The present invention relates to fatty acids with one or more unsaturations, of odd hydrocarbon chain, wherein the chemical structure of said fatty acids corresponds to that of the metabolites of mono- or polyunsaturated alpha-hydroxylated fatty acids. The present invention also relates to compositions comprising said odd-chain fatty acids, to their medical uses, as well as to their use as efficacy indicators for the treatment of a patient with the mono- or polyunsaturated alpha-hydroxylated fatty acids of which they are metabolites.
It is known that changes in the lipid composition of the membranes influence cell signaling, which can lead to the development of diseases, or reverse them, as well as to prevent them. Similarly, therapeutic interventions focused on regulating membrane lipid levels can prevent and reverse (cure) pathological processes.
In general, fatty acids whose chemical structure presents an odd number of carbon atoms have not been considered of therapeutic relevance since, in humans and, in general, in mammals, the immense majority of the fatty acids present are of even chain, usually between 14 and 24 carbon atoms, the presence of fatty acids of odd chain being very rare and limited to traces.
Currently, the data available in the scientific literature indicate that small structural differences in fatty acids have important effects for biological activity and, therefore, for therapeutic activity. It is well known that many drugs have known adverse effects or are toxic to various cells or tissues. Prodrugs are compounds that when ingested undergo metabolic reactions and give rise to a drug or medicine, their metabolite, which has an effect on the health of a patient or subject.
Thus, on the one hand, the administration of a therapeutically active compound in the form of a prodrug allows modulating the distribution and absorption of said compound over time, since its metabolism allows generating the drug, i.e. the metabolite, only in those cells or tissues in which the metabolic reactions that transform said prodrug into its active metabolite occur. In this regard, these prodrugs have other advantages, such as allowing a delayed or controlled administration of the active metabolite, avoiding accumulations thereof which could have harmful effects on the body. On the other hand, the identification and synthesis of said therapeutically active metabolites allow to act more intensely, making it possible to administer higher therapeutically active doses and in controlled timeframes, than those that would occur during the spontaneous metabolism of the corresponding prodrug. Therefore, it is an object of the present invention to provide therapeutically active compounds (metabolites) which are derived from other compounds or prodrugs, so that the administration of such metabolites, alone, by means of their prodrugs, or in combination with their respective prodrugs, makes it possible to modulate the therapeutic effect and the possible adverse side effects, depending on the condition of the patient and the pathological condition to be treated.
A compound selected from the group consisting of: a compound of formula (II), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and a compound of formula (III), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is 0, 3 or 6 and m=0; and wherein a+3b+c+3 is an even integer.
More particularly, the present invention relates to a compound selected from the group consisting of:
a compound of formula (II), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
wherein: a=6, b=1 and c=6; or a=6, b=2 and c=3; or a=6, b=3 and c=0; or a=3, b=3 and c=3; or a=2, b=4 and c=3; or a=2, b=5 and c=0; and a compound of formula (Ill), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)b−1−m)—(CH2)c—CH3 (Ill)
where a=1, b=6, c=0 and m=0.
The present invention also relates to a compound selected from the group consisting of a compound of formula (II) and a compound of formula (III), as described herein, for use as a medicament and, in particular, for use in the induction of neuroregeneration and in the prevention and/or treatment (including maintenance treatment) of a disease or pathology selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
The present invention also relates to a pharmaceutical or nutraceutical composition comprising at least a first compound selected from the group consisting of a compound of formula (II) and a compound of formula (III), and optionally a compound of formula (I), as described herein.
Finally, the present invention relates to an in vitro method of determining the efficacy of a therapeutic or preventive treatment of a disease or pathology with a compound of formula (I), or with a pharmaceutically acceptable salt or ester thereof, in a subject, wherein said method comprises determining in vitro in a biological sample of said subject, the amount of a compound of formula (II) or of formula (III), as described herein, or of its carboxylate anion, or of a derivative formed therefrom in vivo or in vitro, wherein said amount is related to the efficacy of the treatment of said disease or pathology
The present invention relates to a compound selected from the group consisting of: a compound of formula (II), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CHs (II)
and a compound of formula (III), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and wherein a+3b+c+3 is an even integer.
All values of a, b, c and m of the present invention are integers greater than or equal to zero. Once the value of b is defined in a formula, the value of m is defined as an integer between 0 and (b−1) where said value of b is the one that has already been defined between 1 and 7. For purposes of the present invention, when no particular formula or composition is indicated, the values of a, b, c and m are applicable to all formulas and compositions described herein.
In one embodiment of the invention, a is an integer between 1 and 7; b is an integer between 2 and 7; c is 0, 3 or 6, m is 0 and a+3b+c+3 is an even integer. In another embodiment of the invention, a is an integer between 1 and 14; b is 1; c is 0, 3 or 6, m is 0; and wherein a+3b+c+3 is an even integer.
Most preferably, for all embodiments of the present invention m=0 and thus the present invention relates to a compound selected from the group consisting of: a compound of formula (II), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)—(CH2)c—CH3 (II)
and a compound of formula (III), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a+3—(CH═CH—CH2)(b−1)—(CH2)c—CH3 (III);
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is 0, 3 or 6; and wherein a+3b+c+3 is an even integer.
A preferred embodiment of the invention relates to a pharmaceutically or nutraceutically acceptable salt or ester of a compound of formula (II) or formula (III). More preferably, said salt is a sodium salt, and said ester is a methyl or ethyl ester.
The compounds of formula (II) or formula (III) of the present invention correspond to the formulas of metabolites of a compound of formula (I), or of a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and wherein a+3b+c+3 is an even integer.
The compounds of formula (I) are therefore mono- or polyunsaturated alpha-hydroxylated fatty acids with an even number of carbon atoms (a+3b+c+3 is an even integer).
On the one hand, the 2-hydroxymonounsaturated fatty acids of formula (I), of even chain, are prodrugs of other monounsaturated fatty acids of formula (II), of odd chain, as said prodrugs undergo a decarboxylation process.
On the other hand, the 2-hydroxypolyunsaturated fatty acids of formula (I), of even chain, are prodrugs of other mono- or polyunsaturated fatty acids, of odd chain, which, in the case in which a decarboxylation occurs, but the hydrogenation of one of the double bonds of the compound of formula (I) does not occur, the compound derived from the prodrug of formula (I) will be a compound of formula (II), while, in the case in which the hydrogenation of one of the double bonds and a decarboxylation of the compound of formula (I) occurs, the compound derived from the prodrug of formula (I) will be a compound of formula (Ill), in which the hydrogenated double bond may be in a different position depending on the value of m.
By way of illustration,
Thus, HPA, according to the invention, is a compound of formula (III), wherein m=0, if HPA is the metabolite of a prodrug of formula (I) wherein a=1, b=6, c=0, which is an omega-3 polyunsaturated alpha-hydroxylated fatty acid of 22 carbon atoms and 6 conjugated double bonds (DHA-H). However, HPA can be a compound of formula (II), for cases where HPA is the metabolite of a prodrug of formula (I), wherein a=4, b=5, and c=0, which is an omega-3 polyunsaturated alpha-hydroxylated fatty acid of 22 carbon atoms and 5 double bonds (2-hydroxy-docosapentaenoic acid). An embodiment of the present invention relates to a compound of formula (III), wherein a=1, b=6, c=0 and m=0.
Additionally,
On the other hand, according to the metabolism scheme of
Although the medical uses of compounds of formula (I) are known, the present invention describes the formula of their metabolites, compounds of formula (II) or formula (III) that provide a specific and differentiated therapeutic action, in the body, after the metabolism of said compounds of formula (I), which therefore act as prodrugs thereof. Thus, the present invention provides a way of adapting a therapeutic treatment depending on the nature of the disease and prognosis of the patient to be treated.
Specifically, the present invention discloses concrete formulas of metabolites of alpha-hydroxylated, mono- or poly-unsaturated fatty acids which are therapeutically effective. Thus, the present invention further describes the uses as a medicament of said metabolites of formula (II) or formula (III), alone, allowing to control the amount administered; or its use as a medicament in combination with its prodrug of formula (I); or its use as a medicament by administering said prodrug of formula (I), allowing to regulate the intensity and dose administered over time during a treatment. Furthermore, the administration of the compounds of formula (II) or formula (III), by means of the administration of its prodrug of formula (I), thus makes it possible to modulate the distribution and absorption of a drug, since its metabolism makes it possible to generate the corresponding drug only in those cells or tissues in which the metabolic reactions that transform said prodrug occur, the active compound being obtained in said cells. In any case, this specification relates to both the compounds of formula (II) and the compounds of formula (III), whether obtained by chemical synthesis (see example 1), or obtained during the metabolism of the compounds of formula (I).
In this regard, for the purposes of the present invention, the term “metabolites” is used to designate such compounds of formula (II) or formula (III), whether their origin is the metabolism of a compound of formula (I) in the body of a subject, or whether such compounds of formula (II) or formula (III) are synthetically obtained products. Thus, for the purposes of the present invention the term compound of formula (I) is used interchangeably with the term “prodrug of formula (I)” and, likewise, the terms “compound of formula (II)” and “compound of formula (III)” are used interchangeably, respectively, with the terms “metabolite of formula (II)” and “metabolite of formula (III)”, because, said compounds of formula (II) and formula (III), whether obtained by chemical synthesis or resulting from the natural metabolism of a compound of formula (I), have the chemical structure or chemical formula of a metabolite of the compound of formula (I) which consequently acts as a prodrug thereof.
To illustrate the invention, the examples of the present invention show how the therapeutic effect exerted by the prodrugs of formula (I) is directly related to the therapeutic effect exerted by the metabolite of formula (II) or formula (III) on the body, and also show the therapeutic effect exerted, per se, by the compounds of formula (II) and formula (III). Thus, as shown in example 7.3, administration of the sodium salt of 2-hydroxyoleic acid (OHOA), compound of formula (I), produced a greater reduction in the size of xenographic tumors in mice the greater the cellular accumulation of the metabolite C17:1n-9 of formula (II). Thus, the therapeutic action of the sodium salt of 2OHOA is in part related to its conversion to the metabolite C17:1n-9. On the other hand, example 6.2 of the present invention demonstrates that the formation of the metabolite C17:1n-9 (8Z-heptadecenoic acid), from the incorporation of 2OHOA, differs between tumor and non-tumor cells. Glioma cells showed a significant increase in their C17:1n-9 levels versus 2OHOA (
On the other hand, administration of a compound of formula (II) or of formula (III), such as HPA, under the same experimental conditions as administration of a compound of formula (I), such as DHA-H, results in HPA levels an order of magnitude higher than those originating from DHA-H, which would imply that the therapeutic activity of HPA could be higher than that of DHA-H. This effect is due to the structural differences between the prodrug of formula (I) (DHA-H) and its metabolite of formula (III) (HPA). In fact, in the present invention it is demonstrated that the uptake of the alpha-hydroxylated form of DHA (DHA-H) is prevented compared to that of the non-hydroxylated analogue (
On the other hand, as shown in
However, as shown in example 6.3, C17:1n-9 had an antiproliferative effect by being administered directly in place of its prodrug, both in tumor cells and in non-tumor cells, whereby the administration of said metabolite of formula (II), C17:1n-9, through its prodrug of formula (I), 2OHOA, provides a selective way of producing a therapeutic effect, allowing a longer administration of said therapy without producing undesirable adverse effects and being equally useful in maintenance therapy. Specifically, odd-chain fatty acids are metabolized by β-oxidation, resulting in propionyl-CoA. Unlike even chain fatty acids, whose metabolism ends in the production of acetyl-CoA which, in turn, is metabolized via the Krebs cycle. Propionyl-CoA can be transformed into propionic acid, which causes, as an adverse effect, metabolic acidosis if it accumulates. Propionyl-CoA can be metabolically transformed into succinyl-CoA (which is metabolized via the Krebs cycle), in a biotin and vitamin B12 dependent process. This process is not a usual metabolic pathway of fatty acids, because in the body of mammals, the vast majority of fatty acids are of even chain. Accordingly, this metabolic pathway selectively affects the odd-chain polyunsaturated fatty acids, such as the metabolites of formula (II) and formula (III), and may be saturated in the event that there are too high intracellular concentrations of such odd-chain metabolites or specific pathological situations that result in biotin or vitamin B12 deficiency, leading to the aforementioned adverse effect of propionic acidosis.
Thus, the metabolite administered directly to the cells has a toxin that in some cases is undesirable. This toxicity can be modulated when the prodrug or compound of formula (I) is administered, can regulate the effect and the toxicity of the metabolite of formula (II) or (III). In this regard, slower uptake of the prodrug compared to non-hydroxylated fatty acids could be useful in avoiding excessively high intracellular metabolite concentrations and, consequently, a possible accumulation of propionic acid. Thus, depending on the metabolic condition, the regimen of administration and the pathology to be treated, and in particular in those cases where a more intense therapeutic action is desired, or in treatments of reduced duration, it may be desirable to use a metabolite of formula (II) or of formula (III), or a pharmaceutically acceptable salt or ester thereof; while in other cases, such as in long-term treatments, or maintenance treatments, it may be desirable to use a time-controlled administration, by using the prodrug of formula (I), or a pharmaceutically acceptable salt or ester thereof, such as the sodium salt of DHA-H. Thus, the administration of the metabolites of formula (II) or of formula (III) by using the compounds of formula (I), of even chain, as prodrugs, allows a time-regulated administration of their metabolites of formula (II) or of formula (III), which have an odd chain.
For all these reasons, the present invention shows how the administration of the compounds of formula (II) or of formula (III) by means of the administration of their prodrugs of formula (I), allows a time-regulated administration of their odd-chain metabolites.
Thus, the present invention makes it possible to adapt the therapy, depending on the nature of the disease and prognosis of the patient to be treated, to use the metabolite, or the compound of formula (I), i.e., the prodrug, as a medicament. On the one hand, in cases where short-term acute therapeutic activity is required, the use of the metabolite would be more appropriate or prioritized, in order to obtain a rapid and significant effect. On the other hand, when long-term treatment is required, in chronic diseases, for example, or if maintenance treatment is required, the use of the prodrug, or compositions that combine prodrug and metabolite in different ratios, may be recommended or prioritized, depending on the time and situation/severity of the disease.
Thus, in general, the use of the compounds of formula (II) and (III), and their pharmaceutically or nutraceutically acceptable salts, is beneficial to the organism as shown in the examples of the present application. The action of these compounds of formula (II) and (III), by administering the corresponding prodrug of formula (I), makes it possible to avoid adverse effects derived from their metabolism and accumulation, when a prolonged or high dose administration is required, when administering said compounds of formula (II) and (III) in a controlled manner, as a result of its metabolism. In this way, the prodrugs having formula (I) provide a way of administering the metabolites of formula (II) or of formula (III) with a lower risk of occurrence of adverse side effects and providing a therapeutically effective amount of said metabolites in a sustained manner over time, as the prodrug having formula (I), once administered, is metabolized. Thus, depending on the metabolic condition, the regimen of administration and the pathology to be treated, it may be desirable to use directly a compound of formula (II) or formula (III), or a pharmaceutically acceptable salt or ester thereof (metabolites), or it may be desirable to use a time-controlled administration, by using the prodrug of formula (I), or a pharmaceutically acceptable salt or ester thereof (prodrug), or a combination thereof (prodrug+metabolites).
Thus, one aspect of the invention relates to a compound selected from the group consisting of a compound of formula (II), or a pharmaceutically acceptable salt or ester thereof :
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III);
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and wherein a+3b+c+3 is an even integer, for use as a medicament, and in particular for use in the induction of neuroregeneration and in the prevention and/or treatment (including maintenance treatment) of a disease or pathology selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
For the purposes of the present invention the term “maintenance treatment” or “maintenance therapy” is defined as a therapeutic treatment administered as a complement to a primary or primary treatment or therapy, for the purpose of either preventing or delaying the recurrence of the disease, which has been completely or partially relieved after treatment with a primary treatment or therapy, or to slow the development of a disease after the end of treatment with a primary therapy.
Preferably, the present invention relates to a compound of formula (II) or a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof, for use in a treatment or therapy of maintenance of a disease or pathology, and more preferably in a treatment or maintenance therapy of cancer.
An embodiment of the invention therefore relates to the use of a compound selected from the group consisting of a compound of formula (II), or a pharmaceutically acceptable salt or ester thereof, and a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof, as described herein, in the manufacture of a medicament for the induction of neuroregeneration or for the prevention and/or treatment (including maintenance treatment) of a disease or pathology selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
Another embodiment of the present invention relates to a method of preventing and/or treating a disease or pathology, or to a method of inducing neuroregeneration in a patient, wherein said method comprises administering to said patient an effective amount of a compound selected from the group consisting of a compound of formula (II), or a pharmaceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III);
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and wherein a+3b+c+3 is an even integer.
For the purposes of the present invention, effective amount or therapeutically effective amount shall be understood as an amount that provides a therapeutic effect without causing unacceptable toxic effects on the patient. The effective amount or dose of the medicament depends on the compound and the condition or disease treated, and for example the age, weight and clinical condition of the treated patient, the form of administration, the clinical history of the patient, the seriousness of the disease and the potency of the compound administered.
Additionally, one embodiment of the invention relates to a compound selected from the group consisting of a compound of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and a compound of formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III);
for use in preventing and/or treating a disease or pathology or in inducing neuroregeneration, wherein the prevention and/or treatment or the induction of neuroregeneration is characterized by administering a compound or prodrug of formula (I), or a pharmaceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
and wherein said compound of formula (I) is metabolized to produce a therapeutically effective amount of:
a compound of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
or a compound of formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III);
and wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and wherein a+3b+c+3 is an even integer.
Preferably, said disease is selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain;
paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
Thus, another aspect of the present invention relates to a method of administering an effective amount of a compound of formula (II), or of a compound of formula (III), as described herein, for the prevention and/or treatment of a disease or pathology, or for the induction of neuroregeneration and/or prevention of neurodegeneration, wherein said compound of formula (II) or said compound of formula (III), is administered as a prodrug of formula (I), or as a pharmaceutically acceptable salt or ester thereof, as described herein.
The invention further relates to a method of preventing and/or treating a disease or pathology; wherein said method comprises administering an effective amount of a prodrug of a compound of formula (II), or a pharmaceutically acceptable salt or ester thereof; or a prodrug of a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof, as described herein; wherein said prodrug of compounds of formula (II) or formula (III) has formula (I), or a pharmaceutically acceptable salt or ester thereof, as described herein.
Additionally, the present invention relates to a method of preventing and/or treating a disease or pathology, or inducing neuroregeneration and/or preventing neurodegeneration, wherein said method comprises administering, to a patient in need thereof, an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
wherein the compound of formula (I) is metabolized in the body of said patient to produce a therapeutically effective amount of a metabolite:
having formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
or
having formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III);
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and a+3b+c+3 is an even integer, wherein said metabolite is responsible for the prevention and/or treatment of said disease or pathology and for the induction of neuroregeneration and/or prevention of neurodegeneration in the patient. Preferably, upon administration of an effective amount of a compound of formula (I), the metabolite having formula (II), or having formula (III), is present in the body of said patient.
In a preferred embodiment, said compound of formula (I) is metabolized by more than 1%, 10%, more than 40%, more than 50%, and up to 99% into a metabolite of formula (II) or formula (III) upon administration.
Another embodiment relates to a method of preventing and/or treating a disease or pathology selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease, and for inducing neuroregeneration and/or preventing neurodegeneration; wherein said method comprises administering to a patient an effective amount of a prodrug having the structure of formula (I), or a pharmaceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
wherein said prodrug is converted in vivo to release an active compound into cells of said patient; wherein said active compound has a structure:
of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
or
of formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and a+3b+c+3 is an even integer.
Preferably said conversion is a chemical or physiological process. For purposes of the present invention the term “chemical process” refers to the conversion of the prodrug in vivo to release the active compound by a chemical reaction, wherein the prodrug is a reagent or substrate of the chemical reaction, and the active compound is a reaction product. Furthermore, for the purposes of the present invention the term “physiological process” refers to a conversion due to an event or process that occurs in an organism naturally, for example, due to the activity of enzymes.
Furthermore, although the compounds of formula (I) act therapeutically via their metabolites of formula (II), or of formula (III), said compounds of formula (I) also show biological activity independent of said metabolic pathway, as shown in example 6.4 of the present invention.
Thus, another embodiment of the invention relates to a compound selected from the group consisting of a compound of formula (II) and a compound of formula (III), or to a pharmaceutically acceptable salt or ester thereof, as described herein, for use as a medicament and, in particular, for use in inducing neuroregeneration and/or preventing neurodegeneration and/or for use in preventing and/or treating a disease or pathology, according to the present invention, characterized in that said compound is administered before, after or in conjunction with a compound of formula (I), or with a pharmaceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14 and a+3b+c+3 is an even integer; and wherein said values of a, b and c are equal to or different from the values of a, b and c of the compound of formula (II) or the compound of formula (III).
Additionally, the present invention relates to a method of inducing neuroregeneration and/or preventing neurodegeneration, or to a method of preventing and/or treating a disease or pathology, comprising administering an effective amount of a compound of formula (II), or a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof, to a patient and, wherein said method is characterized in that it comprises further administering a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, as described herein; and wherein said compound of formula (I) is administered before, after or in conjunction with said compound of formula (II) or formula (III).
For purposes of the present invention, the term “prodrug” refers to a compound that upon administration to a subject is transformed, by a metabolic process, into a second therapeutically active compound.
On the other hand, the term “subject” refers, for the purposes of the present invention, to a human or an animal.
The term “pharmaceutically acceptable” refers, for purposes of the present invention, to that compound or substance authorized or authorized by a regulatory agency of the federal government or a state government or listed in the European, U.S., or other generally recognized pharmacopoeia for use in animals or humans. Throughout this specification, said term applies primarily to the salts and esters of the compounds of formulae (I), (II), and (III), which are defined according to the present disclosure.
Thus, the term “pharmaceutically acceptable salt” refers to a salt of a compound that also possesses the desired pharmacological activity of the parent compound from which it is derived. Preferably, the pharmaceutically acceptable salt is the sodium salt.
For purposes of the present invention, the term “ester” refers to any compound in which the hydroxyl group belonging to a carboxylic acid moiety has been replaced by an alkoxide group. In a preferred embodiment of the invention, the ester is a methyl or ethyl ester. More preferably, the ester is an ethyl ester.
The term “nutraceutically acceptable” refers, for the purposes of the present invention, to everything that is of use in nutraceutical products. Thus, for the purposes of the present invention the term “nutraceutical” or “nutraceutical composition” refers to a dietary supplement, to be taken alone, or in combination with other foods and which produces a beneficial effect for the health of the subject who ingests it, especially in the prevention of diseases. Throughout this specification, said term applies primarily to the salts and esters of the compounds of formulae (I), (II), and (III), which are defined according to the present disclosure.
For the purposes of the present invention, the term “stereoisomer” refers to those compounds that have the same chemical formula and the same sequence of atoms, but have a different three-dimensional orientation in space, and includes the stereoisomers R and S (which also use the nomenclature (+) and (−)) resulting from the presence of a chiral carbon, as well as the stereoisomers E and Z (which also use the cis/trans nomenclature) resulting from the arrangement of the substituents of the carbons that constitute a double bond. Thus, since the prodrugs of formula (I) comprise a chiral carbon (alpha carbon to the carboxylic group), the invention also includes the two stereoisomers R and S, as well as any mixture of both, with respect to the configuration of said chiral carbon. On the other hand, since both the prodrugs of formula (I) and their metabolites of formula (II), or (III), comprise C═C double bonds, the invention also includes all of the E and Z stereoisomers for each of their double bonds. In a preferred embodiment, all the double bonds of the prodrug of formula (I), of the compound of formula (II), and of the compound of formula (III), have an all-cis configuration. Thus, if the prodrug of formula (I) has a cis/trans (or E/Z) stereochemical configuration determined from its double bonds, the metabolite of formula (II) or formula (III) will also have such a configuration for the double bonds it contains.
For purposes of the present invention, the term “comprises” indicates that it includes a group of certain features (e.g., a group of features A, B, and C) and is interpreted to mean that it includes those features (A, B, and C), but does not exclude the presence of other features (e.g., features D or E), provided that they do not render the claim impracticable. Additionally, the terms “contains”, “includes”, “has” or “encompasses”, and the plural forms thereof, should be taken as synonyms of the term “comprises” for the purposes of the present invention. On the other hand, if the term “consists of” is used, then no additional features are present in the apparatus/method/product other than those following said term. In this regard, for the purposes of the present invention, the term “comprises” may be replaced by any of the terms “consists of”, or “consists essentially of”. Accordingly, “comprises” may refer to a group of features A, B, and C, which may further include other features, such as E and D, provided that such features do not render the claim impracticable, but such term “comprises” also includes the situation in which the group of features “consists of” or “consists essentially” of A, B, and C.
Furthermore, the present invention makes it possible to support an administration of a compound of formula (I), in particular of 2OHOA, or a pharmaceutically acceptable salt or ester thereof, more preferably the sodium salt of 2OHOA, in a maintenance treatment (maintenance therapy), wherein said compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, is administered at different intervals over a period of time, the cumulative concentration of its metabolite of formula (II), or of formula (III), being a measure of the effectiveness of the treatment. Thus, said in vitro method of determining the efficacy of a treatment with a compound of formula (I), or with a pharmaceutically acceptable salt or ester thereof, comprises determining the amount of a compound of formula (II), or of formula (III), or of its carbon/late anion, or of a derivative formed therefrom.
In this regard, for purposes of the present invention the term “biomarker” refers to a first compound or substance, or a derivative of said first compound or substance, which can be used to determine the response and/or efficacy of a treatment with a second compound or substance. Thus, for purposes of the present invention, the metabolites of formula (II), or of formula (III), can be used as biomarkers for determining the response and/or efficacy of a treatment with a compound of formula (I).
Thus, another aspect of the invention relates to an in vitro method for determining the efficacy of a therapeutic or preventive treatment of a disease or pathology, or of a neuroregeneration induction treatment, with a compound of formula (I), or with a pharmaceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
in a subject, wherein said method comprises determining in vitro in a biological sample of said subject, the amount of a compound:
of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
or
of formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
or of its carboxylate anion, or of a derivative formed therefrom in vivo or in vitro, wherein said amount is related to the efficacy of the treatment; and wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and wherein a+3b+c+3 is an even integer.
Said method therefore comprises determining the amount of a compound of formula (II), or of formula (III), of their respective carboxylate anions, or of a derivative formed therefrom.
Said derivative of the compound of formula (II), or (III), may be formed in vitro by reacting said compound of formula (II) or (III), comprised in the in vitro sample, with a substance to obtain a derivative thereof. In this case, the method of the invention comprises determining the amount of said derivative of formula (II), or of formula (III), formed in vitro. For example, some techniques for the detection of fatty acids require their prior chemical modification and thus, it is customary for detection by gas chromatography to require that the fatty acid sample (in this case a compound of formula (II), or of formula (III)) be transformed into its respective methyl ester for detection and quantification.
On the other hand, said derivative of the compound of formula (II), or of formula (III), can be a metabolic derivative or a derivative formed in vivo (result of a reaction occurring in vivo), formed as a result of the reaction of said compound of formula (II), or of formula (III), with another lipid, protein, enzyme, nucleotide, carbohydrate, etc. Thus, said derivative can be an ester of said compound of formula (II), or of formula (III), such as for example, a glycerophospholipid (such as phosphatidylcholine, phosphatidylethanolamine, phosphatatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid or any of its smooth forms, such as lysophosphatidylcholine, lysophosphatidylethanolamine, etc.), a plasmalogen (alkyl or alkenyl), a cholesterol ester, a glycerolipid such as triacylglyceride (triglyceride) or diglycerolglycerol, a cardiolipin, a sphyngolipid, a thioester with coenzyme A (acyl-CoA), or an acylcarnitine, inter alia. In this case, the method of the invention comprises determining in vitro the amount of said metabolic derivative (or derivative formed in vivo) in the biological sample.
Thus, the amount of said compound of formula (II), or of formula (III), or of their respective carboxylate anions, or of a derivative formed therefrom in vivo or in vitro, is related to the efficacy of the treatment and/or prevention of a disease or pathology, or to a neuroregeneration induction treatment, in a subject with the compound of formula (I), wherein the levels of said compound of formula (II), or of formula (III), or of its carboxylate anion, or of its derivative, compared to a control group, are related to the efficacy of the therapeutic or preventive treatment of a disease or pathology, with said compound of formula (I), or with a pharmaceutically acceptable salt, or with an ester thereof.
Another aspect of the invention relates to the use of a compound:
of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
or
of formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
or of the respective carboxylate anion, or of a derivative formed therefrom in vivo or in vitro, for determining in vitro the efficacy of a therapeutic or preventive treatment of a disease or pathology, or of a neuroregenerative induction treatment, with a compound of formula (I), or with a pharmaceutically acceptable salt, or with an ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
in a subject, wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and wherein a+3b+c+3 is an even integer.
More preferably, the disease or pathology is selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease. Still more preferably, the disease or pathology is selected from a neurological or neurodegenerative disease; a cancer; an inflammatory disease; and a metabolic disease.
In a more preferred embodiment, the method determines the efficacy of a treatment with a pharmaceutically acceptable salt of the compound of formula (I) and even more preferably with the sodium salt of the compound of formula (I).
In an embodiment of the invention, the biological sample is a blood sample (including plasma or serum), a urine sample, a saliva sample, a biopsy of a tissue, cerebrospinal fluid, or a sweat sample.
The present invention also relates to a pharmaceutical composition comprising at least a first compound selected from the group consisting of:
a compound of formula (II), or a pharmaceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and
a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
wherein said composition optionally comprises a second compound of formula (I), or a pharmaceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
and wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and a+3b+c+3 is an even integer; and at least one pharmaceutically acceptable excipient.
The present invention also relates to a pharmaceutical composition comprising at least a first compound selected from the group consisting of:
a pharmaceutically acceptable salt or ester of a compound of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and
a pharmaceutically acceptable salt or ester of a compound of formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
wherein said composition optionally comprises a pharmaceutically acceptable salt or ester of a compound of formula (I):
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
and wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and a+3b+c+3 is an even integer; and at least one pharmaceutically acceptable excipient.
Another embodiment of the invention relates to a pharmaceutical composition comprising at least a first compound selected from the group consisting of a compound of formula (II) and a compound of formula (III), wherein said composition optionally comprises a pharmaceutically acceptable salt or ester of a compound of formula (I), as described above; and at least one pharmaceutically acceptable excipient; for use as a medicament; and in particular, for use in inducing neuroregeneration and/or preventing neurodegeneration, and for use in preventing and/or treating a disease or pathology selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
In a preferred embodiment of the invention, said at least first compound is a pharmaceutically acceptable salt or ester of a compound of formula (II), or of a compound of formula (III), and/or said second compound is a pharmaceutically acceptable salt or ester of a compound of formula (I).
One embodiment of the invention relates to the use of a pharmaceutical composition comprising at least a first compound selected from the group consisting of a compound of formula (II) and a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof, wherein said composition optionally comprises a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, as described above; and at least one pharmaceutically acceptable excipient; in the manufacture of a medicament for inducing neuroregeneration and/or preventing neurodegeneration, and/or for preventing and/or treating a disease or pathology.
Another embodiment of the invention relates to a method of preventing and/or treating a disease or pathology, or for inducing neuroregeneration and/or preventing neurodegeneration; wherein said method comprises administering, to a patient in need thereof, an effective amount of a pharmaceutical composition comprising at least a first compound selected from the group consisting of a compound of formula (II) and a compound of formula (III), or a pharmaceutically acceptable salt or ester thereof, wherein said composition comprises, optionally, a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, as described above; and at least one pharmaceutically acceptable excipient.
Preferably, said disease or pathology is selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
A person skilled in the art may select one or more pharmaceutically acceptable vehicles or excipients known in the art, such that the pharmaceutical compositions are suitable for administration to both a human subject and an animal.
In a preferred embodiment of the invention, said excipient is albumin, for example: ovalbumin, lactalbumin, native or recombinant albumin of human, bovine, murine, or rabbit origin, more preferably, human serum albumin or bovine serum albumin.
The pharmaceutical compositions disclosed in the present invention may also be co-administered, prior to or subsequent to further therapy. Preferably, such additional therapy is radiation therapy, electric fields for the treatment of tumors (Tumor Treatment Fields), immunotherapy or chemotherapy. More preferably, the pharmaceutical compositions disclosed in the present invention may also be co-administered, prior to, or subsequent to, a therapy comprising the administration of temozolomide.
Such administration may be part of the treatment of an adult or a pediatric patient. In a preferred embodiment, said pharmaceutical composition is co-administered, prior to, or subsequent to a radiotherapeutic treatment, a chemotherapeutic treatment, a treatment with electric fields for the treatment of tumors (Tumor Treatment Fields), or an immunotherapeutic treatment.
In an embodiment of the invention, the pharmaceutical compositions disclosed herein comprise at least one additional therapeutic component or active compound. Said additional therapeutic component or active compound provides additive or synergistic biological activities. For purposes of the present disclosure, the terms “active compound” or “therapeutic component” should be taken to mean a chemical or biological entity that exerts therapeutic effects when administered to humans or animals. Such active compound or additional therapeutic component can be a cell therapy, a small molecule therapy, an immunotherapy, radiation therapy, among others.
Among the additional therapeutic components or active compounds are compounds for the treatment of neurodegenerative diseases, anticancer agents, metabolism-regulating compounds, cardiovascular agents, and obesity- and overweight-regulating agents.
Also within the therapeutic components or additional active compounds are compounds for the treatment of neurodegenerative diseases, chemotherapeutic agents, metabolism-regulating compounds, cardiovascular agents, and obesity and overweight-regulating agents. Preferably, said active compound or said therapy is a chemotherapeutic agent, a cell therapy agent or an immunotherapeutic agent.
In a preferred embodiment, said pharmaceutical composition further comprises a chemotherapeutic agent selected from the group consisting of: platinum-based antineoplastic agents; anti-mitotic chemotherapeutic agents; a poly adenosine diphosphate ribose polymerase (PARP) inhibitor; type I topoisomerase inhibitors; type II topoisomerase inhibitors; epothilones; cyclo-skeletal perturbers; alkylating agents; histone deacetylase inhibitors; kinase inhibitors; antifolates; peptide antibiotics; retinoids; vinca alkaloids and thymidylate synthase inhibitors. More preferably, the chemotherapeutic agent is selected from the group consisting of: bevacizumab, carmustine, cyclophosphamide, melphalan, ifosfamide, busulfan, temozolomide, mechlorethamine, chlorambucil, melphalan, dacarbazine, daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, valubicin, paclitaxel, docetaxel, abraxane, taxotere, epothilone, vorinostat, romidepsin, irinotecan, topotecan, camptothecin, exatecan, lurtotecan, etoposide, teniposide, tafluposide, bortezomib, erlotinib, gefitinib, imatinib, vemurafenib, vismodegib, azacytidine, azathioprine, capecitabine, cytarabine, cladribine, fludarabine, doxifluridine, fluorouracil, gemocytebine, hydroxyurea, mercaptopurine, methotrexate, pemetrexed, azathiopyrene, thioguanine, retinoic acid, bleomycine, actinomicine, carboplatin, cisplatin, oxaliplatin, tretinoine, alitretinoin, bexarotene, topotecan, vinblastin, vincristin, vindesin and vinorelbin. More preferably, the additional chemotherapeutic agent is temozolomide.
In this regard, the fact that the lipids when integrating the cell membrane can control cell signaling, supposes that they can also regulate the physiological state of the cells and, therefore, the general state of health. Thus, the compounds disclosed herein are useful in inducing neuroregeneration and in preventing and/or treating different diseases and pathologies, particularly selected from the group consisting of a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
For purposes of the present invention, the diseases of the nervous system are all those diseases that affect the nervous system (both central and peripheral). Within this group are neurodegenerative diseases which, for the purposes of the present invention, are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system.
Preferably, the neurodegenerative disease is selected from the group consisting of spinal cord injury and pain of neurological origin. For the purposes of the present invention, the term “induction of neuroregeneration” refers to the regeneration of neurological functions. On the other hand, for the purposes of the present invention the term “prevention of neurodegeneration” indicates that the treatment results in the arrest of a neurodegenerative process already in progress, or that the treatment prevents the onset or progression of neurodegeneration.
Some of these neurodegenerative processes involve a significant decrease in the patients' cognitive capacity or motor impairment. Neurodegenerative processes, neurological disorders and neuropsychiatric disorders have a common basis of neuronal degeneration or alterations of their components, such as lipids (e.g. myelin) or membrane proteins (e.g. adrenergic receptors, serotonergic receptors, etc.). In particular, the neurodegenerative diseases are selected from the group consisting of: (i) inflammatory diseases of the central nervous system such as bacterial meningitis, non-bacterial meningitis, acute hemorrhagic necrotizing encephalopathy, other encephalitis, myelitis and encephalomyelitis, cerebral ventriculitis not otherwise specified (NOS), intracranial and intrathecal abscess and granuloma, extradural and subdural abscess, phlebitis, intracranial thrombophlebitis in intrathecal and sequelae of inflammatory diseases of the central nervous system; (ii) systemic atrophies affecting mainly the central nervous system such as Guillan-Barre, diabetic neuropathy, Wallerian degeneration, Lewy body dementia, frontotemporal dementia, Huntington's chorea, Huntington's dementia, hereditary ataxia; spinal muscular atrophy and related syndromes such as Werdnig-Hoffman; systemic atrophies affecting mainly the central nervous system, post-polio syndrome; motor neuron diseases such as amyotrophic lateral sclerosis and progressive bulbar palsy; (iii) extrapyramidal and movement disorders such as Parkinson's disease, secondary Parkinsonism, neuroleptic malignant syndrome, drug-induced secondary Parkinsonism post-encephalitic Parkinsonism, vascular Parkinsonism, degenerative diseases of the basal nuclei, Hallervorden-Spatz, progressive supranuclear ophthalmoplegia, progressive supranuclear palsy, striatonigral degeneration, essential tremor dystonia, drug-induced tremor, myclonia, drug-induced chorea, drug-induced tics, tics of organic origin, drug-induced movement disorders, akathisia, restless leg syndrome, stiff man syndrome and benign shivering attacks; (iv) other degenerative diseases of the nervous system such as Alzheimer's disease, early or late onset Alzheimer's disease, frontotemporal dementia such as Pick's disease, nervous system degeneration due to alcohol, Alpers disease, Leigh's disease, Lewy body dementia, mild cognitive impairment, corticobasal degeneration, primary degenerative dementia including Alzheimer's dementia, senile and presenile forms, stroke; (v) demyelinating diseases of the central nervous system such as multiple sclerosis of the medulla, brainstem, disseminated, generalized or not otherwise specified (NOS); acute disseminated demyelinations, diffuse central nervous system sclerosis; (vi) episodic and paroxysmal disorders such as recurrent epilepsy and seizures, idiopathic epilepsy and seizures, grand mal seizures, nonspecific atonic or clonic epilepsy, Lennox-Gastaut syndrome, epileptic spasms, epilepsy of unspecified type, migraine, headache, transient cerebral ischemic accidents and related syndromes, sleep disorders and vertigo; (vii) nerve, nerve root and nerve plexus disorders such as trigeminal nerve disorders, facial nerve disorders, cranial nerve disorders, nerve root and nerve plexus disorders, upper or lower extremity mononeuropathies and Wallerian degeneration; (viii) polyneuropathies and other disorders of the peripheral nervous system including hereditary and idiopathic neuropathy such as Roussy-Levy syndrome, Refsum's disease; inflammatory polyneuropathy; sequelae of polyneuropathy such as Guillan-Barre sequelae, serum neuropathy; other polyneuropathies such as drug, alcoholic, toxic agent, radiation neuropathy; sequelae of inflammatory and toxic polyneuropathies; (ix) muscle and neuromuscular junction diseases such as myasthenia gravis and other myoneural disorders, muscle and neuromuscular junction disorders; (x) cerebral palsy and other paralytic syndromes including hemiplegia, paraplegia, tetraplegia; (xi) other nervous system disorders such as complex regional pain syndrome, neuropathic pain, atonal nervous system disorders, peripheral autonomic neuropathy, hydrocephalus, brain cysts, Riley-Day syndrome, multisystem autonomic nervous system degeneration, hippocampal sclerosis, mesial sclerosis, diabetic neuropathy or Wolfram Syndrome, adrenoleukodystrophy, leukodystrophy, and spinal cord injury; and (xii) mental and behavioral disorders due to physiological conditions such as vascular dementia, unspecified dementia, depression; behavioral disorders related to psychoactive substance abuse; schizophrenia, schizotypal disorder, delusional disorder and other non-mood related psychotic disorders; mood (affective) disorders such as manic episode, bipolar disorder, major depressive disorder, cyclothymic disorder, dysthymic disorder; anxiety disorder, dissociative, stress-related and other non-psychotic somatoform mental disorders; behavioral syndromes associated with physiological disorders and physical factors such as eating disorders, sleep disorders; personality disorder, impulse disorder, pathological gambling; intellectual disability; speech disorders, writing, learning disorder, psychoactive substance use disorder and addictive behaviors.
For the purposes of the present invention “neuropathic pain” is defined as pain caused by injury or disease of the somatosensory nervous system, as defined by the International Association for the Study of Pain (IASP). The somatosensory nervous system comprises sensory neurons and neural pathways that respond to changes on the surface or within the body. The term paralysis refers, for the purposes of the present invention, to the partial or total loss of mobility in some part of the body, caused by injury or disease of the central or peripheral nervous system. On the other hand, the term sleep disorders refers to those disorders that include problems in sleep initiation and maintenance caused by a central or peripheral nervous system problem or pathology. Non-limiting examples of such sleep disorders include insomnia, hypersomnia such as narcolepsy, sleep apnea, restless leg syndrome, circadian rhythm disorders and parasomnia, among others.
Certain neurodegenerative diseases can result in processes in which blindness, hearing problems, disorientation, mood disturbances, etc. are developed. An example of a well-characterized neurodegenerative disorder is Alzheimer's disease, in which the formation of plaques has been observed, mainly formed by the β-amyloid peptide that comes from altered protein processing, followed by an accumulation on the outside of cells. In addition, neuro-filament tangles of hyperphosphorylated tau protein appear inside the cell. This process has been associated with alterations in cholesterol metabolism and the consequent alteration in the levels of certain membrane lipids, such as docosahexaenoic acid. On the other hand, several neurodegenerative pathologies, such as Parkinson's disease, Alzheimer's disease, senile dementia (or Lewy body dementia), have been related to the pathological accumulation of fibrillar aggregates of the α-synuclein protein, which give rise to an important alteration in the metabolism of cellular triglycerides. Indeed, the development of these and other neurodegenerative diseases is related to alterations in the serum or cellular levels of lipids, such as cholesterol, triglycerides, sphingomyelin, phosphatidylethanolamine, etc. This, again, suggests that lipids play a crucial role in the proper functioning of neurons, glia cells, nerves, brain, cerebellum and spinal cord, which is logical considering the great abundance of lipids in the central nervous system.
Alzheimer's disease (AD) is a neurodegenerative disease that to date does not have an effective therapy or treatment and whose pathophysiology is still, to a large extent, unknown. Multiple drugs and therapies have been designed and developed in the last decade in order to stop or slow down the neurodegenerative process characteristic of this disease. However, no treatment is yet known that has successfully completed a phase III human clinical trial. Most therapies have been inspired by the hypothesis of the amyloid cascade, which is currently in question, due to the almost complete failure of clinical trials of antiamyloid/tau therapies.
On the other hand, various types of sclerosis and other neurodegenerative processes are related to “demyelination”, whose net result is the loss of lipids in the cover of neural axons, with the consequent alterations in the process of propagation of electrical signals that this implies. Myelin is a lipid layer that surrounds the axons of many neurons and is formed by a succession of spiral folds of the plasma membrane of glia cells (Schwann cells and oligodendrocytes, at the peripheral and central level, respectively). For all these reasons, it has been shown that lipids play an important role in the development of neurodegenerative diseases. Furthermore, natural polyunsaturated fatty acids have been shown to have a moderate preventive effect on the development of neurodegenerative processes. Indeed, the most abundant lipid in the central nervous system is docosahexaenoic acid (DHA), whose abundance is altered in many neurodegenerative processes, such as Alzheimer's disease.
In addition, metabolic disease is preferably selected from the group consisting of obesity, overweight, hypercholesterolemia, hypertriglyceridemia, diabetes, and insulin resistance. Metabolic diseases form a set of pathologies characterized by the accumulation or deficit of certain molecules. A typical example is the accumulation of glucose, cholesterol and/or triglycerides above normal levels. Increased levels of glucose, cholesterol and/or triglycerides, both at the systemic level (e.g., increased plasma levels) and at the cellular level (e.g., in cell membranes) are associated with alterations in cellular signaling leading to dysfunctions at various levels, and are usually due to errors in the activity of certain enzymes or the control of such proteins. Among the most important metabolic disorders are hypercholesterolemia (high cholesterol levels) and hypertriglyceridemia (high triglyceride levels). These diseases have high rates of incidence, morbidity and mortality, so their treatment is a primary concern. Other important metabolic disorders are diabetes and insulin resistance, characterized by problems in the control of glucose levels. These metabolic pathologies are involved in the appearance of other pathological processes, such as cancer, hypertension, obesity, arteriosclerosis, etc. Another pathological process has been identified related to the metabolic pathologies described above and that could per se constitute a new metabolic pathology, which is metabolic syndrome.
For purposes of the present invention, a neoplasm is defined as an abnormal mass of tissue that appears when cells multiply more than they should or are not destroyed at the appropriate time. Neoplasms are either benign (noncancerous) or malignant (cancerous). The term “neoplasm” is equivalent to “tumor.” There are multiple types of cancer, including, for example, oral cavity and pharyngeal cancer, cancer of other digestive organs, cancer of other respiratory organs, bone and joint cartilage cancer, melanoma and other malignant skin neoplasms, cancer of mesothelial and soft tissues, cancer of genital organs, cancer of the urinary tract, cancer of the eye, brain and other regions of the nervous system, cancer of the thyroid and other endocrine glands, neuroendocrine malignancies, cancer of lymphoid, hematopoietic and related tissues, in situ carcinomas, benign tumors, neoplasms of uncertain behavior, polycythemia vera and myelodysplastic syndromes, neoplasms of other locations, and neoplasms of unspecified behavior.
The lipidic modification of the cell membrane can be used as a strategy for the prevention or treatment of multiple types of cancer. In one embodiment of the invention, the cancer is selected from the group consisting of: colon cancer, pancreatic cancer, bile duct cancer, neuroblastoma, colon cancer, gastric cancer, liver cancer, glioblastoma, non-Hodgkin lymphoma, kidney cancer, esophageal cancer, stomach cancer, cervical cancer or lymphoma tumors, colorectal carcinoma, colorectal adenocarcinoma, prostate cancer, prostate adenocarcinoma, prostate carcinoma, breast cancer, breast carcinoma, breast adenocarcinoma, triple negative breast cancer, brain cancer, brain adenocarcinoma, brain neuroblastoma, lung cancer, lung adenocarcinoma, lung carcinoma, small cell lung cancer, large cell lung cancer, ovarian cancer, ovarian carcinoma, ovarian adenocarcinoma, uterine cancer, gastroesophageal cancer, renal cell carcinoma, clear cell renal cell carcinoma, endometrial cancer, endometrial carcinoma, endometrial stromal sarcoma, cervical carcinoma, thyroid carcinoma, metastatic papillary thyroid carcinoma, follicular thyroid carcinoma, bladder carcinoma, urinary bladder carcinoma, transitional cell carcinoma of urinary bladder, liver cancer, metastatic liver cancer, pancreatic cancer, neuroendocrine cancers, squamous cell carcinoma, osteosarcoma, rhabdomyosarcoma, embryonic cancers, glioblastoma, glioma, neuroblastoma, medulloblastoma, retinoblastoma, nephroblastoma, hepatoblastoma, melanoma, hematologic malignancies such as leukemias, lymphomas, and myelomas.
Preferably, the cancer is selected from the group consisting of lung cancer, brain cancer, glioma, glioblastoma, breast cancer, leukemia, liver cancer, endometrial cancer, and pancreatic cancer. More preferably, the cancer is selected from the group consisting of lung cancer, brain cancer, breast cancer, leukemia, liver cancer and pancreatic cancer.
For purposes of the present invention, a cardiovascular disease is defined as a set of diseases or disorders of the heart and blood vessels. Such cardiovascular diseases are selected from the group consisting of: cerebral ischemic attack, acute rheumatic fever, chronic heart disease, hypertensive disease, ischemic heart disease, pericarditis, endocarditis, valve disorders, cardiomyopathy, tachycardia, heart failure, amyloid angiopathy, cerebrovascular diseases and disorders, sequelae of cerebral hemorrhage, sequelae of cerebral infarction, sequelae of cerebrovascular diseases, diseases of arterial and capillary arteries; diseases of veins, vessels, and lymph nodes.
The term “pathology of the skin and subcutaneous tissue” refers, for the purposes of the present invention, to pathologies of the dermal tissue among which are: bullous disorders, dermatitis, eczema, papulosquamous disorders, disorders of the skin appendages, postoperative complications, urticaria and erythema.
Inflammatory processes include a broad spectrum of pathologies characterized by the presence of inflammation. For purposes of the present invention, said inflammatory processes are selected from the group consisting of: cardiovascular inflammation; inflammation caused by tumors; inflammation of rheumatoid origin; respiratory inflammation; acute and chronic inflammation; inflammatory hyperalgesia; and edema and inflammation caused by trauma or burns.
The term digestive pathology refers, for purposes of the present invention, to diseases of the oral cavity and salivary glands; diseases of the esophagus, stomach and duodenum; diseases of the appendix; non-infectious enteritis and colitis; diseases of the peritoneum and retroperitoneum; diseases of the liver; disease of the gallbladder, bile ducts and pancreas.
For purposes of the present invention a musculoskeletal and connective tissue disease refers to pathologies of muscles, joints and bones which may or may not have an autoimmune origin. Said musculoskeletal and connective tissue diseases are selected from the group consisting of: arthropathies, connective tissue disorders, muscle and soft tissue disorders; synovial and tendon membrane disorder; osteopathies and chondropathies.
The term genitourinary pathology refers, for purposes of the present invention, to glomerular diseases; tubulo-interstitial kidney diseases; acute kidney failure; chronic kidney disease;
lithiasis; and inflammatory and non-inflammatory disorders of the renal tract.
The present invention also relates to a nutraceutical composition comprising at least a first compound selected from the group consisting of:
a compound of formula (II), or a nutraceutically acceptable salt, or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and
a compound of formula (III), or a nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
wherein said composition optionally comprises a second compound of formula (I), or a nutraceutically acceptable salt or ester thereof:
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
and wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and (b−1); and a+3b+c+3 is an even integer; and at least one nutraceutically acceptable excipient.
The present invention also relates to a nutraceutical composition comprising at least a first compound selected from the group consisting of:
a nutraceutically acceptable salt or ester of a compound of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and
a nutraceutically acceptable salt or ester of a compound of formula (III):
COOH—(CH2)a—(CH═CH—CH2)m—(CH2)3—(CH═CH—CH2)(b−1−m)—(CH2)c—CH3 (III)
wherein said composition optionally comprises a nutraceutically acceptable salt or ester of a compound of formula (I):
COOH—CHOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (I)
and wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is an integer between 0 and 14; m is an integer between 0 and b−11); and a+3b+c+3 is an even integer; and at least one nutraceutically acceptable excipient.
The present invention also relates to a nutraceutical composition comprising at least a first compound selected from the group consisting of a compound of formula (II) and a compound of formula (Ill), or a nutraceutically acceptable salt or ester thereof, wherein said composition comprises, optionally, a compound of formula (I), or a nutraceutically acceptable salt or ester thereof, as described above, for use in the prevention of a disease or pathology.
Additionally, the present invention also relates to a method of preventing a disease or pathology, said method comprising administering to a subject an effective amount of a nutraceutical composition comprising at least a first compound selected from the group consisting of a compound of formula (II) and a compound of formula (Ill), or a nutraceutically acceptable salt or ester thereof, said composition optionally comprising a compound of formula (I), or a nutraceutically acceptable salt or ester thereof, as described above.
Preferably, said disease or pathology is selected from the group consisting of: a neurological or neurodegenerative disease; a cancer; a neoplasm; an inflammatory disease; a cardiovascular disease; a skin and subcutaneous tissue pathology; a metabolic pathology; neuropathic pain; paralysis; sleep disorders; a digestive pathology; a musculoskeletal and connective tissue disease; a genitourinary pathology; and a metabolic disease.
Preferably m=0 and, each of the disclosed embodiments of the present invention, including those embodiments referring to compounds of formula (II), or of formula (Ill), pharmaceutical and nutraceutical compositions comprising them, their first and second medical uses, methods of inducing neuroregeneration and/or preventing neurodegeneration, or methods of preventing and/or treating a disease or pathology, as well as the use and in vitro method of determining the efficacy of a treatment, refer to a compound selected from the group consisting of a compound of formula (II), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
and a compound of formula (Ill), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a+3—(CH═CH—CH2)(b−1)—(CH2)c—CH3 (III)
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is 0, 3 or 6; and wherein a+3b+c+3 is an even integer.
Also preferably m=0 and, each of the disclosed embodiments of the present invention, including those embodiments referring to compounds of formula (II), or of formula (III), pharmaceutical and nutraceutical compositions comprising them, their first and second medical uses, methods of inducing neuroregeneration and/or preventing neurodegeneration, or methods of preventing and/or treating a disease or pathology, as well as the use and in vitro method of determining the efficacy of a treatment, refer to a pharmaceutically or nutraceutically acceptable salt or ester of a compound of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
or a pharmaceutically acceptable salt or ester of a compound of formula (III):
COOH—(CH2)a+3—(CH═CH—CH2)(b−1)—(CH2)c—CH3 (III)
wherein a is an integer between 1 and 14; b is an integer between 1 and 7; c is 0, 3 or 6; and wherein a+3b+c+3 is an even integer.
Still more preferably m=0 and, each of the disclosed embodiments of the present invention, including those embodiments referring to compounds of formula (II), or of formula (III), pharmaceutical and nutraceutical compositions comprising them, their first and second medical uses, methods of inducing neuroregeneration and/or preventing neurodegeneration, or methods of preventing and/or treating a disease or pathology, as well as the use and in vitro method of determining the efficacy of a treatment, refer to a compound selected from the group consisting of:
a compound of formula (II), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a—CH═CH—CH2)b—(CH2)c—CH3 (II)
wherein: a=6, b=1 and c=6; or a=6, b=2 and c=3; or a=6, b=3 and c=0; or a=3, b=3 and c=3; or a=2, b=4 and c=3; or a=2, b=5 and c=0;
and
a compound of formula (III), or a pharmaceutically or nutraceutically acceptable salt or ester thereof:
COOH—(CH2)a+3—(CH═CH—CH2)(b−1)—(CH2)c—CH3 (III)
where a=1, b=6 and c=0.
Also more preferably m=0 and, each of the disclosed embodiments of the present invention, including those embodiments referring to compounds of formula (II), or of formula (III), pharmaceutical and nutraceutical compositions comprising them, their first and second medical uses, methods of inducing neuroregeneration and/or preventing neurodegeneration, or methods of preventing and/or treating a disease or pathology, as well as the use and in vitro method of determining the efficacy of a treatment, refer to a compound selected from the group consisting of:
a pharmaceutically or nutraceutically acceptable salt or ester of a compound of formula (II):
COOH—(CH2)a—(CH═CH—CH2)b—(CH2)c—CH3 (II)
wherein: a=6, b=1 and c=6; or a=6, b=2 and c=3; or a=6, b=3 and c=0; or a=3, b=3 and c=3; or a=2, b=4 and c=3; or a=2, b=5 and c=0;
and
a pharmaceutically or nutraceutically acceptable salt or ester of a compound of formula (III):
COOH—(CH2)a+3—(CH═CH—CH2)(b−1)—(CH2)c—CH3 (III)
where a=1, b=6 and c=0.
Still more preferably, said salt is a sodium salt, and said ester is an ethyl ester.
In one embodiment of the invention, the pharmaceutical and nutraceutical compositions described herein comprise a compound of formula (I), together with a compound of formula (II) or a compound of formula (III), in a concentration between 0.01% to 99.99% w/w, preferably the composition comprises 10% to 80% w/w, or even more preferably in a concentration between 20% to 80% w/w. In another embodiment of the invention, the compositions described herein comprise a prodrug of formula (I) together with a compound of formula (II) or a compound of formula (III), wherein said combination is in a ratio in the range of 0.01:100 to 100:0.01, preferably 1:5 to 5:1, and most preferably 1:2 to 2:1.
In a further aspect, the pharmaceutical or nutraceutical compositions of the invention may be presented in vials, ampoules, powders, capsules, tablets, sachets, solutions, syrups, ointment, creams, emulsions, gels, patches, controlled release formulations, suppositories, eggs, etc. The formulations are useful to be administered by, among others, oral, sublingual, gastroenteric, rectal, parenteral (intravenous, intraarterial, intramuscular and subcutaneous), respiratory, topical (ophthalmic, otic, transdermal). The route of administration can be determined in a simple manner by the person skilled in the art.
The compositions of the present invention may be in the form of a gastro-resistant composition to prevent degradation of their components by the low pH of the gastric environment. In certain embodiments, the composition of the invention further includes one or more additional components or excipients, such as diluents, antioxidants, sweeteners, gelling agents, flavoring agents, fillers or other vehicles, such as colloidal anhydrous silica and glyceryl monostearate. Said compositions may be in the form of a capsule, envelope, paper, or other packaging. Conventional techniques for preparing pharmaceutical compositions can be used to prepare said compositions. For example, the compounds disclosed herein above may be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier that may be in the form of an ampoule, capsule, envelope, paper, or other packaging. When the carrier is a diluent, it may be a solid, semi-solid, or liquid material that acts as a vehicle, excipient, or medium for the active compound. Some examples of suitable diluentss are water, saline solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, lactose, terra alba, saccharose, cyclodextrins, amylose, magnesium stearate, talcum, gelatin, agar, pectin, acacia, stearic acid, cellulose alkyl ethers, silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerids and diglycerids, fatty esters of pentaerythrol, polyethylene, hydroxymethylcellulose and polyvinylpirrolidone. Similarly, the carrier or diluent can include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax. Said compositions may also include wetting agents, antioxidants, emulsifying and suspending agents, preserving agents, sweetening agents, and flavoring agents. The compositions of the invention may be formulated to provide rapid, sustained or delayed release of the compounds disclosed herein after administration to the patient using methods well known in the art.
The disclosed compositions may be solid compositions or liquid solutions. In one non-limiting embodiment of the invention, said composition is a solid composition which may comprise 20-80%, of the compound of formula (I) and/or the compound of formula (II) or formula (III), 20-80% of a diluent, 0.1-20% of an antioxidant, 0.01-10% of a sweetener, 0.1-20% of a gelling agent, and 0.01-10% of a flavoring agent. In another, non-limiting embodiment of the invention, said composition is a solution for oral administration comprising 20 to 80% of the compound of formula (I) and/or of the compound of formula (II) or of formula (III), 20 to 80% of diluent, 0.1 to 20% of antioxidant, 0.01 to 10% of a sweetener, 0.1 to 20% of a gelling agent, and 0.01 to 10% of a flavoring agent.
The pharmaceutical compositions may be sterilized and mixed, if desired, with auxiliary agents, emulsifiers, salt to influence osmotic pressure, buffers and/or coloring substances and the like, which do not react adversely with the compounds disclosed above.
C. Levels of DHA-H and DHA in HEK293T cells in the presence (C1) or absence (C2) of culture medium. The levels of DHA-H (•) and DHA (∘) in the culture medium (% of the initial levels at time 0) are represented in the ordinate axis, versus the incubation time (h) in the abscissa axis. The concentration of the lipid in the culture medium is 30 μM and the culture plates were incubated for up to 72 h. In the presence of cell culture (C1), DHA levels in the medium decreased significantly at 48 and 72 h, as a consequence of DHA uptake by the cells, while DHA-H levels remained unchanged up to 72 h. In the absence of cell culture (C2), the levels of both DHA and DHA-H remained constant over time. The bars represent the mean±standard error, and the statistical analysis was performed using one-way ANOVA and the Tukey multiple evaluation test: *p<0.05 when compared to control.
Quantification of 2OHOA and C17:1n-9 fatty acids in U-118 MG cells treated with 400 μM 2OHOA for 24 hours, pre-incubated with increasing doses (1-10 mM) of oxythiamine (α-oxidation inhibitor) for 90 minutes, determined by gas chromatography. Results are shown as the mean±SEM of three independent experiments expressed in nmoles and normalized per mg protein. The statistical significance is determined with a Student's t test (*p<0.05, ***p<0.001 comparing the amount of 2OHOA with that detected after 400 μM of 2OHOA in the absence of oxythiamine; $$p<0.01, $$$p<0.001 comparing the amount of C17:1n-9 with that formed after 400 μM of 2OHOA in the absence of oxythiamine). (B) Viability of U-118 MG cells pre-incubated with oxythiamine (for 90 minutes) and treated in the absence (Control) or in the presence of 2OHOA sodium salt (400 μM, 72 hours), determined by vital exclusion staining with trypan blue. The results are represented as the mean cell count±SEM of three independent experiments. Statistical significance is determined with a Student's t test (***p<0.001 with respect to the absence of 2OHOA and oxythiamine, Control-0; and $$p<0.01, $$$p<0.001 with respect to treatment with 2OHOA without pre-incubation with oxythiamine).
Representation of the amount of metabolite quantified by gas chromatography in xenographic tumours of mice, relative to the tumour volume measured on day 42 of treatment with 200 mg/kg sodium salt of 2OHOA (black boxes) or its vehicle (Control, white circles). Significance determined by Pearson's correlation coefficient (p=0.0001; r=−0.825).
The examples described below are for purposes of illustration only and are not meant to limit the scope of the present invention.
1.1. DHA, DHA-H and HPA
DHA (sodium salt of docosahexaenoic acid; C22:6 n-3), DHA-H (sodium salt of 2-hydroxy-drocosahexaenoic acid; 20H-C22:6 n-3), EPA-H (sodium salt of 2-hydroxy-eicosapentaenoic acid), ARA-H (sodium salt of 2-hydroxy-arachidonic acid), GLA-H (sodium salt of 2-hydroxy-gamma (γ)-linolenic acid), ALA-H (sodium salt of 2-hydroxy-alpha (α)-linolenic acid), LA-H (2-hydroxy-linoleic acid), HPA (sodium salt of (6Z,9Z,12Z,15Z,18Z)-heneicosa-6,9,12,15,18-pentaenoic acid), NTA (sodium salt of (4Z,7Z,10Z,13Z)-nonadeca-4,7,10,13-tetraenoic acid), HTA ω-6 (sodium salt of (5Z,8Z,11Z)-heptadeca-5,8,11-trienoic acid), HTA ω-3 (sodium salt of (8Z,11Z,14Z)-heptadeca-8,11,14-trienoic acid) and HDA ((8Z,11Z)-heptadeca-8,11-dienoic acid) were obtained from Lipopharma Therapeutics (Spain). The margaric acid (C17:0) was purchased from Sigma-Aldrich and the heneicosapentanoic acids (HPA free acid; C21:5 n-3) and (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoic acid (NPA free acid; C19:5 ω-3) were purchased from Cayman Chemicals (Michigan, United States). The D(+)-Glucose (cell culture tested), sodium pyruvate, L-Gln (cell culture tested), acetyl chloride and N,O-bis (trimethylsilyl) acetamide, sodium chloride, sodium phosphate, EDTA (ethylene diamine tetraacetic acid) and tris-base were acquired from Sigma-Aldrich. In contrast, chloroform, ethanol, methanol, hydrochloric acid and hexane were obtained from Scharlab (Spain). Heparin (5000 units/mL) was purchased from Hospira Invicta S.A. (Spain), ketamine (Anesketin 100 mg/mL) from Eurovet Animal Health BV (Netherlands), xylazine (Xilagesic 20 mg/mL) from Laboratorios Calier S.A. (Spain), and oxythiamine hydrochloride from Santa Cruz Biotechnology (Germany).
For the production of HPA, chemical synthesis is performed from the (5Z,8Z,11Z,14Z,17Z)-eicose-5,8,11,14,17-pentaenoic acid (EPA (C20:5, ω-3)), according to reaction scheme 1. The chemical synthesis of HPA is disclosed in the prior art (Larsen et al., 1997, Lipids 32(7), 707-714. doi: 10.1007/s11745-997-0090-4). The reactions were carried out in the absence of light and in a nitrogen atmosphere.
Reagents and conditions: a)(COCI)2/PhH 1.5h rt., b)CH2N2/ether 20 min. 0° C., c)AgOBz(cat.), Et3N/THF/H2O
The synthesis of the sodium salt of the HPA of the present invention has been made from the compound designated with the number 5 when R is CH3-CH2—(CH═CH—CH2)5—CH2CH2—, which corresponds to HPA (C21). The salt is obtained under an acid base reaction, a liquid-liquid extraction is performed with MTBE/HCI and the pH is adjusted with NaOMe to obtain the sodium salt of HPA with good yields. A similar procedure can be performed for the synthesis of HDA, HTA ω-3, HTA ω-6, NTA, and NPA, by adjusting the starting substrate.
1.2. OHOA, OA and C17:1n-9
The lipid compounds sodium salt of 2OHOA, sodium salt of OA and sodium salt of C17:1n-9 were purchased from Medalchemy, SL (Spain).
The chemical synthesis of C17:1n-9 is disclosed in WO1997049667. A solution of 8Z-heptadecene (66mg, 0.26mmo1, 1 equivalent) and 2-methyl-2-butane (1.6mL, 15.1 mmol, 58 equivalents) in tBuOH (6.5mL) at 25° C., under an N2 atmosphere, is treated by adding dropwise (2.5mL) a solution of NaClO2 (80%, 208 mg, 2.3 mmol, 9 equivalents) and NaH2PO4.H2O (250mg, 1.8 mmol, 7 equivalents) in deionized water. The reaction mixture was allowed to stir for an additional 15 minutes, before being concentrated in vacuo. The residue is treated with water (30 mL) and the aqueous layer is extracted with EtOAc (3x30 mL). The organic layers are dried with (Na2SO4), filtered and concentrated in vacuo. Chromatography (SiO2, 2×13 cm, 10-20% EtOAc-hexane gradient elution) afforded 27 mL (66 mg, 95%) as a clear oil. The synthesis of the sodium salt of C17:1n-9 of the present invention has been made from compound C17:1n-9. The salt is obtained under an acid base reaction, a liquid-liquid extraction is performed with MTBE/HCI and the pH is adjusted with NaOMe to obtain the sodium salt of C17:1n-9 with good yields.
Some examples of compositions that do not limit the scope of the invention are described in general terms below.
To describe the metabolic conversion of DHA-H to HPA(C21:5 ω-3), as well as the conversion of LA-H to HDA (C17:2 ω-6), ALA-H to HTA ω-3 (C17:3 ω-3), GLA-H to HTA ω-6 (C17:3 ω-6), ARA-H to NTA (C19:4 ω-6), EPA-H to NPA (C19:5 ω-3), HEK293T (Human Embryonic Kidney Cells 293T) cell cultures were employed, which is an embryonic, non-tumoral cell line, widely used in human metabolism studies under physiological conditions.
HEK293T cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM; Dubelcco's Modified Eagle's Medium, Biowest, France), supplemented with 10% FBS (Fetal Bovine Serum; Gibco, Thermo-Fisher), 2 mM L-Gln, 25 mM D(+)-glucose, 1 mM sodium pyruvate, and penicillin/streptomycin. Mouse neuroblastoma N2a cells were maintained in a 1:1 (v:v) mixture of DMEM and Opti-Mem (Gibco, Thermo-Fisher), supplemented with 5% FBS and penicillin/streptomycin. Both cell lines were incubated in an atmosphere of 5% CO2 at 37° C.
HEK293T cells were incubated with DHA-H and DHA at 10, 30 and 100 μM for 24 hours, and at 30 μM for 6, 48 and 72 hours. These cells were also incubated with LA-H, ALA-H, GLA-H, ARA-H and EPA-H at 100 μM for 24 hours. HEK293T cells were also incubated with oxythiamine in the presence of DHA-H under the same conditions, at final oxythiamine concentrations of 1 and 10 mM. The HEK293T cells were separated from the plates by pipettes with cold phosphate buffer saline solution (PBS). Cells were recovered by centrifugation (1000 xg, 10 min at 4° C.) and washed twice with cold PBS before being frozen at −80° C. To analyze DHA-H and DHA levels in the cell culture medium, 90 mm diameter plates were filled with 11 mL of complete cell culture medium containing 30 μM DHA-H or DHA in the presence or absence of attached HEK293T cells (5.105 cells/plate). The plates were incubated as described above and 1 ml aliquots of the plates were collected at 0, 6, 24, 48 and 72 hours. Aliquots of the cell culture medium were immediately centrifuged at 1000×g for 10 min at 4° C. to remove any cell suspension and the cell-free aliquots were stored at -20° C.
U-118 MG, MIA-PaCa 2 and A549 cell lines were obtained from the European Collection of Cell Cultures (ECACC) via Sigma-Aldrich Co (St Louis, Mo.) and maintained in RPMI (Roswell Park Memorial Institute) culture medium (U-118 MG and A549) or DMEM (MIA-PaCa 2) supplemented with 10% FBS (Gibco, Thermo-Fisher), in an atmosphere of 5% CO2 at 37° C. U-118 MG, MIA-PaCa 2, and A549 cells were treated under the conditions described in the description of the assay performed to obtain the results of table 4, eventually in the presence or absence of oxytymine (1 or 10 mM). Cell survival was analyzed in a Barker chamber using trypan blue vital exclusion staining (Scharlab) or by cell proliferation kit II (Roche). Briefly, the cells were seeded in 96-well plates at a density of 3 x 103 cells per well 24 h prior to treatment, and then cultured in the presence or absence of compounds of interest at the concentrations and for the times indicated in the figures. After different times, plaque viable cells were determined by the addition of XTT according to the manufacturers instructions. Cells were incubated at 37° C. in 5% CO2 until a constant color was developed and absorbance was recorded at 495 nm using a microplate reader with a reference wavelength of 650 nm (FLUOstar Omega, BMG LABTECH, Germany).
SH-SY5Y human neuroblastoma cells were maintained in DMEM-F12 (Invitrogen) supplemented with 10% FBS (Sigma), penicillin/streptomycin (PAA), non-essential amino acids (Sigma), and 2 mM L-Gln (Sigma). Differentiation of these cells to a neuronal phenotype was carried out following a standard procedure. Briefly, the cells were seeded on plates pre-treated with poly-L-lysine and 24 h later, the medium was replaced by a fresh medium supplemented with 10 μM retinoic acid (Sigma). The cells were then incubated in the dark for 5 days and the medium was replaced with a serum-free medium and supplemented with 50 ng/ml of human brain-derived neurotrophic factor (hBDNF; Alomone Labs; Tel Aviv, Israel). Finally, cells were incubated for 6 days to complete differentiation. Neurons were treated for 24 h with the compounds HDA, HTA ω-3, HTA ω-6, NTA, NPA and HPA, at 1.3 and 10 pm, for 24 h, prior to induction of excitotoxicity with NMDA (n-Methyl-D-Aspartate, 10 mM, Sigma) in a medium containing glycine (530 μM, Sigma) and calcium (10 mM, Sigma).
Treatment with DHA-H results in high cellular levels of HPA, compared to prodrug levels in cell cultures (
Similarly,
The anti-tumor activity of the different metabolites described in
The 5xFAD model of Alzheimer's disease is a dual transgenic PS1/APP mouse that harbors five human mutations associated with familial AD (Tg6799 line): Swedish (K670N/M671L), Florida 151(1716V) and London (V717I) in APP; and clinical mutations M146L and L286V in human PS1. Both transgenes are expressed under the control of the Thy-1 promoter and mice show cognitive decline from 4 months of age (Oackley et al., 2006, Neurosci 26(40), 10129-10140. doi: 10.1523/jneurosci.1202-06.2006). 5xFAD transgenic animals and wild type (WT) were obtained from Jackson Laboratories (USA) and maintained in a B6/SJL genetic background by crossing heterozygous transgenic mice with B6/SJL WT (F1) reproducers. The animals were housed at a controlled temperature of 22° C. (±2° C.) and a humidity of 70%, in a 12h-12h light-dark cycle, with free access to a standard laboratory diet (Panlab A03, Barcelona, Spain). Transgenic male WT and 5xFAD mice received DHA-H (or DHA) orally, dissolved in 5% ethanol, at a daily dose of 5, 20, 50 and 200 mg/kg, or vehicle alone. On the other hand, in an independent assay, these animals have also been treated with HPA (20 mg/kg) and DHA-H (20 g/kg) to compare the effect of both compounds in this model. These treatments were initiated when the mice reached 3 months of age (dosed 5 days/week) and continued until 7 months of age. During the last month of treatment, all animals were kept on a hypocaloric diet to perform selected behavioral spatial learning and memory testing (radial arm maze). A total of 46 animals were used for the study shown in
n=6) and treated with DHA-H (200 mg/kg; n=9).
Radial Arm Maze Test
The spatial behavior test was performed as described above, with some modifications Fiol-Deroque (et al., 2013, Biogerontology 14(6), 763-775. doi: 10.1007/s10522-013-9461-4). All animals were isolated and subjected to caloric restriction to 80-85% of normal body weight, and were kept in these conditions for one week before starting the test and until the end of the test. After the dietary restriction and 3 days before the start of the trials, the animals were trained twice a day in the eight-arm radial labyrinth test (LE766/8, Panlab SL, Spain) for 3 days. Each mouse was placed in the center of the maze and allowed to seek the reward, a 45 mg food pellet (Dustless Precision Pellets, Bio-Serv, USA), located at the end of each arm. Each session ended when the animal managed to find the eight primed arms or failed to complete all the arms in 10 minutes. The movement of each animal was recorded with a digital video tracking system (LE 8300 with Sedacomv1.3 software, Panlab, SL, Spain) and after training, the experimental paradigm began. In all experimental sessions (1 session per day), only four arms were primed compared to the training protocol, and each session ended when the animals managed to find all four primed arms or failed after 10 minutes. The performance was evaluated taking into account: (1) the time to perform the test; (2) the number of Working Memory Errors (WME, re-entry into a previously visited primed arm); (3) the number of Reference Memory Errors (RME, entry into a non-primed arm); and (4) the total number of errors (WME+RME). The test was repeated 5 days/week for 3 weeks. After the test, the animals were fed ad libitum for an extra week before slaughter.
In this sense, it can be observed that the levels of HPA at the brain level in the Alzheimer's model mice have a statistically significant inverse relationship with behavioral parameters in an evaluation test of spatial and associative memory (radial labyrinth test) (
The HEK293T or U-118 MG cells used in the above examples were lysed with a cold hypotonic buffer (1 mM EDTA, 20 mM Tris-HCl [pH 7.4]) by pipetting up and down. The cell lysates were subjected to ultrasound pulses (4 cycles, 10 s/cycle, 10 W) before lipid extraction. For brain analysis, the tissue of each animal was homogenized in cold PBS at 1:10 (p:v) in the presence of protease inhibitors (Roche), using a blade homogenizer (Polytron PT3100). Homogenates were ultrasounded, aliquots were made and stored at −80 ° C. Only one aliquot of each sample, containing about 8 mg protein/aliquot, was subjected to lipid extraction. Protein content before lipid extraction was determined by a modified Lowry method (Bio-rad DC Protein Assay).
Margaric acid (C17:0) was added to the samples subjected to lipid extraction as an internal standard and the lipids were extracted with chloroform:methanol (Eggers and Schwudke, 2016). Briefly, 0.75 volumes of the aqueous phase (which already contained the biological sample) were mixed with 2 volumes of chloroform and 1 volume of methanol. This mixture was vortexed for 1 minute and centrifuged at 1000×g for 10 minutes. The lower organic phase was collected and washed with 1 ml of PBS:methanol (1:1,v:v), and the resulting organic phase was dried under argon flow. The film containing the extracted lipids was transmethylated by incubation of the lipid mixture for 90 minutes at 100° C. in 3 ml of methanol:acetyl chloride (10:1, v:v), under an argon atmosphere (Christie, 1993). The resulting fatty acid methyl esters (FAMEs) were extracted with hexane, adding 3 ml of H2O and 1 ml of hexane to the transmethylation reaction, and vortexing the mixture thoroughly. After centrifugation at room temperature (1000×g for 10 min), the upper phase containing the FAMEs was collected and the remaining volume was washed twice with 1 ml of hexane. The hexane phases were combined, evaporated under argon flow and resuspended in 60 μl of hexane (for the analysis of cell samples, cell culture medium and blood plasma) or in 200 μl (for the analysis of brain samples). To check if a fatty acid compound is hydroxylated, isolated FAME were subjected to a second derivatization with trimethylsilyl (Alderson et al., 2004, J Biol Chem 279(47), 48562-48568. doi: 10.1074/jbc.M406649200). Briefly, the FAMEs were dried under argon flow and the lipid film was dissolved in N,O-bis (trimethylsilyl) acetamide (0.1-5.0 mg lipid for 200-400 μl trimethylsilylation reagent), which in turn was heated in a capped vial at 70° C. for 30 min. The solvent was evaporated and the lipid film was resuspended in hexane for analysis. When the fatty acid under study is hydroxylated, the retention time of the FAME changes as a result of this second derivatization. However, if the fatty acid under study is not hydroxylated, the resulting FAME shows the same retention time regardless of the second derivatization.
The levels of HPA generated from the treatment with the prodrug DHA-H in these cells were evaluated, in the presence or absence of oxythiamine (competitive inhibitor of α-oxidation) (
On the other hand, the addition of DHA-H (150 μM, 48 h) presents a significant anti-proliferative effect on U118-MG cells. However, this effect is partially reversed (in a statistically significant manner) in the presence of 1 mM oxythiamine. At this time, it should be remembered that this concentration of oxythiamine is sufficient to completely inhibit the increase in HPA levels from DHA-H. These results then show that the anti-proliferative effect mediated by DHA-H on U-118 MG cells is mediated, at least in part, by HPA, since the inhibition of the formation of this compound from DHA-H translates into a lower anti-proliferative effect of DHA-H (
The concentrations of 2OHOA sodium salt used in the experiments described below and the duration of the treatments varied according to the type of assay, being either 200 μM or 400 μM and 24 or 72 hours. In some experimental series, C17:1n-9 sodium salt solutions were used at a concentration of 200 μM for 24 or 72h.
To prepare these solutions, we started from a stock aliquot at 100 mM. To prepare this starting aliquot, the corresponding milligrams of the lipid compound (powder) were dissolved in absolute ethanol and autoclaved distilled water (vol.1:1, normally an aliquot of 1m1 is prepared so that 500 μl of ethanol and 500 μl of water are added) inside the culture hood, the solution was introduced 10 min into the culture oven at 37° C. so that the lipid compound was dissolved and subsequently subjected to stirring.
6.1. Incorporation and Metabolization of 2OHOA U-118 MG Glioma and Non-Tumor Cells
To confirm the incorporation of 2OHOA into glioma cell membranes and to determine if changes in fatty acid profile occur following treatment with 2OHOA, total lipids were analyzed by gas chromatography on U-118 MG human glioma cells incubated in the absence (control) or presence of 400 μM 2OHOA sodium salt for 24 h. Analysis of fatty acid levels in glioma cells revealed an absence of changes in OA levels following treatment with 2OHOA sodium salt relative to control (
6.2. Analysis of the Composition of Fatty Acids in Different Glioma and Tumor Cells after Treatment with 2OHOA Sodium Salt
The fatty acid composition of the lipid membranes in other glioma cell lines (U-251 MG and SF-295) was analyzed in comparison to non-tumor cells, human fibroblasts (MRC-5), and primary cultures of mouse astrocytes, after incubation in the absence or presence of sodium salt of 2OHOA sodium salt (400 μM, 24 hours) by gas chromatography. No significant change in the amount of OA was observed after treatment with 2OHOA sodium salt in any of the cell lines analyzed (
6.3. Effect of 2OHOA, C17:1n-9 on Cell Viability and Proliferation of Glioma Cells
In order to evaluate the antiproliferative effect of C17:1n-9, its IC50, which corresponds to the amount of a compound needed to reduce cell viability in vitro by 50%, as well as its effect on the regulation of proteins involved in the mechanism of action of 2OHOA, were determined. To do this, glioma cell lines (U-118 MG, U-251 MG and SF-295) and non-tumor cell lines (MRC-5 and astrocytes) were treated with increasing concentrations of C17:1n-9, OA and 2OHOA sodium salt for 72 hours. Upon completion of treatment, IC50 was determined by violet crystal staining technique. Results of the cell viability assays showed that the three compounds, 2OHOA, OA and C17:1n-9, had an antiproliferative effect on all glioma cells tested, in a concentration-dependent manner, after 72 hours of treatment. Moreover, in the non-tumor cells studied, MRC-5 and astrocytes, no effect of 2OHOA on their cell viability was observed, but the OA and C17:1n-9 fatty acids did produce an antiproliferative effect on the same non-tumor cells (
Thus, C17:1n-9 induced a highly similar antiproliferative effect on both glioma and non-tumor cells. Meanwhile, treatment with 2OHOA only affected the viability of the different glioma cell lines, without affecting the viability of the non-tumor cells. The IC50 values of 2OHOA were 1.90, 1.95, and 1.60 times greater than those of the metabolite C17:1n-9 in the U-118 MG, U-251 MG, and SF-295 glioma cells, respectively (table 6). In addition, the IC50 values of 2OHOA were 1.92, 1.80 and 1.56 times higher than those of its non-hydroxy analogue OA. The fact that C17:1n-9 has shown a higher antiproliferative potency may be due to the fact that it has a higher accumulation capacity in the cells than 2OHOA.
6.4. Analysis of the Effect of Different Fatty Acids on Proliferation and Death Markers in Different Cell Lines
The effect of the metabolite C17:1n-9 on different signaling pathways that are altered by the effect of 2OHOA was analyzed. For this purpose, the different glioma cell lines (U-118 MG, U-251 MG and SF-295) and non-tumoral (MRC-5 and mouse astrocytes) were treated with doses close to IC50 of each of the compounds (200 μM C17:1n.9, 200 μM OA or 400 μM 2OHOA) for 72 hours and their effect on different signaling proteins was analyzed by Western Blot.
The results showed that treatment with 2OHOA increased levels of BIP, CHOP and cJun phosphorylation and decreased phosphorylation of Akt and cyclin D3 levels. Instead, treatment with C17:1n-9 did not produce changes in any of these proteins (
6.5. Analysis of Fatty Acid Composition in U-118 MG Glioma Cells after Inhibition of α-Oxidation and Determination of the Effect of Oxythiamine on Cell Survival of U-118 MG Glioma Cells
To confirm the formation of C17:1n-9 acid from 2OHOA by α-oxidation, oxythiamine chloride was used, which inhibits the enzyme 2-hydroxyfitanoyl-CoA lyase (HACL1, key enzyme in α-oxidation), among other functions. To do this, the U-118 MG glioma cells were first pre-incubated with 1 or 10 mM oxythiamine for 90 minutes, then treated with 400 μM of the 2OHOA sodium salt for 24 hours and the fatty acids were analyzed by gas chromatography. In the analysis of certain fatty acids detected by gas chromatography, a significant reduction in C17:1n-9 was observed in U-118 MG glioma cells pre-incubated with oxythiamine and treated with 2OHOA sodium salt relative to cells treated only with 2OHOA sodium salt without oxythiamine (
Next, to determine whether inhibition of 2OHOA metabolism through α-oxidation of 2OHOA has effects on cell viability, cell survival of U-118 MG glioma cells following incubation in the absence or presence of 2OHOA (400 mM, 72 hours), and pre-incubated with oxythiamine at the doses described above, was studied by vital exclusion staining with trypan blue. Oxythiamine induced a significant decrease in the survival of U-118 MG glioma cells. In detail, at 1 mM induced 12.16±0.5% death, 21.17±1.76% death at 2 mM, until reaching a maximum cell survival inhibition of 27.13±0.41% at 10 mM oxythiamine (
On the other hand, incubation of the cells with 2OHOA sodium salt induced 24.71±1.88% cell death; and after the combination with 1 mM oxyamine there was a recovery in cell viability of 5% (20.94±1.97% death); and of 17.26% (11.71±1.14% death) in the case of 2 mM oxyamine (
In view of
To study whether the metabolite C17:1n-9 can participate in the action of 2OHOA, the effect of pre-incubation with oxythiamine on cell survival and 2OHOA-regulated proteins was studied. To do this, the cell survival of different glioma and non-tumor cell lines treated with 2OHOA (400 μM, 72 hours) and pre-incubated or not with 2 mM oxyamine (90 minutes) was analyzed by counting the cells with the vital exclusion stain with trypan blue. In addition, Western-blot 2OHOA-modulated proteins were studied. In glioma cells, a significant decrease in cell survival was observed after incubation with 2 mM oxythiamine for 72 hours. Oxythiamine induced 18.51±0.58% and 17.35±0.63% cell death in U-251 MG and SF-295 cells, respectively (
Treatment of cells with 2OHOA induced 23.22±1.32% and 23.97±1.25% cell death in U-251 MG and SF-295, respectively. Following combination with 2 mM oxythiamine, there was a significant recovery in cell viability of 12% (14.07±1.62% death in U-251 MG cells) and 17.25% (10.85±0.58% death) in SF-295 cells. In contrast, in non-tumor cells, none of the treatments tested produced an effect on cell survival (
As for the study of proteins involved in different signaling pathways and cell death in glioma cells, oxythiamine had an effect on the levels of BiP, CHOP, c-Jun phosphorylation, Akt phosphorylation, and D3 cyclin in glioma cells in the same sense as 2OHOA, although milder (
7.1 Analysis of the Composition of Fatty Acids in Rat Plasma after 24 Hours of Treatment with 2OHOA
The pharmacokinetic profile of 2OHOA and its metabolite C17:1n-9 in animal plasma was studied. In this case, rats were used as an animal model of experimentation. Rats have a higher volume than mice, and are the most suitable model for studying the effect of continued administration of the maximum tolerated dose of 2OHOA (2 g/Kg) defined in preclinical studies.
For the present study, 2 g of 2OHOA/Kg sodium salt was administered to rats 12-14 weeks of age orally for 15 days. Subsequently, plasma samples were extracted at different times (0, 1, 2, 3, 4, 6, 8 and 24 h) from day 1 (acute treatment) and 15 (chronic treatment). Finally, the fatty acid profile in plasma samples was analyzed by gas chromatography. After analyzing the chromatograms, the detection of 2OHOA and C17:1n-9 fatty acids in plasma samples collected after acute treatment (first day administration) was notable (
The two compounds, 2OHOA and C17:1n-9, showed a very similar pharmacokinetic profile in rat plasma following acute treatment (
7.2. Analysis of the Composition in Fatty Acids of Xenographic Tumors of Immunosuppressed Mice
In order to study the effects in animal models of the formation of C17:1n-9 as a product of the metabolization of 2OHOA by α-oxidation, the levels of the metabolite C17:1n-9, compared to those of 2OHOA, were detected and analyzed in a model of xenographic tumors in immunodepressed mice. To do this, U-118 MG glioblastoma cells were injected into immudepressed mice and, one week later, treatment of mice with vehicle or 2OHOA sodium salt (200 mg/kg) was initiated orally and daily for 42 days. Once treatment was complete, mice were euthanized and tumors were removed, lipids were processed for 2OHOA and C17:1n-9 fatty acids by gas chromatography. Fatty acid 2OHOA was not detected in the xenographic tumors of mice treated with this compound, as no peak in the retention time corresponding to 2OHOA was observed (
7.3. Correlation between the Volume of Tumours and the Amount of the Metabolite C17:1n-9
The possible correlation was studied between the levels of the C17:1n-9 metabolite present in tumors with respect to the volume of tumors, as an indication of the relationship between the incorporation and metabolization of 2OHOA and the efficacy of the compound in tumors. In the graphs obtained, a negative correlation was observed between the amount of C17:1n-9present in the tumors and the volume of the tumors (
7.4. Fatty Acid Composition Analysis in Human Patients with Advanced Glioma after Treatment with 2OHOA
2OHOA and C17:1n-9 fatty acids were detected and quantified in plasma samples from 8 patients who responded, or not, to treatment with 12 g/day of 2OHOA sodium salt for at least one 3-week cycle in clinical phase I/IIA of 2OHOA (MIN-001-1203). Plasma samples were obtained at different times (0, 2, 4, 6, 8 hours and after 8, 15, 21 and 28 days after treatment with 2OHOA) and were subsequently given for fatty acid analysis using the gas chromatography technique.
In the chromatograms, 2OHOA and its C17:1n-9 metabolite were detected in all plasma samples from patients analyzed (
It should be noted that, similarly to what happened in cells and animals, the levels of the metabolite C17:1n-9 in the plasma of all patients were higher than those of 2OHOA (
Number | Date | Country | Kind |
---|---|---|---|
P202030070 | Jan 2020 | ES | national |
20382145.9 | Feb 2020 | EP | regional |
P202031155 | Nov 2020 | ES | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2021/070068 | 1/28/2021 | WO |