFEITAPIASLEEIEHAKSMGVIT
125





[Leeia


ETSFRFDDSLVSAVKDGMYLDGYWADYRYSESVWGELKPVFTLMDPLTPEQQALAMNLSAPNAVALHVR







oryzae]



RGDYVTNPNCFLLPQQYYRDAIKLVLDQQPDAVFYCFSDDPDWVEAHLDIPAPKVVVRGQGIDNGFVDMI









LMSKARHRIVANSTFSIWASRLADQDGLTIVPSQFFRKDDPWLLQVYGEVLQPCYPPQWRVVDVTGDGK









KEAENTSTALLQIAGGDVRGRKLRIGVWGFYEEFYQNNYIFLNKNAPIGHELLKPFNQLYQYGQAHNLEFVT









LDLVADLSTLDAVLFFDAPNMRSPLVSSVMQLDIKKYLCLLECELIKPDNWQQSLHELFTRIFTWHDGLVDN









HRYIKVNYVTDLMPWIESAQSLTAPFEETARKGYLQKKLICNISGNKLVSHPFELYSKRIEVIRWFESHHPEH









FDLYGMGWSASDYPSYKGKIDDKLEVLKGYRFSLCYENAKELPGYITEKIIDCFKAGVVPVYSGAPNIADWIP









DNCFIDSGKFPDTDALYTYLISMTEEVHADYLENIRQFFLGGKAYPFSADAFINTITRTIVQDCLFPHERTDV









SVVVPNYNHGNFVVSAITSALNQNVSVELLVLDNASTDDSWSQLQFFADYPQVRLIRNRWNIGVQHNWNH









ATWLATGRYVVMLSADDLLLPGHLEQAVKRLDENPASSLYYTPCLWINEHDQPLGTLNHPGHLESDYVGG









RDEISDLLKFDSYITPSAAVIRRETLNRIGSMNLHLKGAIDWDLWIRIAEISPAFIFRKQPGVCYRQHSGNNSV









DFYASTAPLEDHIRIVESIIDRKVAVKYLLKAKEEIIAHLDNRASSYPENQIQHLLSRINNIKDYLRKGAGPVI









SVIIPTKNRPGLLANALESLTYQTFKDFEVVIHNDGGCDIGGIVDFFSDQLQISYVRSSQSGGAAASRNRALKL









AKGRIIAYLDDDDVYLDSHLEKLVDAYKGRSEKFIYTNCEYLIQERKEGRLIELGRERRYAGISYSRAQLLVSN









FIPTPTWSHTKELIDTIGDFDESLEILEDWDFLLRASKVTEFYQVNATTVEVRSDRSRDDHTLRANADKLLAYH









QKIYAKHPVENESILANRQSLINSLSNRQDVTPKNENSYQGWVNARQPNELAVQILAERMMLQWSKQYQFMI









VMWKQSQQNLLANTIDSFCQQLYSGWKLIVISDFEAPDESFINNEVLGWLTLETVEDENLLTQAFNGVLA









EVPSDWVTILPVGTRLTSTALLKVGDRLLLNGGACVIYTDHDYVSDDGMIKDPVLKPAFNLDMLRSQDYIGS









SIFFRTDSLAAVGGFASFPGARTYEACFRMLDNYGPQTIEHLPEPVMTFPENQPENSLRVAAMQLALEEHL









HRNNISASIEEGYVTGTFLVQYHHSEQPFVSIIIPNKDKHEFLAPCIETLMKVTQYPAFEVIIVDNQSTDPDTL









SYYEEIESRFANNVKVIQYDNPFNFSAQCNLGAESARGDFILFLNNDTEIVQANWLERMMQHAQRNDVGV









VGARLVFPETVTIQHAGIVLGGKYPDEVFQFPYMNFPVDKDVSLNRTKVVQNYSAVTGACLLVRKSLYQQV









GGMNEQNLAVLYGDVDLCLRIRQLHKSVVWTPFSTLVHHTGKTLNSNSDHEKHLMMVIQTRQEREYMLS









HWLDIIANDPYYHRLLDKSECNGTIDCTHTPLWDDIPSARPRLQGMALVGGSGEYRVNMPFRTLERSALAE









IVLSNMTSKARLPSITELARNAPDVFVVQNALADEFIRMLEMYKKYLPSVFRIQMLDDLLTEIPDASSFKRHF









QKNWRDAKARLRKSLKFCDRLIVSTEPLRTFAEDMIDDIIVVPNMLERSVWGDLVSKRRAGKKPRVGWVG









AQQHAGDLALMTDVVKATGHEVDWVFQGMCPDDIRPYVAEVNTEWLTYDKYPQGIAALNLDLAIAPLEI









NAFNEAKSNLRLLEYGALGWPVICTDIYPYQTNNAPVCRVPNDASAWIEAIRSHIADLDATAQKGDQLRQ









WVHDHYMIEDHAQEWLSALTRPAGK







Desulfovibrio

WP_005984173.1
492830219
Glycosyl
25.68

MFQYAAARALSLRHSASLAADLTWFSQQFDVQTTPREYALPAFRLNLPEADKRIVATFRLNPTELRIVSFLR
126



africanus; 



transferase


HRICFPSRFLPRHITELSFDYWDGFRDILPPAYLDGYWQSERYFSDYPDIIRADFSMLSISEQAAWMSAKIAS




Desulfovibrio



family 11


VQDSISLHIRRGDYVNSLATRKAHGIDTERYYAKALEWIADRIGAATIFAFSDDPRWVRANFDFGKHKGIVV




africanus PCS



[Desulfovibrio


DGSWTAHEDMHLMSLCSHHIIANSSFSWWGAWLSTSQGITIAPKSWFSNPHIWTPDVCPATWERIPC







africanus]











Akkermansia

WP_022196965.1
547786341
glycosyl
25.66

MAKGKIIVMRLFGGLGNQLFQYAFLFALSRQGGKARLETSSYEHDDKRVCELHHFRVSLPIEGGPPPWAFR
127



muciniphila



transferase


KSRIPACLRSLFAAPKYPHFREEKRHGFDPGLAAPPRRHTYFKGYFQTEQYFLHCREQLCREFRLKTPLTPEN



CAG: 154


family 11


ARILEDIRSCCSISLHIRRTDYLSNPYLSPPPLEYYLRSMAEMEGRLRAADAPQESLRYFIFSDDIEWARQNLR






[Akkermansia


PALPHVHVDINDGGTGYFDLELMRNCRHHIIANSTFSWWAAWLNEHAEKIVIAPRIWFNREEGDRYHTDD







muciniphila



ALIPGSWLRI






CAG: 154]










Dysgonomonas

WP_006843524.1
493897667
protein
25.66

MKIVKLQGGLGNQMFQYAIARTLETNKKKDIFLDLSFLRMNNVSTDCFTARDFELSIFPHLRAKKLNSLQEK
128



mossii;



[Dysgonomonas


FLLSDRVRYKFIRKIANINFHKINQLENEIVGIPFGIKNVYLDGFFQSESYFKHIRFDLIKDFEFPELDTRNEA




Dysgonomonas




mossii]



LKKTIVNNNSVSIHIRRGDYVHLKNANTYHGVLSLEYYLNCIKRIGEETKEQLSFFIFSDDPEYASKSLSFLPN




mossii






MQIVDWNLGKNSWKDMALMLACKHHIIANSSFSWWGAWLSERNGITYAPVKWFNNESQYNINNIIPSDWVII



DSM 22836













Prevotella

WP_004372410.1
490506359
glycosyl
25.66

MDIVLIFNGLGNQMSQYAFYMSKKKFVPQSKCMYYKGASNNHNGSELDKLFDIKYSETFFCKLILLLFKLYE
129



oris;



transferase,


NIPRLRKYFHILGINIVSEPQNYDYNESILKKKTRFGITLYKGGWHSEKYFLANKQDVLNTFSFKIAKEDKNFI




Prevotella



family 11


DLAKSIEEDTNSVSLHVRRGDYLNISPTDHYQFGGVATTNYYKNAVSYMLKRNKQAHFYIFSDDITWCKAEYK




oris



[Prevotella


DLMPTFIECNKKNKSWRDMLLMSLCTNHINANSTFSWWGAWLSTKNGITICPTEFIHNVVTRDIYPETWV



F0302



oris]



QL







Pseudogul-

WP_008952440.1
496239055
glycosyl
25.66

MIIVRLMGGMGNQLFQYATAFALSKRKSEPLVLDTRFFDHYTLHGGYKLDHFNISARILSKEEESLYPNWQA
130



benkiania



transferase


NLLLRYPIIDRAFKKWHVERQFTYQDRIYRMKRGQALLGYWQSELYFQEYRKEISAEFTLKEQSSVTAQQISV




ferrooxidans



family 11


AMQGGNSVAVHIRRGDYLSNPSALRTHGICSLGYYNHAMSLLNERINDAQFYIFSDDIAWAKENIKIGKTSK



2002; 


[Pseudogul-


NLIFIEGESVETDFWLMTQSKHHIIANSTFSWWGAWLANNTDEQLVICPSPWFDDKNLSETDLIPKSWIRL




Pseudogul-




benkiania



NKDLPV




benkiania




ferrooxidans]








ferrooxidans














Salmonella

WP_000286641.1
446208786
protein
25.66

MYSCLSGGLGNQMFQYAAAYILKQYFQSTTLVLDDSYYYSQPKRDTVRSLELNQFNISYDRFSFTDEKEKIKL
131



enterica



[Salmonella


LRKFKRNPFPKKISEILSIALFGKYALSDSAFYAVETIKNIDKACLFSFYQDADLLNKHKQLILPLFELRDDLL







enterica]



DICKNLDVYPLILRNNNTTALHIRRGDYLTNQHAAKYHGVLDTSYYNNAMEYVERERGKQNFIIFSDDVKWAQ









KAFLGNENCYIVNNGDYDYSAIDMYLMSLCKNNIIANSTYSWWGAWLNKSEDKLVISPKQWFLGNNETSL









RNASWIIL







Carnobacterium

YP_008718688.1
554649642
glycosyl
25.59

MLIVKVYGGIGNQMFQYSFYKYLQKNNDDVFLDISDYKVHNHHNGFELIDVFNIEVKQADMSKFKGHVSS
132


sp. WN1359


transferase


KNSIFYRLTSKLFKRNILGYSEFMDSNGISIVRNEKILTDHYFIGFWQDVLYLQSVEEEIKEAFNFKNVAIGK






family 11


QNLELISLSESVESVSVHIRKGDYANNSDLSDICDLEYYEEAMKIIDSKVSEPLYFIFSDDIEWCKQKFGKRDN






[Carnobacterium


LIYVDWNIAKKSYIDMLLMSKCKHNIIANSTFSWWGAWLNNNSKKIVICPKTWDRKKNENHLLLNDWIAI






sp. WN1359]










Prevotella sp.

WP_021964668.1
547227670
protein
25.58

MMKIIVNMACGLANRMFQYSYYLFLMHKGYNVKVDFYNSAKLAHEKVAWNDIFPKARIEQASFSDILKSG
133


CAG: 1185


[Prevotella sp.


GGSDVISKIRRKYLPFLSSVVNMPTAFDANLPVENKKLQYIIGVFQNANMVEAVEEDVKRCFKFQPFTDERN






CAG: 1185]


LKLQNEMQSCESVAIHVRKGKDYAQRIWYQNTCPIEYYQNAIRLISEKVNNPKLYVFTDNPEWVKEHFKDF









PYTLVEGNPASGWGSHFDMQLMSVCKHNIISNSTYSWWSAFLNVHNEKIVIGPKVWFNPDSCSEFTSERI









LCKDWIAV







Selenomonas sp.

WP_009645343.1
497331130
glycosyl-
25.58

MFQYAMASSVARRAGEILKLDLSWIRQMEKKLSADDIYGLGIFSFDEKFSTSNEVQKFLPSGKFSAKIYRAVN
134


CM52


transferase,


RRMPFSWRRVLEEGGMGWHPQIMEIRRSVYFYMGYWQSEKYFSDFIQEIRKDFTFREEVRQSIEERRPIVE






family 11


KIRKSDAVSLHIRRGDYAQNPALGEIFLSFTMQYYIDAARYISERVKTPVFFIFSDDIPWAKENLPLPYEVCYI






[Selenomonas


DDNIQTNEREIGHKSKGYEDMYLMTQCQHNIIANSSFSWWGAWLNHNPNKIVVAPKKWCNGSFNYADIV






sp.CM52]


PEQWVKL







Bacteroides

WP_007486621.1
494751213
protein
25.57

MEIVFIFNGLGNQMSQYALYLSKRNLGCKVRYAYNIRSLSDHNGFELDRVFGITYPNNLFNKCINIIYRLLFAN
135



nordii; 



[Bacteroides


KYLFLVQKMIYVLRQMNVYSIKEKDNYDYDYKILTRHKGIVLYYGGWHSEKYFLSNADIIKDKFRFNISKLNSE




Bacteroides




nordii]



SLVLYHRLSSLNAVALHVRRGDYMAPEHYNVFGCVCGIEYYKAAIQYIQSQILNPVFIVFSNDIEWVKENITGI




nordii






QMIFVDFNKKENSWMDMCLMSCCEHNIISNSTFSWWGAWLNNNKNKIVVCPKYFMSNIDTKDIYPESW



CL02T12C05





IKI







Parabacteroides

WP_005635503.1
491855386
protein
25.54

MKKKDIILRVWGGVGNQLFIYAFAKVLSLITDCKVTLDIRTGFANDGYKRVYRLGDFSISLLPALRFYTLLSFA
136



merdae; 



[Parabacteroides


QRKMPYIRHLLAYKFDFFEEDQKYPLETLDSFFKIYSDKNLYLQGYWQYFDFSSYRDVLLKDLRFEVEINNTYL




Parabacteroides




merdae]



YYSDLIEKSNAVAIHFRRIQYEPVISIDYYKKAIKYISENVENPTFFIFSDDINWCRENLSINGICFFVENFKD




merdae ATCC






ELYELKLMSQCNHFIIANSTFSWWGAWLSVNADKKVIMPDGYTDVSMNGSIVHI



43184;










Parabacteroides











merdae










CL09T00C40













Butyrivibrio sp.

WP_022768139.1
551024004
protein
25.51

MIIIQLKGGLGNQMFQYALYKELKHRGRDVKIDDESGFIGDKLRVPVLDRFGVEYDRATKDEVIALTDSKMD
137


NC2007


[Butyrivibrio


IFSRIRRKLTGRKTFRIDEMEGIFDPKILETENAYLVGYWQSEKYFTSPEVIEQIQEAFGKRPQEIMHDSVSWS






sp. NC2007]


TLQQIECCESVSIHVRRTDYMDAEHIKIHNLCSEKYYKNAISKIREEHPNAVFFIFTDDKEWCKEHFKGPKFIT









VELQEGEFTDVADMLLMSRCKHHIIANSSFSWWSAWLNDSPEKIVIAPSKWINNKKMDDIYTERMTKVAI







Bacteroides

WP_004302233.1
490430100
protein
25.5

MIVVYSNAGLANRMFHYALYKALEVKGIDVYFDEKSYVPEWSFETTTLMDVFPNIQYRESLQFKRASKKTFL
138



ovatus; 



[Bacteroides


DKIVIHCSNLFGGRYYVNYRFKYDDKLFTKLETNQDLCLIGLWQSEKYFMDVRQEIQKCFQYRSFVDDKNVK




Bacteroides




ovatus]



TAQQMLSENSVAIHVRKGADYQQNRIWKNTCTIDYYRLAIDYIRMHVQNPVFYVFTDNKDWVIENFTDLD




ovatus






YTLCDWNPTSGKQNYLDMQLMSCAKHNVIANSTYSWWGAWLNENSDKIVIAPKRWFNKIVTPDILPEQ



ATCC 8483; 





WIKI




Bacteroides











ovatus










CL02T12C04













Mesotogaprima

YP_006346113.1
389844033
glycosyl
25.5

MRVVWFGGGLGNQMFQYGLYCFLKKNNQEVKADCTQYSTTPMNNGFELERLFNLDIAHANLDVISKLTG
139


MesG1.Ag.4.2; 


transferase


GNRLSPRKVIWKLFRKPKVYFEEKIPFSFDPDVLKGNNRYLKGYWQNMNYLEPCAKELRDVFTFPAFSSDN




Mesotogaprima



family protein


NKRLADEIAKVEAVGVHFRRGDFLKSSNLGLFGGICSDQYYLRAIQTMENTVVEPVFYVFCDDPQWAKNSF






[Mesotoga


SDARFTVIDWNIGSNSYRDMQLMSLCKHNIIANSTFSWWAAWLNRNPNRTVIAPERMVNRDLDFSGIFP







prima



NDWIRLQG






MesG1.Ag.4.2]










Clostridium sp.

WP_021639228.1
545399562
glycosyl-
25.49

MIVLKLQGGLGNQMFEYAFARTIQEQKKDKKLILDTSDFQYDKQREYSLGHFILNENIEIDSSGKFNLWYDQ
140


KLE 1755


transferase,


RKNPLLKVGFKFWPKFQFQTLKLFGIYVWDYAKYIPVDVSKKHKNILLHGLWQSDKYFSQISEIIRKEFAVKD






family 11


EPSQGNKAWLERISSANAVCVHIRRGDFLAKGSVLLTCSNSYYLKAMEIISKKVNEPEFFIFSDDIEDVKKIFE






[Clostridium sp.


FPGYQITLVNQSNPDYEELRLMSKCKHFIIANSTFSWWSSLLSENEDKVIVAPRLWYSDGRDTSALMRDEWII






KLE 1755]


IDNE







Bacteroides

WP_022052991.1
547321746
glycosyl-
25.42

MDLVTLSGGLGNQMFQFAFYWALKKRGKKVFLYKNKLAAKEHNGYELQTLFGVEEKCVDGLWMTRLLGC
141



plebeius



transferase


PLLGKILKHILFPHKIRERVLYNYSIYLPLFERNGLHWVGYWQSEKYFQDVADDIRRIFCFDHLSLNPATSAA



CAG: 211


family 11


LKCMSEQVAVSVHIRRGDYYLPCNVATYGGLCTVEYYENAIRYVKERYPQAVFYVFSDDLDWVRENIPSAGK






[Bacteroides


MVFVDWNRGKDSWQDMFLMSKCHHNILANSSFSWWGAWLNTHPEKLVIAPERWANCPAPDALPDG







plebeius



WVRIEGVSRR






CAG: 211]










Treponema

WP_021686002.1
545448980
glycosyl-
25.4

MAIKIVKISGGLGNQMFCYAFACALQKCGHKVYVDTSLYRKATVHSGIDFCHNGLETERLFGIKFDEADTAD
142



lecithinolyticum; 



transferase,


VRRLSTSAEGLLNRIRRKYFTKKTHYIDTVFKYTPELLSDKNDCYLEGYWQTEKYFLPIEKDIRRLFTFRPTL




Treponema



family 11


SEKSAAVQSALQAQQAAVLSASIHVRRGDFLNTKTLNVCTETYYNNAIKYAVKKHAVSRFYIFSDDIPWCREH




lecithinolyticum



[Treponema


LCFCNAHAVFIDWNTGNDSWQDMALMSMCRCNIIANSSFSWWAAWLNNASDKTVLAPAIWNRRQLEYV



ATCC 700332



lecithinolyticum]



DRYYGYDYSDIVPESWIRIPID







Bacteroides

WP_004291980.1
490419682
glycosyl
25.34

MRLIKMTGGLGNQMFIYAFYLRMKKRHTNTRIDLSDMMHYNVHHGYEMHRVFNLPKTEFCINQPLKKVI
143



eggerthii; 



transferase


EFLFFKKIYERKQDPSSLLPFDKKYLWPLLYFKGFYQSERFFADMENDIRIAFTFNSDLFNEKTQAMLTQIKH




Bacteroides



[Bacteroides


NEHAVSLHIRRGDYLEPKHWKTTGSVCQLPYYLNAITEMNKRIEQPSYYVFSDDIAWVKENLPLPQAVFIDW




eggerthii




eggerthii]



NKGAESWQDMMLMSHCRHHIICNSTFSWWGAWLNPRENKTVIMPERWFQHCDTPNIYPDGWIKVPVN



DSM 20697













Bacteroides

WP_005656005.1
491891563
glycosyl
25.34

MRFIKMTGGLGNQMFIYAFYMRMKKHYSNTRIDLSDMVHYKAHNGYEMHRVFNLPPIEFRINQPLKKVIE
144



stercoris; 



transferase


FLFFKKIYERKQVPSSLVPYDKKYFWPLLYFKGFYQSERFFADMADDIRKAFTFNPRLSNRKTKEMSEQIDHD




Bacteroides



[Bacteroides


ENAVSIHVRRGDYLEPKYWKTTGCVCQLPYYLNAIAEMNKRISQPSYYVFSDDIAWVKENLPLPKAFFIDW




stercoris




stercoris]



NKGAESWQDMMLMSRCRHHIICNSTFSWWGAWLNPRENKTVIMPERWFRHCETPDICPDKWIKVPIN



ATCC 43183





QPDSIQ







Butyrivibrio

YP_003831842.1
302671882
glycosyl
25.34

MIIIQLKGGMGNQMFQYALYRQLKKLGREVKIDDETGFVDDELRIPVLQRFGISYDKATREEIVKLTDSKMD
145



proteoclasticus; 



transferase 11


IFSRIRRKLTGRKTFRIDEESGIFDPRILEVEDAYLVGYWQSDKYFANEEVEKEIREAFEKRPQEVMQDSVSW




Butyrivibrio



[Butyrivibrio


TILQQIECCESVSLHIRRTDYIDEEHIHIHNICTEKYYKSAIDEVRNQYPSAVFFIFTDDKDWCRQHFRGPNF




proteoclasticus




proteoclasticus



FVVDLDEDTNTDIAEMTLMSRCKHHILANSSFSWWAAWLNDNPGKIVIAPSKWINNRKMDDIYTARMKKIAI



B316


B316]










Roseobacter sp.

WP_008228724.1
495504071
alpha-1,2-
25.34

MSPIVHFPSDRLLRYEHLNSLWKTAMIYTRLLARLGNQMFQYAAGRGLAARLGVDFTVDSRRAVHKGDGV
146


GAI101


fucosyl-


LTRVFDLDWAAPENMPPAQHERPLAYYAWRGLRRDPKIYRENGLGYNAAFETLPDNTYLHGYWQCERYF






transferase


AHIADDIRAAFVPRHPMSAQNADMARRIASGPSVSLHVRRGDYLTVGAHGICDQTYYDAALAAVMQGLP






[Roseobacter


SPTVYVFSDDPQWAKDNLPLTFEKVVVDFNGPDSDYEDMRLMSLCQHNVIANSSFSWWGAWLNANPQ






sp. GAI101]


KRVAGPANWFSNPKLSNPDILPSRWIRI







Thalassobacter

WP_021099615.1
544666256
alpha-1,2-
25.34

MGQDMIYSRIFGGLGNQLFQYATARAVSLRQGVELVLDTRLAPPGSHWAFGLDHFNISARIAEPSELPPSK
147



arenae; 



fucosyl-


DNFFKYVMWRAFGHDPAFMRERGLGYQSRIAQAPDGTYLHGYFQSERYFADVLDHLENELRIVTPPDTRN




Thalassobacter



transferase,


AEYADRIASAGHTVSLHVRRGDYVETSKSNSTHATCDEAYYLRALARLSEGKSDLKVFVFSDDPEWVRDNLK




arenae



[Thalassobacter


LPYDTTPVGHNGPDKPHEDLRLMSCCSDHVIANSTFSWWGGWLDRRPEARVVGPAKWFNNPKLVNPDI



DSM 19593



arenae]



LPERWIAI







Prevotella

WP_004377401.1
490511493
protein
25.33

MKIIKIIGGLGNQMFQYALAVALQKKWKDEEIKLDLHGFNGYHKHQGYQLDEIFGHRFKAASLKEVAQLA
148



oris; Prevotella



[Prevotella


WPYPHYQLWRVGSRLLPKRKTMVCESADCRFQSDLLNLEGSLYYDGYWQDERYFKAFRTEIIEAFKFTPLV




oris C735




oris]



GDSNRKVENMLKEGRFASLHVRRGDYLKEPLFQSTCDIAYYQRAISRLNQMADPYCYLIFSNDIAWCKTHIE









PLCDGRRTHYVDWNHGKESYRDMQLMTFCKHHIIANSSFSWWGAWLSTANDGITIAPHQWYANDRKP









SPAAEAWLKL







Prevotella

WP_004380180.1
490514606
protein
25.33

MKIVRIIGGLGNQMFQYALALALKQQQENEEVKLDLSAFRGYKKHGGFQLVQCFGTTLPAATWQEVAQL
149



oulorum; 



[Prevotella


AWYYPHYQLWRLGHRVLPVCKTMLKEPDNGAFLPEVLQRKGDAYYEGCWQDERYFSHYRPAILQAFTFP




Prevotella




oulorum]



TFTNPRNLAMQQQINTTESVAIHVRRGDYLHDALFRNTCGLAYFQRAITCILQHVAHPVFYVFSDDMAWC




oulorum F0390






RQHIQPLLQTNEAVFVDWNHGKASICDLHLMTLCRHHIIANSSFSWWGAWLSPHQAGWIIAPKQWYAH









EEKMSPAAERWLKL







Spirosoma

WP_020596174.1
522084965
protein
25.33

MNRRVAVQLKGGLGNQLFQYALGRRLSLQLEAELLFDCSVLENRIPVTNFTFRSFDLDMFRIAGRVATPSDL
150



panaciterrae



[Spirosoma


PLFPKSASIRSPWPHLVQLARLWKQGYSYVYERGFAYNPKMLRQLSDRVYLNGYWQSYRYFEDIAATLRAD







panaciterrae]



CSFPDPLPDSAVGLAGQINATNSICLHIRRTDFLQVPLHQVSNADYVGRAIAYMAERVNDPHFFVFSDDIA









WCQTNLRLSYPVVFVPNELAGPKNSLHFRLMRYCKHFITANSTFSWWAAWLSEPSDGKVIVTPQTWFSDS









RSIDDLIPANWIRL







Butyrivibrio

YP_003829826.1
302669866
glycosyl
25.26

MNYVEVKGGLGNQLFQYTFYKYLEKKSGHKVLLHTDFFKNIDSFEEATKRKLGLDRFDCDFVAVSGFISCEKL
151



proteoclasticus; 



transferase 11


VKESDYKDSMLSQDEVFYSGYWQNKRFFLEVMDDIRKDLLLKDENIQDEVKELAKELRAVDSVAIHFRRGD




Butyrivibrio



[Butyrivibrio


YLSEQNKKIFTSLSVDYYQKAIAQLAERNGADLKGYIFTDEPEYVSGIIDQLGSIDIKLMPVREDYEDLYLMSC




proteoclasticus




proteoclasticus



ARHHIIANSSFSWWGAALGDTESGITIAPAKWYVDGRTPDLYLRNWISI



B316


B316]










Butyrivibrio sp.

WP_022765786.1
551021623
protein
25.26

MIIIQLKGGLGNQMFQYALYKELKHRGREVKIDDVSGFVNDKLRVPVLDRFGVEYERATREEVVELTDSRM
152


XPD2006


[Butyrivibrio


DIFSRIRRKLTGRKTYRIDEMEGIFDPAILETENAYLVGYWQSEKYFTSPEVIEQIQEAFGKRPQEIMHDSVS






sp. XPD2006]


WSTLQQIECCESVSIHVRRTDYVDAEHIKIHNLCSEKYYKNAIGKIREKHPNAVFFIFTDDKEWCKDHFKGPN









FITVELQEGEFTDVADMLLMSRCKHHIIANSSFSWWSAWLNDSPEKMVIAPSKWINNKKMDDIYTERMT









RVAI







Bacteroides sp.

WP_008766093.1
496041586
protein
25.24

MKIVNITGGLGNQMFQYAFAMALKYRNPQEEVFVDIQHYNTIFFKKFKGINLHNGYEIDKVFPKAKLPVAG
153


1_1_6


[Bacteroides sp.


VRQLMKFSYWIPNYILSRLGRKFLPIRKKEYIPPYSMNYSYDEKALNWKGDGYFEGYWQSYNHFGDIKEELQ






1_1_6]


KVYAHPKPNQYNAALISNLESCNSVGIHVRRGDYLAEPEFRGICGLDYYEKGIKEILSDEKKYVFFIFSNDMQ









WCQENIAPLVGDNRIVFISGNKGKDSCWDMFLMTHCKDLIIANSSFSWWGAFLNKKVDRVICPKPWLNR









DCNIDIYNPSWILVPCYSEDW







Bacteroides

YP_099857.1
53713865
alpha-1,2-
25.17

MKIVTFQGGLGNQLFQYVFYLWLDMRCDKDNIYGYYPKKGLRAHNGLEIEKVFEVKLPNSSLSTDLIVKSIKL
154



fragilis; 



fucosyl-


INKIFKNRQYISTDGRLDVNGVLFEGFWQDKYFWEDVDIVLNFRWPLKLDVTNSFIMTKIQANNSISIHIRR




Bacteroides



transferase


GDYLLPKYRNIYGDICNEEYYQKAIEYILKCVDDPFFFVFSDDIDWAKSIINVSNVTFVNNNKGKDSYIDMFL




fragilis



[Bacteroides


MSLCHHNIIANSTFSWWAAQLNKHSDKIMIAPIRWFKSLFKDPNIFTESWIRI



YCH46



fragilis










YCH46]










Bacteroides sp.

WP_008671843.1
495947264
alpha-1,2-
25.17

MIKIVSFSGGLGNQLFQYLLVVYLRECGHQVYGYYNRKWLIGHNGLEVNNVFDIYLPKTNFIVNALVKVIRV
155


9_1_42FAA


fucosyl-


LRCLGFKKYVATDTYNNPIAIFYDGYWQDQKYFNIIDSKLSFKKFDLSAENKSILSKIKSNISVALHIRCGDYL






transferase


SSSNVEIYGGVCTKEYYEKALELVCKIKNVMFFVFSDDIEYAKLLLNLPNAIYVNANVGNSSFIDMYLMANCKV






[Bacteroides


NVIANSTFSYWAARLNQDNILTIYPKKWYNSKYAVPDIFPSEWVGV






sp. 9_1_42FAA]










Coraliomargarita

WP_022477844.1
548260617
glycosyl
25.17

MIIVKVQGGLGNQMFQYAFGRALSEKHSQDLYLDCSEYLRPSCKREYGLDHFNIRAKKASCGDVKSMVTP
156


sp. CAG: 312


transferase


HFALRKKLKKIFAVPYSLSPTHILERNFNFQPSILEFNCGYFDGFWQTQKYFSGISDIVRKDLTFKDAVKYSG






family 11


GETFAKITSLNSVSLHIRRGDYVKVKRTRKRFSVIRAGYFKRAVEYMRSKLDTPHFFIFTDDPKWVSENFPAG






[Coraliomargarita


EDYTLVSSSGMYEDLFLMAQCRHNIIFNSSFSWWGAWLNGNPGKIVVAPDMWFTPHYKLDYSDVVPEEWI






sp. CAG: 312]


KLNTGYFESKEF







Pseudorhodobacter

WP_022705649.1
550957292
alpha-1,2-
25.17

MIVMQIKGGLGNQMFQYAAGRALSLQTGMPLHLDLRYYRREREHGYGLGAFNIEASPLDESLLPPLPRESP
157



ferrugineus



fucosyl-


LAWLIWRLGRRGPNLVRENGMGFNPTLSNVTKPAWITGYFQSERYFAAHAATIRAELTPVAAPDLVNAR






transferase


WLAEIAAEPRAVSLHVRRGDYVRDAKAAAKHGSCTPAYYERALAHITARMGTAPVVYAFSDDPAWVRENL






[Pseudo-


RLPAEIRVPGHNDTAGNVEDLRLMSACRHHIVANSSFSWWGAWLNPRADKIVASPARWFADPAFTNPDI







rhodobacter



WPEAWARIEG







ferrugineus]











Escherichiacoli;

YP_002329683.1
215487252
fucosyl-
25.16

MMYCCLSGGLGNQMFQYAAAYILKQHFPDTILVLDDSYYFNQPQKDTIRHLELDQFKIIFDRFSSKDEKVKI
158



Escherichiacoli



transferase


NRLRKHKKIPLLNSFLQFTAIKLCNKYSLNDASYYNPESIKNIDVACLFSFYQDSKLLNEHRDLILPLFEIRD



O127: H6 str.


[Escherichia


DLRVLCHNLQIYSLITDSKNITSIHVRRGDYVNNKHAAKFHGTLSMDYYISAMEYIESECGSQTFIIFTDDVI



E2348/69



coli O127: 



WAKEKFSKYSNCLVADADENKFSVIDMYLMSLCNNNIIANSTYSWWGAWLNRSEDKLVIAPKQWYISGNECSL






H6 str.


KNENWIAM






E2348/69]










Lachnospiraceae

WP_016359991.1
511537894
protein
25.16

MIIIKVMGGLGNQMQQYALYEKFKSIGKNVKLDISWFEDSSVQEKVFARRSLELRQFKDLQFDTCSAEEKEA
159



bacterium



[Lachnospiraceae


LLGKSGILGKLERKLIPARNKHFYESDIYHSEVFNMSDAYLEGHWACEKYYHDIMPLLQEKIQFPESANSQNI



3_1_57FAA_CT1



bacterium



TVKKRMKAENSVSIHIRRGDYLDPENEAMFGGICTNSYYKAAEEYIKSRVPDTHFYLFSDDTAYLRENYHGD






3_1_57FAA_CT1]


EYTIVDWNKGEDSFYDMELMSCCRHNICANSTFSFWGARLNRTPDKIVIRPAKHKNSQEIEPQLLHELWD









NWVIIDGDGRIV







Butyrivibrio

WP_022755397.1
551010878
glycosyl
25.09

MKPLVSLIVPVLNVEKYLEQCLTSISSQTYDNFEVILVVGKCIDNSENICKKWCEKDHRFRIEPQLKSCLGYA
160



fibrisolvens



transferase


RNVGIDAAKGEYIAFCDSDDCITSDFLSCFVDTALKNSSDIVETQFTLCDQNLSPIYDYDRNILGHILGHGFL






[Butyrivibrio


EYTSAPSVWKYFVKRDIFTSNNLHYPEIRFGEDISMYSLLFSYCNKIDYVEKPTYLYRQVPSSLMNNPQGKRK







fibrisolvens]



RYESLFDHDFVTNEFKTRLLFQKSWLKLLFQLEMHSASIISDSATSDDEAISMRQEISGYLKKVFPVKNTIFE









VTALGWGGEIVSSIASKFNTLHGVSSSNMFNRYFFELLEDSTRKKLEEMIINFSPDIFLIDLISEADYLSSYK









GNLGTFVKNWKIGFSIFMKMIQTHSNNSSIFLLENYMQQAPDHVDNTNEILKMLYDDIKINHPDIICISPAPD









ILNRSSEPELPCIYQLKLVSDKLHTMYSPVINCVETKGGLGNQIFQYVFSKYIEKMTGYRPLLHIGFFDYVKA









IPGGTKRIFSLDKLFPDIETTSGKIPCSHVVEEKSFISNPGSDIFYRGYWQDIRYFSDVKDEVLESFNVDTSS









MSKDVIDFADTIRNANSIAMHIRRQDYLNENNVSLFEQLSIDYYKSAVDMIRKEYADDLVLFIFSDDPEYANS









IADSFDIEGFVMPLHKDYEDLYLITLAHHHIIANSTFSLWGALLSARKDGIRIAPRNWFKGTPATNLYPDKWL









IL







Anaeromusa

WP_018702959.1
517532751
protein
25.08

MFCVRIYGGLGNQMFQYALGRAMAKHYSETAAFDLSWYEQKIKPGFEASVCQYNIELSRKDRPKAWYEPI
161



acidaminophila



[Anaeromusa


LKRISRHTDKLEMWFGLFFEKKYHYDSTVFERGLCKKNITLDGYWQSYKYFSAIEDDLRRELTIPKEREELI







acidaminophila]



AISRSLPENSVSIHVRRGDYVSNPKANAMHGTCSWEYYQAAIEKMTGLVKEPQYVVFSDDITWTKENLPLPN









AMYIGRELGLFDYEELILMSRCKHNIMANSTFSWWGAWLNSNPNKVVIAPRKWFRHKKIKVNDLFPSSWV









VL







Bacteroides sp.

WP_008768986.1
496044479
glycosyl
25.08

MDIVVIFNGLGNQMSQYAFYLAKKKDNLNCHVIFDPKSTNVHNGAELKRVFGIELNRNYLDKIISYFYGYIFN
162


2_1_16


transferase


KRIVNKLFSLVGIRMIYEPKNYDYREELLKPSSNFISFYWGGWHSEKYFKDIELEVKKVFKFPEVTNSPYFTEW






family 11


FNKIFLDNNSVSIHIRRGDYLDKPSDPYYQFNGVCTIDYYEKAILYLKERILEPNFYIFSNDINWCMKTFGTEN






[Bacteroides sp.


MYYVDCNKGKDSWRDMYLMSECRHHINANSTFSWWAAWLSPYSNGIVLHPKYFIKDIETKDYYPQKWI






2_1_16]


MIE







Chlorobium

YP_001960319.1
189500849
glycosyl
25.08

MDKVVVHLTGGLGNQMFQYALGRSISINRNCPLLLNTSFYDTYDKFSCGLSRYNVKAEFIKKNSYYNNKYYR
163



phaeobacteroides;



transferase


YVIRLLSRYGVACYFGSYYEKKIFSYDEKVYKRSCVSYYGTWQSYGYFDSIRDILLRDYEMVGCLEEEVEKYVS




Chlorobium



family protein


DIKRVDSVSLHIRRGDYFDNKRLQSIHGILTMEYYYKAMSLFPDSSVFYVFSDDIEWVRENLITNTNIVYVVLE




phaeobacteroides



[Chlorobium


SDNPENEIYLMSLCKNNIISNSTFSWWGAWLNKNKYKKVIAPRMWYKDNQSSSDLMPSDWCLI



BS1



phaeobacteroides










BS1]










Treponema

WP_022932606.1
551312724
protein
25.08

MIVISMGGGLGNQMFEYAFYTQLKHLYPKSEIKVDTKYAFPYSHNGIEVFKIFGLNPPEANWKEVHSLVKTY
164



bryantii



[Treponema


PIEGNKAHFIKFFLYRILRKANLVEREPTSFCKQKDFTEFYNSFFELPQNKSFYLYGPFVNYNYFAAIHNEIMD







bryantii]



LYTFPEITDVTNIEYKRKIESSHSISIHIRRGDYITEGVPLVPDAYYREALVYINKKIEDPHFFVFTDDKDYCK









SLFSDNQNFTIVEGNTGANSFRDMQLMSLCKHNIIANSTFSFWGAFLNKNSEKIVIAPNIAFKDCSCPYICPDW







Bacteroides

YP_005110943.1
375358171
LPS 
25

IILMVIAKLFGGLGNQMFIYAAAKGIAQISNQKLTFDIYTGFEDDSRFRRVYELKQFNLSVQESRRWMSFRYPL
165



fragilis; 



biosynthesis


GRILRKISRKIGFCIPLVNFKFIVEKKPYHFQNEIMRIASFSSIYLEGYFQSYKYFSKIEAQIREDFKFTKEVI




Bacteroides



alpha-1,2-


GSVEKEASFITNSRYTPVAIGVRRYSEMKGEFGELAVVEHDYYDAAIKYIANKVPNLIFIVFSEDIDWVKKNLK




fragilis 638R



fucosyl-


LDYPVYFVTSKKGELAAIQDMYLMSLCNHHIISNSSFYWWGAYLASTNNHIVIAPSVFLNKDCTPIDWVII






transferase









[Bacteroides










fragilis 638R]











Firmicutes

WP_022352105.1
547951298
protein
25

MSGGLGNQMFQYALYMKLTAMGREVKFDDINEYRGEKAWPIMLAVFGIEYPRATWDEIVAFTDGSMDFSK
166



bacterium



[Firmicutes


RLKRLFRGRHPIEYVEQGFYDPKVLSFENMYLKGSFQSQRYFEDILEEVQETFRFPELKDMNLPAPLYETT



CAG: 534



bacterium



EKYLLRIEGCNAVGLHMYRGDSRSNEELYDGICTEKYYEGAVRFIQDKCPDAKFFIFSNEPKWVKGWVISLM






CAG: 534]


KSQIREDMSREEIRALEDHFVLIENNTEYTGYLDMFLMSRCRHNIISNSSFSWWAAFINENPDKLVTAPSRW









VNGVPSEDVYVKGMTLIDEKGRVERTIKE







Firmicutes

WP_022368748.1
547971670
glycosyl
25

MVIVKIGDGLGNQMFNYVCGYSVAKHDNDTLLLDTSDVDNSTLRTYDLDKFNIDFTDRESFTNKGFFHKVY
167



bacterium



transferase


KRLRRSLKYNVIYESRTENCPCVLDVYRRKFIRDKYLHGYFQNLCYFKTCKEDIMRQFTPKEPFSAKADELIHR



CAG: 882


family 11


FATENTCSVHVRGGDIKPLSIKYYKDALDKIGEAKKDMRFIVFSNVRNLAEEYIKELGVDAEFIWDLGEFTDIE






[Firmicutes


ELFLMKACRRHILSDSTFSRWAALLDEKSEEVFVPFSPDADKIYMPEWIMEEYDGNEEKR







bacterium










CAG: 882]









Vibrio
WP_005496882.1
491639353
glycosyl
25

MVIVKVSGGLGNQLFQYAIGCAISNRLSCELLLDTSFYPKQSLRKYELDKFNIKAKVATQKEVFSCGGGDDLL
168



parahaemolyticus; 



transferase


SRFLRKLNLSSLFFPNYIKEKESLVYLAEISHCKSGSFLDGYWQNPQYFSDIKDELVKQIVPIMPLSSPALEWQ




Vibrio



family 11 


NIIINTKNCVSLHVRRGDYVNNAHTNSVHGVCDLSYYREAITNIHETVEKPKFFVFSDDISWCKDNLGSLGHF




parahaemolyticus



[Vibrio


TYVDNTLSAIDDLMLMSFCEHHIIANSTFSWWGAWLNDHGITIAPKRWFSSVERNNKDLFPEKWLIL



10329; Vibrio



parahaemo-








parahaemolyticus




lyticus]







10296; Vibrio










parahaemolyticus










12310; Vibrio










parahaemolyticus










10290













Herbaspirillum

WP_006463714.1
493509348
glycosyl
24.92

MIVSRLIGGLGNQMFQYAAGRALALRRGVPFAIDSRAFADYKTHAFGMQCFCADQTEAPSRLLPNPPAEG
169



frisingense; 



transferase


RLQRLLRRFLPNPLRVYTEKTFTFDEAVLSLPDGIYLDGYWQSEKYFADFADDIRKDFAVKAAPSAPNQAWL




Herbaspirillum



family protein


ELIGRTHSVSLHIRRGDYVSNAAAAAVHGTCDLGYYERAVAHLHQVTGQAPELFVFSDDLDWVATNLQLP




frisingense



[Herbaspirillum


YTMHLVRDNDAATNFEDLRLMTACRHHIVANSSFSWWGAWLDGRSESITIAPARWFVADTPDARDLVP



GSF30



frisingense]



QRWVRL







Rhizobium sp. 

WP_007759661.1
495034125
Glycosyl
24.92

MIITRILGGLGNQMFQYAAGRALAIANEAELKLDLIEMGAYKLRPFALDQFNIKAAIAQPDEVPAKPKRGLL
170


CF080


transferase


RKFTSAFKPDRSSCERIVENGLTFDSRVPALRGSLHLSGYWQSEQYFASSADAIRSDFSLKSPLGPARQDVLA






family 11


RIGAATTPVSIHVRRGDYVTNPSANAVHGTCEPPWYHEAMRRMLDRAGDASFFVFSDEPQWARDNLQS






[Rhizobium sp.


SRPMVFIEPQNNGRDGEDMHLMAACHAHIIANSSFSWWGAWLNPRPNKHVIAPRQWFRAPDKDDRDI






CF080]


VPATWERL







Verrucomicrobium

WP_009959380.1
497645196
glycosyl
24.85

MVISHISEGLGNQMFQYAAGRRLSYHLGTTLKLDDYHYRLHPFRSFQLDRFLITSPIATDAEISHLCPLEGLAR
171



spinosum



transferase,


AIRARLPGKLRGATLRLLGNLGLGSPYQPRLHSFKEETPKQPLLIGKVVSERHFHFDPDVLECPDNVCLVGY






family 11


WQDERYFGEIRDILLRELTLKSPPAGATKAVLERIQRSSSVSLHVRRGDKTKSSSYHCFSLEYCLAAMSEMRA






[Verrucomicrobium


RLQAPTFFVFSDDWDWVREQIPCSSSVIHVDHNRAEDVSEDFRLMKSCDHHIIASSSLSWWAAWLGTNE







spinosum]



NSFVFSPPADRWLNFSNHFTADVLPPHWIQLDGSSLLPAQ







Fibrella

YP_007319049.1
436833833
glycosyl
24.83

MTANRVLVNSPMVIAKITSGLGNQLFQYALGRHLALQGNTSLWFDLRYFHQEYATDTPRKFKLDRFNVRY
172



aestuarina; 



transferase


NLLDSSPWLYASKATRLLPGRSLRPLIDTRFEADFHFDPTVIRPAAPLTILWGFWQSEKYFAQSTPQIRQELTF




Fibrella



family 11


NRPLSDTFVGYQQQIEQAEVPISVHVRRGDYVTHPEFSQSFGFVGLAYYQKALAHLQDLFPNATLFFFSDDP




aestuarina



[Fibrella


DWVRANIVTEQPHVFVQNSGPDADVDDLQLMSLCHHHVIANSSFSWWGAWLNPRPDKVVIGPQRWF



BUZ 2



aestuarina



ANKPWDTKDLLPSGWLRL






BUZ 2]










Rhodobacter sp.

WP_023665745.1
563380195
alpha-1,2-
24.83

MIHMRLVGGLGNQLFQYACGRAVALRHGTELVLDTRELSRGAAHAVFGLDHFAIRARMGASADLPPPRS
173


CACIA14H1


fucosyl-


RVLAYGLWRAGFMAPRFLRERGLGVNPAVLAAGDGTYLHGYFQSEAYFRDVVPQIRPELEIVTPPSDDNLR






transferase


WASRIAGDDRAVSLHVRRGDYVASAKGQQVHGTCDADYYARAVAAIRARAGIDPRLYVFSDDPHWARD






[Rhodobacter


NLALDAETVVLDHNPPGAAVEDMRLMGVCRHHIIANSSFSWWGAWRNPSAGKVVVAPVRWFADPKLH






sp. CACIA14H1]


NPDICPPEWLRV







Rhodopirellula

NP_868779.1
32475785
fucosyl
24.83

MATSAHLHLSDEKQTLDSKASDRDCATTEASASDKTCTISISGGLGNQMLQYAAGRALSIHHDCSLQLDLKF
174



baltica



transferase


YSSKRHRSYELDAFPIQAHRSIKPSFFSQILSKIQSESKHVPTYQEQSKRFDPAFFNTEPPVKIRGYFFSEKYF



SH 1; 


[Rhodopirellula


SPYADQIRTELTPPIPPDQPARDMAIRLKECVSTSLHVRRGDYVTNANARQRFWCCTSEYFEAAIERLPTDSTV




Rhodopirellula




baltica SH 1]



FVFSDDIEWAKQNIRSSRTTVYVNDELKKAGSPETGLRDLWLMTHAKSHIIANSSFSWWGAWLANSEANL




baltica






TIAPKKWFNDPEIDDSDIVPSSWHRI







Spirosoma

WP_020604054.1
522092845
protein
24.83

MVVVELMGGLGNQMFQYAFGMQLAHQRQDTLTVSTFLLSNKLLANLRNYTYRPFELCIFGIDKPKASPFN
175



spitsbergense



[Spirosoma


LLRALLPFDLNTSLLRETDDPEAVIPAASARIVCVGYWQSEHYFEEVTVHVREKFIFRQPFNSFTSRLANNLN







spitsbergense]



GIPNSVFVHIRRGDYVTNKGANAHHGLCDRTYYERAVTFMREHLENPLFFIFSDDLEWVSQELGPILEPATY









VGGNQKNDSWQDMYLMSLCRHAIVANSSFSWWGAWLSPHASKIVVAPKEWFGKPLLPVKTNDLIPNS









WIRI






uncultured 
EKD71402.1
406938106
protein
24.76

MNAIIPRLTGGIGNQLFIYAAARRMAIANSMNLVIDDTSGFKYDVLYKRFYQLEKFNITSRMATPTERLEPFS
176


bacterium


ACD_46C00193


KIRRYLKRKINKTYPFAQRAYITQEKSGFDPRLLVFRPKGNVYLDGYWQSENYFKDIEGIIRQDLIIKSPSDS






G0003


LNIATAERIKNTLAIAVHVRFFDMVDISDSSNCQSNYYHTAIAKMEEKIPNAHYFIFSDKPVLARLAMPLPDD






[uncultured


RITIIDHNIGDMNAYADLWLMSLCKHFVIANSTFSWWGAWLSDNKEKIVIAPDIKITSGVTQWGFDGLIPDEW






bacterium]


IKL







Prevotella

WP_006950883.1
494008437
protein
24.75

MDVIVIFNGLGNQMSQYAFYLEKRLRNRQTTYFVLNPRSTYELERLFGIPYRSNLMCRMIYKLLDKAYFSNHI
177



micans; 



[Prevotella


RLKKILRTALNAVGIRLIVEPITRNYSLSNFTHHPGLTFYRGGWHSELNFTSVVTELRRKFIFPPSDDEEFKRI




Prevotella




micans]



SALIIRTQSISLHIRRGDYLDYSEYQGVCTEEYYERAIEYIRSHVENPVFFVFSDDKEYAINKFSGDDSFRIVD




micans F0438






FNTGENSWRDMQLMSLCRHHILANSTFSWWGAWLDSAPEKIVLHPIYHMRDVPTRDFYPHNWIGISGE







Thermo-

AHB87954.1
564737556
alpha-1,2-
24.75

MIIVRLYGGLGNQMFQYAAGLALSLRHAVPLRFDLDWFDGVRLHQGLELHRVFDLDLPRAAPSEMRQVL
178



synechococcus



fucosyl-


GSFSHPLVRRLLVRRRLRWLLPQGYALEPHFHYWPGFEALGPKAYLDGYWQSERYFSEYQDAVRAAFRFA



sp. NK55


transferase


QPLDERNRQIVEEMAACESVSLHVRRGDFVQDPVVRRVHGVDLSAYYPRAVALLMERMREPRFYVFSDD






[Thermo-


PDWVRANLKLPAPMIVIDHNRGEHSFRDMQLMSACRHHILANSSFSWWGAWLNSQPHKLVIAPKRWF







synechococcus



NVDDFDTRDLYCSGWTVL






sp. NK55]










Coleofasciculus

WP_006100814.1
493031416
Glycosyl
24.73

MLSLNKNFLFVHIPKSCILKEVYIYMISFPNLGKGVRLGNQMFQYAFLRSTARRLGVKFYCPAWSGDSLFTLN
179



chthonoplastes; 



transferase


DQEERVSQPEGITKQYRQGLNPGFSENALSIQDGTEISGYFQSDKYYDNPDLVRQWFSLKEEKIASIRDRFSR




Coleofasciculus



family 11


LNFANSVGMHLRFGDVVGQLKRPPMRRSYYKKALSYIPNQELILVFSDEPERTKKMLDGLSGNFLFLSGHK




chthonoplastes



[Coleofasciculus


NYEDLYLMTKCQHFICSYSTFSWWGAWLGGERERTVIYPKEGQYRPGYGRKAEGVSCESWIEVQSLRGFL



PCC 7420



chthonoplastes]



DDYRLVSRLEKRLPKSLMNFFY







Bacteroides

WP_018666797.1
517496220
glycosyl
24.66

MRLIKMTGGLGNQMFIYAFYLRMKKRHTNTRIDLSDMMHYNVHHGYEMHHVFNLPKTEFCINQPLKKVI
180


gallinarum


transferase


EFLFFKKIYERKQDSSNLLPFDKKYFWPLLYFKGFYQSERFFADMENDIRKAFTFNSGLFNEKTQTMLKQIEH






[Bacteroides


NEHAVSLHVRRGDYLEPKHWKTTGSVCQLPYYINAIAEMNRRIEQPFYYVFSDDIAWVKENLPLPQAVFID







gallinarum]



WNKGVESWQDMMLMSHCRHHIICNSTFSWWGAWLNPKENKTVIMPERWFQHCETPNIYPAGWIKVP









IN







Firmicutes

WP_022367483.1
547967507
glycosyl
24.66

MNNVEIMGGLGKQLFQYAFSRYLQKLGVKNVVLRKDFFTIQFPENNGITKREFVLDKYNTRYVAAAGEKTY
181



bacterium



transferase


RDYCDENDYRDDYAIGSDEVLYEGYWQNIDFYNVVRKEMQEELKLKPEFIDNSMAAVEKDMSSCNSVALH



CAG: 882


GT11 family


IRRSDYLTQVNAQIFEQLTQDYYASAVSIIEQYTHEKPVLYIFSDDPEYAAENMKDFMGCRTVIMPPCEPYQ






[Firmicutes


DMYLMTRAKHNIIANSTFSWWGATLNANPDNITVAPSRWMKGRTVNLYHKDWITL







bacterium










CAG: 882]










Bacteroides

WP_008021494.1
495296741
protein
24.6

MIAVNVNAGLANQMFHYAFGRGLMAKGLDVCFDQSNFKPRSQWAFELVRLQDAFPSIDIKVMPEGHFK
182



xylanisolvens; 



[Bacteroides


WVFPSLPRNGLERRFQEFMKKWHNFIGDEVYIDEPMYGYVPDMEKCATRNCIYKGFWQSEKYFRHCEDD




Bacteroides




xylanisolvens]



IRKQFTFLPFDELKNIEVAAKMSQENSVAIHLRKGDDYMQSELMGKGLCTVDYYMKAIDYMRKHINNPHF




xylanisolvens






YVFTDNPCWVKDNLPEFEYILVDWNEVSGKRNFRDMQLMSCAKHNIIGNSTYSWWAAWLNANQDKIVV



CL03T12C04





GPKRFFNPINSFFSTCDIMCEDWISL







Geobacter sp. 

YP_004197726.1
322418503
glycosyl
24.58

MIGMVIFRAYNGLGNQMFQYALGRHLALLNEAELKIDTTAFADDPLREYELHRLKVQGSIATPDEIAFFRE
183


M18


transferase


MENTHPQAYLRLTQKSRLFDPAILSARGNIYLHGFWQTEKYFADIREILLDEFEPIVPAGEDSIKVLSHMK






family protein


ATNAVALHVRRSDYVSNPMTLRHHGVLPLDYYREAVRRIAGMVPDPVFFIFSDDPQWAKDNIRLEYPAFCV






[Geobacter sp.


DAHDASNGHEDLRLMRNCKHFIIANSSFSWWGAWLSQNTGKKVVAPLKWFAKPEIDTRDIVPLQWIRI






M18]










Ruegeria

YP_168587.1
56698215
alpha-1,2-
24.57

MITTRLHGRLGNQMFQYAAARGLAARLGTQVALDTRLAESRGEGVLTRVFDLDLAQPDQLPPLKGDGLLR
184



pomeroyi



fucosyl-


HGAWRLLGLAPRFRREHGLGYNAAIETWDDGTYLHGYWQSERYFAHIAARIRADFAFPAFSNSQNAEMA



DSS-3


transferase,


ARIGDTDAISLHVRRGDYVALAAHTLCDQRYYAAALTRLLEGVAGDPVVYLFSDDPAWARDNLALPVQKV






[Ruegeria


VVDFNGPETDFEDMRLMSLCRHNIIGNSSFSWWAAWLNAHPGKRIAAPASWFGDAKLHNPDLLPPDWL







pomeroyi



KIEV






DSS-3]










Lachnospiraceae

WP_016291997.1
511037973
protein
24.52

MIIIQLAGGLGNQMQQYAMYQKLLSLGKKVKLDISWFEEKNRQKNVYARRELELNYFKKAEYEACFEEERK
185



bacterium 28-4



[Lachnospiraceae


ALVGEGGFAGKIKGKLFPGTRKIFRETEMYHPEIFDFEDRYLYGYFACEKYYADIMEILQEQFVFPPSGNPEN







bacterium 28-



QKMAERIADGESVSLHIRRGDYLDAENMAMFGNICFEEYYAGAIREMKKIYPSAHFFVFSDDIPYAKETYSG






4]


EEFTVVDINRGKDSFFDIWLMSGCRHNICANSTFSFWGARLNRNKGKVVMRPFIHKNSQKFEPELMHEL









WKGWVFIDNRGNIC







Prevotella sp.

WP_021989703.1
547254188
glycosyl
24.49

MRILVFTGGLGNQMFEYAFYKHLKSCFPKESFYGHYGVKLKEHYGLEINKWFDVTLPPAKWWTLPVVGLFY
186


CAG: 1092


transferase


LYKKLVPNSKWLDLFQREWKHKDAKVFFPFKFTKQYFPKENGWLKWKVDEASLCEKNKKLLQVIHDEETCF






family 11


VHVRRGDYLASNFKSIFEGCCTLDYYKRALEYMNKNNPKVRFICFSDDLEWMRKNLPMDDSAIYVDWNTG






[Prevotella sp.


TDSPLDMYMMSQCDNGIIANSSFSYWGAYLGGKKTTVIYPQKWWNMEGGNPNIFMDEWLGM






CAG: 1092]










Spirosomaluteum

WP_018618567.1
517447743
protein
24.41

MVISVLSGGLGNQLFQYAFGLKLAAQLQTELRLERHLLESKAIARLRQYTPRTYELDTFGVEAPAASLMDTVS
187





[Spirosoma


CLSRVALSDKTALLLRESTLTPNAINNLNNRVRDVVCLGYWQSEEYFRPATEQLRKHLVFRKNPAQSRSMA







luteum]



DTILSCQNAAFVHIRRGDYVTNTHANQHHGLCDVSYYRRACEYVKECIPDVQFFVFSDDPDWAKRELGIHL









QPARFIDHNRGADSWQDMYLMSLCRHAIVANSSFSWWGAWLNPVAERLVVAPGQWFVNQPVLSQQII









PPHWHCL







Marinomonas

YP_004480472.1
333906886
glycosyl
24.34

MIIVDLSGGLGNQMFQYACARSLSIELNLPLKVVYGSLASQTVHNGYELNRVFGLDLEFATENDMQKNLGF
188



posidonica



transferase


FLSKPILRKIFSKKPLNNLKFQNFFPENSFNYNSSLFSYIKDSGFLQGYWQTEKYFLNHKSQILKDFCFVNMD



IVIA-Po-


family protein


DETNISIANDIQSGHSISIHVRRGDYLTNLKAKAIHGHCSLDYYLKAIEFLQEKIGESRLFIFSDDPEWVSEN



181;


[Marinomonas


IATRFSDVSVIQHNRGVKSFNDMRLMSMCDHHIIANSSFSWWGAWLNPSQNKKIIAPKNWFVTDKMNTIDLIP




Marinomonas




posidonica



SSWILK




posidonica



IVIA-Po-181]










Bacteroides; 

WP_005839979.1
492425792
glycosyl
24.32

MKIVVFKGGLGNQLFQYAFYKYLSRKDETFYFYNDAWYNVSHNGFELDKYFKTDDLKKCSRFWIILFKTILSK
189



Bacteroides sp.



transferase


LYHWKIYVVGSVEYQYPNHLFQAGYFLDKKYYDENTIDFKHLLLSEKNQSLLKDIQNSNSVGVHIRRGDYMT



4_3_47FAA; 


family 11


KQNLVIFGNICFQKYYHDAIRIITEKVNDAVFYVFSDDISWVQTHLDIPNAVYVNWNTGESSIYDMYLMSSC




Bacteroides sp.



[Bacteroides]


KYNIIANSTFSYWAARLNKKTNMVIYPSKWYNTFTPDIFPESWCGI



3_l_40A; 










Bacteroides











dorei










5136/D4; 










Bacteroides











vulgatus










PC510; 










Bacteroides











dorei










CL03T12C01; 










Bacteroides











vulgatus dnLKV7














Candidatus

WP_020169431.1
519013556
protein
24.32

MTIRIKLTGGLGNQMFQFATGFAIAKKKNVRLSLDLKYINKRKLFNGFELQKIFNIYSKVSFLNKTLSFKSI
190



Pelagibacter



[Candidatus


NFTEILNRIDTTFYNFKEPHFHYTSNILNLPKHSFLDGYWQSELYFNEFATEIKRIFNFSGKLDKSNLLVAD




ubique




Pelagibacter



DINRNNSISIHIRRGDFLLKQNNNHHTDLKEYYLKAINETSKIFKNPKYFIFSDDTSWTVDNFVIDHPYIIV







ubique]



DINFGARSFLDMYLMSLCKSNIIANSSFSWWSAWLNNNKDKIIYAPKNWFNDKSICTDDLIPESWNIIL







Bacteroides sp.

WP_022353174.1
547952428
uncharacterized
24.29

MSVIINMACGLANRMFQYAFYLYLQKEGYDAYVDYFTRADLVHENVDWLRIFPEATFRRATARDIRKMGG
191


CAG: 875


protein


GHDCFSRLRRKLLPMTTKVLETSGAFEIILPPKNRDSYLLGAFQSAKMVESVDAEVRRIFTFPEFESGKNQY






[Bacteroides sp.


FQTRLAQENSVGLHIRKGKDYQERIWYKNTCGVEYYRKAVDLMKEKVDSPSFYVFTDNPAWVKENLSWLEY






CAG: 875]


KLVDGNPGSGWGSHCDMQLMSLCKHNIISNSSYSWWGAYLNNTLNKIVVCPRIWFNPESTKDFSSNPLLA









EGWISL







Butyrivibrio

WP_022756327.1
551011911
protein
24.29

MIIIKLQGGLGNQLFLYGLYKNLKHLKRDVKMDIESGFEGDELRKPCLDCMNLEYAIATRDEVTDIRDSYMDI
192



fibrisolvens



[Butyrivibrio


FSRIRRKITGRKTFDYYEPEDGNYDPKVLEMTKAYLNGYFQSEKYFGDEESVKALKDELTKGKEDILTSTDLIT







fibrisolvens]



KIYHDIKNSESVSLHIRRGDYLTPGIIETYGGICTDEYYDKAIAMIRETFPEARFFIFSNDIEWCKEKFAGDKN









ILFVNTIGINLDSEDNIKIGKSDKDISEYRDLAELYLMSACKHHILANSSFSWWGAWLSDHEGMTIAPSKWLNN









KNMTDIYTKDMLLI







Roseburia

YP_004839455.1
347532692
glycosyl
24.22

MVTVKIGDGMGNQMYNYACGYAAAKRSGEKLRLDISECDNSTLRDYELDHFRVVYDEKESFPNRTFWQK
193



hominis; 



transferase


LYKRLRRDIRYHVIRERDMYAVDARVFVPARRGRYLHGYWQCLGYFEEYLDDLREMFTPAYEQTDAVREL




Roseburia



family protein


MQQFTQTPTCALHVRGGDLGGPNRAYFQQAIARMQKEKPDVTFIVFTNDLPKAKECLDDGEARMRYIAE




hominis



[Roseburia


FGEALSDIDEFFLMSACQNQIISNSTYSTWAAYLNTLPGRIVIVPKFHGVEQMALPDWIVLDGGACQKGEID



A2-183



hominis A2-183]



AV







Rhodopirellula

WP_008659200.1
495934621
alpha-1,2-
24.16

MATSVHPHLSDGKQALDSKAAQQVCSTQAASASDRACTISISGGLGNQMLQYAAGRALSIHHDCPLQLDL
194



europaea; 



fucosyl-


KFYSSKRHRSYELDAFPIQAQRWIKPSFFSQVLDKIQGESKSAPTYEEQSKRFDRAFFDIELPARIRGYFFSE




Rhodopirellula



transferase


KYFLPYADQIRTELTPPVPLDQPARDMAQRLSEGMSTSLHVRRGDYVSNANARQRFWSCTSEYFEAAIEQMP




europaea 6C



[Rhodopirellula


ADSTVFVFSDDIEWAKQNIRSSRPTVYVNDELKLAGSPETGLRDLWLMTHAKSHIIANSSFSWWGAWLSG







europaea]



SEANLTIAPKKWFNDPEIDDSDIVPTSWRRI







Rudanellalutea

WP_019988573.1
518832653
protein
24.16

MVIAKITSGLGNQLFQYALGRHLAIQNQTRLWFDLRYYHRTYETDTPRQFKLDRFSIDYDLLDYSPWLYVSK
195





[Rudanella


ATRLLPGRSLRPLFDTRKEPHFHLDPAVPNAKGAFITLDGFWQSEGYFASNAATIRRELTFTRQPGPMYARY







lutea]



RQQIEQTQTPVSVHIRRGDYVSHPEFSQSFGALDDTYYQTALAQINGQFPDATLLVFSDDPEWVRQHMRF









ERPHVLVENTGPDADVDDLQLMSLCHHHIIANSSFSWWGAWLNPRPDKRVIAPKQWFRNKPWNTADLI









PAGWVRL







Bacteroidetes; 

WP_008618094.1
495893515
glycosyl
24.15

MRLIKMTGGLGNQMFIYAMYLKMKTIFPDVRIDLSDMVHYQVHYGYEMNKVFHLPRTEFCINRSLKKIIEF
196



Capnocytophaga



transferase


LLFKTILERKQGGSLVPYTRKYHWPWIYFKGFYQSEKYFAGIEKEVREAFVFDIRRASRRSLRAMQEIKADPH



sp. oral taxon 


[Bacteroidetes]


AVSIHVRRGDYLLEKHWKALGCICQSSYYLNALAELEKRVKHPHYYVFSEDLNWVRQNLPLIKAEFIDWNKG



329 str. F0087; 





EDSWQDMMLMSHCRHHIICNSTFSWWGAWLNPLPDKIVIAPERWTQTTDSADVVPESWLKVSIG




Paraprevotella











clara YIT 11840














Smaragdicoccus

WP_018159152.1
516906936
protein
24.08

MADVVVTLAGGLGNQLFQTAYAKNLEARGHRVTLDGTVVRWTRGLHIDPQICGLKILNATPPAPVPGRLA
197



niigatensis



[Smaragdicoccus


ATVLRRALATRLRFGPDGRIVRTQRTLEFDEQYLNLNSPGRYRVEGYWQCERYFSDVGQTVRKVFLDMLGR







niigatensis]



HVSYNGLSRLPAMADPSSISLHVRRGDYVTANFIDPLALEYYERALEELAVPSPRIFVFSDDLDWATRELGR









ICDVIPVEPDWTSHPGGEIFLMSQCSHHIIANSSFSWWGAWLDGRTSSRVVAPRQWFSLETYSARDIVPDR









WTKV







Bacteroides

WP_022012576.1
547279005
family 11
24.05

MIHLILGGGLGNQMFQYAFARSLALQYNENISFNTILYKELKNEERSFSLGHLNINTMCIVETPDENKRIWEL
198



fragilis



glycosyl-


FNKQIFHQKIARKILPASIRWWWMSNRNIYANVCGPYKYYHPRHRSQNTTIIHGGFQSWKYFKEHQSMIK



CAG: 558


transferase


AELKVITPISEPNKKILKEIQNSNSICVHIRRGDFLSAQFSPHLEVCNKDYYEKAIKMISSQIENPTFFIFSNT






[Bacteroides


HEDLVWIRKNYNIPQNSVYVDLNNPDYEELRLMYNCKHFILSNSSFSWWAQYLSESKNKIIIAPKIWDKRKGID







fragilis



FSDIYMPEWIIIK






CAG: 558]










Desulfovibrio

WP_022657592.1
550904402
protein
24.05

MSFSIDVAAIQRMALVKVDGGLGSQMWQYALSLAVGKSSSFTVKHDLSWFRHYAKDIRGIENRFFILNSVF
199



desulfuricans



[Desulfovibrio


TNINLRLASENERLFFHIALNRYPDSICNFDPDILALKQPTYLGGYYVNAQYVTSAEKEIREAYVFAPAVEES







desulfuricans]



NQAMLQTIHAAPMPVAVHVRRGDYIGSMHEVLTPRYFERAFKILAAALQPKPTFFVFSNGMEWTKKAFAGL









PYDFVYVDANDNDNVAGDLFLMTQCKHFTISNSSLSWWGAWLSQRAENKTVIMPSKWRGGKSPIPGEC









MRVEGWHMCPVE







Hoeflea

WP_007199917.1
494373839
alpha-1,2-
24.05

MHGGLGNQLFQYAVGRAVALRTGSELLLDTREFTSSNPFQYDLGHFSIQAKVANSSELPPGKNRPLAYAW
200



phototrophica; 



fucosyl-


WRKFGRSPRFVREQDLGYNARIETIEADCYLHGYFQSQKYFEDIASILWKDLSFRQAISGENASMAERIQSA




Hoeflea



transferase,


PSVSMHIRRGDYLTSAKARSTHGAPDLGYYGRALGEIRARSGSDPVVYLFSDDPDWVRNNMRMDANLVT




phototrophica



[Hoeflea


VAINDGKTAFEDLRLMSLCDHNIIVNSTFSWWGAWLNPSLDKIVVAPKRWFADPKLSNPDITPPGWLRLGD



DFL-43



phototrophica]











Vibriocholerae;

WP_002030616.1
487957217
glycosyl
24.04

MKIISFSGGLGNQLFQYAFYLYLKDNSDFGNIFLDFSFYESQNKRDAVIRNFYGVDSLDIIKQSSYVRGKFLI
201



Vibriocholerae



transferase,


LKLINKFRFFNNLLEFVDKENGLDETLLSTNKVFFDGYWQSYRYVKDYKSNIKELFSFYDFKGNILEVRKKIC



O1 str. 87395


family 11 


QSNSVCMHVRRGDYVAEKNTKLVHGVCSLQYYRDALNNIKNVDNSIDHIFIFSDDIDWVKNNISFDIPVTVVD






[Vibrio


FVGQSVPDYAEMLLFSCGKHKVIANSTFSWWGAFLSDRNGVIVSPKKWFAKEEKNYDEIFIEGSLRL







cholerae]











Lachnospiraceae

WP_022784718.1
551041074
protein
24.03

MIIVRFRGGMGNQMFQYAFLRYLEMKGATLKADLSEFKCMKTHAGYELDKAFDLHPAEASYKEIRAVADYI
202



bacterium



[Lachnospiraceae


PVMHRFPFSRKVFEILYKKETKRVEAEGPKKSHISEEKYFDMSEDERLHLASSSEDLYMDGFWIKPDMYDDE



NK4A179



bacterium



VLKCFTFSKTLDEKYKGTIEDEHSCSVHVRCGDYTGTGLDILGKEYYEKAAEKILSEDADVKFYVFSDDREKA






NK4A179]


EKLLSPFMKKMVFCDTPASHAYDDMYLMSRCRHHIIANSTFSFWGARLSADKSGITICPKYEDKNNTANRLV









HEGWQML







Cecembia

WP_009185692.1
496476931
Glycosyl
24.01

MIIMKFMGGLGNQIYQYALGRKLSELHNSFLASDIHIYKNDPDREFVLDKFNIKVKHLPWKVIKLLNSDYALK
203



lonarensis; 



transferase


FDKVFHTEFYHELVLEKALESKDIPRKNNLYLRGSWGNRKYYEDYIDKISDEITLKEKFKTKDFNTVNKKVKNS




Cecembia



family 11


DSVGIHIRRGDYEKVAHFKNFYGLLPPSYYSAAVDFIGNRIEKSNFFIFSDDTDWVKENLPFLKDSFFVSDIIG




lonarensis



[Cecembia


SVDYLEFELLKNCKHQIIANSTFSWWAARLNSNPAKIVIKPKRWFADDRQQAVYEIEDSYYIKEAIKL



LW9



lonarensis]











Bacteroides

WP_004295547.1
490423336
protein
24

MKIVNILGGLGNQMFVYAMYLALKEAHPEEEILLCRRSYKGYPLHNGYELERIFGVEAPEAALSQLARVAYP
204



ovatus; 



[Bacteroides


FFNYKSWQLMRHFLPLRKSMASGTTQIPFDYSEVTRNDNVYYDGYWQNEKNFLSIRDKVIKAFTFPEFRDE




Bacteroides




ovatus]



KNKALSDKLKSVKTASCHIRRGDYLKDPIYGVCNSDYYTRAITELNQSVNPDMYCIFSDDIGWCKENFKFLIG



ovatus 





DKEVVFVDWNKGQESFYDMQLMSLCHYNIIANSSFSWWGAWLNNNDDKVVVAPERWMNKTLENDPI



ATCC 8483





CDNWKRIKVE







Bacteroides

WP_022125287.1
547668508
glycosyl-
23.99

MRLIKMTGGLGNQMFIYAFYLKMKKLFPHTKIDLSDMMHYHVHHGYEMNRVFALPHTEFCINRTLKKLM
205



coprocola



transferase


EFLLCKVVYERKQKNGSMEAFEKKYAWPLIYFKGFYQSERFFADIEDDVRKTFCFNMELINSRSREMMKIID



CAG: 162


family 11


ADEHAVSIHIRRGDYLLPKFWANAGCVCQLPYYKNAITELEKHESTPSFYVFSDDIEWVKQNLSLPNAHYID






[Bacteroides


WNQGNDSWQDMMLMSHCRNHIICNSTFSWWGAWLNPRKNKTVIVPSRWFMKEETPYIYPVSWIKVPIN







coprocola










CAG: 162]










Bacteroides

WP_007835585.1
495110765
glycosyl
23.99

MRLIKVTGGLGNQMFIYAFYLRMKKYYPKVRIDLSDMMHYKVHYGYEMHRVFKLPHTEFCINQPLKKIIEFL
206



dorei; 



transferase


FFKKIYERKQAPNSLRAFEKKYFWPLLYFKGFYQSERFFADIKDEVREAFTFDRSKANSRSLDMLDILDKDEN




Bacteroides



[Bacteroides


AVSLHIRRGDYLQPKHWATTGSVCQLPYYQNAIAEMSKRVTSPSYYIFSDDIVWVRENLPLQNAVYIDWNT




dorei DSM




dorei]



GEDSWQDMMLMSHCKHHIICNSTFSWWGAWLNPSIDKTVIVPSRWFQYSETPDIYPTGWIKVPVD



17855; 










Bacteroides











dorei










CL03T12C01













Bacteroides; 

WP_007662951.1
494936920
protein
23.97

MIIVRLWGGLGNQLFQYSFGQYLEIETDKKVFYDVASFGTSDQLRKLELCSFIPDIPLYNAYFTRYTGVKNRL
207



Bacteroides



[Bacteroides]


FKALFQWSNTYLSESMFDICLLEKARGKIFLQGYWQEEKYATYFPMQKVLSEWKNPNVLSEIEENIRSAKISV




intestinalis






SLHVRRGDYFSPKNINVYGVCTEKYYEQAIDRANSEIEEDKQFFVFSDDILWVKNHVSLPESTVFVPNHEISQ



DSM 17393;





FAYIYLMSLCKVNIISNSTFSWWGAYLNQHKNQLVIAPSRWTFTSNKTLALDSWTKI




Bacteroides











intestinalis










CAG: 564













Lachnospiraceae

WP_016283022.1
511028838
protein
23.95

MIVIHVMGGLGNQLYQYALYEKLRALGREVKLDVYAYRQAEGAEREWRALELEWLEGIRYEVCTAAERQQ
208



bacterium A4



[Lachnospiraceae


LLDNSMRLADRVRRRLTGRRDKTVRECAAYMPEIFEMDDVYLYGFWGCEKYYEDIIPLLQEKIVFPESSNPK







bacterium A4]



NADVLRAMAGENAVSVHIRRKDYLTVADGKRYMGICTDAYYKGAFRYITERVERPVFYIFSDDPAFAKTQF









CEENMHVVDWNTGRESLQDMALMSRCRHNICANSTFSIWGARLNRHPDKIMIRPLHHDNYEALDARTV









HEYWKGWVLIDADGKV







Phaeobacter

YP_006574665.1
399994425
protein
23.91

MIITRLHGRLGNQMFQYAAGRALADRLGVSVALDSRGAELRGEGVLTRVFDLDLATPDILPPLRQRAPLGY
209



gallaeciensis; 



PGA1_c33070


ALWRGLGQHLGTGPKLRREVGLGYNPDFVDWSDNSYLHGYWQSERYFAQSAERIRRDFTFPEYSNQQNA




Phaeobacter



[Phaeobacter


EMAARIGETNAISLHVRRGDYLTLAAHVLCDQAYYEAALAQVLDGLEGQPTVYVFSDDPQWAKENLPLPC




gallaeciensis




gallaeciensis



DKVVVDFNGADTDYEDMRLMSLCKHNIIGNSSFSWWAAWLNQTPDRRVAGPTKWFGDPKLNNPDILPP



DSM 17395 = CIP


DSM 17395 =


DWLRISV



105210


CIP 105210]










Firmicutes

WP_021849028.1
546362318
protein
23.88

MSGGLGNQMFQYALYLKLRSLGREVCFDDKSQYDEETFRNSSQKRRPKHLDIFGITYPSAGKEELEKLTDGA
210



bacterium



[Firmicutes


MDLPSRIRRKILGRKSLEKNDRDFMFDPSFLEETEGYFCGGFQSPRYFAGAEEEVRKAFTFPEELLCPKEGCS



CAG: 791



bacterium



RQEQKMLEQSASYAERIRKANCEAADRGVPGGGSASIHLRFGDYVDKGDIYGGICTDAYYDTAIRCLKERD






CAG: 791]


PGMIFFVFSNDEEKAGEWIRYQAERSENLGRGHFVLVKGCDEDHGYLDLYLMTLCRNHVIANSSFSWWAS









FMCDAPDKMVFAPSIWNNQKDGSELARTDIYADFMQRISPRGTRLSDRPLISVIVTAYNVAPYIGRALDSV









CGQTWKNLEIIAVDDGSSDETGAILDRYAAGDSRIQVVHTENRGVSAARNEGIAHARGEYIGFVDGDDRA









HPAMYEAMIRGILSSGADMAVVRYREVSAEETLTDAEEQVASFDPVLRASVLLQQRDAVQCFIRAGMAEE









EGKIVLRSAVWNKLFHRRLLRDNRFPEGTSAEDIPFTTRALCLSKKVLCVPEILYDYVVNRQESIMNTGRAER









TLTQEIPAWRTHLELLKESGLSDLAEESEYWFYRRMLSYEEEYRRCSETAKEAKELQERILKHRDRILELAEE









HSFGRRGDRERLKLYVNSPRQYFLLSDLYEKTVVNWKNRPDKT







Butyrivibrio

YP_003829733.1
302669773
glycosyl
23.84

MRKRIIALNGGLGNQMFQYAFARMLEDRKHCLIEFDTGFYSTVNDRKLAIQNYNIHKYDFCNHEYYNKIRLL
211



proteoclasticus;



transferase 11


FQKIPFVAWLAGTYKEYSEYQLDPRVFLFNYRFYYGYWQNKQYFENISNDIRNELSYIGNVSEKENALLNML




Butyrivibrio



[Butyrivibrio


EAHNAIAIHVRRGDYTQEGYNKIYISLSKEYYKRAVSIACKELGDNNIPLYVFSDDIDWCKANLADIGNVTFV




proteoclasticus




proteoclasticus



DNTISSSADIDMLMMKKSRCLITANSTFSWWSAWLSDRDDKIVLVPDKWLQDEEKNTKLMKAFICDKWKI



B316


B316]


VPV







Bacteroides sp.

WP_008768245.1
496043738
protein
23.81

>gi|496043738|ref|WP_008768245.1|protein[Bacteroides sp.
212


2_1_16


[Bacteroides


2_1_16]MQVVARIIGGLGNQMFIYATARALALRIDADLILDTQSGYKNDLFKRNFLLDSFCISYRKANCFQK






sp. 2_1_16]


YDYYLGEKVKSLGKKTHFSVIPFMKYISENTSCDFVDGLLKKHILSVYLDGYWQNEAYFKDYASIIKKDFQFCQ









VNDLRTLSEAEIIKKSITPVAIGVRRYQELNSHQNTKVTDLDFYQKAINYIESKVDNPTFFIFSEDQEWVKNNL









EQKSNFIMISPKEGNYSALNDMYLISLCKHHIVSNSSFYWWGAWLANNKNKIVVASDCFLNPQSIPDSWIKF







Desulfomicrobium

YP_003159045.1
256830317
glycosyl
23.76

>gi|256830317|ref|YP_003159045.1|glycosyl transferase family protein 
213



baculatum; 



transferase


[Desulfomicrobiumbaculatum DSM




Desulfomicrobium



family protein


4028]MAKIVTRIMGGIGNQLFCYAAARRLALVNHAELVIDDVTGFSRDRVYRRRYMLDHFNISARKATNYE




baculatum



[Desulfomicrobium


RMEPFERYRRGLAKYISKKLPFFEREYIEQERIEFDPRFLEYRTYNNIYIDGLWQSENYFKDVEDIIRDDLKII



DSM 4028



baculatum



PPTDLENINIAKKIKNIQNTIAMHVRWFDLPGINLGNNVSTYYYHRAIAMMEQRINAPHYFLFSDNLEAVHSKL






DSM 4028]


DLPEGRVTFVSNNDGDDNAYADLWLMSQCKHFITANSTFSWWGAWLGESRDSVVLVPRFSPDGGVTS









WCFTGLIPERWEQVSSIR







Prevotella

WP_021584236.1
545304945
galactoside 
23.76

MDIVLIFNGLGNQMSQYAFYLAKRQRNNHTVYCVFGPRTQYSLDKLFDIPYRHNAVLVLLYRALDKAHFSN
214



pleuritidis; 



2-alpha-L-


HRWLRRLLRPTLQLLGVKMIVEPLSRDFDMRHFTHQKGIVFYRGGWHSELNFTAVADAVKRRFRFPEIQD




Prevotella



fucosyl-


AAVLAVIDRIKSCQSVSLHLRRGDYLGLSEFQGVCTEAYYEHAIAYFESQIESPEYFVFSDDPTYAREQFGAD




pleuritidis



transferase


PNFHIIDLNHGEDAWCDLLMMTQCRYNIIANSTFSWWGAWLNDNPSKIVVHPRYHLNGVETRDFYPRNW



F0068


[Prevotella


ICIE







pleuritidis]











Bacteroides sp.

WP_008763191.1
496038684
glycosyl
23.75

MKVIWFNGNLGNQVFYCKYKEFLHNKYPNETIKYYSNSRSPKICVEQYFRLSLPDRIDSFKVRFVFEFLGKFFR
215


1_1_14


transferase,


RIPLKFVPKWYCFRKSLNYEASYFEHYLQDKSFFEKEDSSWLKAKKPDNFSEKYLIFENLICNTNSVAVHIRRG






family 11


DYIKPGSDYEDLSATDYYEQAIKKATEVYLDSQFFFFSDDLEFVKNNFKGDNIYYVDCNRGADSYLDILLMSQ






[Bacteroides


AKINIIANSTFSYWGAYMNHEKKKVMYSDLWFRNESGRQMPNIMLDSWICIETKRK






sp. 1_1_14]










Agromyces

WP_022893737.1
551273588
protein
23.65

MVGRVGIARRQAADVSCTDGEGLVAWRIRTGEIVLGLQGGIGNQLFEWAFAMALRSIGRRVLFDAVRCR
216



subbeticus



[Agromyces


GDRPLMIGPLLPASDWLAAPVGLALAGATKAGLLSDRSWPRLVRQRRSGYDPSVLERLGGTSYLLGTFQSA







subbeticus]



RYFDGVEHEVRAAVRALLEGMLTPSGRRFADELRADPHRVAVHVRRGDYVSDPNAAVRHGVLGAGYYDQ









ALEHAAALGHVRRVWFSDDLDWVREHLARDDDLLCPADATRHDGGEIALIASCATRIIANSSFSWWGGW









LGAPSSPAHPVIAPSTWFADGHSDAAELVPRDWVRL







Prevotella

WP_007133870.1
494220705
alpha-1,2-
23.59

MIATTLFGGLGNQMFIYATAKALSLHYRTPMAFNLRQGFEQDYKYQRHLELNHFKCQLPTAKWITFNYKG
217



salivae; 



fucosyl-


ELNIKRISRRIGRNLLCPHYQFIKEKEPFHYEKRLFEFTNKNIFLEGYWQSPRYFENYSDEIRRDFQLKSILP




Prevotella



transferase


HTITDELQMLKGTGKPLVMLGIRRYQEVKDKKDSPYPLCNKDYYAKAISHVQEQLPAPLFVVFTQEQAWAMNN




salivae



[Prevotella


LPTNANLYFVKEKDNAWATIADMYLMTQCQHAIISNSTFYWWGAWLQHPIENHIVVAPNNFINRDCVCD



DSM 15606



salivae]



NWIILD







Carnobacterium

YP_008718687.1
554649641
glycosyl
23.57

MIFVDLSEGLGNQMFQYAYSRYLQELYGGTLYLNTSSFKRKNSTRSYSLNNFYLYENVKLPSKFRRVIYNFYS
218


sp. WN1359


transferase


KTIRMFIKKVIRMNPYSDKYYFSMIPYGFYVSSQVFKYLTVPTTKRHNIFVMGTWQTNKYFQSINDKIKDELK






[Carnobacterium


VKTEPNELNKKLITEINSNQSVCVHIRLGDYTNPEFDYLHVCTSDYYLKGMDYIVSKVKEPNFYIFSNSSSDIE






sp. WN1359]


WIKNNYNFKYKVKYIDLNNPDFEDFRLMYNCKHFIISNSTFSWWAQFLSNNDKKIIVAPSKWQKSNENEAK









DIYLDHWKLIEIE







Butyrivibrio sp.

WP_022762290.1
551018062
glycosyl
23.55

MLIIQIAGGLGNQMQQYAMYRKLLKAGADRNIKLDTKWFDEDKQSGVLAKRKLELEYFTGLPLPVCSESER
219


AD3002


transferase


ARFTDRSVARKVVEKLVPGMGSRFTESCMYHPEIFELKDKYIEGYFACQKYYDDIMGELQELFVFPTHPDEEI






[Butyrivibrio


NIKNMNLMNEMEMVPSVSVHIRRGDYLDPENAALFGNIATDAYYDSAMEYFKAIDPDTHFYIFTNDPEYA






sp. AD3002]


REKYADPGRYTIVDHNTGKYSLLDIQLMSHCRGNICANSTFSFWGARLNRRKDKIPVRTLVMRNNQPVTPE









LMHEYWPGWVLVDKDGKVR







Clostridium sp. 

WP_021636935.1
545396682
glycosyl-
23.55

MIVIRVMGGLGNQMQQYALYEKFKALGKETRLDTSWFDNASMQENVLARRSLELRFFDNLTYEACTPQE
220


KLE 1755


transferase,


REALLGKEGFFNKLERKLFPSKNKHFYESEMFHPEIFKLDNVYLEGHWACEKYYHDIMPLLQSKIIFPKTDNI






family 11


QNNMLKNKMNSENSVSIHIRRGDYLDPENAAMFGGICTDSYYKSAEGYIRNRVTNPHFYLFSDDPAYLREHY






[Clostridium


KGEEYTVVDWNHGADSFYDMELMSCCKHNVCANSTFSFWGARLNRTEKKIVIRPAKHKNSQQAEPERM






sp. KLE 1755]


HELWENWVIIDEEGRIV







Bacteroides;

YP_001300694.1
150005950
glycosyl
23.47

MKFFVFGGGLGNQLFQYSYYRYLKKKYPSERILGIYPDSLKAHNGIEIDKWFDIELPPTSYLYNKLGILLYRV
221



Bacteroides



transferase


NRFLYNHGYRLLFCNRVYPQSMKHFFQWGDWQDYSIIKQINIFEFRSELPIGKENMEFLKKMETCNSISVHIR




vulgatus



family protein


RGDYLKTDLIHIYGGICTSKYYREAIKFMEQEVEEPFFFFFSDDCLYVETEFADIRNKIIISHNRDDRSFFDM



ATCC 8482;


[Bacteroides


YLMAHAKNMILANSTFSCWAAYLNRTAKIIITPDRWVNTDFSKLEALPNEWIKIRV




Bacteroides




vulgatus ATCC








dorei DSM



8482]






17855; 










Bacteroides











massiliensis










dnLKV3













Paraprevotella

WP_008626629.1
495902050
glycosyl
23.47

MRLIKMTGGLGNQMFIYAMYLKMRAVFPDTRIDLSDMVHYRVHYGYEMNKVFNLPRTEFRINRSLKKIIEF
222



xylaniphila; 



transferase


LLFKTILERKQGGSLVPYIRKYHWPWIYFKGFYQSEEYFAGVEKEVREAFVFDVRRVNRKSLCAMQEIMADP




Paraprevotella



[Paraprevotella


DAVSIHVRRGDYLQGKHWKSLGCICQRSYYLNALSELEKRIVHPHYYVFSEDLDWVRQYLPLENAVFIDWN




xylaniphila




xylaniphila]



KGEDSWQDMMLMSHCRHHIICNSTFSWWGAWLNPSPDKIVIAPERWTQTTNSADVVPESWLKVSIG



YIT 11841













Thauera sp. 28

WP_002930798.1
489020296
glycosyl
23.47

MTDRALIAIVKGGLGNQLFIYAAARAMALRTGRQLYLDAVRGYLADDYGRSFRLNRFPIEAELMPEQWRV
223





transferase


ASTLRHPRAKLVRALNKYLPEAWRFYVAERGDTRPGALWNHGRNVKRVTLMGYWQDEAYFLDYAELLRR






family protein


ELGPPMPDAPEVRARGERFAGTESVFLHVRRCRYSPLLDAGYYQKAVDLACAELNKPVFMIFGDDIEWVV






[Thauera sp. 28]


NNIDFRGAGYERQDYDESDELADLWLMTRCRHAIIANSSFSWWAAWLGGAAGSGRHVWAPGQSGLAL









KCAKSWEAVDAQPE







Subdoligranulum

WP_007048308.1
494107522
alpha-1,2-
23.44

MIYAELAGGLGNQMFIYAFARALGLRCGEAVTLLDRQDWRDGAPAHTACALEGLNLVPEVKILAEPGFAK
224



variabile; 



fucosyl-


RHLPRQNTAKALMIKYEQRQGLMARDWHDWERRCAPVLNLLGLHFATDGYTPVRRGPARDFLAWGYF




Subdoligranulum  



transferase


QSEAYFADFAPTIRAELRAKQAPAGVWAEKIRAAACPVALHLRRGDYCRPENEILQVCSPAYYARAAAAAA




variabile



[Subdoligranulum


AAYPEATLFVFSDDIDWAKEHLDTAGLPAVWMPRGDAVGDLNLMALCRGFILSNSTYSWWAQYLAGEG



DSM 15176



variabile]



RTVWAPDRWFAHTKQTALYQPGWHLIETR







Firmicutes

WP_021916223.1
547127527
protein
23.4

MIIVEVMGGLGNQMQQYALYRKLESLGKDARLDVSWFLDKERQTKVLASRKLELSWFENLPAKYCTQEEK
225



bacterium



[Firmicutes


QAILGKNNLIGKLKKKLLGGSNRHFTESDMYHPEIFDLEDAYLSGFWACEAYYADILPMLRSQIHFPDPEKGE



CAG: 24



bacterium



GWDLEAAAKNKETMERMKQETSVSIHIRRGDYLDAKNAEMFGGICTDAYYEAAISYIKEQTPDAHFYVFSD






CAG: 24]


DSAYVKNAYPGKEFTVVDWNTGKNSLFDMQLMSCCNHNICANSTFSFWGARLNPSPDKVMIRPSKHKN









SQNIVPEEMKRLWDGWVLIDGKGRII







Prevotella sp.

WP_022310139.1
547906803
glycosyl
23.39

MIITKLNGGLGNQLFEYACARNLQLKYNDVLYLDIEGFKRSPRHYSLEKFKLSSDVRMLPEKDSKSLILLQA
226


CAG: 474


transferase


ISKLNRNLAFKLGPLFGTYIWKSSNYRPLKIKNTRGKKLYLYGYWQSYEYFKENEAIIKQELNVKTEIPIECS






family 11


ELLKEINKPHSICVHVRRGDYVSCGFLHCDEAYYNRGINHIFDKHPDSNVVVFSDDIKWVKANMNFDHPVAYV






[Prevotella


EVDVPDYETLRLMYMCKHFVMSNSSFSWWASYLSDNKEKIVVAPSYWLPANKDNKSMYLDNWTIL






sp. CAG: 474]










Roseburia

WP_006855899.1
493910390
glycosyl
23.38


intestinalis]MRGNRGMIAVKIGDGMGNQLFNYACGYAQARRDGDSLVLDISECDNSTLRDFELDKFHL

227



intestinalis;



transferase


KYDKKESFPNRNLGQKIYKNLRRALKYHVIKEREVYHNRDHRYDVNDIDPRVYKKKGLRNKYLYGYWQHLAY




Roseburia



family 11


FEDYLDEITAMMTPAYEQSETVKKLQEEFKKTPTCAVHVRGGDIMGPAGAYFKHAMERMEQEKPGVRYIVF



intestinalis 


[Roseburia


TNDMERAEEALAPVLESQKKDAVGQAENRLEFVSEMGEFSDVDEFFLMAACQNQILSNSTFSTWAAYLN



L1-82



intestinalis]



QNPDKTVIMPDDLLSERMRQKNWIILK







Bacteroides

WP_004296622.1
490424433
protein
23.29

MKIVLFTPGLGNQMFQYLFYLYLRDNYPNQNIYGYYNRNILNKHNGLEVDKVFDIQLPPHTVISDASAFFIR
228



ovatus;



[Bacteroides


ALGGLGLKYFIGKDQLSPWKVYFDGYWQNKEYFQNNVDKMRFREGFLNKKNDDILSLIRNTNSVSVHVRR




Bacteroides




ovatus]



GDYCDSCRKDLFLQSCTPQYYESAISVMKEKFQKPVFFVFSDDIPWVKVNLNIPNAYYIDWNKKENSYLDM




ovatus






YLMSLCTASIIANSTFSFWGAMLGNKKELVIKPKKWIGDEIPEIFPPSWLSL



ATCC 8483













Butyrivibrio sp.

WP_022779599.1
551035785
glycosyl
23.25

MLIIQIAGGLGNQMQQYALYRKLLKYHPDGVRLDLSWFDSEVQKNMLAKREFELALFKGLPYIECKPEERA
229


AE3009


transferase


AFLDRNAAQKLSGKVLKKLGLRDNANPNVFEESRMFHPEIFELDNKYIIGYFACQKYYDDIMGDLCNLFEFP






[Butyrivibrio


EHLDPELEKKNLELISKMEKENSVSVHIRRGDYLDPENFKILGNIATDEYYESAMKYFEDRYEKVHFYIFTS






sp. AE3009]


DHEYAREHFADESKYTIVDWNTGKDSLQDVRLMNHCLGNICANSTFSFWGARLNQRQDKVMIRTYKMRNN









QPVDPDTMHDYWKGWILIDETGREV







Butyrivibrio

YP_003829712.1
302669752
glycosyl
23.23

MTKNEKKLIVKFQGGLGNQLYEYAFCEWLRQQYSDYEVLADLSYYKIRSAHGELGIWNIFPNINIEVASNW
230



proteoclasticus;



transferase 11


DIIKYSDQIPIMYGGKGADRLNSVRTNVNDRFFSKRKHSYYTEISNTDVSEVINALNNGIRYFDGYWQNIDYF




Butyrivibrio



[Butyrivibrio


KGNIEDLRNKLKFSEKCDKYITDEMLRDNAVSLHVRRGDYVGSEYEKEVGLSYYKKAVEYVLDRVDQAKFFIF




proteoclasticus




proteoclasticus



SDDKYYAETAFEWIDNKTVVAGYDNELAHVDMLLMSRMKNNIIANSTFSLWAAYLNDSMNPLIVYPDVES



B316


B316]


LDKKTFSDWNGIK







Prevotella

WP_018362656.1
517173838
protein
23.23

MDSQFLKHIKLSGGFGNQLFQYFFGEYLKEKYNCSISFFSEPALDINQLQIHRFFPALRISHNTELRPYHYSFT
231



nanceiensis



[Prevotella


QQLAYRCMRKLLLLFPFLNRKVKIENGSNYQNQSFNDTYCFDGYWQSYRYLSAFTPSLQFEDQLINDISADY







nanceiensis]



INAIEQSEAVFLHIRRGDYLNKENQKVFAECPLNYFENAANRIKEDIKNVHFFVFSNDIQWVKSHLKLNDNE









VTFIQNEGNSCDLKDFYLMTRCKHAIISNSTFSWWAAYLINNSDKKVIAPKHWYNDISMNNATKDLIPPTW









IRL







Ruegeria sp. R11

WP_008562971.1
495838392
alpha-1,2-
23.23

MIITRLHGRLGNQMFQYAAGRALADRAGVPLALDSRGAILRGEGVLTRVFDLELADPVHLPPLKQTNPLRY
232





fucosyl-


AIWRGIGQKVGAKPYFRRERGLGYNPAFEDWGDNSYLHGYWQSQKYFQNSAERIRSDFTFPAFSNQQNA






transferase


EMAARIAESTAISLHVRRGDYLTFAAHVLCDQAYYDAALAKVLDGLQGDPIVYVFSDDPQWAKDNLSLPCE






[Ruegeria sp.


KVVVDFNGPETDFEDMRLMSLCQHNIIGNSSFSWWAAWLNQTPGRRVAGPAKWFGDPKLSNPDIFPHD






R11]


WLRISV







Winogradskyella

WP_020895733.1
527072096
alpha-1,2-
23.21

MGNQLYEYATAKAMAVALNKKLVIDPRPILKEAPQRHYDLGLFNIQDEDFGSPFVQWLVRWVASVRLGKF
233



psychrotolerans



fucosyl-


FKTIMPFAWSYQMIRDKEEGFDESLLQQKSRNIVIEGYWQSFKYFESIRPTLLKELSFKDKPNAINQKYLDE



RS-3; 


transferase


IESVNAVAVHIRRGDYVANPVANAVHGLCDMDYYKKAIAIIKDKVENPYFFIFTDDPDWAEDNFKISEHQKI




Winogradskyella



[Winograd-


IKHNIGKQDHEDFRLLTNCKYFIIANSSFSWWGAWLSDYKNKIVISPNKWFNVDAVPITERIPESWIRV




psychrotolerans




skyella











psychro-











tolerans]











Lachnospiraceae

WP_022785342.1
551041720
protein
23.2

MITVRIDGGFGNQMFQYAFFLHLKKTITDNKISVDLNCYNPHGSGDIFTRFKLAPEQAAPSEIKRFHRNSIYH
234



bacterium



[Lachnospiraceae


LLRPLDSAGITTNPYYREEDIDDLNSVLNKKRVYLRGYWQDKRYPFSVKDQLIDCFDLGKMDMTGASAENN



NK4A179



bacterium



VILEQIASEESRSVGVHLRGGDYIGDPVYSGICTPEYYEAAFKHVSEKIKDPVFHIFTNDISMIEKCGLSGKYD






NK4A179]


LKITDINDEAHGWADLKLMSACRHHIISNSSFSWWAAFLGEATTEASADVINVIPEYMRQGVSAETLRCPC









WTTVTSDGRVYPS







Prevotella sp. 

WP_009230832.1
496522549
alpha-1,2-
23.13

MKIVCIKGGLGNQLFEYCRYRSLHRHDNRGVYLHYDRRRTKQHGGVWLDKAFHITLPNEPLRVKLLVMVLK
235


oral taxon


fucosyl-


TLRRLHLFKRLYREEDPRAVLIDDYSQHKQYITNAAEILNFRPFEQLDYAEEIQTTPFAVSVHVRRGDYLLLA



317 str.


transferase


NKSNFGVCSVHYYLSAAVAVRERHPESRFFVFSDDMEWAKENLNLPNCVFVEHAQAQPDHADLYLMSLCK



F0108; 


[Prevotella


GHIIANSTFSFWGAYLSKGSSAIAIYPKQWFAEPTWNVPDIFPAHWMAL




Prevotella



sp. oral






sp. oral 


taxon 317]






taxon 317













Butyrivibrio sp.

WP_022765796.1
551021633
glycosyl
23.1

MLIIQIAGGLGNQMQQYAVYTKLRGMGKDVRLDLSWFDPSVQKNMLAPREFELSMFEGVDYTECTAEER
236


XPD2006


transferase


DSFLKQGMIANVTGKMLKKLGLRDEANPKVFSEKEMYHPEIFELEDRYIKGYFACQKYYDDIMGELWEKYT






[Butyrivibrio


FPAHSDPDLHTRNMALVERMEKETSVSVHIRRGDYLDPSNVEILGNIATEEYYQGAMDYFSVKDPDTHFYI






sp. XPD2006]


FTSDHEYAREKFSDESKYTIVDWNSGRNSVQDLMLMSHCKGNICANSTFSFWGARLNRRPDKTVIRTYKM









RNNQPVNPDIMHDYWKGWILMDEKGSII







Butyrivibrio

WP_022752717.1
551008140
protein
23.08

MIIIKLQGGLGNQLFLYGLYKNLKHLKRDVKMDIESGFEEDKLRVPCLKSMGLDYEVATRDEIVAIRDSYMDI
237



fibrisolvens



[Butyrivibrio


FSRIRRKITGRKTFDYYEPEDGNFDPRVLEQTHAYLDGYFQSEKYFGDSDDRKKLKDELLKEKIRVLDSSDTL







fibrisolvens]



KDLYNMMSSGSSVSLHIRRGDYLTPGIMETYGGICTDEYYDIAMNRIKNEYPDSKFFIFSNDIDWCKEKYGSR









DDVIFVDSCDEHEGLTNVSGDQDDIQVQGDIKEHGNNSLRDAAELYLMSACKHHILANSSFSWWGAWLS









DHEGMTIAPSKWLNNKNMTDIYTKDMLLI







Cylindro-

WP_006278973.1
493321658
Glycosyl
23.05

MKKTVVLLKGGLGNQMFQYAFARSISLKNSSKLVIDNWSGFTFDYKYHRQYELGTFSIVGRPANLTEKFPF
238



spermopsis



transferase


WFYELKSKFFPRLPKVFQQQFYGLLINEVGGEYIPEIEETKISQNCWLNGYWQSPLYFQKHSDSITRELMPPE




raciborskii; 



family 11


PMEKHFLELGKLLRETESVALGIRLYEESKNPGSHSSSGELKSHFEINQAILKLRELCNGAKFFVFCTHRSPL




Cylindro-



[Cylindro-


LQELALPENTIFVTHDDGYVGSMERMWLLTQCKHHIFTNSTFYWWGAWLSQKFYIQGSQIVFAADNFINSDA




spermopsis




spermopsis



IPKHWKPF




raciborskii




raciborskii]







CS-505













Prevotella

WP_007368154.1
494609908
alpha-1,2-
23.05

MKIVNFQGGLGNQMFIYAFSRYLSRLYPQEKIYGSYWSRSLYVHSAFQLDRIFSLQLPPHNLFTDCISKLAR
239



multiformis; 



fucosyl-


FFERLRLVPVEETPGSMFYNGYWLDKKYWEGIDLSEMFCFRNPDLSAEAGAVLSMIERSNAVSVHIRRGDYQ




Prevotella



transferase


SEEHIEKFGRFCPPDYYRIATERIRQREDDPLFFVFSDDMMWVKSNMDVPNAVYVDCHHGDDSWKDMF




multiformis



[Prevotella


LMAKCRHNIIANSTFSFWAAMLNANPDKVVVYPQRWFCWPSPDIFPEMWLPVTEKEIKSSF



DSM 16608



multiformis]










Bacteroides sp.
WP_022384635.1
548151455
protein
23

MIIVNMACGLANRMFQYAFYLSLKERGYNVKVDFYKSATLPHENVPWNDIFPYAEIDQVSNFRVLILGGGA
240


CAG: 462


[Bacteroides


NLLSKLRRKYLPSLTNVITMSTAFDTDLQIDDDRKDKYIIGVFQSAAMVEGVCKKVKQCFSFLPFTDLRHLQL






sp. CAG: 462]


EKEMQECESVAIHVRKGNDYQQRIWYQNTCFMDYYRKAIAEIKGKVKDPRFYVFTDNADWVRRNFTDFD









YKMVEGNPVYGWGSHFDMQLMSRCKYNIISNSTYSWWGAYLNANRNKIVICPNIWFNPESCNEYTSCKL









LCKGWIAL







Desulfovibrio

WP_005984176.1
492830222
Glycosyl
23

MRIGILYICTGKYTVFWNHFFTSCEQHFLREHEKHYYIFTDGEIAHLNCNRVHRIEQQHLGWPDSTLKRFHM
241



africanus;



transferase


FERIADTLRQNSDFIVFFNANMVFLRDVGKEFLPTREQALVFHRHPGLFRRPAWLLPYERRPESTAYIPYGS




Desulfovibrio



family 11/


GSIYVCGGVNGGYTQPYLDFVAMLRRNIDIDVERGIIARWHDESHINRFVIGRHYKIGHPGYVYPDRRNLPF




africanus PCS



Glycosyl-


PRIIRVIDKASVGGHTFLRGQTPEPAPEEQSKTVAKKLRSQLKRPCMPRAAQDEPIILARMMGGLGNQMFI






transferase


YAAARVLAERQGAQLHLDTGKLSGDSIRQYDLPAFSIDAPLWHIPCGCDRIVQAWFALRHVAAGCGMPKP






family 6


TMQVLRSGFHLDQRFFSIRHSAYLIGYWQSPHYWRGHEDRVRSSFDLTRFERPHLREALAAVSQPNTISVH






[Desulfovibrio


LRRGDFRAPKNSDKHLLIDGSYYERARKLLLEMTPQSHFYIFSDEPEEAQRLFAHWENTSFQPRRSQEEDLLL







africanus]



MSRCSASIIANSSFSWWGAWLGRPKQHVIAPRMWFTRDVLMHTYTLDLFPEKWILL







Roseburia sp.

WP_022518697.1
548374190
protein
22.98

MILIHVMGGLGNQLYQYALYEKMKSLGKKVKLDTYAYNDAAGEDKEWRSLELDRFPAIEYDKATSEDRTKL
242


CAG: 100


[Roseburia sp.


LDNSGLLTAKIRRKLLGRKDKTIRESKEYMPEIFHMDDVYLYGFWNCERYYEDIIPLLQDKLQFPISNNPRNQ






CAG: 100]


QCIEQMQKENAVSIHIRRTDYLTVADGARYMGICTEDYYKGAMAYIEERVSNPVYYIFSDDVEYAKQHYHQ









DNMHVVDWNSKADSIYDMQLMSKCKHNICANSTFSMWAARLNQNKEKIMIRPLHHDNYETTTATQVK









QNWKNWILLDQNGQVCE







Lachnospiraceae

WP_022742385.1
550997676
protein
22.96

MTMNIIRMSGGLGSQMFQYALYLKLKSMGKEVKFDDINEYRGEKARPIMLAVFGIEYPRATWDEITSFTDG
243



bacterium 10-1



[Lachnospiraceae


SMDLLKRLRRKIFGRKAIEYEEQGFYDPNVLNFDSMYLRGNFQSEKYFQDIKEEVRKLYRFSTLEDMRLPERL







bacterium 10-1]



YKATKACLDGIESSESVGLHMYRSDSRVDGELYDGICFGNYYKGAVRFIQDKVPDAKFYIFSNEPKWVRGW









VVDLIQSQIQEGMSPSQVKEMEKRFVMVEANTEYTGYLDMMLMSKCKHNIISNSSFSWWSAWMNDHP









EKVVVAPDRWSSDKEGNEIYTTGMTLVNEKGRVNYTIHENSTVK







Prevotella

WP_004362670.1
490496500
protein
22.96

MILSYITGRLGNQLFEYAYARSLLLKRGKNEELILNFSLVRAAGKEIEGFDDNLRYFNVYSYTELDKDIVLS
244



nigrescens; 



[Prevotella


KGDLLQLFIYILFKLDQKLFRIIKKEKWFSFFRRFGIIFQDYLDNISNLIIPRTKNVFCYGKYENPKYFDDI




Prevotella




nigrescens]



RSILLKEFTPRIPPLKNNDQLYSVIESTNSVCISIRRGDFLCDKFKDRFLVCDKEYFLEAMEEAKKRISNST




nigrescens






FIFFSDDIEWVRENIHSDVPCYYESGKDPVWEKLRLMYSCKHFIISNSTFSWWAQYLSRNEEKVVIAPDRWS



F0103





NVPGEKSFLLSNSFIKIPIGILP







Bacteroides sp.

WP_022353235.1
547952493
fucosyl
22.95

MIYVEINGRLGNNMFEIAAAKSLTDEVTLWCKGDWQLNCIKMYSDTLFKNYPIVKSLPNNIRIYEEPEFTFH
245


CAG: 875


transferase


PIPYKENQDLLIKGYFQSYKYLDREKVLKLYPCPMPVKLDIEKRFGDILSQYTVVSINVRRGDYLNLPHRHPFV






[Bacteroides


GKKFLERAMLWFGDKVHYIISSDDIEWCKAHFKQFDNVHYLTNSYPLLDLYIQTACHHNIISNSSFSWWGA






sp. CAG: 875]


YLNNHPQKIVIAPHRWFGMSTNINTQDLLPPEWMIEQCVYEPKVFLKALPLHAKYLLKRVLK







Prevotella sp.

YP_008444280.1
532354444
protein
22.9

MDSQLLKHIKLSGGFGNQLFQYFFGEYLKEKYNCSISFFSEPALDINQLQIHRFFPTLRISHNTELRRFHYAFT
246


oral taxon 299 


HMPREF0669_00176


QQLAYRCMRKLLLLFPFLNRKVKIENGSNYQNQSFNDTYCFDGYWQSYRYLSAFTPSLQFEDQLINDISADY



str. F0039; 


[Prevotella


INAIEQSEAVFLHIRRGDYLNKENQKVFAECPLNYFENAVNKIKEGNKTYHFFVFSNDIEWVKCHLKLNNNE




Prevotella



sp. oral taxon


VTFIQNEGSSCDLKDFYLMTRCKHAIISNSTFSWWAAYLINNNDKKVIAPKRWYNDLSMNNATKDLIPPTW



sp. oral


299 str. F0039]


IRL



taxon 299













Paraprevotella

WP_008628783.1
495904204
alpha-1,2-
22.87

MKIVCLKGGLGNQMFEYCRFRDLMDSGNGKVYLFYDRRRLKQHDGLRLSDCFELELPSCPWGIRLVVWGL
247



xylaniphila; 



fucosyl-


KICRAIGVLKRLYDDEKPDAVLIDDYSQHRRFIPNARRYFSFRQFLAELQSGFVQMIRAVDYPVSVHVRRGD




Paraprevotella



transferase


YLHPSNSSFVLCGVDYFRQAIAYVRKKRPDARFFFFSDDMEWVRENLWMEDAVYVEHTELMPDYMDLYL




xylaniphila



[Paraprevotella


MTLCRGHIISNSTFSFWGAYLAVDGNGMKIYPRRWFRDPTWITPPIFSEEWVGL



YIT 11841



xylaniphila]











Dethio-

WP_005658864.1
491897177
glycosyl
22.84

MFQYAFGRALALDLGLDLKLDISNFGSDSRPFSLGIYSLTKNIPFGCYLSTSTRLKVKMTKKLRRWGVWGMD
248



sulfovibrio



transferase


KNMPGVLVEPFPPVLVSLDEVLSEKLSHLFVDGYWQSEKYFSRYSDVIRSDFRVIEESSAFLAWKKRMLSEP




peptidovorans;



family 11


GGSISVHVRRGDYVTDSSANRVHGVLPIEYYLRAKEILNTISDGLVFYVFTDDPVWARNNLCLGDKTIYVSGE




Dethio-



[Dethio-


DLKDYEELALMSCCDHHVVANSSFSWWGAWLGQDTSTVTIAPGRWFRKMDSSFVIPDNWIKIWT




sulfovibrio




sulfovibrio








peptidovorans




peptidovorans]







DSM 11002













Lachnospiraceae

WP_016229292.1
510896192
protein
22.83

MIIIQVMGGLGNQLQQYALYRKFVRMGKEARLDISWFLDKEKRGEVLAERELELDYFDRLIYETCTPEEKEQ
249



bacterium 10-1



[Lachnospiraceae


LIGSEGVAGKLKRKFLPGRIRWFHESKIYHPELLQMENMYLSGYFACEKYYADILYDLREKIQFPVNDHPKNI







bacterium 10-1]



KMAQEMQERESVSVHLRRGDYLDEKNTAMFGNICTDAYYCKAIEYMKTLCSKPHFYIFSDDIPYVRQRFTG









EEYTVVDINHGRDSFFDMWLMSRCRHNICANSTFSFWGARLNSNDNKIMIRPTIHKNSQVFVKEEMEQL









WPGWKFISPDGGIK







Treponema

WP_016525279.1
513872223
protein
22.82

MFCAAFVEALKHAGQKVFVDTSLYNKGTVRSGIDFCHNGLETEHLFGIKFDEADKADVHRLSTSAEGLLNRI
250



maltophilum; 



[Treponema


RRKYFTKKTHYIDTVFRYTPEVLSDKSDRYLEGFWQTEKYFLPIESDIRTLFRFRQPLSEKSAAVQSALQAQ




Treponema




maltophilum]



EPASLSASIHVRRGDFLHTKTLNVCTETYYNNAIEYAAKKYAVSAFYVFSDDIQWCREHLNFFGARSVFIDW




maltophilum






NIGADSWQDMVLMSMCRCNIIANSSFSWWAAWLNAASDKIVLAPAIWNRRQLEYADRYYGYDYSDVIPET



ATCC 51939





WIRIPI







Bacteroides

WP_016276676.1
511022363
protein
22.79

MKLVSFTAGLGNQLFQYCFYRYLLNKFPNEKIYGYYNKKWLKKHGGIIIEHFFDVKLPRSTRWINLYGQYLRI
251



massiliensis; 



[Bacteroides


IYKCFSCGVSKDDDFEMNRTMFVGYWQDQCFFSGINISYKKNLVISEKNTWLLGEILKCNSVAIHFRRGDYM




Bacteroides




massiliensis]



LPQFKKIFGEVCTVKYYLKSIRKVEEKISEPVFFVFSDDIDWVKQNFTFNKVYFVDWNKGQNSFWDMYLMS




massiliensis






QCSANIIANSTFSFWGAYLNKNNPFVIYPQKWVRTNLKQPNIFPKTWMAL



dnLKV3












Enterococcus 
YP_006376560.1
389869137
family 11
22.71

MIVLTLGGGLGNQMFQYGYARYIQKIHREKFIYINDSEVIKEADRFNSLGNLNTVNIKVLPRIISKPLNETERL
252



faecium; 



glycosyl-


VRKIMVRLFGVAGFNESAIFQSLNKFGIYYHPSVYKFYESLKTGFPIKIIEGGFQSWKYLETCPEIKQELRVKY




Enterococcus



transferase


EPMGENLRLLNLISQSESVCVHIRRGDYLSPKYKHLNVCDYQYYFESMNYIISKLNNPTFFIFSNTSDDLDWIK




faecium



[Enterococcus


ENYSLPGKIVYVKNDNPDYEELRLMYSCKHFIISNSTFSWWAQYLSNNSGIVIAPEIWNRLNHDGIADLYMP



DO;



faecium DO]



NWITMKVNR




Enterococcus











faecium










EnGen0035













Bacteroides; 

WP_004313284.1
490442319
glycosyl
22.67

MDVVVIFNGLGNQMSQYAYYLAKKKVNPNTKVIFDIMSKHNHYGYDLERAFGIEVNKTLLIKVLQIIYVLSR
253



Bacteroides sp.



transferase


KFRLFKSVGVRTIYEPLNYDYTPLLMQKGPWGINYYVGGWHSEKNFMNVPDEVKKAFMFREQPNEDRFN



2_l_22; 


family 11


EWLQVIRGDNSSVSVHIRRGDYMNIEPTGYYQLNGVATLDYYHEAIDYIRQYVDTPHFYVFSNDLDWCKE




Bacteroides sp.



[Bacteroides]


QFGVENFFYIECNQGVNSWRDMYLMSECHYHINANSTFSWWGAWLCKFEDSITVCPERFIRNVVTKDFY



2_2_4;





PERWHKIKSC




Bacteroides










sp. D1;










Bacteroides











xylanisolvens










SD CC 2a; 










Bacteroides











xylanisolvens










SD CC 1b;










Bacteroides











ovatus CAG: 22














Synechococcus

YP_004322362.1
326781960
glycosyl-
22.6

MIGFNALGRMGRLANQMFQYASLKGIARNTGVDFCVPYHEEAVNDGIGNMLRTEIFDSFDLQVNVGLLN
254


phage


transferase


KGHAPVVQERFFHFDEELFRMCPDHVDIRGYFQTEKYFKHIEDEIREDFTFKDEILNPCKEMIAGVDNPLAL



S-SM2


family 11


HVRRTDYVTNSANHPPCTLEYYEAALKHFDDDRNVIVFSDDPAWCKEQELFSDDRFMISENEDNRIDLCLM






[Synechococcus


SLCDDFIIANSTYSWWGAWLSANKDKKVIAPVQWFGTGYTKDHDTSDLIPDGWTRIATA






phage S-SM2]










Geobacter

YP_006720295.1
404496189
glycosyl-
22.58

MDIHVLSYGLGNQLSQYAFFINRRQLMQRAYAFYAFKQHNGYELDRIFGLKEGLPWYLQFVRVVFRLGISR
255



metallireducens;



transferase


RFYSKRTADFVLSLFRIKVIDEAYNYEFDPSLLKPWFGIRILYGGWHDSRYFHPSEAAVRTAFSFPPLDDVND




Geobacter



[Geobacter


AILQQIDAVYGVSIHVRRGDYLKGINSNLFGGIATLEYYRNAIGWAITYCKHRSLEIKFYVFSDDIDWCKQNL




metallireducens




metallireducens



GLRDAVYVSGNSKTDSWKDILLMSHCRANIIANSTFSWWAAWLNQQPNKVVICPTKFINTDSPNQTIYPA



GS-15; 


GS-15]


AWHQIEG




Geobacter











metallireducens










RCH3













Lachnospiraceae

WP_022780989.1
551037245
protein
22.58

MIIVRFHGGLGNQMFEYAFYRYMTNKYGADNVIGDMTWFDRNYSEHQGYELKKVFDIDIPAIDYKTLAKI
256



bacterium



[Lachnospiraceae


HEYYPRYHRFAGLRYLSRMYAKYKNKHLKPTGEYIMDFGPSQYIHNDAFDKLDTNKDYYIEGVFCSDAYIKY



NK4A136



bacterium



YENQIKKDLTFKPNYSQHTKDMLPKIEETNSVAIHVRRGDYVGNVFDIVTPDYYRQAVNYIRERVENPVFFV






NK4A136]


FSDDMDYIKANFDFLGDFVPVHNCGKDSFQDMYLISRCRHMIIANSSFSYFGALLGEKDSTIVIAPKKYKADE









DLALARENWVLL







Bacteroides

WP_008144634.1
495419937
protein
22.56

MGFIVNMACGLANRMFQYSYYLFLKKQGYKVTVDFYRSAKLAHEKVAWNSIFPYAEIKQASRLKVFLWGG
257



coprophilus;



[Bacteroides


GSDLCSKVRRRYFPSSTNVRTTTGAFDASLPANTARNEYIIGVFLNASIVEAVDDEIKKCFTFLPFTDEMNLR




Bacteroides




coprophilus]



LKKEIEECESVAIHVRKGKDYQSRIWYQNTCSMEYYRKAILQMKEKLQHSKFYVFTDNVDWVKENFQEIDYT




coprophilus DSM






LVEGNPADGYGSHFDMQLMSLCKHNIISNSTYSWWSAFLNRNPEKVVIAPEIWFNPDSCDEFRSDRALCK



18228 = JCM 





GWIVL



13818













Bacteroidetes; 

WP_008619736.1
495895157
alpha-1,2-
22.53

MKIVCLKGGLGNQMFEYCRFRDLMESGHDEVYLFYDHRRLKQHNGLRLSDCFELELPSCPWGIKLVVWGL
258



Capnocytophaga



fucosyl-


KICRAVGVLKRLYDDEKPEAVLIDDYSQHRRFIPNARRYFFFRQFLAELQSGFVQMIRAVDYPVSVHVRRGD



sp. oral


transferase


YLHPSNSSFGLCGVDYFQQAIAYVRKKRPDARFFFFSDDMEWVRENLWMEDAVYVEHTELLPDYVDLYL



taxon 329  


[Bacteroidetes]


MTLCRGHIISNSTFSFWGAYLAVDGNGMKIYPRRWFRDPTWTSPPIFSEEWVGL



str. F0087;










Paraprevotella











clara










YIT 11840













Butyrivibrio sp.

WP_022770361.1
551026242
glycosyl
22.47

MLIIQIAGGLGNQMQQYAVYTKLREMGKDVKLDLSWFDPQVQKNMLAPREFELPIFGGTDYEECSAYERD
259


NC2007


transferase


ALLKQGAFAAIAGKVLKKLGLRDEANPKVFSEKEMYHPEVFELEDKYIKGYFACQKYYGDIMDKLQEKFIFPE






[Butyrivibrio


HSDPDLHARNMALVERMEREPSVSVHIRRGDYLDPSNVEILGNIATEQYYQGAMDYFTVKEPDTHFYIFTS






sp. NC2007]


DHEYAREKFSDESKYTIVDWNNGKNSVQDLMLMSHCKGNICANSTFSFWGARLNKRPDKTVIRTYKMRN









NQPVNPQIMHDYWKGWILMDEKGSII







Paraprevotella

WP_008628536.1
495903957
glycosyl
22.45

MKILVFTGGLGNQMFAYAFYLYLKRLFPQERFYGLYGKKLSEHYGLEIDKWFKVSLPRQPWWVLPVTGLFY
260



xylaniphila; 



transferase


LYKQCVPNSKWLDLNQEICKNPRAIVFFPFKFTKKYIPDDNIWLEWKVDESGLSEKNRLLLSEIRSSDCCFVH




Paraprevotella



[Paraprevotella


VRRGDYLSPTFKSLFEGCCTLSYYQRALKSMKEISPFVKFVCFSDDIQWVKQNLELGNRAVFVDWNSGTDS




xylaniphila




xylaniphila]



PLDMYLMSQCRYGIMANSTFSYWGARLGRKKKRIYYPQKWWNHGTGLPDIFPNTWVKI



YIT 11841













Blautia

WP_005944761.1
492742598
protein
22.44

MEIHVYLTGRLGNQLFQYAFARHLQKEYGGKIICNIYELEHRSEKAAWVPGKFNYEMSNYKLNDSILIEDIKL
261



hydrogenotrophica



[Blautia]


PWFADFSNPIIRIVKKVIPRIYFNLMASKGYLLWQKNSYINIPAIRNNEIIVNGWWQDVRFFHDVEAELSNEI



DSM





VPTTKPISENEYLYNIAERENSVCVSIRGGNYLVPKVKKKLFVCDKEYFYNAIELIKSKVRNAIFIVFSDDLE



10507; Blautia; 





WVKSYIKLEEKFPECKFYYESGKDTVEEKLRMMTKCKHFIISNSSFSWWAQYLAKNENKIVIAPDAWFTNGDK




Blautia






NGLYIDDWILIPTQTKDM




hydrogenotrophica










CAG: 147













Geobacter

YP_001952981.1
189425804
glycoside
22.44

MITVLLNGGLGNQLFQYAAGRALAEKHDVELLLDLSRLQHPKPGDTPRCFELAPFNIKASLLAEEGRQPLGS
262



lovleyi; 



hydrolase 


YQACMHRLLLKASIPLWGSIILKEQGCGFDPLIFRAPSSCILDGFWQSECYFKQITSLLQQELSLKAPSPALR




Geobacter



family


KASSVLSDATVAVHVRRGDYVTNPAAASFHGICSQDYYQAAVANILTSYPDSQFLVFSDDPAWCQEHLDLG



lovleyi SZ


protein


QPFRLAADFGLNGSAEELVLISRCAHQIIANSSFSWWGAWLNPSPHKLVVAPCRWFTDPAITTNDLLPETW






[Geobacter


VRLP







lovleyi SZ]











Lachnospiraceae

WP_022781176.1
551037435
protein
22.41

MVISHLSGGFGNQLYSYAFAYAVAKARKEELWIDTAIQDAPWFFRNPDILNLNIKYDKRVSYKIGEKKIDKIF
263



bacterium



[Lachnospiraceae


NRINFRNAIGWNTKIINESDMPNIDDWFDTCVNQKGNIYIKGNWSYEKLFISVKQEIIDMFTFKNELSKEAN



NK4A136



bacterium



DIAQDINSQETSVGIHYRLGDYVKIGIVINPDYFISAMTSMVEKYGNPVFYSFSEDNDWVKKQFEGLPYNIKY






NK4A136]


VEYSSDDKGLEDFRLYSMCKHQIASNSSYSWWGAYLNNNPNKYIIAPTDYNGGWKSEIYPKHWDVRPFEF









LK







Bacteroides

WP_005840359.1
492426440
glycosyl
22.37

MFHYKFLLFGGGLGNQIFEYYFYLWLRKKYPNIVFLGCYRKASFKAHNGLEISDVFDVDLPNDGGLSGRFISY
264



vulgatus; 



transferase


VLSVLSRIIPSLSMKANTEYSSKYLLINAYQPNLLFYLNEEKIKFRPFKLDEVNRRLLNSIKMESSVSIHVRR




Bacteroides



family 11


GDYLFGQYRDIYSNICTLAYYQKAVDKCKGILESPRFFVFSDDIEWARDVFVGREYEFVSNNIGKNSFIDMFL




vulgatus



[Bacteroides


MSNCKIQIIANSTFSYWAAYLSNSLVKIYPAKWINGIERPNIFPDNWIGL



PC510



vulgatus]











Planctomyces

YP_004271766.1
325110698
glycosyl
22.37

MIIARIENGLGNQLFKYAAGRALSLKHRTSLYTIPGSVRKPHETFILSKYFNVQAKSVSPFLLQTGFRLRLLK
265



brasiliensis; 



transferase


GYENHSFGFDPRFETTRNNTVVSGNFQSARYFLPFFDQINRELTLKPEVVDGLESVYPHVLESLRTPNSVCVH




Planctomyces  



family protein


IRLGDYVSSGYDICGPEYYAKAISRLQQLHGELRAFVFSDTPQAASRFLPADIDAQIMSEFPEVRDAARSLTV




brasiliensis



[Planctomyces


ERSTIRDYFLMQQCRHFVIPNSSFSYWAALLSSSDGDVIYPNRWYIDIDTSPRDLGLAPAEWTPIPLT



DSM 5305



brasiliensis










DSM 5305]










Butyrivibrio sp.

WP_022772730.1
551028648
glycosyl
22.36

MIILQIAGGLGNQMQQYALYRKLLKCGKTVKLDLSWFGPEIQKNMLAPREFELVLFKDLPFEICFKEEKDALI
266


AE2015


transferase


KQNLFQKIAGKVSQKLGKSASSNAKVFVETKMYHEEIFDLDDVYITGYFACQYYYDDVMAELQDLFVFPSHS






[Butyrivibrio


IPELDQRNAVLASKMEKENSVSVHIRRGDYLSPENVGILGNIASDKYYESAMNYFLEKDENTHFYIFTNDHEY






sp. AE2015]


AREHYSDESRYTIIDWNTGKNSLQDLMLMSHCKGNICANSTFSFWGARLNKRPDRELVRTLKMRNNQEA









QPEIMHEYWKNWILIDENGVIV







Roseovarius

WP_009813856.1
497499658
alpha-1,2-
22.34

MTDTPPPSQVITSRLFGGAGNQLFQYAAGRALADRLGCDLMIDARYVAGSRDRGDCFTHFAKARLRRDVA
267



nubinhibens



fucosyl-


LPPAKSDGPLRYALWRKFGRSPRFHRERGLGVDPEFFNLPRGTYLHGYWQSEQYFGPDTDALRRDLTLTTA



ISM; 


transferase,


LDAPNAAMAAQIDAAPCPVSFHVRRGDYIAAGAYAACFPDYYRAAADHLATTLGKPLTCFIFSNDPAWAR




Roseovarius



[Roseovarius


DNLDLGQDQVIVDLNDEATGHFDMALMARCAHHVIANSTFSWWGAWLNPDPDKLVVAPRNWFATQA




nubinhibens




nubinhibens]



LHNPDLIPEQWHRL






Eubacterium sp.
WP_022505071.1
548315094
protein
22.33

MIEVNIVGQLGNQMFEYACARQLQKKYGGEIVLNTYEMRKETPNFKLSILDYKLSENVKIISDKPLSSANAN
268


CAG: 581


[Eubacterium


NYLVKIMRQYFPNWYFNFMAKRGTFVWKSARKYKELPELNEQLSKHIVLNGYWQCDKYFNDVVDTIREDF






sp. CAG: 581]


TPKYPLKAENEQLLEKIKSTESVCVTIRRGDFMNEKNKDTFYICDDDYFNKALSKIKELCPDCTFFGFSDDVE









WIKKNVNFPGEVYFESGNDPVWEKLRLMSACKHFVLSNSSFSWWAQYLSDNNNKIVVAPDIWYKTGDPK









KTALYQDGWNLIHIGD







Providencia

AFH02807.1
383289327
glycosyl-
22.26

MKINGKESSMKIKQKKIISHLIGGLGNQLFQYATSYALAKENNAKIVIDDRLFKKYKLHGGYRLDKLNIIGE
269



alcalifaciens



transferase


KISSIDKLLFPLILCKLSQKENFIFKSTKKFILEKKTSSFKYLTFSDKEHTKMLIGYWQNAIYFQKYFSELK






[Providencia


EMFVPLDISQEQLDLSIQIHAQQSVALHVRRGDYISNKNALAMHGICSIDYYKNSIQHINAKLEKPFFYIFS







alcalifaciens]



NDKLWCEENLTPLFDGNFHIVENNSQEIDLWLISQCQHHIIANSTFSWWGAWLANSDSQIVITPDPWFNKEI









DIPSPVLSHWLKLKK







Salmonella

AFW04804.1
411146173
glycosyl-
22.26

MFSCLSGGLGNQMFQYSAAYILKKNICHAQLIIDDSYFYCQPQKDTPRNFEINQFNIVFDRVTTDEEKRAISK
270



enterica



transferase


LRKFKKIPLPLFKSNVITEFLFGKSLLTDEDFYKVLKKNQFTVKMNACLFSLYQDSSLINKYRDLILPLFTIN






[Salmonella


DELLQVCQQLDSYGFICEHTNTTSLHIRRGDYVTNPHAAKFHGTLSMNYYSQAMNYVDHKLGKQLFIIFSDDV







enterica]



QWAAEKFGGRSDCYIVNNVNCQFSAIDMYLMSLCNNNIIANSTYSWWGAWLNKSEEKLVIAPRKWFAEDK









ESLLAVNDWISI







Sulfurospirillum

YP_003304829.1
268680398
protein
22.18

MIIIKIMGGLASQLHKYSVGRALSLKYNTELKLDIFWFDNISGSDTIREYHLDKYNVVAKIATEQEIKQFKPNK
271



deleyianum; 



Sdel_1779


YLLKINNLFQKFTNWKINYRNYCNESFISLENFNLLPDNIYVEGEWSGDRYFSHIKEILQKELTLKSEYMDSTN




Sulfurospirillum



[Sulfuro-


HFLAKQSSDFAHDDNASKLHCTCSLEYYKKALQYISKNLLKMKLLIFSDDLDWLKPNFNFLDNVEFEFVEGF




deleyianum




spirillum



QDYEEFHLMTLSKHNIIANSGFSLFFAWLNINHNKIIISLSEWVFEEKLNKYIIDNIKDKNILFLENLE



DSM 6946



deleyianum










DSM 6946]










Pseudovibrio

YP_005080114.1
374329930
alpha-1,2-
22.15

MSVASQVRISGAARRRKLKPTLIVRIRGGIGNQLFQYALGRKIALETGMKLRFDRSEYDQYFNRSYCLNLFKT
272


sp. FO-BEG1


fucosyl-


QGLSATESEMSAVLWPAQSFGQTVKLCRKFYPFYQRRYIREDELLQDSETPVLKQSAYLDGYWQTWEIPFSI






transferase


MEQLRDEITLKKPMVLERLKLLQRIKSGPSAALHVRYGDYSQAHNLQNFGLCSAGYYKGAMDFLTERVPGL






[Pseudovibrio


TFYVFSDSPERAREVVPQQENVYFSDPMQDGKDHEDLMVMSSCDHIVTANSTFSWWAAFLNGNEDKHV






sp. FO-BEG1]


IAPLKWFKNPNLDDSLIVPPHWQRL







Prevotella sp. 

WP_009236633.1
496529942
alpha-1,2-
22.11

MKIVCIKGGLGNQLFEYCRYHGLLRQHNNHGVYLHYDRRRTKQHGGVWLDKAFLITLPTEPWRVKLMVM
273


oral taxon 472 


fucosyl-


ALKMLRKLHLFKRLYREDDPRAVLIDDYSQHKQFITNAAEILNFRPFAQLDYVDEITSEPFAVSVHVRRGD



str. F0295; 


transferase


YLLPANKANFGVCSVHYYLSAAVAVRERHPDARFFVFSDDIEWAKMNLNLPNCVFVEHAQPQPDHADLYLM




Prevotella



[Prevotella


SLCKGHIIANSTFSFWGAYLSMGSSAIAIYPKQWFAEPTWNAPDIFLGHWIAL



sp. oral 


sp. oral






taxon 472


taxon 472]










Butyrivibrio

WP_022752732.1
551008155
glycosyl
22.08

MLIIRVAGGLGNQMQQYAMYRKLKSLGKEVKLDLSWFDVENQEGQLAPRKCELKYFDGVDFEECTDAER
274



fibrisolvens



transferase


AYFTKRSILTKALNKVFPATCKIFEETEMFHPEIYSFKDKYLEGYFLCNKYYDDILPFIQNEIVFPKHSDPK






[Butyrivibrio


RMQKNEELMERMDGWHTASIHLRRGDYITEPQNEALFGNIATDAYYDAAIRYVLDKDYQTHFYIFSNDPEYA







fibrisolvens]



REHYSDESRYTIVTGNDGDNSLLDMELMSHCRYNICANSTFSFWGARLNKRSDKEMIRTFKMRNNQEVTARE









MTDYWKDWILIDEKGNRIF







Lewinella

WP_020571066.1
522059857
protein
22.04

MVISRLHSGLGNQMFQYAFARRIQLQLNVKLRIDLSILLDSRPPDGYIKREYDLDIFKLSPAYHCNPTSLRI
275


persica


[Lewinella


LYAPGKYRWSQVVRDLARKGYPVYMEKSFSVDNTLLDSPPDNVIYQGYWQSERYFSEVANTIRKDFAFQHSI







persica]



QPQSESLAREIRKEDSVCLNIRRKDYLASPTHNVTDETYYENCIQQMRERFSGARFFLFSDDLVWCREFFAD









FHDVVIVGHDHAGPKFGNYLQLMAQCHHYIIPNSTFAWWAAWLGERTGSVIMAPERWFGTDEFDYRDVV









PERWLKVPN









OTHER EMBODIMENTS

While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.


The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. Genbank and NCBI submissions indicated by accession number cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.


While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A method for producing a fucosylated oligosaccharide in a bacterium comprising providing bacterium comprising an exogenous lactose-utilizing α(1,2) fucosyltransferase enzyme, wherein said α(1,2) fucosyltransferase enzyme has at least 90% sequence identity to amino acid sequence SEQ ID NO: 17; andculturing said bacterium in the presence of lactose.
  • 2. The method of claim 1, wherein said α(1,2) fucosyltransferase enzyme comprises Prevotella sp. FutW, or a functional variant or fragment thereof having at least 90% sequence identity to SEQ ID NO: 17.
  • 3. The method of claim 1, further comprising retrieving the fucosylated oligosaccharide from said bacterium or from a culture supernatant of said bacterium.
  • 4. The method of claim 1, wherein said fucosylated oligosaccharide comprises 2′-fucosyllactose (2′-FL), lactodifucotetraose (LDFT), or lacto-N-difucohexaose I (LDFH I).
  • 5. The method of claim 1, wherein the bacterium further comprises an exogenous lactose-utilizing α(1,3) fucosyltransferase enzyme and/or an exogenous lactose-utilizing α(1,4) fucosyltransferase enzyme, or wherein said bacterium further comprises a reduced level of β-galactosidase activity, a defective colanic acid synthesis pathway, an inactivated adenosine-5′-triphosphate (ATP)-dependent intracellular protease, or an inactivated endogenous lacA gene, or any combination thereof.
  • 6. The method of claim 5, wherein the exogenous lactose-utilizing α(1,3) fucosyltransferase enzyme comprises a Helicobacter pylori 26695 futA gene.
  • 7. The method of claim 5, wherein the exogenous lactose-utilizing α(1,4) fucosyltransferase enzyme comprises a Helicobacter pylori UA948 FucTa gene or a Helicobacter pylori strain DMS6709 FucT III gene.
  • 8. The method of claim 5, wherein said method further comprises culturing said bacterium in the presence of tryptophan and in the absence of thymidine.
  • 9. The method of claim 5, wherein said reduced level of β-galactosidase activity comprises a deleted or inactivated endogenous lacZ gene and/or a deleted or inactivated endogenous lad gene of said bacterium.
  • 10. The method of claim 9, wherein said reduced level of β-galactosidase activity further comprises an exogenous lacZ gene or variant thereof, wherein said exogenous lacZ gene or variant thereof comprises an β-galactosidase activity level less than a corresponding wild-type bacterium.
  • 11. The method of claim 5, wherein said reduced level of β-galactosidase activity comprises an activity level less than wild-type bacterium.
  • 12. The method of claim 11, wherein said reduced level of β-galactosidase activity comprises less than 6,000 units of β-galactosidase activity.
  • 13. The method of claim 11, wherein said reduced level of β-galactosidase activity comprises less than 1,000 units of β-galactosidase activity.
  • 14. The method of claim 5, wherein said bacterium comprises a lacIq gene promoter immediately upstream of a lacY gene, or wherein said bacterium further comprises a functional lactose permease gene, or wherein said bacterium comprises E. coli lacY, or wherein said bacterium further comprises an exogenous E. coli rcsA or E. coli rcsB gene, or wherein said bacterium further comprises a mutation in a thyA gene, or wherein said bacterium accumulates intracellular lactose in the presence of exogenous lactose, or wherein said bacterium accumulates intracellular GDP-fucose.
  • 15. The method of claim 5, wherein said defective colanic acid synthesis pathway comprises an inactivation of a wcaJ gene of said bacterium.
  • 16. The method of claim 5, wherein said inactivated ATP-dependent intracellular protease is a null mutation, inactivating mutation, or deletion of an endogenous lon gene.
  • 17. The method of claim 16, wherein said inactivating mutation of an endogenous lon gene comprises the insertion of a functional E. coli lacZ+ gene.
  • 18. The method of claim 1, wherein said bacterium is E. coli.
  • 19. The method of claim 1, wherein said bacterium of claim 1 is a member of the Bacillus, Pantoea, Lactobacillus, Lactococcus, Streptococcus, Proprionibacterium, Enterococcus, Bifidobacterium, Sporolactobacillus, Micromomospora, Micrococcus, Rhodococcus, or Pseudomonas genus.
  • 20. The method of claim 1, wherein said bacterium of claim 1 is selected from the group consisting of Bacillus licheniformis, Bacillus subtilis, Bacillus coagulans, Bacillus thermophiles, Bacillus laterosporus, Bacillus megaterium, Bacillus mycoides, Bacillus pumilus, Bacillus lentus, Bacillus cereus, and Bacillus circulans, Erwinia herbicola (Pantoea agglomerans), Citrobacter freundii, Pantoea citrea, Pectobacterium carotovorum, Xanthomonas campestris Lactobacillus acidophilus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus jensenii, Lactococcus lactis, Streptococcus thermophiles, Proprionibacterium freudenreichii, Enterococcus faecium, Enterococcus thermophiles), Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium bifidum, Pseudomonas fluorescens and Pseudomonas aeruginosa.
  • 21. The method of claim 1, wherein said bacterium comprises a nucleic acid construct comprising an isolated nucleic acid encoding said α(1,2) fucosyltransferase enzyme.
  • 22. The method of claim 21, wherein said nucleic acid is operably linked to one or more heterologous control sequences that direct the production of the enzyme in the bacterium.
  • 23. The method of claim 22, wherein said heterologous control sequence comprises a bacterial promoter and operator, a bacterial ribosome binding site, a bacterial transcriptional terminator, or a plasmid selectable marker.
  • 24. The method of claim 1, wherein the amino acid sequence of said enzyme comprises the amino acid sequence of SEQ ID NO:17.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/307,914 filed Oct. 31, 2016, now U.S. Pat. No. 11,046,984 issued on Jun. 29, 2021, which is a national stage application, filed under 35 U.S.C. § 371, of PCT International Patent Application No. PCT/US2015/030823, filed on May 14, 2015, and claims benefit of priority to U.S. Provisional Patent Application No. 61/993,742, filed on May 15, 2014, both of which, including their contents, are incorporated herein by reference in their entireties.

US Referenced Citations (10)
Number Name Date Kind
7521212 Samain Apr 2009 B1
9029136 Heidtman et al. May 2015 B2
9453230 Merighi et al. Sep 2016 B2
9587241 Merighi et al. Mar 2017 B2
9970018 Merighi et al. May 2018 B2
11046984 McCoy et al. Jun 2021 B2
20100120701 McCoy et al. May 2010 A1
20120208181 Merighi et al. Aug 2012 A1
20140031541 Heidtman et al. Jan 2014 A1
20170081353 McCoy et al. Mar 2017 A1
Foreign Referenced Citations (5)
Number Date Country
103328630 Sep 2013 CN
3083938 Oct 2016 EP
2014-506474 Mar 2014 JP
2014018596 Jan 2014 WO
2015150328 Aug 2015 WO
Non-Patent Literature Citations (400)
Entry
Engles et al., WbgL: a novel bacterial α1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose, Glycobiology 24, 2014, 170-78. (Year: 2014).
Uniprot, Accession No. R7LF73, 2014, www.uniprot.org. (Year: 2014).
Database Genbank, (2013) “Hypothetical Protein HMPREF0994_01394 [Lachnospiraceae Bacterium 3_1_57FAA_CT1]”, GenBank Accession No. EGN42256.1, 2 pages.
Database Genbank, (2013) “Hypothetical Protein HMPREF1097_05434 [Enterocloster Bolteae 90B8]”, GenBank Accession No. ENZ32021.1, 2 pages.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella salivae]”, GenBank Accession No. WP_007135533.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides dorei]”, GenBank Accession No. WP_007842931.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Roseobacter sp. SK209-2-6]”, GenBank Accession No. WP_008210047.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [alpha proteobacterium SCGC AAA076-CO3]”, GenBank Accession No. WP_020056701.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Helicobacter bilis]”, GenBank Accession No. WP_004087499.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Cupriavidus sp. GA3-3]”, GenBank Accession No. WP_010813809.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides ovatus]”, GenBank Accession No. WP_004303999.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Yoonia vestfoldensis]”, GenBank Accession No. WP_019955906.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Flavobacterium sp. ACAM 123]”, GenBank Accession No. WP_016991189.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides fragilis]”, GenBank Accession No. WP_005779407.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Spirosoma panaciterrae]”, GenBank Accession No. WP_020598002.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Colwellia piezophila]”, GenBank Accession No. WP_019028421.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella maculosa]”, GenBank Accession No. WP_019966794.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Clostridium sp. CAG:510] ”, GenBank Accession No. WP_022124550.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Rhodopirellula europaea]”, GenBank Accession No. WP_008665459.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacillus cereus]”, GenBank Accession No. WP_000587678.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:95]”, GenBank Accession No. WP_022499937.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella oris]”, GenBank Accession No. WP_004374901.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Desulfovibrio africanus] ”, GenBank Accession No. WP_005984173.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Akkermansia muciniphila CAG:154]”, GenBank Accession No. WP_022196965.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Dysgonomonas mossii]”, GenBank Accession No. WP_006843524.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella oris]”, GenBank Accession No. WP_004372410.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Pseudogulbenkiania ferrooxidans]”, GenBank Accession No. WP_008952440.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Salmonella enterica]”, GenBank Accession No. WP_000286641.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella sp. CAG:1185] ”, GenBank Accession No. WP_021964668.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Selenomonas sp. CM52]”, GenBank Accession No. WP_009645343.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides nordii]”, GenBank Accession No. WP_007486621.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Parabacteroides merdae]”, GenBank Accession No. WP_005635503.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. NC2007]”, GenBank Accession No. WP_022768139.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides ovatus]”, GenBank Accession No. WP_004302233.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Clostridium sp. KLE 1755]”, GenBank Accession No. WP_021639228.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides plebeius CAG:211]”, GenBank Accession No. WP_022052991.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Treponema lecithinolyticum]”, GenBank Accession No. WP_021686002.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides eggerthii]”, GenBank Accession No. WP_004291980.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides stercoris]”, GenBank Accession No. WP_005656005.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Roseobacter sp. GAI101]”, GenBank Accession No. WP_008228724.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella oris]”, GenBank Accession No. WP_004377401.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella oulorum]”, GenBank Accession No. WP_004380180.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Spirosoma panaciterrae]”, GenBank Accession No. WP_020596174.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. XPD2006]”, GenBank Accession No. WP_022765786.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Coraliomargarita sp. CAG:312]”, GenBank Accession No. WP_022477844.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Pseudorhodobacter ferrugineus]”, GenBank Accession No. WP_022705649.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Anaeromusa acidaminophila]”, GenBank Accession No. WP_018702959.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Treponema bryantii]”, GenBank Accession No. WP_022932606.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:534]”, GenBank Accession No. WP_022352105.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:882]”, GenBank Accession No. WP_022368748.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Vibrio parahaemolyticus]”, GenBank Accession No. WP_005496882.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Herbaspirillum frisingense]”, GenBank Accession No. WP_006463714.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Rhizobium sp. CF080]”, GenBank Accession No. WP_007759661.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Verrucomicrobium spinosum]”, GenBank Accession No. WP_009959380.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Rhodobacter sp. CACIA14H1]”, GenBank Accession No. WP_023665745.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Spirosoma spitsbergense]”, GenBank Accession No. WP_020604054.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella micans]”, GenBank Accession No. WP_006950883.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Coleofasciculus chthonoplastes]”, GenBank Accession No. WP_006100814.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides gallinarum]”, GenBank Accession No. WP_018666797.1.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:882]”, GenBank Accession No. WP_022367483.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides xylanisolvens]”, GenBank Accession No. WP_008021494.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium 28-4]”, GenBank Accession No. WP_016291997.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella sp. CAG:1092]”, GenBank Accession No. WP_021989703.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Spirosoma luteum]”, GenBank Accession No. WP_018618567.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Candidatus Pelagibacter ubique]”, GenBank Accession No. WP_020169431.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides sp. CAG:875]”, GenBank Accession No. WP_022353174.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio fibrisolvens]”, GenBank Accession No. WP_022756327.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Rhodopirellula europaea]”, GenBank Accession No. WP_008659200.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Rudanella lutea]”, GenBank Accession No. WP_019988573.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Paraprevotella clara]”, GenBank Accession No. WP_008618094.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Smaragdicoccus niigatensis]”, GenBank Accession No. WP_018159152.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides fragilis CAG:558]”, GenBank Accession No. WP_022012576.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Desulfovibrio desulfuricans]”, GenBank Accession No. WP_022657592.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Hoeflea phototrophica]”, GenBank Accession No. WP_007199917.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium NK4A179]”, GenBank Accession No. WP_022784718.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Cecembia lonarensis]”, GenBank Accession No. WP_009185692.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides coprocola GAG:162]”, GenBank Accession No. WP_022125287.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides intestinalis]”, GenBank Accession No. WP_007662951.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium A4]”, GenBank Accession No. WP_016283022.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella pleuritidis]”, GenBank Accession No. WP_021584236.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides sp. 1_1_14]”, GenBank Accession No. WP_008763191.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Agromyces subbeticus]”, GenBank Accession No. WP_022893737.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella salivae]”, GenBank Accession No. WP_007133870.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Paraprevotella xylaniphila]”, GenBank Accession No. WP_008626629.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Thauera sp. 28]”, GenBank Accession No. WP_002930798.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Subdoligranulum variabile]”, GenBank Accession No. WP_007048308.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:24]”, GenBank Accession No. WP_021916223.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella sp. CAG:474]”, GenBank Accession No. WP_022310139.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Roseburia intestinalis]”, GenBank Accession No. WP_006855899.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. AE3009]”, GenBank Accession No. WP_022779599.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella nanceiensis]”, GenBank Accession No. WP_018362656.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Winogradskyella psychrotolerans]”, GenBank Accession No. WP_020895733.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium NK4A179]”, GenBank Accession No. WP_022785342.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella sp. oral taxon 317]”, GenBank Accession No. WP_009230832.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. XPD2006]”, GenBank Accession No. WP_022765796.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio fibrisolvens]”, GenBank Accession No. WP_022752717.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Cylindrospermopsis raciborskii]”, GenBank Accession No. WP_006278973.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella multiformis]”, GenBank Accession No. WP_007368154.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides sp. CAG:462]”, GenBank Accession No. WP_022384635.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Roseburia sp. CAG:100]”, GenBank Accession No. WP_022518697.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium 10-1]”, GenBank Accession No. WP_022742385.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella nigrescens]”, GenBank Accession No. WP_004362670.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides sp. CAG:875]”, GenBank Accession No. WP_022353235.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Paraprevotella xylaniphila]”, GenBank Accession No. WP_008628783.1, 1 page.
Han et al., “Biotechnological production of human milk oligosaccharides”. Biotechnol Adv. Nov.-Dec. 2012;30(6):1268-78.
Kajiwara et al., “Isolation of fucosyltransferase-producing bacteria from marine environments”. Microbes Environ. 2012;27(4):515-8.
Lee et al., “Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli”. Microb Cell Fact. Apr. 30, 2012;11:48.
UniParc Accession No. UPI00000BD7C3, 1999.
UniParc Accession No. UPI000156E7D1, 2007.
UniParc Accession No. UPI00017402F0, 2008.
UniParc Accession No. UPI0001848D3F, 2008.
UniParc Accession No. UPI0002135809, 2011.
UniParc Accession No. UPI0002D1E562, 2013.
UniParc Accession No. UPI000335587F, 2013.
Albermann et al., “Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes”. Carbohydr Res. Aug. 23, 2001;334(2):97-103.
Altschul et al., “Basic local alignment search tool”. J Mol Biol. Oct. 5, 1990;215(3):403-10.
Altschul et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”. Nucleic Acids Res. Sep. 1, 1997;25(17):3389-402.
Amonsen et al., “Human parainfluenza viruses hPIV1 and hPIV3 bind oligosaccharides with alpha2-3-linked sialic acids that are distinct from those bound by H5 avian influenza virus hemagglutinin”. J Virol. Aug. 2007;81(15):8341-5.
Bachmann, B. “Pedigrees of some mutant strains of Escherichia coli K-12”. Bacteriol Rev. Dec. 1972;36(4):525-57.
Belfort et al., “Characterization of the Escherichia coli thyA gene and its amplified thymidylate synthetase product”. Proc Natl Acad Sci U S A. Apr. 1983;80(7):1858-61.
Bettler et al., “The living factory: in vivo production of N-acetyllactosamine containing carbohydrates in E. coli”. Glycoconj J. Mar. 1999;16(3):205-12.
Bode, L. “Recent advances on structure, metabolism, and function of human milk; oligosaccharides”. J Nutr. Aug. 2006;136(8):2127-30.
Charlwood et al., “A detailed analysis of neutral and acidic carbohydrates in human milk”. Anal Biochem. Sep. 10, 1999;273(2):261-77.
Chaturvedi et al., “Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation”. Glycobiology. May 2001;11(5):365-72.
Chaturvedi et al., “Survival of human milk oligosaccharides in the intestine of infants”. Adv Exp Med Biol. 2001;501:315-23.
Couceiro et al., “Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity”. Virus Res. Aug. 1993;29(2):155-65.
Court et al., “Genetic engineering using homologous recombination”. Annu Rev Genet. 2002;36:361-88.
Crout et al., “Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis”. Curr Opin Chem Biol. Feb. 1998;2(1):98-111.
Danchin, A. “Cells need safety valves”. Bioessays. Jul. 2009;31(7):769-73.
Drouillard et al., “Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori alpha1,2-fucosyltransferase in metabolically engineered Escherichia coli cells”. Angew Chem Int Ed Engl. Mar. 3, 2006;45(11):1778-80.
Dumon et al., “Assessment of the two Helicobacter pylori alpha-1,3 fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered Escherichia coli”. Biotechnol Prog. Mar.-Apr. 2004;20(2):412-9.
Dumon et al., “In vivo fucosylation of lacto-N-neotetraose and lacto-N-neohexaose by heterologous; expression of Helicobacter pylori alpha-1,3 fucosyltransferase in engineered Escherichia coli”. Glycoconj J. Jun. 2001;18(6):465-74.
Dumon et al., “Production of Lewis x tetrasaccharides by metabolically engineered Escherichia coli”. Chembiochem. Feb. 2006;7(2):359-65.
Endo et al., “Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling”. Appl Microbiol Biotechnol. Mar. 2000;53(3):257-61.
Endo et al., “Large-scale production of N-acetyllactosamine through bacterial coupling”. Carbohydr Res. Mar. 31, 1999;316(1-4):179-83.
Endo et al., “Large-scale production of oligosaccharides using engineered; bacteria”. Curr Opin Struct Biol. Oct. 2000;10(5):536-41.
Endo et al., “Large-scale production of the carbohydrate portion of the sialyl-Tn epitope, alpha-Neup5Ac-(2->6)-D-GalpNAc, through bacterial coupling”. Carbohydr Res. Feb. 28, 2001;330(4):439-43.
Flowers H. “Chemical synthesis of oligosaccharides”. Methods Enzymol. 1978;50:93-121.
Gottesman et al., “Regulation of capsular polysaccharide synthesis in Escherichia coli K12”. Mol Microbiol. Jul. 1991;5(7):1599-606.
Hamosh M. “Bioactive factors in human milk”. Pediatr Clin North Am. Feb. 2001;48(1):69-86.
Johnson K. “Synthesis of oligosaccharides by bacterial enzymes”. Glycoconj J. Feb. 1999;16(2):141-6.
Koeller et al., “Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies”. Chem Rev. Dec. 13, 2000;100(12):4465-94.
Koizumi et al., “Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria”. Nat Biotechnol. Sep. 1998;16(9):847-50.
Kuhlenschmidt et al., “Sialic acid dependence and independence of group A rotaviruses”. Adv Exp Med Biol. 1999;473:309-17.
Kunz et al. “Oligosaccharides in Human Milk: Structural, Functional, and Metabolic Aspects”. Annu. Rev. Nutr. 2000;20:699-722.
LaVallie et al., “A thioredoxin gene fusion expression system that circumvents inclusion body; formation in the E. coli cytoplasm”. Biotechnology (N Y). Feb. 1993;11(2):187-93.
LaVallie et al., “Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli”. Methods Enzymol. 2000;326:322-40.
Li et al., “Characterization of a novel alpha 1,2-fucosyltransferase of Escherichia coli; O128:b12 and functional investigation of its common motif”. Biochemistry. Jan. 2008; 8;47(1):378-87.
Mahdavi et al., “Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation”. Science. Jul. 26, 2002;297(5581):573-8.
Marcobal et al., “Consumption of human milk oligosaccharides by gut-related microbes”. J Agric Food Chem. May 12, 2010;58(9):5334-40.
Martin-Sosa et al., “Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation”. J Dairy Sci. Jan. 2003;86(1):52-9.
Mieschendahl et al., “A Novel Prophage Independent TRP Regulated Lambda PL Expression System”. Bio/Technology. 1986;4:802-8.
Morrow et al., “Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants”. J Pediatr. Sep. 2004,145(3):297-303.
Newburg, D. “Bioactive components of human milk: evolution, efficiency, and; protection”. Adv Exp Med Biol. 2001;501:3-10.
Newburg, D. “Human milk glycoconjugates that inhibit pathogens”. Curr Med Chem. Feb. 1999;6(2):117-27.
Newburg et al. “Human Milk Glycans Protect Infants Against Enteric Pathogens”. Annu. Rev. Nutr. 2005;25:37-58.
Newburg et al., “Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants”. Glycobiology. Mar. 2004;14(3):253-63.
Newburg et al., “Protection of the neonate by the innate immune system of developing gut and of human milk”. Pediatr Res. Jan. 2007;61(1):2-8.
Newburg et al., “Role of human-milk lactadherin in protection against symptomatic rotavirus infection”. Lancet. Apr. 18, 1998;351(9110):1160-4.
Ninoneuvo et al., “A strategy for annotating the human milk glycome”. J Agric Food Chem. Oct. 4, 2006,54(20):7471-80.
Palcic, M. “Biocatalytic synthesis of oligosaccharides”. Curr Opin Biotechnol.; Dec. 1999;10(6):616-24.
Parkkinen et al. “Isolation of Sialyl Oligosaccharides and Sialyl Oligosaccharide Phosphates From Bovine Colostrum and Human Urine”. Methods Enzymol. 1987;138:289-300.
Rabbani et al., “Molecular cloning and functional expression of a novel Helicobacter pylori alpha-1,4 fucosyltransferase”. Glycobiology. Nov. 2005; 15(11):1076-83.
Rasko et al., “Cloning and characterization of the alpha(1,¾) fucosyltransferase of Helicobacter pylori”. J Biol Chem. Feb. 18, 2000;275(7):4988-94.
Ruffing et al., “Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis”. Microb Cell Fact Jul. 21, 2006;5:25.
Ruiz-Palacios et al., “Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection”. J Biol Chem. Apr. 18, 2003;278(16):14112-20.
Rydell et al., “Human noroviruses recognize sialyl Lewis x neoglycoprotein”. Glycobiology. Mar. 2009;19(3):309-20.
Sager et al., “Nucleotide sequence of bacteriophage lambda DNA”. J Mol Biol. Dec. 25, 1982;162(4)729-73.
Scharfman et al., “Sialyl-Le(x) and sulfo-sialyl-Le(x) determinants are receptors for P. aeruginosa”. Glycoconj J. Oct. 2000;17(10):735-40.
Seeberger, P. “Automated carbohydrate synthesis to drive chemical glycomics”. Chem Commun (Camb). May 21, 2003;(10):1115-21.
Shen et al., “Resolution of structural isomers of sialylated oligosaccharides by capillary electrophoresis”. J Chromatogr A. Jul. 6, 2001;921(2):315-21.
Stein et al., “Cloning genes for proline biosynthesis from Neisseria gonorrhoeae: identification by interspecific complementation of Escherichia coli mutants”. J Bacteriol. May 1984;158(2):696-700.
Stevenson et al., “Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid” J Bacteriol. Aug. 1996;178(16):4885-93.
Wolfe et al., “Nucleotide sequence and analysis of the purA gene encoding; adenylosuccinate synthetase of Escherichia coli K12”. J Biol Chem. Dec. 1988; 15;263(35):19147-53.
Wymer et al., “Enzyme-catalyzed synthesis of carbohydrates”. Curr Opin Chem Biol. Feb. 2000;4(1):110-9.
Genbank (Dec. 11, 2013) “Glycosyl Transferase Family 11 [Akkermansia Muciniphila ATCC BAA-835]”, Accession No. ACD04774.1, 1 page.
Genbank (May 31, 2013) “Glycosyl Transferase Family 11 [Tannerella Sp. CAG:118]”, Accession No. CCY38847.1, 1 page.
Genbank (May 31, 2013) “Glycosyltransferase Family 11 [Bacteroides Sp. CAG:633]”, Accession No. CDB11986.1, 1 page.
Genbank (Apr. 19, 2013) “Hypothetical Protein HMPREF1097_05434 [[Clostridium] Bolteae 90B8]”, Accsession No. ENZ32021.1, 2 pages.
Genbank (May 31, 2013) “Uncharacterized Protein BN805_01914 [Prevotella Sp. CAG:891]”, Accession No. CDE87265.1, 1 page.
Kobata et al. (1978) “Oligosaccharides from Human Milk”, Methods in Enzymology, 50:216-220.
Uniprot (Apr. 16, 2014) “Akkermans is Muciniphila (Strain ATCC BAA-835)”, Uniprot Accession No. B2UQN9, 1 page.
Uniprot (Apr. 16, 2014) “Bacteroides caccae ATCC 43185.”, Uniprot Accession No. A5ZC72, 1 page.
Uniprot (Apr. 16, 2014) “Bacteroides sp. CAG:633.”, Uniprot Accession No. R6FSMO, 1 page.
Uniprot, “Lachnospiraceae Bacterium 3_1_57FAA_CT1.”, Uniprot Accession No. F7K6A6, 1 page.
Uniprot (Apr. 16, 2014) “Parabacteroides Johnsonii CL02T12C29.”, Uniprot Accession No. K5YCP4, 1 page.
Uniprot (Apr. 16, 2014) “Prevotella sp. CAG:891.”, Uniprot Accession No. R7LF73, 1 page.
Uniprot (Apr. 16, 2014) “Tannerella sp. CAG:118.”, Uniprot Accession No. R5IPH9, 1 page.
Uniprot (Apr. 16, 2014), Accession No. B8GDY9 “Methanosphaerula palustris (strain ATCC BAA-1556 / DSM 19958 / E1-9c).” Uniprot Accession No. B8GDY9, 1 page.
Baumgartner et al., “Synthesis of fucosylated lacto-N-tetraose using whole cell biotransformation”, Bioorg. & Medicinal Chem., Oct. 2015, 23, 6799-806.
Engles et al., “WbgL: a novel bacterial a1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose”, Glyobiology, Nov. 2013, 24, 170-78.
Guo et al., “Protein tolerance to random amino acid change”, Proc. Natl. Acad. Sci. USA, 2004,101, 9205-10.
Jung et al., “Production of 3-Fucosyllactose in Engineered Escherichia coli with a-1,3-Fucosyltransferase from Helicobacter pylori”, Biotechnol. J., 2019, 14, 1800498.
Kobata, “Isolation of oligosaccharides from human milk”, Methods Enz., 1972, 28, 262-71.
Martin et al. , “Lewis X biosynthesis in Helicobacer pylori”, J. Biol. Chem., 1997, 272, 21349-56.
Sigma-Aldrich, Prod. No. G5653, 1997.
Uniprot Accession No. A6M9C2, www.uniprot.org.
Uniprot Accession No. B8GDY9, 2013, www.uniprot.org.
Uniprot Accession No. D9RUY6, 2014, www.uniprot.org.
Uniprot (Apr. 16, 2014) “Clostridium bolteae 90B8”, Uniprot Accession No. N9YWN5, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Dethiosulfovibrio peptidovorans]”, GenBank Accession No. WP_005658864.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium 10-1]”, GenBank Accession No. WP_016229292.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Treponema maltophilum]”, GenBank Accession No. WP_016525279.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium NK4A136]”, GenBank Accession No. WP_022780989.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides coprophilus]”, GenBank Accession No. WP 008144634.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Paraprevotella clara]”, GenBank Accession No. WP_008619736.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. NC2007]”, GenBank Accession No. WP_022770361.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Paraprevotella xylaniphila]”, GenBank Accession No. WP_008628536.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Blautia hydrogenotrophica]”, GenBank Accession No. WP_005944761.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium NK4A136]”, GenBank Accession No. WP_022781176.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides vulgatus]”, GenBank Accession No. WP_005840359.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. AE2015]”, GenBank Accession No. WP_022772730.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Roseovarius nubinhibens]”, GenBank Accession No. WP_009813856.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Eubacterium sp. CAG:581]”, GenBank Accession No. WP_022505071.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella sp. oral taxon 472]”, GenBank Accession No. WP_009236633.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio fibrisolvens]”, GenBank Accession No. WP_022752732.1, 1 page.
Genbank Database (Dec. 9, 2016) “Multispecies: alpha-1,2-fucosyltransferase [Butyrivibrio]”, GenBank Accession No. WP_022762282.1, 1 page.
Genbank Database (Dec. 9, 2016) “Multispecies: alpha-1,2-fucosyltransferase [Parabacteroides]”, GenBank Accession No. WP_005867692.1, 1 page.
Genbank Database (Dec. 9, 2016) “Multispecies: alpha-1,2-fucosyltransferase [Clostridiales]”, GenBank Accession No. WP_016359991.1, 1 page.
Genbank Database (Dec. 9, 2016) “Multispecies: alpha-1,2-fucosyltransferase [Bacteroides]”, GenBank Accession No. WP_005839979.1, 1 page.
Genbank Database (Dec. 9, 2016) “Multispecies: alpha-1,2-fucosyltransferase [Butyrivibrio]”, GenBank Accession No. WP_022762290.1, 1 page.
Genbank Database (Dec. 9, 2016) “Multispecies: alpha-1,2-fucosyltransferase [Rhodobacteraceae]”, GenBank Accession No. WP_008562971.1, 1 page.
Genbank Database (Dec. 9, 2016) “Multispecies: alpha-1,2-fucosyltransferase [Bacteroides]”, GenBank Accession No. WP_004313284.1, 1 page.
Genbank Database (Apr. 19, 2017) “Multispecies: alpha-1,2-fucosyltransferase [Clostridiales]”, GenBank Accession No. WP_009251343.1, 1 page.
Genbank Database (Jul. 20, 2017) “alpha-1,2-fucosyltransferase [Lewinella persica]”, GenBank Accession No. WP_020571066.1, 1 page.
Genbank Database (Jul. 20, 2017) “alpha-1,2-fucosyltransferase [Methylophilus methylotrophus]”, GenBank Accession No. WP_018985060.1, 1 page.
Genbank Database (Jul. 22, 2017) “alpha-1,2-fucosyltransferase [Bacteroides sartorii]”, GenBank Accession No. WP_016276676.1, 1 page.
Genbank Database (Jul. 27, 2017) “alpha-1,2-fucosyltransferase [Bacteroides fragilis YCH46]”, GenBank Accession No. YP_099857.1, 2 pages.
Genbank Database (Jul. 27, 2017) “putative alpha-1,2-fucosyltransferase [Bacteroides fragilis YCH46]”, GenBank Accession No. YP_099118.1, 2 pages.
Genbank Database (Aug. 18, 2017) “Multispecies: alpha-1,2-fucosyltransferase [Parabacteroides]”, GenBank Accession No. WP_005857874.1, 1 page.
Genbank Database (Jan. 12, 2018) “alpha-1,2-fucosyltransferase [Litoreibacter arenae]”, GenBank Accession No. WP_021099615.1, 1 page.
Genbank Database (Mar. 2, 2018) “Multispecies: alpha-1,2-fucosyltransferase [Helicobacter]”, GenBank Accession No. WP_005219731.1, 1 page.
Genbank Database (Mar. 9, 2018) “Multispecies: alpha-1,2-fucosyltransferase [Escherichia]”, GenBank Accession No. WP_021554465.1, 1 page.
Genbank Database (Apr. 5, 2018) “Multispecies: alpha-1,2-fucosyltransferase [Bacteroides]”, GenBank Accession No. WP_008659600.1, 1 page.
Genbank Database (May 2, 2018) “alpha-1,2-fucosyltransferase [Bacteroides thetaiotaomicron]”, GenBank Accession No. WP_008766093.1, 1 page.
Genbank Database (May 2, 2018) “alpha-1,2-fucosyltransferase [Bacteroides fragilis]”, GenBank Accession No. WP_008768986.1, 1 page.
Genbank Database (May 2, 2018) “alpha-1,2-fucosyltransferase [Bacteroides fragilis]”, GenBank Accession No. WP_008768245.1, 1 page.
Genbank Database (Jun. 3, 2018) “glycosyltransferase [Butyrivibrio fibrisolvens]”, GenBank Accession No. WP_022755397.1, 1 page.
Genbank Database (Jun. 3, 2018) “glycosyltransferase [Firmicutes bacterium CAG:791]”, GenBank Accession No. WP_021849028.1, 1 page.
Genbank Database (Jun. 3, 2018) “glycosyltransferase [Leeia oryzae]”, GenBank Accession No. WP_018150480.1, 2 pages.
Genbank Database (Aug. 13, 2018) “glycosyltransferase family 11 [Synechococcus phage S-SM2]”, GenBank Accession No. YP_004322362.1, 2 pages.
Genbank Database (Sep. 4, 2018) “Multispecies: alpha-1,2-fucosyltransferase [Bacteroides]”, GenBank Accession No. WP_008671843.1, 1 page.
Genbank Database (Sep. 5, 2018) “Multispecies: alpha-1,2-fucosyltransferase [Clostridiales]”, GenBank Accession No. WP_021636935.1, 1 page.
Genbank Database (Sep. 6, 2018) “Multispecies: alpha-1,2-fucosyltransferase [Bacteroides]”, GenBank Accession No. WP_007835585.1, 1 page.
Genbank Database (Sep. 9, 2018) “Multispecies: alpha-1,2-fucosyltransferase [Bacteroides]”, GenBank Accession No. WP_004295547.1, 1 page.
Genbank Database (Nov. 9, 2018) “alpha-1,2-fucosyltransferase [Pseudoalteromonas distincta]”, GenBank Accession No. WP_002958454.1, 1 page.
Genbank Database (Jan. 19, 2019) “Multispecies: alpha-1,2-fucosyltransferase [Bacteroides]”, GenBank Accession No. WP_004296622.1, 1 page.
Baumgartner et al., “Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose”. Microb Cell Fact. May 1, 2013;12:40.
Bayer, T., “Biotechnological production of fucosylated human milk oligosaccharides (HMO) and core structures thereof”. Graz University of Technology Master thesis, 2014, pp. 1-162. <https://diglib.tugraz.at/download.php?id=576a763d797ed&location=browse>.
Choi et al., “Engineering of alpha1,2/alpha1,3-fucosyltransferase to improve yield and productivity for the production of 2′-/3-fucosyllactose of HMO”. Korean Society for Biotechnology and Bioengineering (Abstract Only), 2013, p. 214. <http://www.dbpia.co.kr/Journal/PDFViewNew?id=N0DE02287489&prevPathCode=>.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Pedobacter heparinus DSM 2366]”, GenBank Accession No. YP_003090434.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Geobacter uraniireducens Rf4]”, GenBank Accession No. YP_001230447.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Sulfurospirillum deleyianum DSM 6946]”, GenBank Accession No. YP_003304837.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Mesotoga prima MesG1.Ag.4.2]”, GenBank Accession No. YP_006346113.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family 11 [Fibrella aestuarina BUZ 2]”, GenBank Accession No. YP_007319049.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Geobacter sp. M18]”, GenBank Accession No. YP_004197726.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Marinomonas posidonica IVIA-Po-181]”, GenBank Accession No. YP_004480472.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Roseburia hominis A2-183]”, GenBank Accession No. YP_004839455.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Desulfomicrobium baculatum DSM 4028]”, GenBank Accession No. YP_003159045.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Planctomyces brasiliensis DSM 5305]”, GenBank Accession No. YP_004271766.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyltransferase family 11 [Prevotella melaninogenica ATCC 25845]”, GenBank Accession No. YP_003814512.1, 1 page.
Genbank Database (Dec. 17, 2014) “hypothetical protein Sdel_1779 [Sulfurospirillum deleyianum DSM 6946]”, GenBank Accession No. YP_003304829.1, 2 pages.
Genbank Database (Dec. 17, 2014) “putative LPS biosynthesis alpha-1,2-fucosyltransferase [Bacteroides fagilis 638R]”, GenBank Accession No. YP_005110943.1, 2 pages.
Genbank Database (Dec. 18, 2014) “family 11 glycosyl transferase [Prevotella ruminicola 23]”, GenBank Accession No. YP_003574648.1, 2 pages.
Genbank Database (Dec. 18, 2014) “fucosyltransferase [Salmonella enterica subsp. enterica serovar Cubana str. CFSAN002050]”, GenBank Accession No. YP_008261369.1, 2 pages.
Genbank Database (Dec. 18, 2014) “glycosyl transferase [Carnobacterium sp. WN1359]”, GenBank Accession No. YP_008718687.1, 2 pages.
Genbank Database (Dec. 18, 2014) “glycosyl transferase family protein [Runella slithyformis DSM 19594]”, GenBank Accession No. YP_004658567.1, 2 pages.
Genbank Database (Dec. 18, 2014) “glycosyl transferase family 11 [Polaribacter sp. MED152]”, GenBank Accession No. YP_007670847.1, 2 pages.
Genbank Database (Dec. 18, 2014) “glycosyl transferase family 11 [Carnobacterium sp. WN1359]”, GenBank Accession No. YP_008718688.1, 2 pages.
Genbank Database (Dec. 18, 2014) “glycosyltransferase [Candidates Symbiobacter mobilis CR]”, GenBank Accession No. YP_008680725.1, 2 pages.
Genbank Database (Dec. 18, 2014) “hypothetical protein HMPREF0669_00176 (plasmid) [Prevotella sp. oral taxon 299 str F0039]”, GenBank Accession No. YP_008444280.1, 2 pages.
Genbank Database (Dec. 18, 2014) “hypothetical protein PGA1_c33070 [Phaeobacter inhibens DSM173951”, GenBank Accession No. YP_006574665.1, 2 pages.
Genbank Database (Jul. 26, 2016) “E. coli lacY Gene (Codes for Lactose Permease)”, GenBank Accession No. V00295.1, 3 pages.
Genbank Database (Aug. 3, 2016) “alpha-1,2-fucosyltransferase [Thermosynechococcus elongatus BP-1]”, GenBank Accession No. NP_681784.1, 2 pages.
Genbank Database (Aug. 3, 2016) “family 11 glycosyltransferase [Enterococcus faecium DO]”, GenBank Accession No. YP_006376560.1, 2 pages.
Genbank Database (Aug. 28, 2016) “fucosyl transferase [Rhodopirellula baltica SH 1]”, GenBank Accession No. NP_868779.1, 2 pages.
Genbank Database (Oct. 7, 2016) “0-antigen Translocase (Escherichia coli str. K-12 substr. W3110)”, GenBank Accession No. BAE77506.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Colanic Acid Exporter [Escherichia coli str. K-12 Substr.W3110)”, GenBank Accession No. BAA15899.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Lipoprotein Required for Capsular Polysaccharide Translocation through the Outer Membrane (Escherichia coli str. K-12 substr. W3110)”, GenBank Accession No. BAE76576.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Predicted Acyl Transferase (Escherichia coli str. K-12 substr. W3110)”, GenBank Accession No. BAA15910.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Predicted Colanic Acid Polymerase (Escherichia coli str. K-12 substr. W31101”, GenBank Accession No. BAE76573.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Predicted Glycosyl Transferase (Escherichia coli str. K-12 substr. W3110)”, GenBank Accession No. BAE76572.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Predicted Glycosyl Transferase (Escherichia coli str. K-12 substr. W3110]”, GenBank Accession No. BAA15906.1, 12 pages.
Genbank Database (Oct. 7, 2016) “Predicted Glycosyl Transferase (Escherichia coli str. K-12 substr. W3110]”, GenBank Accession No. BAA15912.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Predicted Glycosyl Transferase (Escherichia coli str. K-12 substr. W3110]”, GenBank Accession No. BAE76574.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Predicted Glycosyl Transferas (Escherichia coli STR. K-12 Substr. N3110)”, GenBank Accession No. BAA15898.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Protein-Tyrosine kinase (Escherichia coli str. K-12 substr. W3110)”, GenBank Accession No. BAA15913.1, 13 pages.
Genbank Database (Oct. 7, 2016) “Protein-Tyrosine Phosphatase (Escherichia coli str. K-12 substr. W3110]”, GenBank Accession No. BAE76575.1, 13 pages.
Genbank Databse (Oct. 7, 2016) “Predicted Acyl Transferase (Escherichia coli str. K-12 substr. W3110)”, GenBank Accession No. BAA15911.1, 13 pages.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium COE1]”, GenBank Accession No. WP_016299568.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Vibrio cholerae]”, GenBank Accession No. WP_002030616.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Escherichia coli]”, GenBank Accession No. WP_001592236.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [[Clostridium] bolteae]”, GenBank Accession No. WP_002570768.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Tannerella sp. CAG:118]”, GenBank Accession No. WP_021929367.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides caccae]”, GenBank Accession No. WP_005675707.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. AE2015]”, GenBank Accession No. WP_022772718.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella sp. CAG:891]”, GenBank Accession No. WP_022481266.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Parabacteroides johnsonii]”, GenBank Accession No. WP_008155883.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Salmonella enterica]”, GenBank Accession No. WP_023214330.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides sp. CAG:633]”, GenBank Accession No. WP_022161880.1, 1 page.
Genbank Database (Apr. 27, 1993) “Kluyveromyces Lactis Beta-D-Galactosidase (LAC4) Gene, Complete CDS”, GenBank Accession No. M84410.1, 2 pages.
Genbank Database (Mar. 17, 1994) “E. coli ATP-dependent Protease La (Ion) Gene, Complete CDS”, GenBank Accession No. L20572.1, 2 pages.
Genbank Database (Dec. 6, 1995) “Escherichia coli Capsular Polysaccharide Regulator (rcsA) Gene, Complete CDS”, GenBank Accession No. M58003.1, 2 pages.
Genbank Database (May 4, 1999) “alpha-1,2-fucosyltransferase [Helicobacter pylori]”, GenBank Accession No. AAD29869.1, 1 page.
Genbank Database (Oct. 16, 1999) “wblA [Vibrio cholerae]”, GenBank Accession No. BAA33632.1, 1 page.
Genbank Database (Feb. 20, 2003) “Helicobacter Pylori Alpha-1,¾-Fucosyltransferas (fucTa) Gene, Complete Cds”, GenBank Accession No. AF194963.2, 2 pages.
Genbank Database (Oct. 3, 2003) “putative fucosyltransferase [Escherichia coli]”, GenBank Accession No. AAO37698.1, 1 page.
Genbank Database (Oct. 25, 2005) “Helicobacter Pylori Strain DSM 6709 Alpha-1, 4 Fucosyltransferas (FfucTIII) gene, Complete CDS”, GenBank Accession No. AY450598.1, 2 pages.
Genbank Database (Nov. 4, 2005) “DNA Sequence of rcsB Gene which is Regulator Gene of Capsule Polysaccharide Systhesis Gene (CPS Gene)”, GenBank Accession No. E04821.1, 2 pages.
Genbank Database (Dec. 6, 2005) “putative fucosyltransferase [Escherichia coli]”, GenBank Accession No. AAO37719.1, 1 page.
Genbank Database (Nov. 20, 2008) “Predicted UDP-Glucose lipid Carrier Transferase (Escherichia coli str. K-12 substr. W3110)”, GenBank Accession No. BAA15900.1, 13 pages.
Genbank Database (Dec. 27, 2011) “JP 2011167200-A/17:H. Pylori Fucosyltransferases”, GenBank Accession No. HV532291.1, 1 page.
Genbank Database (Apr. 10, 2012) “glycosyltransferase [Providencia alcalifaciens]”, GenBank Accession No. AFH02807.1, 1 page.
Genbank Database (Sep. 26, 2012) “glycosyl transferase family 11 [uncultured bacterium]”, GenBank Accession No. EKE06679.1, 1 page.
Genbank Database (Sep. 26, 2012) “glycosyl transferase family protein [uncultured bacterium]”, GenBank Accession No. EKE02186.1, 1 page.
Genbank Database (Sep. 26, 2012) “glycosyl transferase family 11 [uncultured bacterium]”, GenBank Accession No. EKE06672.1, 1 page.
Genbank Database (Sep. 26, 2012) “glycosyl transferase family protein [uncultured bacterium]”, GenBank Accession No. EKD23702.1, 1 page.
Genbank Database (Sep. 26, 2012) “hypothetical protein ACD_46C00193G0003 [uncultured bacterium]”, GenBank Accession No. EKD71402.1, 1 page.
Genbank Database (May 29, 2013) “hypothetical protein C819_03052 [Lachnospiraceae bacterium 10-1]”, GenBank Accession No. EOS74299.1, 2 pages.
Genbank Database (Jun. 4, 2013) “Glycosyl transferase family 11/Glycosyltransferase family 6 [Desulfovibrio africanus]”, GenBank Accession No. WP_005984176.1, 1 page.
Genbank Database (Jun. 4, 2013) “hypothetical protein [Bacteroides fragilis]”, GenBank Accession No. WP_005822375.1, 1 page.
Genbank Database (Jun. 29, 2013) “hypothetical protein [Polaribacter franzmannii]”, GenBank Accession No. WP_018944517.1, 1 page.
Genbank Database (Aug. 27, 2013) “glycosyltransferase [Salmonella enterica]”, GenBank Accession No. AFW04804.1, 1 page.
Genbank Database (Dec. 10, 2013) “hypothetical protein HMPREF1199_00667 [Prevotella oralis CC98A]”, GenBank Accession No. ETD21592.1, 2 pages.
Genbank Database (Feb. 28, 2014) “alpha-1,2-fucosyltransferase [Thermosynechococcus sp. NK55a]”, GenBank Accession No. AHB87954.1, 1 page.
Genbank Database (Dec. 16, 2014) “glycosyl transferase family protein [Methanosphaerula palustris E1-9c]”, GenBank Accession No. YP_002467213.1, 2 pages.
Genbank Database (Dec. 16, 2014) “alpha-1,2-fucosyltransferase [Gramella forsetii KT0803]”, GenBank Accession No. YP_860609.1, 2 pages.
Genbank Database (Dec. 16, 2014) “alpha-1,2-fucosyltransferase [Syntrophus aciditrophicus SB]”, GenBank Accession No. YP_462663.1, 2 pages.
Genbank Database (Dec. 16, 2014) “alpha-1,2-fucosyltransferase, putative [Ruegeria pomeroyi DSS-3]”, GenBank Accession No. YP_168587.1, 2 pages.
Genbank Database (Dec. 16, 2014) “fucosyltransferase [Escherichia coli O127:H6 str. E2348/69]”, GenBank Accession No. YP_002329683.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycoside hydrolase family protein [Geobacter lovleyi SZ]”, GenBank Accession No. YP_001952981.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycosyl transferase [Desulfovibrio alaskensis G20]”, GenBank Accession No. YP_389367.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycosyl transferase family protein [Bacteroides vulgatus ATCC 8482]”, GenBank Accession No. YP_001300461.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycosyl transferase family protein [Methanococcus maripaludis C7]”, GenBank Accession No. YP_001329558.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycosyl transferase family protein [Desulfovibrio vulgaris str. ‘Miyazaki F’]”, GenBank Accession No. YP_002437106.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycosyl transferase family protein [Chlorobium phaeobacteroides BS1]”, GenBank Accession No. YP_001960319.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycosyl transferase family protein [Bacteroides vulgatus ATCC 8482]”, GenBank Accession No. YP_001300694.1, 2 pages.
Genbank Database (Dec. 16, 2014) “glycosyltransferase [Geobacter metallireducens GS-15]”, GenBank Accession No. YP_006720295.1, 2 pages.
Genbank Database (Dec. 17, 2014) “alpha-1,2-fucosyltransferase [Helicobacter mustelae 12198]”, GenBank Accession No. YP_003517185.1, 2 pages.
Genbank Database (Dec. 17, 2014) “alpha-1,2-fucosyltransferase [Colwellia psychrerythraea 34H]”, GenBank Accession No. YP_270849.1, 2 pages.
Genbank Database (Dec. 17, 2014) “alpha-1,2-fucosyltransferase [Pseudovibrio sp. FO-BEG1]”, GenBank Accession No. YP_005080114.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase 11 [Butyrivibrio proteoclasticus B316]”, GenBank Accession No. YP_003829743.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase 11 [Butyrivibrio proteoclasticus B316]”, GenBank Accession No. YP_003831842.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase 11 [Butyrivibrio proteoclasticus B316]”, GenBank Accession No. YP_003829826.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase 11 [Butyrivibrio proteoclasticus B316]”, GenBank Accession No. YP_003829733.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase 11 [Butyrivibrio proteoclasticus B316]”, GenBank Accession No. YP_003829712.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Akkermansia muciniphila ATCC BAA-835]”, GenBank Accession No. YP_001877555.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family protein [Methylotenera mobilis JLW8]”, GenBank Accession No. YP_003048467.1, 2 pages.
Genbank Database (Dec. 17, 2014) “Glycosyl transferase family 11 [Dechlorosoma suillum PS]”, GenBank Accession No. YP_005026324.1, 2 pages.
Genbank Database (Dec. 17, 2014) “glycosyl transferase family 11 [Sideroxydans lithotrophicus ES-1]”, GenBank Accession No. YP_003525501.1, 2 pages.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Clostridium sp. CAG:306]”, GenBank Accession No. WP 022247142.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella sp. oral taxon 306]”, GenBank Accession No. WP_009434595.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Brachyspira sp. CAG:484]”, GenBank Accession No. WP_021917109.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Thalassospira profundimaris]”, GenBank Accession No. WP_008889330.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Acetobacter sp. CAG:267]”, GenBank Accession No. WP_022078656.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Dysgonomonas mossii]”, GenBank Accession No. WP_006842165.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Clostridium sp. KLE 1755]”, GenBank Accession No. WP_021636924.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Gillisia limnaea]”, GenBank Accession No. WP_006988068.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Clostridium sp. KLE 1755]”, GenBank Accession No. WP_021636949.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Francisella philomiragia]”, GenBank Accession No. WP_004287502.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Pseudomonas fluorescens]”, GenBank Accession No. WP_017337316.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Herbaspirillum sp. YR522]”, GenBank Accession No. WP_008117381.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella histicola]”, GenBank Accession No. WP_008822166.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Flavobacterium sp. WG21]”, GenBank Accession No. WP_017494954.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Gallionella sp. SCGC AAA018-N21]”, GenBank Accession No. WP_018293379.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Prevotella paludivivens]”, GenBank Accession No. WP_018463017.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Mariprofundus ferrooxydans]”, GenBank Accession No. WP_009849029.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacillus cereus]”, GenBank Accession No. WP_002174293.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:534]”, GenBank Accession No. WP_022352106.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [zeta proteobacterium SCGC AB-137-CO9]”, GenBank Accession No. WP_018281578.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Rhodobacterales bacterium HTCC2255]”, GenBank Accession No. WP_008033953.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Spirulina subsalsa]”, GenBank Accession No. WP_017302658.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Vibrio cyclitrophicus]”, GenBank Accession No. WP_010433911.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium NK4A179]”, GenBank Accession No. WP_022783177.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio sp. AE3009]”, GenBank Accession No. WP_022778576.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides ovatus]”, GenBank Accession No. WP_004317929.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Desulfospira joergensenii]”, GenBank Accession No. WP_022664368.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides dorei]”, GenBank Accession No. WP_007832461.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:24]”, GenBank Accession No. WP_021916201.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Clostridium hathewayi CAG:224]”, GenBank Accession No. WP_022031822.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides caccae]”, GenBank Accession No. WP_005678148.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Butyrivibrio fibrisolvens]”, GenBank Accession No. WP_022756304.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium A4]”, GenBank Accession No. WP_016280341.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Roseobacter sp. MED193]”, GenBank Accession No. WP_009810150.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Cesiribacter andamanensis]”, GenBank Accession No. WP_009197396.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Rhodopirellula sallentina]”, GenBank Accession No. WP_008679055.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Segetibacter koreensis]”, GenBank Accession No. WP_018611017.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Amphritea japonica]”, GenBank Accession No. WP_019621022.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Spirosoma spitsbergense]”, GenBank Accession No. WP_020606886.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium 28-4]”, GenBank Accession No. WP_016292012.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Lachnospiraceae bacterium COE1]”, GenBank Accession No. WP_016302211.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides sp. HPS0048]”, GenBank Accession No. WP_002561428.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides thetaiotaomicron]”, GenBank Accession No. WP_016267863.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Vibrio nigripulchritudo]”, GenBank Accession No. WP_022596860.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Escherichia coli]”, GenBank Accession No. WP_001581194.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Firmicutes bacterium CAG:24]”, GenBank Accession No. WP_021914998.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Amphritea japonica]”, GenBank Accession No. WP_019622926.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides salyersiae]”, GenBank Accession No. WP_005923045.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides fragilis]”, GenBank Accession No. WP_005786334.1, 1 page.
Genbank Database (Dec. 9, 2016) “alpha-1,2-fucosyltransferase [Bacteroides nordii]”, GenBank Accession No. WP_007486843.1, 1 page.
Related Publications (1)
Number Date Country
20220056497 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
61993742 May 2014 US
Continuations (1)
Number Date Country
Parent 15307914 US
Child 17354819 US