Alpha-(N-sulfonamido)acetamide derivatives as beta-amyloid inhibitors

Information

  • Patent Application
  • 20040127494
  • Publication Number
    20040127494
  • Date Filed
    December 20, 2002
    22 years ago
  • Date Published
    July 01, 2004
    20 years ago
Abstract
There is provided a series of novel α-(N-sulfonamido)acetamide compounds of the Formula (I) 1
Description


FIELD OF THE INVENTION

[0002] This invention provides novel α-(N-sulfonamido)acetamide compounds having drug and bio-affecting properties, their pharmaceutical compositions and method of use. In particular, the invention is concerned with α-(N-arylsulfonamido)acetamides. These compounds possess unique inhibition of the β-amyloid peptide (β-AP) production, thereby acting to prevent the accumulation of amyloid protein deposits in the brain. More particularly, the present invention relates to the treatment of Alzheimer's Disease (AD).



BACKGROUND OF THE INVENTION

[0003] Alzheimer's Disease is a progressive, neurodegenerative disorder characterized by memory impairment and cognitive dysfunction. AD is characterized pathologically by the accumulation of senile (neuritic) plaques, neurofibrillary tangles, amyloid deposition in neural tissues and vessels, synaptic loss, and neuronal death. It is the most common form of dementia and it now represents the third leading cause of death after cardiovascular disorders and cancer. The cost of Alzheimer's Disease is enormous (in the U.S., greater than $100 billion annually) and includes the suffering of the patients, the suffering of families, and the lost productivity of patients and caregivers. As the longevity of society increases, the occurrence of AD will markedly increase. It is estimated that more than 10 million Americans will suffer from AD by the year 2020, if methods for prevention and treatment are not found. Currently, AD is estimated to afflict 10% of the population over age 65 and up to 50% of those over the age of 85. No treatment that effectively prevents AD or reverses the clinical symptoms and underlying pathophysiology is currently available (for review see Selkoe, D. J. Ann. Rev. Cell Biol., 1994, 10: 373-403).


[0004] There have been many theories relating to the etiology and pathogenesis of AD. These theories were either based on analogies with other diseases and conditions (e.g., slow virus and aluminum theories), or based on pathologic observations (e.g., cholinergic, amyloid, or tangle theories). Genetic analysis can potentially differentiate between competing theories. The identification of mutations in the β-amyloid precursor protein (β-APP) of individuals prone to early onset forms of AD and related disorders strongly supports the amyloidogenic theories.


[0005] Histopathological examination of brain tissue derived upon autopsy or from neurosurgical specimens in affected individuals reveals the occurrence of amyloid plaques and neurofibrillar tangles in the cerebral cortex of such patients. Similar alterations are observed in patients with Trisomy 21 (Down's syndrome). Biochemical and immunological studies reveal that the dominant proteinaceous component of the amyloid plaque is an approximately 4.2 kilodalton (kD) protein of about 39 to 43 amino acids. This protein is designated Aβ, β-amyloid peptide, and sometimes β/A4; referred to herein as Aβ. In addition to its deposition in amyloid plaques, Aβ is also found in the walls of meningeal and parenchymal arterioles, small arteries, capillaries, and sometimes, venules. Compelling evidence accumulated during the last decade reveals that Aβ is an internal polypeptide derived from a type 1 integral membrane protein, termed β-amyloid precursor protein (APP) (Selkoe, D. Physiol. Rev. 2001, 81, 741-766; Wolfe, M. J. Med. Chem. 2001, 44, 2039-2060). βAPP is normally produced by many cells both in vivo and in cultured cells, derived from various animals and humans. Several proteolytic fragments of APP are generated by proteinases referred to as secretases. A subset of these proteolytic fragments, designated β-amyloid peptide (Aβ), contains 39 to 43 amino acids and is generated by the combined action of β-secretase and γ-secretase. β-secretase is a membrane-bound, aspartyl protease that forms the N-terminus of the Aβ peptide. The C-terminus of the Aβ peptide is formed by γ-secretase, an apparently oligomeric complex that includes presenilin-1 and/or presenilin-2. Presenilin-1 and presenilin-2 are polytopic membrane-spanning proteins that may contain the catalytic components of γ-secretase (Seiffert, D.; Bradley, J. et al. J. Biol. Chem. 2000, 275, 34086-34091).


[0006] Multiple lines of evidence together strongly suggest that a reduction in brain Aβ levels will prevent the onset and progression of AD. First, Aβ is a major constituent of the parenchemyal plaques observed in all AD patients and the cerebral vasculature amyloid deposits observed in 90% AD patients (reviewed in Selkoe, D. Physiol. Rev. 2001, 81, 741-766; Wolfe, M. J. Med. Chem. 2001, 44, 2039-2060). These plaques are formed from the aggregation of soluble Aβ whose brain levels are highly correlated with the severity of AD neurodegeneration (McLean, C., Chemy, R. et al. Ann. Neurol. 1999, 46, 860-866). Second, mutations in three genes (APP, PS-1, or PS-2) that increase Aβ cause familial AD (FAD), where AD onset is accelerated by at least a decade. Included in the mutations that increase Aβ are chromosome 21 Trisomy that causes Down's syndrome. Third, transgenic mice that express one or more of the mutant FAD genes have increased Aβ levels, form parenchymal plaques and cerebral vascular deposits containing Aβ, exhibit memory deficits (Chapman, P.; White, G. et al. Nature Neurosci. 1999, 2, 271-276) and enhance neurofibrillary degeneration in mice that also overexpress mutant tau (Lewis, J.; Dickson, D. et al. Science 2001, 293, 1487-1491). Fourth, Aβ is toxic to cultured cells (Dahlgren, K.; Manelli, A. et al. J. Biol. Chem. 2002 277, 32046-32053), induces neurofibrillary tangles in mice with mutant tau (Gotz, J., Chen, F. et al. Science 2001, 293, 1491-1495) and interferes with long-term potentiation, a likely component of memory (Walsh, D., Klyubin, I. et al. Nature 2002, 416, 535-539 and references therein). Taken together, these data lead one skilled in the art to conclude that excess Aβ production and/or reduced Aβ clearance cause AD. From this it follows that reducing brain Aβ levels by inhibition of γ-secretase will prevent the onset and progression of AD.


[0007] In addition to AD, excess production and/or reduced clearance of Aβ causes cerebral amyloid angiopathy (CAA) (reviewed in Thal, D., Gherbremedhin, E. et al. J. Neuropath. Exp. Neuro. 2002, 61, 282-293). In these patients, vascular amyloid deposits cause degeneration of vessel walls and aneurysms that may be responsible for 10-15% hemorrhagic strokes in elderly patients. As in AD, mutations in the gene encoding Aβ lead to an early onset form of CAA, referred to as cerebral hemorrhage with amyloidosis of the Dutch type, and mice expressing this mutant protein develop CAA that is similar to patients.


[0008] It is hypothesized that inhibiting the production of Aβ will prevent and reduce neurological degeneration, reducing neurotoxicity and, generally, mediating the pathology associated with Aβ production. Methods of treatment could target the formation of Aβ through the enzymes involved in the proteolytic processing of β-amyloid precursor protein. Compounds that inhibit β- or γ-secretase activity, either directly or indirectly, could control the production of Aβ. Advantageously, compounds that specifically target γ-secretases, could control the production of Aβ. Such inhibition of β- or γ-secretases could thereby reduce production of Aβ which, could reduce or prevent the neurological disorders associated with Aβ protein.


[0009] Smith, et al. in International Application WO 00/50391, published Aug. 31, 2000, disclose a series of sulfonamide compounds that can act to modulate production of amyloid β protein as a means of treating a variety of diseases, especially Alzheimer's Disease and other diseases relating to the deposition of amyloid. Japanese Patent No.11343279, published Dec. 14, 1999 discloses a series of sulfonamide derivatives which are TNF-alpha inhbitors useful for treating autoimmune diseases.


[0010] Nothing in these references can be construed to disclose or suggest the novel compounds of this invention and their use to inhibit β-AP production.



SUMMARY OF THE INVENTION

[0011] A series of α-(N-sulfonamido)acetamide derivatives have been synthesized. These compounds specifically inhibit the production of β-amyloid peptide (β-AP) from β-amyloid precursor protein (β-APP). The pharmacologic action of these compounds makes them useful for treating conditions responsive to the inhibition of β-AP in a patient; e.g., Alzheimer's Disease (AD) and Down's Syndrome. Therapy utilizing administration of these compounds to patients suffering from, or susceptible to, these conditions involves reducing β-AP available for accumulation and deposition in brains of these patients.



DETAILED DESCRIPTION OF THE INVENTION

[0012] The present invention comprises compounds of Formula I, their pharmaceutical formulations, and their use in inhibiting β-AP production in patients suffering from or susceptible to AD or other disorders resulting from β-AP accumulation in brain tissue. The compounds of Formula I which include nontoxic pharmaceutically acceptable salts and/or hydrates thereof have the following formula and meanings:
2


[0013] wherein:


[0014] R1 is selected from the group consisting of


[0015] (a) a straight or branched-chain C1-6alkyl or C2-6alkenyl optionally substituted with substituents selected from the group consisting of hydroxy, C3-7cycloalkyl, C1-4alkoxy, C1-4alkylthio, and halogen;


[0016] (b) C3-7cycloalkyl optionally substituted with hydroxy or halogen;


[0017] R is hydrogen or R1 and R taken together is C2-5alkylene;


[0018] R2 is selected from the group consisting of


[0019] (a) a straight or branched-chain C1-6alkyl or C3-6alkenyl optionally substituted with substituents selected from the group consisting of halogen, C1-4alkoxy, and NR4R5;


[0020] (b) C3-7cycloalkylmethyl optionally substituted with substituents selected from the group consisting of amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, C1-4alkylC(═O)NH—, and C1-4alkylOC(═O)NH—;


[0021] (c) a straight or branched-chain C1-6alkyl-C(═O)—A;


[0022] (d) —B-naphthyl;


[0023] (e)
3


[0024]  D and E are each independently a direct bond, a straight or branched-chain C1-6alkyl, C2-6alkenyl, or C3-7cycloalkyl;


[0025]  Z is selected from the group consisting of hydrogen, C1-4alkyl,


[0026]  C1-4alkoxy, halogen, cyano, hydroxy, —OCHF2, —OCF3, —CF3, and —CHF2;


[0027]  X and Y are each independently selected from the group consisting of hydrogen, hydroxy, halogen, (halogen)3C—, (halogen)2CH—, C1-4alkylS—, C1-4alkylS(O)—, C1-4alkylSO2—, nitro, F3S—, and cyano; —OR6; —NR4R5;—NR7C(═O)R8; —NR7C(═O)OR8; —NHSO2C1-4alkyl; —N(SO2C1-4alkyl)2;—C(═O)W wherein W is selected from the group consisting of hydroxy, C1-4alkyl, C1-4alkoxy, phenoxy, and —NR4R5; —OC(═O)C1-4alkyl; -phenyl in which said phenyl is optionally substituted with cyano, halogen, C1-4alkoxy, C1-4alkylS—, CH3C(═O), C1-4alkylS(O)—, or C1-4alkylSO2—; and heterocyclic group, in which said heterocyclic group is selected from the group consisting of furanyl, thiofuranyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, oxadiazolyl, oxazolyl, isoxazolyl, thiadiazolyl, and thiazolyl, wherein said heterocyclic group is optionally substituted with substituents selected from the group consisting of cyano, halogen, C1-4alkyl, (halogen)C1-4alkyl, and CO2C1-4alkyl;


[0028] (f) —B-(heterocycle), in which said heterocycle is selected from the group consisting of furanyl, thiofuranyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, oxadiazolyl, oxazolyl, isoxazolyl, thiadiazolyl and thiazolyl wherein said heterocycle is optionally substituted with substituents selected from the group consisting of cyano, halogen, C1-4alkyl, CO2C1-4alkyl, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin-1-yl;


[0029] (g) —B-(piperidin-4-yl), in which said piperidin-4-yl is optionally substituted with substituents selected from the group consisting of a straight or branched-chain C1-6alkyl, CH2C(═O)phenyl, phenyl and phenylmethyl in which said C1-6alkyl and said phenyl are optionally substituted with substituents selected from the group consisting of cyano, halogen, benzimidazol-2-yl, pyridyl and tetrahydrofuran-2-yl; and —C(═O)W′ wherein W′ is selected from the group consisting of C1-4alkoxy, R9, and —NR4R5;


[0030] A is hydroxy, C1-4alkoxy or NR4R5;


[0031] B is a straight or branched-chain C1-6alkyl or C3-6alkenyl;


[0032] R3 is phenyl or pyridyl optionally substituted with substituents selected from the group consisting of halogen, hydroxy, C1-4alkoxy, C1-4alkyl, (halogen)3C—, (halogen)2CH—, and halogenCH2—;


[0033] R4 and R5 each are independently hydrogen, a straight or branched-chain C1-6 alkyl, C3-6alkenyl, C3-6alkynyl, C3-7cycloalkyl, C3-7cycloalkylmethyl, C1-4alkoxy, phenyl, benzyl, pyridyl, piperidin-4-yl, indan-1-yl, indan-2-yl, tetrahydrofuran-3-yl, or pyrrolidin-3-yl; in which each is optionally substituted with substituents selected from the group consisting of hydroxy, cyano, halogen, (halogen)3C—, (halogen)2CH—, halogenCH2—, hydroxymethyl, benzyloxymethyl, phenyl, pyridyl, C1-4alkyl, C1-4alkoxy, (halogen)3C—O—, (halogen)2CH—O—, C1-4alkythio, amino, (C1-4alky)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, 4-(C1-6alkyl)piperazin-1-yl, 4-phenylpiperazin-1-yl, 4-benzylpiperazin-1-yl, 4-pyridylpiperazin-1-yl, CO2H, CO2C1-4alkyl, C(═O)NHC1-4alkyl, and C(═O)N(C1-4alkyl)2;


[0034] R4 and R5 taken together may be morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, 1,2,3,4-tetrahydroisoquinolin-2-yl, decahydroquinolin-1-yl, piperidin-1-yl, piperazin-1-yl, [1,4]-oxazepan-4-yl, azetidin-1-yl, 2,3-dihydro -1H-isoindol-2-yl, or 2,3-dihydro-1H-indol-1-yl; in which each is optionally substituted with substituents selected from the group consisting of hydroxy, cyano, halogen, (halogen)3C—, (halogen)2CH—, halogenCH2—, phenyl, pyridyl, benzyl, C1-6alkyl, C3-7cycloalkyl, C1-4alkoxy, C1-4alkylthio, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, CO2H, CO2C1-4alkyl, C(═O)NHC1-4alkyl, and C(═O)N(C1-4alkyl)2;


[0035] R6 is a straight or branched-chain C1-6alkyl, C3-6alkenyl, benzyl, or phenyl in which each is optionally substituted with substituents selected from the group consisting of halogen, C1-4alkyl, C1-4alkoxy, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, (C1-4alkyl)(phenyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin -1-yl;


[0036] R7 is hydrogen, a straight or branched-chain C1-6alkyl;


[0037] R8 is a straight or branched-chain C1-6alkyl, C3-7cycloalkyl, phenyl, pyridyl, or furanyl; in which each is optionally substituted with substituents selected from the group consisting of halogen, C1-4alkyl, C1-4alkoxy, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin-1-yl;


[0038] R9 is a straight or branched-chain C1-6alkyl, C3-6 alkenyl, benzyl, phenyl, oxazolyl or pyridyl; in which each is optionally substituted with substituents selected from the group consisting of halogen, (halogen)3C—, (halogen)2CH—, halogenCH2—, C1-4alkyl, C1-4alkoxy, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin-1-yl;


[0039] or a non-toxic pharmaceutically acceptable salt thereof.


[0040] The present invention also provides a method for the treatment or alleviation of disorders associated with β-amyloid peptide, especially Alzheimer's Disease, which comprises administering together with a conventional adjuvant, carrier or diluent a therapeutically effective amount of a compound of formula I or a nontoxic pharmaceutically acceptable salt, solvate or hydrate thereof.


[0041] The term “C1-6alkyl” as used herein and in the claims (unless the context indicates otherwise) means straight or branched chain alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, 3-methylbutyl, hexyl and the like. The term “C2-6alkenyl” used herein and in the claims (unless the context indicates otherwise) means straight or branched chain alkenyl groups such as ethenyl (i.e. vinyl), propenyl, allyl, butenyl, 3-methylbutenyl, pentenyl, hexenyl and the like. Unless otherwise specified, the term “halogen” as used herein and in the claims is intended to include bromine, chlorine, iodine and fluorine while the term “halide” is intended to include bromide, chloride and iodide anion.


[0042] The term “C3-7cycloalkyl” means a carbon cyclic ring system such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.


[0043] The term “C1-4haloalkyl” means a straight or branched chain C1-4alkyl group containing from 1 to 3 halogen atoms such as trifluoromethyl, fluoroethyl, 1,2-dichloroethyl, trichloroethyl and the like.


[0044] The term “C2-5alkylene” means a straight or branched chain alkylene group such as methylene, ethylene, propylene, methylethylene, butylene, methylpropylene, pentylene, methylbutylene and ethylpropylene.


[0045] As the compounds of the present invention possess an asymmetric carbon atom, the present invention includes the racemate as well as the individual enantiometric forms of the compounds of Formula I as described herein and in the claims. The use of a single designation such as (R) or (S) is intended to include mostly one stereoisomer. Mixtures of isomers can be separated into individual isomers according to methods which are known per se, e.g. fractional crystallization, adsorption chromatography or other suitable separation processes. Resulting racemates can be separated into antipodes in the usual manner after introduction of suitable salt-forming groupings, e.g. by forming a mixture of diastereosiomeric salts with optically active salt-forming agents, separating the mixture into diastereomeric salts and converting the separated salts into the free compounds. The possible enantiomeric forms may also be separated by fractionation through chiral high pressure liquid chromatography columns.


[0046] The term “nontoxic pharmaceutically acceptable salt” as used herein and in the claims is intended to include nontoxic base addition salts. Suitable salts include those derived from organic and inorganic acids such as, without limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, tartaric acid, lactic acid, sulfinic acid, citric acid, maleic acid, fumaric acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, and the like.


[0047] In the method of the present invention, the term “therapeutically effective amount” means the total amount of each active component of the method that is sufficient to show a meaningful patient benefit, i.e., healing of acute conditions characterized by inhibition of β-amyloid peptide production. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously. The terms “treat, treating, treatment” as used herein and in the claims means preventing or ameliorating diseases associated with β-amyloid peptide.


[0048] General Reaction Schemes


[0049] The general procedures used to synthesize the compounds of Formula I are described in Reaction Schemes 1-23. Reasonable variations of the described procedures, which would be evident to one skilled in the art, are intended to be within the scope of the present invention.
4


[0050] The starting ((α-amino)acetamides of Formula II are used in racemic or in enantiomerically pure form and are commercially available or are prepared by well-known literature procedures from commercially available ((α-amino)acids (general reference for amide preparation.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976; see also Reaction Scheme 18 for the conversion of the acid of Formula XLVIII to the amide of Formula XLIX). The compound of Formula II is treated with a suitable base and a sulfonylating reagent such as a sulfonyl chloride in an aprotic solvent such as CH2Cl2 at room temperature to generate the (α-sulfonamido)acetamide of Formula III. Suitable bases include triethylamine and pyridine.


[0051] In one method for conversion of the compound of Formula III to the sulfonamide of Formula I, the compound of Formula III is treated with a suitable base and an alkylating agent in an aprotic solvent with or without heating. Suitable bases for this reaction include potassium carbonate and cesium carbonate. Alkylating agents include alkyl halides (e.g., alkyl chloride, alkyl bromide, or alkyl iodide) and alkyl sulfonates (tosylates, mesylates, trifluoromethanesulfonates). Preferred solvents include DMF and acetonitrile. The temperature range for the reaction is typically 20° C. to 100° C.


[0052] An alternative method for conversion of the compound of Formula III to the compound of Formula I involves treatment of the compound of Formula III with triphenyl phosphine, a dialkyl azodicarboxylate, and an alcohol in an inert solvent with or without heating.
5


[0053] The compounds of Formula I can also be prepared using solid phase methodology. For example, FMOC-protected Rink amide resin is treated with piperidine in DMF to effect removal of the FMOC group. The resin is then coupled with an amino-protected (α-amino)acid in the presence of a coupling agent such as 1-hydroxybenzotriazole and a dialkyl carboduimide in an inert solvent such as DMF with or without heating. Deprotection of the α-amino group affords the polymer-bound amide of Formula IV. In the case of an FMOC-protected amino acid, the deprotection can be accomplished by treatment with piperidine in DMF.


[0054] Reaction of the compound of Formula IV with an appropriate base such as pyridine and a sulfonylating agent such as a sulfonyl chloride in an inert solvent provides the resin-linked sulfonamide of Formula V. Alkylation of the compound of Formula V with an alkyl halide (e.g., alkyl chloride, alkyl bromide, or alkyl iodide) or alkyl sulfonate (e.g., mesylate, tosylate, or trifluoromethanesulfonate) is carried out in the presence of a base in an inert solvent at room temperature. A preferred base is 2-t-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diasaphosphorine. Cleavage from the resin provides the sulfonamide of Formula I. In the case of the Rink amide resin, the cleavage is preferably carried out using trifluoroacetic acid in an inert solvent such as CH2Cl2.
6


[0055] The compounds of Formula I can also be prepared as shown in Reaction Scheme 2. Reductive alkylation of the amine of Formula I to provide the amine of Formula VI is effected by treatment with an aldehyde and a hydride reducing agent in the presence of an acid catalyst with or without heating. A preferred reducing agent is sodium cyanoborohydride. A preferred acid catalyst is a Lewis acid such as ZnCl2. The reaction solvent is preferably methanol. The amine of Formula VI is then treated with a sulfonylating agent such as a sulfonyl chloride in the presence of an amine such as triethylamine. This reaction is carried out in an inert solvent such as CH2Cl2 with or without heating to afford the product of Formula I. The reaction is typically carried out at room temperature.
7


[0056] Preparation of compounds of Formula VIII is accomplished as shown in Reaction Scheme 3 by reaction of the compound of Formula VII with an amine in the presence of an acid scavenger such as triethylamine in an inert solvent such as CH2Cl2 with or without heating. The compound of Formula VII is prepared by the sequence shown in Reaction Scheme 1 or Reaction Scheme 2.
8


[0057] The compounds of Formula XI and XII are prepared as shown in Reaction Scheme 4. Reduction of the nitro group of the compound of Formula IX (prepared by the sequence shown in Reaction Scheme 1 or 2) with hydrogen gas under pressure in the presence of a palladium catalyst, acid, and in a solvent such as methanol provided the aniline derivative of Formula X. Monomethylation of the compound of Formula X to provide the compound of Formula XI is accomplished by reaction with 1.1 equivalents of a methyl halide or a methyl sulfonate, for example dimethylsulfate, in the presence of a base such as triethylamine and in an inert solvent such as DMF. The monomethylation reaction is typically carried out between 20° C. and 40° C. Preparation of the dimethylaniline of Formula XII is effected by treatment of the aniline of Formula X with an excess of a methyl halide such as methyl iodide or a methyl sulfonate in the presence of a base, for example cesium carbonate, in a solvent such as DMF, with or without heating.
9


[0058] Reaction Scheme 5 outlines the synthesis of esters of Formula XIII, acids of Formula XIV, and amides of Formula XV. Reaction of a compound of Formula III with a haloalkylcarboxylate ester, for example t-butyl bromoacetate, in the presence of a base such as potassium carbonate and in an inert solvent such as DMF affords the ester of Formula XIII. Deprotection of the ester is effected by methods known to those skilled in the art (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, Wiley Interscience, New York, 1999, pp. 373-442). For example, for t-butyl esters, cleavage to the acid of Formula XIV is accomplished by treatment with trifluoroacetic acid in a solvent such as CH2Cl2. Conversion of the acid to the amide of Formula XV is carried out using common amide coupling procedures well known to those skilled in the art (ref.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976). In a preferred procedure, the acid of Formula XIV is treated with a primary or secondary amine in the presence of 1-hydroxybenzotriazole and 1,3-dicyclohexylcarbodiimide in an aprotic solvent such as CH2Cl2 or DMF.
10


[0059] The preparation of acids of Formula XVII and amides of Formula XVIII is shown in Reaction Scheme 6. Conversion of an ester of Formula XVI (prepared as shown in Reaction Schemes 1 or 2) to an acid of Formula XVII is accomplished using standard ester cleavage conditions well known to those skilled in the art (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, Wiley Interscience, New York, 1999, pp. 373-442). In the case of a methyl ester of Formula XVI, treatment with aqueous sodium hydroxide in a solvent such a methanol or a methanol/THF mixture at 20° C. to 40° C. provides the acid of Formula XVII. Conversion of the acid of Formula XVII to the amide of Formula XVIII is achieved using common amide coupling procedures well known to those skilled in the art (ref.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976). In a preferred procedure, the acid of Formula XVII is treated with a primary or secondary amine in the presence of 1-hydroxybenzotriazole and a carbodiimide, for example 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, in a solvent such as DMF or CH2Cl2. A base such a diusopropylethylamine can be added as an acid scavenger.
11


[0060] The synthesis of piperidine derivatives of Formula XIX, XX, XXI, XXII, and XXIII is described in Reaction Scheme 7. Reaction of a compound o f Formula III with an N-protected piperidine substituted with a 4-haloalkyl or 4-sulfonyloxyalkyl group, such as 4-(toluenesulfonyloxymethyl)-1-(t-butoxycarbonyl)piperidine, in the presence of a base such as cesium carbonate in a solvent such as DMF, with or without heating, provides the carbamate of Formula XIX. Cleavage of the carbamate group in the compound of Formula XIX is carried out under standard conditions well known to those skilled in the art (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, Wiley Interscience, New York, 1999, pp. 503-550) to provide the piperidine of Formula XX. In the case of a (t-butoxycarbonyl)piperidine derivative, the cleavage is effected by treatment with trifluoroacetic acid in CH2Cl2.


[0061] Conversion of the piperidine of Formula XX to an amide of Formula XXI is carried out using amide-coupling procedures well known to those skilled in the art (ref.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976). In a preferred method, the piperidine of Formula XX is treated with an acyl chloride in the presence of an amine such as triethylamine and in an inert solvent such as CH2Cl2 with or without heating. Alternatively, the piperidine of Formula XX may be coupled with an acid in the presence of coupling agents such as hydroxybenzotriazole and a carboduimide to provide an amide of Formula XXI. Preparation of the urea of Formula XXII is achieved by treatment of the amine of Formula XX with an isocyanate and a base such as triethylamine in a solvent such as CH2Cl2 with or without heating. Alkylation of the piperidine of Formula XX provides N-substituted piperidines of Formula XXIII. In a typical procedure, the piperidine is treated with an alkyl halide or an alkyl sulfonate in the presence of a base such as triethylamine and in a solvent such as CH2Cl2.
12


[0062] Alcohols of Formula XXV and amines of Formula XXVI are synthesized by the sequence shown in Reaction Scheme 8. A protected alcohol of Formula XXIV is prepared by the procedure shown in Reaction Schemes 1 or 2. Deprotection of the alcohol under the appropriate conditions for the chosen protecting group (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, Chapter 2) provides the alcohol of Formula XXV. For example, when the protecting group is a tetrahydropyranyl moiety, the alcohol is liberated by treatment of the compound of Formula XXIV with p-toluenesulfonic acid in a solvent such as methanol. The alcohol of Formula XXV is converted to a leaving group (e.g., a halide or sulfonate) and then treated with a primary or secondary amine to afford an amine of Formula XXVI. For example, the alcohol may be converted to a mesylate derivative by reaction with methanesulfonyl chloride and a base such as triethylamine in CH2Cl2. Subsequent reaction of the mesylate with a primary or secondary amine in the presence of a base such as triethylamine in a solvent such as CH2Cl2 provides the amine of Formula XXVI.
13


[0063] Amides of Formula XXVIII are prepared from amines of Formula XXVII as shown in Reaction Scheme 9. Amines of Formula XXVII wherein D is a direct bond are prepared as in Reaction Scheme 1 or 4. Amines of Formula XXVII wherein D is other than a direct bond are prepared as in Reaction Scheme 8. Conversion of the amines of Formula XXVII to the amides of Formula XXVIII is carried out using amide-coupling conditions well known to those skilled in the art (ref.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976). For example, reaction of the amine of Formula XXVII with an acid chloride in the presence of a base such as triethylamine in a solvent such as CH2Cl2 provides the amide of Formula XXVIII. Conversion of the amines of Formula XXVII to carbamate derivatives can be carried out using conditions well known to those skilled in the art. (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, P. 503-550). Preparation of sulfonamide derivatives from an amine of Formula XXVII can also be achieved using methods such as that described for the conversion of the intermediate of Formula II to the sulfonamide of Formula III.
14


[0064] The synthesis of pyridine derivatives of Formula XXX is accomplished as shown in Reaction Scheme 10. The chloropyridine derivative of Formula XXIX is prepared using the chemistry described in Reaction Schemes 1 or 2. Treatment of the compound of Formula XXIX with a primary or secondary amine in a solvent such as THF at temperatures from 20° C. to 100° C., using sealed, pressurized vessel as appropriate, provides the aminopyridine of Formula XXX.
15


[0065] Amine-substituted phenol ethers of Formula XXXII are prepared from (O-allyl)phenols as indicated in Reaction Scheme 11. The starting allyl ethers of Formula XXXI are prepared as shown in Reaction Schemes 1 or 2. Treatment of the compound of Formula XXXI with osmium tetroxide and trimethylamine N-oxide in a solvent such as acetone followed by treatment with sodium periodate gives an intermediate aldehyde that is typically used without purification. Reaction of the unpurified aldehyde with a primary or secondary amine and a reducing agent such as sodium triacetoxyborohydride in a solvent such as ethanol with or without heating affords the amine of Formula XXXII.
16


[0066] Conversion of the ester of Formula XXXIII to the tertiary alcohol of Formula XXXIV is carried out as shown in Reaction Scheme 12. Reaction of the ester of Formula XXXIII with an excess of a methyl organometallic reagent such as methyl magnesium bromide in a solvent such as THF at a temperature ranging from 0° C. to 25° C. yields the alcohol of Formula XXXIV.
17


[0067] Preparation of the 1,3,4-oxadiazole of Formula XXXVI is carried out as shown in Reaction Scheme 13 using methods well known to those skilled in the art (ref: Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry, 3rd ed., Chapman & Hall: London, 1995; 452-456 and references cited therein). For example, the ester of Formula XXXV is treated with hydrazine in methanol with heating up to the reflux point. The resulting acyl hydrazide intermediate is used without purification in a subsequent reaction with an alkyl acetimidate in pyridine with heating at reflux to provide the oxadiazole of Formula XXXVI.
18


[0068] Synthesis of the 1,2,4-oxadiazole of Formula XXXVII is achieved as shown in Reaction Scheme 14 using methods well known to those skilled in the art (ref: Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry, 3rd ed., Chapman & Hall: London, 1995; 452-456 and references cited therein). For example, treatment of the acid of Formula XVII with hydroxbenzotrlazole, a carbodiimide, and acetamidoxime (N-hydroxy ethanimidamide) in the presence of a base such as triethylamine provides an intermediate that is heated in refluxing pyridine to provide the oxadiazole of Formula XXXVII.
19


[0069] The 1,2,4-oxadiazole of Formula XXXIX is prepared from the nitrile of Formula XXXVIII (Reaction Scheme 15) using methods well-known to those skilled in the art (ref: Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry, 3rd ed., Chapman & Hall: London, 1995; 452-456 and references cited therein). For example, reaction of the nitrile of Formula XXXVIII with hydroxylamine in a solvent such as ethanol at temperatures up to reflux provides an intermediate N-hydroxyamidine that is subsequently treated with acetyl chloride in the presence of a base such as triethylamine in a solvent such as CH2Cl2 to provide the 1,2,4-oxadiazole of Formula XXXIX.
20


[0070] Reaction Scheme 16 shows the transformation of the amide of Formula XL to the ketone of Formula XLI. The amide of Formula XL, which is prepared as described in Reaction Scheme 6, is treated with a methyl organometallic reagent such as methyl magnesium bromide in a solvent such as THF to provide the ketone of Formula XLI. The range of the reaction temperature is from −20° C. to 25° C.
21


[0071] β-Amino amides of Formula XLIII are prepared from acrylamides of Formula XLII as shown in Reaction Scheme 17. For example, an acrylamide of Formula XLII, which is prepared as described in Reaction Scheme 9, is treated with a primary or secondary amine in a solvent such as toluene to provide the β-amino amide of Formula XLIII.
22


[0072] Preparation of the sulfonamide intermediate of Formula XLIX (a single enantiomer of the compound of Formula III) is outlined in Reaction Scheme 18. Reaction of the α-anion of the intermediate of Formula XLIV (ref: Josien, H.; Martin, A.; Chassaing, G. Tetrahedron Lett. 1991, 32, 6547) with an alkylating agent such as an alkyl halide (e.g., an alkyl chloride, alkyl bromide, or alkyl iodide) or an alkyl sulfonate (e.g., an alkyl mesylate, alkyl tosylate, or alkyl trifluoromethanesulfonate) provides the intermediate of Formula XLV. The α-anion of the compound of Formula XLIV is formed by treatment with a strong base such as an alkyl lithium (e.g., n-BuLi) or a dialkylamide (e.g., lithium diisopropylamide) in a solvent such as THF with or without a co-solvent such as HMPA. The reaction temperature is typically between −78° C. and 25° C. Removal of the benzhydrylidene protecting group of the compound of Formula XLV is carried out under conditions well known to those skilled in the art (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, Wiley Interscience, New York, 1999, pp. 587-588). For example, the compound of Formula XLV is treated with an acid such as HCl in water in a solvent such as THF to effect hydrolysis of the benzhydrylidene protecting group. The resulting amine of Formula XLVI is treated with a sulfonylating agent as described for Reaction Scheme 1 to provide the sulfonamide of Formula XLVII. Hydrolysis of the acylsulfonamide of Formula XLVII to afford the acid of Formula XLVIII is carried out by treatment with hydroxide ion, for example in the form of lithium hydroxide, in the presence of additives such as lithium bromide and tetrabutylammonium bromide. The acid of Formula XLVIII is converted to the amide of formula XLIX under conditions that are well known to those skilled in the art (general ref for amide preparation.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976). For example, reaction of the compound of Formula XLVIII with ammonium chloride in the presence of 1-hydroxybenzotriazole, a carbodiimide reagent, and an amine base such as diusopropylethylamine provides the amide of Formula XLIX. This reaction is typically run in a polar solvent such as DMF and at a reaction temperature from 0° C. to 40° C. The amide of Formula XLIX is converted to the compounds of Formula I by the method described in Reaction Scheme 1.
23


[0073] Reaction Scheme 19 illustrates one method for synthesis of an α-substituted (N-sulfonamido)acetamide intermediate of Formula III starting with an activated glycine derivative of Formula L. Reaction of the compound of Formula L (ref.: Haufe, G.; Laue, K. W.; Trifler, M. U.; Takeuchi, Y.; Shibata, N. Tetrahedron 1998, 54, p. 5929-5938; Kroger, S.; Haufe, G. Amino Acids 1997, 12, p. 363-372) with an alkylating agent such as an alkyl halide (e.g., an alkyl chloride, alkyl bromide, or alkyl iodide) or an alkyl sulfonate (e.g., an alkyl mesylate, an alkyl tosylate, or an alkyl trifluoromethanesulfonate) in the presence of a base such as potassium carbonate and an additive such as tetrabutylammonium bromide and in an inert solvent such as acetonitrile at a reaction temperature of between 25° C. and 70° C. provides the compound of Formula LI. Removal of the benzhydrylidene protecting group is carried out under conditions well known to those skilled in the art (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, Wiley Interscience, New York, 1999, pp. 587-588). For example, a solution of the compound of Formula LI in a solvent such as diethyl ether is treated with aqueous acid (e.g., aqueous HCl), typically at a reaction temperature of between 0° C. and 30° C., to provide the amine ester of Formula LII. Conversion of the ester of Formula LII to the amide of Formula II is carried out using procedures well known to those skilled in the art. For example, when the compound of Formula LII is an ethyl ester, hydrolysis of the ester is achieved by treatment of an ethereal solution with an acid such as HCl, typically with heating of the reaction mixture in refluxing solvent. The resulting acid intermediate is then converted to a methyl ester of Formula LII by transformation to the acid chloride under standard conditions, (e.g., treatment with thionyl chloride and methanol), followed by reaction with aqueous ammonia in a solvent such as toluene (ref.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976).. The amine of Formula II is converted to the compound of Formula I as described in Reaction Scheme 1.
24


[0074] Preparation of the compound of Formula LVII is shown in Reaction Scheme 20. Alkene LIII is prepared as described in Reaction Scheme 18 from an intermediate of Formula XLIV and 1-bromo-2-methyl-2-propene). Treatment of the alkene of Formula LIII with HF.pyridine in a solvent such as THF at a reaction temperature between 0° C. and 25° C. affords the fluoroalkyl compound of Formula LIV. Conversion of the compound of Formula LIV to the amide of Formula LV is accomplished as described in Reaction Scheme 18. Transformation of the amide of Formula LV to the compound of Formula LVI is carried out as described in Reaction Scheme I.
25


[0075] The syntheses of the compounds of Formula LXII and Formula LXIV are outlined in Reaction Scheme 21. Ethyl 2-amino-4-methyl-4-pentenoate (prepared as in Reaction Scheme 19 from (benzhydrylideneamino)acetic acid ethyl ester and 1-bromo-2-methyl-2-propene) is treated with a sulfonylating agent such as a sulfonyl chloride in the presence of a base such as triethylamine in an inert solvent such as CH2Cl2 to afford the ester of Formula LVII. Reaction of the ester of Formula LVII with HF.pyridine in a solvent such as THF and at a reaction temperature of between 0° C. and 25° C. provides a mixture of the fluoroalkyl derivative of Formula LVIII and the lactone of Formula LIX. These products are separated and carried on individually into subsequent reactions.


[0076] The ester of Formula LVIII is hydrolyzed to the acid of Formula LX using methods well known to those skilled in the art (ref.: T. W. Greene and P. G. M. Wuts, “Protecting Groups in Organic Synthesis”, Wiley Interscience, New York, 1999, pp. 373-442). For example, treatment of the ester of Formula LVIII with aqueous sodium hydroxide in a solvent such as methanol affords the acid of Formula LX. The acid of Formula LX is converted to the amide of Formula LXI using the procedure described in Reaction Scheme 18 for the preparation of the amide of Formula XLIX. Preparation of the amide of Formula LXII from the compound of Formula LXI is achieved as described in Reaction Scheme 1.


[0077] For the lactone of Formula LIX, treatment with aqueous ammonia provides the amide of Formula LXIII. This reaction is typically carried out with heating in a sealed tube. The reaction temperature is between 40° C. and 80° C. Further conversion of the intermediate of Formula LXIII to the sulfonamide of Formula LXIV proceeded as described in Reaction Scheme 1.
26


[0078] The synthetic sequence for preparation of a difluoroalkyl amide of Formula LXIX is shown in Reaction Scheme 22. The compound of Formula L is treated with 4-bromo-1-butene in the presence of a base such potassium carbonate in the presence of a tetraalkylammonium halide salt such as tetrabutylammonium bromide in a solvent such as CH3CN at a temperature from 20° C. to 70° C. Removal of the benzhydrylidene protecting group as described in Reaction Scheme 19 provides an intermediate amine that is then treated with a sulfonylating reagent such as a sulfonyl chloride to provide the ester of Formula LXV. Alkylation of the sulfonamide nitrogen is accomplished using the procedure described in Reaction Scheme 1 to afford the compound of Formula LXVI. Conversion of the alkene of Formula LXVI to the aldehyde of Formula LXVII is achieved by reaction of the alkene with osmium tetroxide and trimethylamine N-oxide in a solvent such as acetone, followed by treatment with sodium periodate. The reaction temperature is typically 20° C. to 40° C. Reaction of the aldehyde of Formula LXVII with a fluorinating agent such as DAST in a solvent such as CH2Cl2 yields the difluoroalkyl derivative of Formula LXVIII. The compound of Formula LXVIII is converted to the amide of Formula LXIX by hydrolysis of the ester to an acid using an base such as sodium hydroxide in a solvent such as methanol. The intermediate acid was converted to the amide using conditions well known to those skilled in the art (ref.: R. C. Larock “Comprehensive Organic Transformations, VCH Publishers, New York, 1989, pp. 972-976). For example, reaction of the acid with ammonium chloride in the presence of hydroxybenzotriazole and a carboduimide reagent and an amine base such as diusopropylethylamine provided the amide of Formula LXIX. This reaction is typically run in a polar solvent such as DMF and at a reaction temperature from 0° C. to 40° C.
27


[0079] The α-amino amide of Formula LXXI is prepared using the reaction showed in Reaction Scheme 23. The amide of Formula LXX is prepared as described in Reaction Scheme 9. Treatment of the compound of Formula LXX with a secondary or tertiary amine in a solvent such as THF at a reaction temperature between 20° C. and 40° C. affords the amine of Formula LXXI.
28


[0080] In a preferred embodiment, the present invention includes compounds of Formula Ia or a pharmaceutically acceptable salt thereof
29


[0081] wherein:


[0082] R1 is selected from the group consisting of


[0083] (a) a straight or branched-chain C1-6alkyl or C2-6alkenyl optionally substituted with substituents selected from the group consisting of hydroxy, C3-7cycloalkyl, C1-4alkoxy, C1-4alkylthio, and halogen;


[0084] (b) C3-7cycloalkyl optionally substituted with hydroxy or halogen;


[0085] R2 is selected from the group consisting of


[0086] (a) a straight or branched-chain C1-6alkyl or C3-6alkenyl optionally substituted with substituents selected from the group consisting of halogen, C1-4alkoxy, and NR4R5;


[0087] (b) C3-7cycloalkylmethyl optionally substituted with substituents selected from the group consisting of amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, C1-4alkylC(═O)NH—, and C1-4alkylOC(═O)NH—;


[0088] (c) a straight or branched-chain C1-6alkyl-C(═O)—A;


[0089] (d) —B-naphthyl;


[0090] (e)
30


[0091]  D and E are each independently a direct bond, a straight or branched-chain C1-6alkyl, C2-6alkenyl, or C3-7cycloalkyl;


[0092]  Z is selected from the group consisting of hydrogen, C1-4alkyl,


[0093]  C1-4alkoxy, halogen, cyano, hydroxy, —OCHF2, —OCF3, —CF3, and —CHF2;


[0094]  X and Y are each independently selected from the group consisting of hydrogen, hydroxy, halogen, (halogen)3C—, (halogen)2CH—, C1-4alkylS—, C1-4alkylS(O)—, C1-4alkylSO2—, nitro, F3S—, and cyano;


[0095]  —OR6;


[0096]  —NR4R5;


[0097]  —NR7C(═O)R8;


[0098]  —NR7C(═O)OR8;


[0099]  —NHSO2C1-4alkyl;


[0100]  —N(SO2C1-4alkyl)2;


[0101]  —C(═O)W wherein W is selected from the group consisting of hydroxy, C1-4alkyl, C1-4alkoxy, phenoxy, and —NR4R5; —OC(═O)C1-4alkyl;


[0102]  -phenyl in which said phenyl is optionally substituted with cyano, halogen, C1-4alkoxy, C1-4alkylS—, CH3C(═O), C1-4alkylS(O)—, or C1-4alkylSO2—; and heterocyclic group, in which said heterocyclic group is selected from the group consisting of furanyl, thiofuranyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, oxadiazolyl, oxazolyl, isoxazolyl, thiadiazolyl, and thiazolyl, wherein said heterocyclic group is optionally substituted with substituents selected from the group consisting of cyano, halogen, C1-4alkyl, (halogen)C1-4alkyl, and CO2C1-4alkyl;


[0103] (f) —B-(heterocycle), in which said heterocycle is selected from the group consisting of furanyl, thiofuranyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, oxadiazolyl, oxazolyl, isoxazolyl, thiadiazolyl and thiazolyl wherein said heterocycle is optionally substituted with substituents selected from the group consisting of cyano, halogen, C1-4alkyl, CO2C1-4alkyl, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin-1-yl;


[0104] (g) —B-(piperidin-4-yl), in which said piperidin-4-yl is optionally substituted with substituents selected from the group consisting of a straight or branched-chain C1-6alkyl, CH2C(═O)phenyl, phenyl and phenylmethyl in which said C1-6alkyl and said phenyl are optionally substituted with substituents selected from the group consisting of cyano, halogen, benzimidazol-2-yl, pyridyl and tetrahydrofuran-2-yl; and —C(═O)W′ wherein W′ is selected from the group consisting of C1-4alkoxy, R9, and —NR4R5;


[0105] A is hydroxy, C1-4alkoxy or NR4R5;


[0106] B is a straight or branched-chain C1-6alkyl or C3-6alkenyl;


[0107] R3 is phenyl or pyridyl optionally substituted with substituents selected from the group consisting of halogen, hydroxy, C1-4alkoxy, C1-4alkyl, (halogen)3C—, (halogen)2CH—, and halogenCH2—;


[0108] R4 and R5 each are independently hydrogen, a straight or branched-chain C1-6alkyl, C3-6alkenyl, C3-6alkynyl, C3-7cycloalkyl, C3-7cycloalkylmethyl, C1-4alkoxy, phenyl, benzyl, pyridyl, piperidin-4-yl, indan-1-yl, indan-2-yl, tetrahydrofuran-3-yl, or pyrrolidin-3-yl; in which each is optionally substituted with substituents selected from the group consisting of hydroxy, cyano, halogen, (halogen)3C—, (halogen)2CH—, halogenCH2—, hydroxymethyl, benzyloxymethyl, phenyl, pyridyl, C1-4alkyl, C1-4alkoxy, (halogen)3C—O—, (halogen)2CH—O—, C1-4alkylthio, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, 4-(C1-6alkyl)piperazin-1-yl, 4-phenylpiperazin -1-yl, 4-benzylpiperazin-1-yl, 4-pyridylpiperazin-1-yl, CO2H, CO2C1-4alkyl, C(═O)NHC1-4alkyl, and C(═O)N(C1-4alkyl)2;


[0109] R4 and R5 taken together may be morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, 1,2,3,4-tetrahydroisoquinolin-2-yl, decahydroquinolin-1-yl, piperidin-1-yl, piperazin-1-yl, [1,4]-oxazepan-4-yl, azetidin-1-yl, 2,3-dihydro -1H-isoindol-2-yl, or 2,3-dihydro-1H-indol-1-yl; in which each is optionally substituted with substituents selected from the group consisting of hydroxy, cyano, halogen, (halogen)3C—, (halogen)2CH—, halogenCH2—, phenyl, pyridyl, benzyl, C1-6alkyl, C3-7cycloalkyl, C1-4alkoxy, C1-4alkylthio, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, CO2H, CO2C1-4alkyl, C(═O)NHC1-4alkyl, and C(═O)N(C1-4alkyl)2;


[0110] R6 is a straight or branched-chain C1-6alkyl, C3-6alkenyl, benzyl, or phenyl in which each is optionally substituted with substituents selected from the group consisting of halogen, C1-4alkyl, C1-4alkoxy, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, (C1-4alkyl)(phenyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin -1-yl;


[0111] R7 is hydrogen, a straight or branched-chain C1-6alkyl;


[0112] R8 is a straight or branched-chain C1-6alkyl, C3-7cycloalkyl, phenyl, pyridyl, or furanyl; in which each is optionally substituted with substituents selected from the group consisting of halogen, C1-4alkyl, C1-4alkoxy, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin-1-yl;


[0113] R9 is a straight or branched-chain C1-6alkyl, C3-6alkenyl, benzyl, phenyl, oxazolyl or pyridyl; in which each is optionally substituted with substituents selected from the group consisting of halogen, (halogen)3C—, (halogen)2CH—, halogenCH2—, C1-4alkyl, C1-4alkoxy, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin-1-yl;


[0114] or a non-toxic pharmaceutically acceptable salt thereof.


[0115] In another preferred embodiment, the invention includes compounds of Formula Ia or a pharmaceutically acceptable salt thereof wherein R3 is phenyl optionally substituted with substituents selected from the group consisting of halogen, hydroxy, C1-4alkoxy, C1-4alkyl, (halogen)3C—, (halogen)2CH—, and halogenCH2—.


[0116] In yet another preferred embodiment, the invention includes compounds of Formula la or a pharmaceutically acceptable salt thereof wherein R2 is
31



BIOLOGICAL TESTING METHODS

[0117] Compounds of Formula (I) are expected to possess γ-secretase inhibitory activity. The detection of γ-secretase activity requires assays capable of reliable, accurate and expedient detection of γ-secretase cleavage products, particularly Aβ. The γ-secretase inhibitory activity of the compounds of the present invention is demonstrated using assays for such activity, for example, using the assays described below. Compounds within the scope of the present invention have been shown to inhibit the activity of γ-secretase, as determined using assays for such activity.


[0118] Compounds provided by this invention should also be useful as standards and reagents in determining the ability of a potential pharmaceutical to inhibit Aβ production. These would be provided in commercial kits comprising a compound of this invention.


[0119] In Vitro Binding Assay to Identify γ-secretase Inhibitors.


[0120] Competitive binding assays can be used to identify molecules that inhibit the binding of a radiolabeled γ-secretase inhibitor and therefore inhibit γ-secretase activity. For example, [3H]-Compound A can be used for binding assays with membranes from THP-1 cells (Seiffert, D.; Bradley, J. et al., J. Biol. Chem. 2000, 275, 34086-34091). Compound A is (2R,3S) N1-[(3S)-hexahydro-1-(3-phenoxybenzyl)-2-oxo-1H-azepin-3-yl]-2-(2-methylpropyl)-3-(propyl)-butanediamide, the synthesis of which is described in U.S. patent U.S. Pat. No. 6,331,408 (Dec. 18, 2001); PCT Publication WO 00/28331; PCT Publication WO 00/07995; and Seiffert, D., Bradley, J. et al., J. Biol. Chem. 2000, 275. 34086-34091.
32


[0121] For these assays, THP-1 cells were grown in spinner cultures in RPMI 1640 containing L-glutamine and 10 μM β-mercaptoethanol to a density of 5×105 cells/ml. Cells were harvested by centrifugation and cell pellets were quick frozen in dry ice/ethanol and stored at −70° C. prior to use. The pellets of approximately 2×104 THP-1 cells were homogenized using a Brinkman Polytron at setting 6 for 10 sec. The homogenate was centrifuged at 48,000×g for 12 min, and the resulting pellet was washed by repeating the homogenization and centrifugation. The final cell pellet was resuspended in buffer to yield a protein concentration of approximately 0.5 mg/ml. Assays were initiated by the addition of 150 μl of membrane suspension to 150 μl of assay buffer containing 0.064 μCi of radioligand and various concentrations of unlabeled compounds. Binding assays were performed in duplicate in polypropylene 96-well plates in a final volume of 0.3 ml containing 50 mM Hepes, pH 7.0, and 5% dimethyl sulfoxide. Nonspecific binding was defined using incubations with 300 nM compound A (Seiffert, D., Bradley, J. et al., J. Biol. Chem. 2000, 275, 34086-34091). After incubating at 23° C. for 1.3 hr, bound ligand was separated from free radioligand by filtration over GFF glass fiber filters presoaked in 0.3% ethyleneimine polymer solution. Filters were washed three times with 0.3 ml of ice cold phosphate-buffered saline, pH 7.0, containing 0.1% Triton X-100. Filter-bound radioactivity was measured by scintillation counting. IC50 values were then determined and used to calculate Ki values using the Cheng-Prusoft correction for IC50 values. Compounds were scored as active γ-secretase inhibitors if Ki values were less than 10 μM.


[0122] Examples of the results obtained when the invention compounds are subjected to the above described assay are shown in Table 1. In the table, an inhibitory concentration (IC50) of less than or equal to 50 nM is represented by +++; between 50 nM and 500 nM by ++; between 500 nM and 10000 nM by +.
1TABLE 1Examples of activity in the in vitro binding AssayEXAMPLEACTIVITY RATINGa96+++123+++159+++315++341++357++362+++365+++366+++367+376++379+++385+++389+++394+++403++405+++408+409++437+++441+++443++445+++447+++450++451+452++457++464+474+++476+++479++486+++aActivity based on IC50 values: +++ = <50 nM ++ = 50-500 nM + = >500 nM and <10,000 nM


[0123] In Vitro Assay to Identify γ-secretase Inhibitor Based on the Inhibition of Aβ Formation from Membrane Preparations.


[0124] An isolated membrane fraction which contains functionally active γ-secretase and β-APP substrates can generate γ-secretase cleavage products including Aβ (Roberts, S. B.; Hendrick, J. P.; Vinitsky, A.; Lewis, M.; Smith, D. W.; Pak, R. PCT Publication WO 01/0175435; Fechteler, K.; Kostka, M.; Fuchs, M. Patent Application No. DE 99-19941039; Shearman, M.; Beher, D. et al., Biochemistry, 2000, 39, 8698-8704; Zhang, L. Song, L. et al., Biochemistry 2001, 40, 5049-5055). An isolated membrane fraction can be prepared from human derived cell lines such as HeLa and H4 which have been transfected with wild type or mutant forms of β-APP or a human alkaline phosphatase β-APP fusion construct, and stably express high levels of γ-secretase substrates. The endogenous γ-secretase present in the isolated membranes prepared at 0-4° C. cleaves the β-APP substrates when the membranes are shifted from 0-4 to 37° C. Detection of the cleavage products including Aβ can be monitored by standard techniques such as immunoprecipitation (Citron, M.; Diehl, T. S. et al., Proc. Natl. Acad. Sci. USA, 1996, 93,13170-13175), western blot (Klafki, H. -W.; Ambramowski, D. et al., J. Biol. Chem.. 1996, 271, 28655-28659), enzyme linked immunosorbent assay (ELISA ) as demonstrated by Seubert, P.; Vigo-Pelfrey, C. et al., Nature, 1992, 359, 325-327, or by a preferred method using time-resolved fluorescence of the homogeneous sample containing membranes and Aβ (Roberts, S. B.; Hendrick, J. P.; Vinitsky, A.; Lewis, M.; Smith, D. W.; Pak, R. PCT Publication WO 01/0175435; Shearman, M.; Beher, D. et al., Biochemistry, 2000, 39, 8698-8704). The Aβ present in a homogeneous sample containing membranes can be detected by time-resolved fluorescence with two antibodies that recognize different epitopes of Aβ. One of the antibodies recognizes an epitope that is present in Aβ but not present in the precursor fragments; preferably the antibody binds the carboxyl terminus of Aβ generated by the γ-secretase cleavage. The second antibody binds to any other epitope present on Aβ. For example, antibodies that bind the N-terminal region (e.g., 26D6-B2-B3® SIBIA Neurosciences, La Jolla, Calif.) or bind the C-terminal end (e.g., 9S3.2® antibody, Biosolutions, Newark, Del.) of the Aβ peptide are known. The antibodies are labeled with a pair of fluorescent adducts that transfer fluorescent energy when the adducts are brought in close proximity as a result of binding to the N- and C-terminal ends or regions of Aβ. A lack of fluorescence is indicative of the absence of cleavage products, resulting from inhibition of γ-secretase. The isolated membrane assay can be used to identify candidate agents that inhibit the activity of γ-secretase cleavage and Aβ production.


[0125] A typical membrane-based assay requires 45 μg membrane protein per well in a 96- or 384-well format. Membranes in a neutral buffer are combined with the test compound and shifted from 0-4 to 37° C. Test agents may typically consist of synthetic compounds, secondary metabolites from bacterial or fungal fermentation extracts, or extracts from plant or marine samples. All synthetic agents are initially screened at doses ranging from 10-100 μM or in the case of extracts at sufficient dilution to minimize cytotoxicity. Incubation of the membranes with the test agent will continue for approximately 90 minutes at which time fluorescence labeled antibodies are added to each well for Aβ quantitation. The time-resolved fluorescence detection and quantitation of Aβ is described elsewhere (Roberts, S. B.; Hendrick, J. P.; Vinitsky, A.; Lewis, M.; Smith, D. W.; Pak, R. PCT Publication WO 01/0175435; Shearman, M.; Beher, D. et al., Biochemistry, 2000. 39, 8698-8704). Results are obtained by analysis of the plate in a fluorescence plate reader and comparison to the mock treated membranes and samples in which known amounts of Aβ were added to construct a standard concentration curve. A positive acting compound is one that inhibits the Aβ relative to the control sample by at least 50% at the initial tested concentration. If a compound is found to be active then a dose response experiment is performed to determine the lowest dose of compound necessary to elicit the inhibition of the production of Aβ. Compounds were scored as active γ-secretase inhibitors if Ki values were less than 10 μM.


[0126] Examples of the results obtained when the invention compounds are subjected to the above described assay are shown in Table 2. In the table, an inhibitory concentration (IC50) of less than or equal to 50 nM is represented by +++; between 50 nM and 500 nM by ++; between 500 nM and 10000 nM by +.
2TABLE 2Examples of activity in the in vitro assay based on the inhibitionof Aβ formation from membrane preparationsEXAMPLEACTIVITY RATINGa1+++2+++3+++4+++5+++6+++7+++8+++9+++10+++11+++12+++13+++14+++15+++16+++17+++18++19++20++21+++22+++23+++24+++25+++26+++27++28++29+++30++31++32+++33+++34+++35++36++37+++38+++39+++40+++41+++42+++43+++44+++45+++46+++47+++48+++49++50+++51+++52+++59++61+++83+85+87+++89+++95+++103+++113++122+133+++153++aActivity based on IC50 values: +++ = <50 nM ++ = 50-500 nM + = >500 nM and <10,000 nM


[0127] In Vitro Assays to Identify γ-secretase Inhibitor Based on the Inhibition of Aβ Formation in Cultured Cells.


[0128] Cultured human cell lines, such as HEK293 and H4 cells, which express APP and γ-secretase activity or transfected derivative cell lines that overexpress wild-type APP, mutant APP, or APP fusion proteins will secrete Aβ peptides into the culture media that can be quantified as previously outlined (Dovey, H., John, V. et al., J. Neurochem. 2001, 76, 173-181). The incubation of these cultured cells with γ-secretase inhibitors decreases the production of Aβ peptides. For instance, H4 cells stably transfected to overexpress the HPLAP-APP fusion protein described above were grown as above, detached, and adjusted to 2×105 cells/ml. 100 μl of the resulting suspension was then added to each well of a 96-well plate. After 4 hrs, the media was removed and replaced with 100 μl serum-free media containing various dilutions of the test compound. Plates were then incubated for 18 hrs at 37° C. and a 100 μl aliquot of the tissue culture supernatant was removed for determination of Aβ levels using time-resolved fluorescence of the homogenous sample as outlined above. Alternately, the other methods described above for Aβ determination could be used. The extent of Aβ inhibition was used to calculate the IC50 value for the test compound. Compounds of the present invention are considered active when tested in the above assay if the IC50 value for the test compound is less than 50 μM.


[0129] Examples of the results obtained when the invention compounds are subjected to the above described assay are shown in Table 3. In the table, an inhibitory concentration (IC50) of less than or equal to 50 nM is represented by +++; between 50 nM and 500 nM by ++; between 500 nM and 50000 nM by +.
3TABLE 3Examples of activity in the in vitro assay based on the inhibitionof Aβ formation in cultured cellsEXAMPLEACTIVITY RATINGa1+++5+++19++26+++38+++41+++51+++55+++61+++72+++80+++89+++96+++101+++123+++127++143+++147++158+++171++193+++203+++205++207+++245+++246+++249++254+++256+++260+++272+++280++282+++288++301++302+++321++322+++329+++330++331+340+++341++342+++349+++352++358++359+++366+++367+378+++383+++394+++403++416+++418+++424+++433+++434+++439+++442+++472+++481+492++495+++497+++aActivity based on IC50 values: +++ = <50 nM ++ = 50-500 nM + = >500 nM and <10,000 nM


[0130] Compounds of the present invention have been demonstrated to have an IC50 value less than 10 μM in one or all of the above assays. Therefore, the compounds of Formula I or pharmaceutical compositions thereof are useful in the treatment, alleviation or elimination of disorders or other disorders associated with the inhibition of β-amyloid peptide.


[0131] In addition to cleaving APP, γ-secretase cleaves other substrates, including: the Notch family of transmembrane receptors (reviewed in: Selkoe, D. Physiol. Rev. 2001, 81, 741-766; Wolfe, M. J. Med. Chem. 2001 44, 2039-2060); LDL receptor-related protein (May, P., Reddy, Y. K., Herz, J. J. Biol. Chem. 2002, 277, 18736-18743); ErbB-4 (Ni, C. Y., Murphy, M. P., Golde, T. E., Carpenter, G. Science 2001, 294, 2179-2181); E-cadherin (Marambaud, P., Shioi, J., et al., EMBO J. 2002, 21,1948-1956); and CD44 (Okamoto, I., Kawano, Y., et al., J. Cell Biol. 2001, 155, 755-762). If inhibition of cleavage of non-APP substrates causes undesirable effects in humans, then desired γ-secretase inhibitors would preferentially inhibit APP cleavage relative to unwanted substrates. Notch cleavage can be monitored directly by measuring the amount of cleavage product or indirectly by measuring the effect of the cleavage product on transcription (Mizutani, T., Taniguchi, Y., et al. Proc. Natl. Acad. Sci. USA 2001, 98, 9026-9031).


[0132] In Vivo Assays for the Determination of Aβ Reduction by γ-secretase Inhibitors.


[0133] In vivo assays are available to demonstrate the inhibition of γ-secretase activity. In these assays, animals, such as mice, that express normal levels of APP and γ-secretase or are engineered to express higher levels of APP and hence Aβ can be used to demonstrate the utility of γ-secretase inhibitors (Dovey, H., John, V., et al., J. Neurochem. 2001, 76, 173-181). In these assays, γ-secretase inhibitors were administered to animals and Aβ levels in multiple compartments, such as plasma, cerebral spinal fluid, and brain extracts, were monitored for Aβ levels using methods previously outlined. For instance, Tg2576 mice, which overexpress human APP, was administered γ-secretase inhibitors by oral gavage at doses that will cause measurable Aβ lowering, typically less than 100 mg/kg. Three hours after dosing plasma, brain, and CSF were collected, frozen in liquid nitrogen, and stored at −80° C. until analysis. For Aβ detection, plasma was diluted 15-fold in PBS with 0.1% Chaps while CSF was diluted 15-fold in 1% Chaps with protease inhibitors (5 μg/ml leupeptin, 30 μg/ml aprotinin, 1 mM phenylmethylsulfonylfluoride, 1 μM pepstatin). Brains were homogenized in 1% Chaps with protease inhibitors using 24 ml solution/g brain tissue. Homogenates were then centrifuged at 100,000×g for 1 hr at 4° C. The resulting supernatants were then diluted 10-fold in 1% Chaps with protease inhibitors. Aβ levels in the plasma, CSF, and brain lysate were measured using time-resolved fluorescence of the homogenous sample or one of the other methods previously described.


[0134] A γ-secretase inhibitor is considered active in one of the above in vivo assays if it reduces Aβ by at least 50% at a dosage of 100 mg/kg.


[0135] Therefore, the compounds of Formula I or pharmaceutical compositions thereof are useful in the treatment, alleviation or elimination of disorders or other disorders associated with the inhibition of β-amyloid peptide.


[0136] In another embodiment, this invention includes pharmaceutical compositions comprising at least one compound of Formula I in combination with a pharmaceutical adjuvant, carrier or diluent.


[0137] In still another embodiment, this invention relates to a method of treatment or prevention of disorders responsive to the inhibition of β-amyloid peptide in a mammal in need thereof, which comprises administering to said mammal a therapeutically effective amount of a compound of Formula I or a nontoxic pharmaceutically acceptable salt, solvate or hydrate thereof.


[0138] In yet another embodiment, this invention relates to a method for treating Alzheimer's Disease and Down's Syndrome in a mammal in need thereof, which comprises administering to said mammal a therapeutically effective amount of a compound of Formula I or a non-toxic pharmaceutically acceptable salt, solvate or hydrate thereof.


[0139] For therapeutic use, the pharmacologically active compounds of Formula I will normally be administered as a pharmaceutical composition comprising as the (or an) essential active ingredient at least one such compound in association with a solid or liquid pharmaceutically acceptable carrier and, optionally, with pharmaceutically acceptable adjuvants and excipients employing standard and conventional techniques.


[0140] The pharmaceutical compositions include suitable dosage forms for oral, parenteral (including subcutaneous, intramuscular, intradermal and intravenous) bronchial or nasal administration. Thus, if a solid carrier is used, the preparation may be tableted, placed in a hard gelatin capsule in powder or pellet form, or in the form of a troche or lozenge. The solid carrier may contain conventional excipients such as binding agents, fillers, tableting lubricants, disintegrants, wetting agents and the like. The tablet may, if desired, be film coated by conventional techniques. If a liquid carrier is employed, the preparation may be in the form of a syrup, emulsion, soft gelatin capsule, sterile vehicle for injection, an aqueous or non-aqueous liquid suspension, or may be a dry product for reconstitution with water or other suitable vehicle before use. Liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, wetting agents, non-aqueous vehicle (including edible oils), preservatives, as well as flavoring and/or coloring agents. For parenteral administration, a vehicle normally will comprise sterile water, at least in large part, although saline solutions, glucose solutions and like may be utilized. Injectable suspensions also may be used, in which case conventional suspending agents may be employed. Conventional preservatives, buffering agents and the like also may be added to the parenteral dosage forms. The pharmaceutical compositions are prepared by conventional techniques appropriate to the desired preparation containing appropriate amounts of the active ingredient, that is, the compound of Formula I according to the invention. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 17th edition, 1985.


[0141] The dosage of the compounds of Formula I to achieve a therapeutic effect will depend not only on such factors as the age, weight and sex of the patient and mode of administration, but also on the degree of β-AP inhibition desired and the potency of the particular compound being utilized for the particular disorder of disease concerned. It is also contemplated that the treatment and dosage of the particular compound may be administered in unit dosage form and that the unit dosage form would be adjusted accordingly by one skilled in the art to reflect the relative level of activity. The decision as to the particular dosage to be employed (and the number of times to be administered per day) is within the discretion of the physician, and may be varied by titration of the dosage to the particular circumstances of this invention to produce the desired therapeutic effect.


[0142] A suitable dose of a compound of Formula I or pharmaceutical composition thereof for a mammal, including man, suffering from, or likely to suffer from any condition related to β-AP production as described herein, generally the daily dose will be from about 0.05 mg/kg to about 10 mg/kg and preferably, about 0.1 to 2 mg/kg when administered parenterally. For oral administration, the dose may be in the range from about 1 to about 75 mg/kg and preferably from 0.1 to 10 mg/kg body weight. The active ingredient will preferably be administered in equal doses from one to four times a day. However, usually a small dosage is administered, and the dosage is gradually increased until the optimal dosage for the host under treatment is determined. In accordance with good clinical practice, it is preferred to administer the instant compounds at a concentration level that will produce an effective anti-amyloid effect without causing any harmful or untoward side effects. However, it will be understood that the amount of the compound actually administered will be determined by a physician, in the light of the relevant circumstances including the condition to be treated, the choice of compound of be administered, the chosen route of administration, the age, weight, and response of the individual patient, and the severity of the patient's symptoms.







[0143] The following examples are given by way of illustration and are not to be construed as limiting the invention in any way inasmuch as many variations of the invention are possible within the spirit of the invention.


DESCRIPTION OF THE SPECIFIC EMBODIMENTS

[0144] In the following examples, all temperatures are given in degrees Centigrade. Melting points were recorded on a Thomas Scientific Unimelt capillary melting point apparatus and are uncorrected. Proton magnetic resonance (1H NMR) spectra were recorded on a Bruker Avance 300, a Bruker Avance 400, or a Bruker Avance 500 spectrometer. All spectra were determined in the solvents indicated and chemical shifts are reported in δ units downfield from the internal standard tetramethylsilane (TMS) and interproton coupling constants are reported in Hertz (Hz). Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad peak; dd, doublet of doublet; br d, broad doublet; dt, doublet of triplet; br s, broad singlet; dq, doublet of quartet. Infrared (IR) spectra using potassium bromide (KBr) or sodium chloride film were determined on a Jasco FT/IR-410 or a Perkin Elmer 2000 FT-IR spectrometer from 4000 cm−1 to 400 cm−1, calibrated to 1601 cm−1 absorption of a polystyrene film and reported in reciprocal centimeters (cm−1). Optical rotations [α]D were determined on a Rudolph Scientific Autopol IV polarimeter in the solvents indicated; concentrations are given in mg/mL. Low resolution mass spectra (MS) and the apparent molecular (MH+) or (M−H)+ was determined on a Finnegan SSQ7000. High resolution mass spectra were determined on a Finnegan MAT900. Liquid chromatography (LC)/mass spectra were run on a Shimadzu LC coupled to a Water Micromass ZQ.


[0145] The following abbreviations are used: DMF (dimethylformamide); THF (tetrahydrofuran); DMSO (dimethylsulfoxide), Leu (leucine); TFA (trifluoroacetic acid); DAST [(diethylamino)sulfur trifluoride], HPLC (high pressure liquid chromatography); rt (room temperature); aq. (aqueous).


[0146] Exemplification of Reaction Scheme 1
33


[0147] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-methylpentanoic acid amide:


[0148] To a solution of (D)-leucinamide hydrochloride (0.25 g, 1.5 mmol), and Et3N (0.43 mL, 3.0 mmol) in CH2Cl2 (150 mL) was added 4-chlorobenzene-sulfonyl chloride (380 mg, 1.8 mmol). The resulting solution was stirred at rt for 18 h. The reaction was then diluted with CH2Cl2 (200 mL) and washed with H2O, 0.5 N HCl, brine, and dried over MgSO4, to afford the titled compound (410 mg) as a white solid in 90% yield. MS (ESI), (M+H)+ 305.2; 1H NMR (DMSO-d6) δ7.77 (d, 2H, J=8.7), 7.62 (d, 2H, J=8.7), 6.90 (br s, 1H), 3.67 (m, 1H), 1.54 (m, 1H), 1.31 (m, 2H), 0.81 (d, 3H, J=7.0), 0.71 (d, 3H, J=7.0).


[0149] Method A for Conversion of III to I:
34



EXAMPLE 1

[0150] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-methoxybenzyl)amino]-4-methylpentanoic acid amide


[0151] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-methylpentanoic acid amide (300 mg, 1 mmol), K2CO3 (170 mg, 1.2 mmol), and 4-methoxybenzyl chloride (170 mg, 1.1 mmol) in DMF (25 mL) was heated to 60° C. for 18 h. The reaction was then diluted with EtOAc (150 mL) and washed with H2O, brine, dried over MgSO4 and concentrated to give a crude white wax. Further purification by flash chromatography (SiO2, 25% EtOAc/hexanes) afforded the titled compound (297 mg) as a white solid in 70% yield. [α]D=+44.2 (c 1.00, MeOH); MS (ESI), (M−H)422.9; 1H NMR (CDCl3) δ7.63 (d, 2H, J=7.0), 7.42 (d, 2H, J=7.0), 7.25 (d, 2H , J=8.0), 6.79 (d, 2H, J=8.0), 6.25 (br s, 1H), 5.35 (br s, 1H), 4.36 (dd,2H, J=50, 15), 4.26 (t, 1H, J=7.2), 3.78 (s, 3H), 1.83 (m, 1H), 1.18-1.34 (m, 2H), 0.75 (d, 3H, J=7.0), 0.67 (d, 3H, J=7.0); IR (KBr) 3480, 2959, 1693, 1674, 1514, 1333, 1158 cm−1.


[0152] Method B for Conversion of III to I:
35


[0153] Methyl 6-dimethylaminonicotinate:


[0154] A solution of methyl 6-chloronicotinate (4.0 g, 23 mmol) in dimethylamine/MeOH (2 M, 80 mL, 160 mmol) in a pressure vessel was stirred at 95° C. for 2 h, cooled to rt and concentrated. The residue was dissolved in EtOAc (250 mL), washed with water (2×150 mL), dried over Na2SO4, and concentrated to afford the title compound as a tan solid (4.1 g, 98%). MS (ESI), (M+H)+ 181.24; 1H NMR (CDCl3) δ8.79 (s, 1H), 7.99 (d, 1H, J =9.2), 6.45 (d, 1H, J=9.2), 3.85 (s, 3H), 3.15 (s, 6H).
36


[0155] 2-Dimethylamino -5-hydroxymethylpyridine:


[0156] A solution of methyl 6-dimethylamino-nicotinate (4.14 g, 23.0 mmol) in anhydrous ether (80 mL) at 0° C. was treated with lithium aluminum hydride (1 M in ether, 20 mL, 20 mmol). The mixture was stirred at rt for 0.5 h, cooled again to 0° C. and quenched slowly with sat. aq. NaHCO3 (10 mL). The resulting mixture was stirred at rt for 0.5 h, filtered, and washed with ether. The combined filtrates were dried over Na2SO4 and concentrated to give the title compound as a beige waxy solid (3.5 g, 100%). MS (ESI), (M+H)+153.4; 1H NMR (CDCl3) δ8.06 (d, 1H, J=2.4), 7.47 (dd, 1H, J=2.4, 8.8), 6.45 (d, 1H, J=8.8), 4.50 (s, 2H), 3.06 (s, 6H), 1.98 (br s, 1H).
37



EXAMPLE 459

[0157] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(2-dimethylaminopyridin-5-yl)amino]-4-fluoro-4-methylpentanoic acid amide TFA salt


[0158] To a cloudy solution of (2R)-2-[(4-chlorobenzenesulfonylamino)-4-fluoro-4-methylpentanoic acid amide (prepared as in Reaction Scheme 20 or from γ-fluoro-D-Leu-OH methyl ester, Papageorgiou et. al., Bioorg. & Med. Chem. Lett. 1994, Vol. 4, p.p. 267-272; 0.060 g, 0.18 mmol), 2-dimethylamino-5-hydroxymethylpyridine (71 mg, 0.46 mmol), triphenylphosphine (122 mg, 0.464 mmol) in CH2Cl2 (9.5 mL) at rt was added dropwise diisopropyl azodicarboxylate (75 μL, 0.46 mmol). The resulting pale yellow solution was stirred at rt for 2 h and concentrated under vacuum. The residue was dissolved in methanol an purified by reverse phase preparative HPLC (YMC S5, ODS, MeOH-water-TFA) to afford the title compound as a white foam (90 mg, 85%). MS (ESI), (M+H)+ 457.2; 1H NMR (CDCl3) δ8.11 (s, 1H), 7.95 (d, 1H, J=9.6), 7.77 (d, 2H, J=6.8), 7.51 (d, 2H, J=6.8), 6.76 (d, 2H, J=9.6), 6.34 (s, 1H), 6.02 (s, 1H), 4.58(br d, 1H, J=8.4), 4.46 (d, 1H, J=16.0), 4.06 (d, 1H, J=16), 3.29 (s, 6H), 2.50 (m, 1H), 1.39 (m, 1H), 1.25 (d, 3H, J=22.0), 1.17 (d, 3H, J=22.0).


[0159] Exemplification of Reaction Scheme 1—Solid Support
38


[0160] Polymer-bound D-Leu-NH2: FMOC-protected Rink amide resin (30 g, 0.61 mmol/g, 18 mmol) was treated with piperidine/DMF solution (250 mL). The mixture was shaken at rt for 24 h, drained, washed with DMF (5×200 mL), CH2Cl2 (5×200 mL) and dried under vacuum. The resin was then treated with FMOC-D-Leu-OH (22 g, 62 mmol), 1-hydroxybenzotriazole hydrate (2.5 g, 18 mmol), 1,3-diisopropylcarbodiimide (9.8 mL, 62 mmol), and DMF (250 mL). The mixture was shaken for 20 h, drained, washed with DMF (4×200 mL), DMF-water (1:1, 3×200 mL), DMF (3×200 mL), MeOH (3×200 mL), CH2Cl2 (3×200 mL) and dried. The completion of reaction and the loading of the resin-bound FMOC-D-Leu-NH2 (0.56 mmol/g) were determined by the treatment of 52 mg of the resin with 10% (v/v) TFA/CH2Cl2 (2 mL) to give 11 mg of FMOC-D-Leu-NH2. The resin-bound FMOC-D-Leu-NH2 was deprotected with 20% (v/v) piperidine/DMF solution (250 mL) to give polymer-bound D-Leu-NH2 (20 g).
39


[0161] Polymer-bound (R)-2-(4-Chlorobenzenesulfonylamino)-4-methylpentanoic acid amide:


[0162] The above polymer-bound D-Leu-NH2 (20 g) was treated with CH2Cl2 (150 mL), pyridine (100 mL) and 4-chlorophenylsulfonyl chloride (20.0 g, 94.8 mmol). The mixture was shaken for 24 h, drained, washed with DMF (4×200 mL), CH2Cl2 (4×200 mL) and concentrated to give polymer-bound (R)-2-(4-chlorobenzenesulfonylamino)-4-methylpentanoic acid amide as a yellow resin (22 g). The completion of the reaction and the loading of the resin (0.57 mmol/g) were determined by the treatment of 50 mg of the resin with 10% (v/v) TFA/CH2Cl2 (2 mL) to give 8.7 mg of (R)-2-(4-chlorobenzenesulfonylamino)-4-methylpentanoic acid amide.
40



EXAMPLE 60

[0163] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-methylbenzyl)amino]-4-methylpentanoic acid amide


[0164] To a mixture of polymer-bound (2R)-2-[N-(4-chlorobenzenesulfonyl)amino]-4-methylpentanoic acid amide (loading 0.45 mmol/g, 50.0 mg, 0.0225 mmol), 4-methylbenzyl bromide (44 mg, 0.24 mmol) and DMF (1.5 mL) was added 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diaza-phosphorine (0.10 mL, 0.34 mmol). The resulting mixture was shaken at rt for 2 days, then was drained and washed with DMF (4×2 mL), MeOH (4×2 mL) and CH2Cl2 (4×2 mL).


[0165] The resin was then treated with 10% (v/v) TFA/CH2Cl2. The mixture was shaken for 1 h, filtered and washed with CH2Cl2 (2×0.5 mL). The combined filtrates were concentrated under vacuum to afford the title compound as a beige solid (7.7 mg, 100%, HPLC purity>95%). HRMS (ESI), (M−H) for C20H24SClN2O3 calcd: 407.1206, found: 407.1201; 1H NMR (CDCl3) δ7.64 (d, 2H, J=8.0), 7.44 (d, 2H, J=8.0), 7.22 (d, 2H, J=8.0), 7.08 (d, 2H, J=8.0 ), 6.29 (br s, 1H), 5.34 (br s, 1H), 4.53 (d, 1H, J=15.2), 4.34 (d, 1H, J=15.2), 4.27 (t, 1H, J=7.2), 2.32 (s, 3H), 1.84 (m, 1H), 1.30 (m, 1H), 1.21 (m, 1H), 0.75 (d, 3H, J=6.8), 0.67 (d, 3H, J=6.8); IR (KBr) 3467, 3367, 2956, 2869, 1694, 1670, 1340, 1160 cm−1.


[0166] Exemplification of Reaction Scheme 2
41


[0167] (2R)-2-(4-Methoxybenzylamino)-4-methylpentanoic acid amide:


[0168] A solution of D-leucinamide hydrochloride (2.8 g, 16.8 mmol), and p-anisaldehyde (2.29 g, 16.8 mmol) in methanol (150 mL) was treated with anhydrous ZnCl2 (538 mg, 5 mmol). The resulting suspension was then treated with NaCNBH3 (1.05 g, 16.8 mmol) portion wise and heated at reflux for 3 h. The reaction was cooled to rt, quenched with saturated NaHCO3 (3 mL), diluted with EtOAc (500 mL), and washed with brine. Concentration afforded the crude benzyl amine as a white wax, which was carried on without further purification (3.57 g, 84%). MS (ESI), (M+H)+ 251.4; 1H NMR (CDCl3) δ7.20 (d, 2H, J=6.6), 7.10 (br s, 2H), 6.88 (d, 2H, J=8.4), 5.30 (br s, 1H), 3.80 (s, 3H), 3.63 (dd, 2H, J=4.5, 12), 1.44-1.65 (m, 3H), 0.95 (d, 3H, J=6.3), 0.80 (d, 3H, J=6.3).
42



EXAMPLE 1

[0169] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-methoxybenzyl)amino]-4-methylpentanoic acid amide


[0170] (2R)-2-[N-(4-Methoxybenzy)lamino]-4-methylpentanoic acid amide (3.57 g, 14.3 mmol) was dissolved in CH2Cl2 (100 mL) and treated with Et3N (4.2 mL, 29 mmol) and 4-chlorobenzenesulfonyl chloride (3.6 g, 17 mmol) at rt for 18 h. The solvents were removed and the residue was taken into EtOAc (500 mL). The organic solution was washed with H2O, brine, dried over MgSO4, and concentrated. The resulting material was then further purified by flash chromatography (SiO2, 1% MeOH/CH2Cl2) to afford the title compound (2.4 g) as a slightly colored solid in 40% yield. MS (ESI), (M−H) 422.9; 1H NMR (CDCl3) δ7.63 (d, 2H, J=7.0), 7.42 (d, 2H, J=7.0), 7.25 (d, 2H, J=8.0), 6.79 (d, 2H, J=8.0), 6.25 (br s, 1H), 5.35 (br s, 1H), 4.36 (dd, 2H, J=5.0, 15), 4.26 (t, 1H, J=7.2), 3.78 (s, 3H), 1.83 (m, 1H), 1.18-1.34 (m, 2H), 0.75 (d, 3H, J=7.0), 0.67 (d, 3H, J=7.0); IR (KBr) 3480, 2959, 1693, 1674, 1514, 1333, 1158 cm−1.


[0171] Exemplification of Reaction Scheme 3
43



EXAMPLE 25

[0172] (2R)-2-[N-(4-Morpholinohexyl)-N-(4-chlorobenzenesulfonyl)amino]-4-methylpentanoic acid amide


[0173] A solution of (2R)-2-[N-(4-bromohexyl)-N-(4-chlorobenzenesulfonyl)amino]-4-methylpentanoic acid amide (Example 24; prepared as described in Reaction Scheme 1; 0.20 g, 0.44 mmol), Et3N (0.25 mL, 1.7 mmol), and morpholine (150 mg, 1.7 mmol) in CH2Cl2 (2 mL) was stirred at rt for 18 h. The reaction was then concentrated to give a crude white wax which was purified by flash chromatography (SiO2, 85% EtOAc/5% hexanes/10% MeOH) to afford the title compound (112 mg) as a white solid in 54% yield. MS (ESI), (M+H)+ 474.4; 1H NMR (DMSO-d6) δ7.82 (d, 2H, J=8.0), 7.64 (d, 2H, J=8.0), 7.42 (br s, 1H) 6.99 (s, 1H), 4.25 (m, 1H), 3.51-3.60 (br s, 4H), 3.18-3.41 (m, 2H), 2.25-2.35 (br s, 4H), 2.27 (m, 2H)1.15-1.62 (m, 9H), 0.80 (d, 6H, J=6.0).


[0174] Exemplification of Reaction Scheme 4
44



EXAMPLE 48

[0175] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-aminobenzyl)amino]-4-methylpentanoic acid amide


[0176] (2R)-(2-[N-(4-Chlorobenzenesulfonyl)-N-(4-nitrobenzyl)amino]-4-methylpentanoic acid amide (Compound of Example 24; prepared as described in Reaction Scheme 1; 2.8 g, 6.6 mmol) was suspended with 10% Pd/C (1 g) and conc. HCl (1 mL) in MeOH (100 mL) and placed under a hydrogen atmosphere at 40 psi for 1 h. The suspension was filtered through Celite and then concentrated to give the title compound as a tan solid (2.4 g, 88% yield). MS (ESI), (M+H)+ 410.1; 1H NMR (CDCl3) δ7.80 (d, 2H, J=8.5), 7.63 (d, 2H, J=8.5), 7.52 (br s, 1H), 7.46 (d, 1H, J=8.0), 7.26 (d, 1H, J=8.0), 7.02 (br s, H), 4.70 (dd, 2H, J=50, 18), 4.30-4.41 (m, 1H),: 3.67 (br s, 2H), 1.28-1.33 (m, 3H), 0.86 (d, 3H, J=7.0), 0.57 (d, 3H, J=7.0).
45



EXAMPLE 51

[0177] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-methylaminobenzyl)amino]-4-methylpentanoic acid amide


[0178] A solution of (2R)-2-[N-(4-chlorobenzenesulfonyl)-N-(4-aminobenzyl)amino]-4-methyl-pentanoic acid amide (Example 48, 400 mg, 1 mmol), Et3N (0.16 mL, 1.1 mmol), dimethylsulfate (139 mg, 1.1 mmol) in 25 mL of toluene was stirred at rt for 18 h. The reaction was concentrated, then taken into EtOAc and washed with H2O, brine, dried over K2CO3 and concentrated to give a crude mixture of starting material and product. The material was further purified by flash chromatography (SiO2, 35% EtOAc/hexanes) to afford the title compound, 195 mg, in 46% yield. MS (ESI), (M+H)+ 424.1; 1H NMR (CDCl3) δ7.65 (d, 2H, J=8.0), 7.58 (d, 2H, J=8.2), 7.47 (d, 2H, J=8.0), 7.31 (d, 2H, J=8.5), 6.24 (br s, 1H), 5.16 (br s, 1H), 4.50(dd, 2H, J=50, 17), 4.27 (t, 1H, J=10), 2.44 (s, 3H), 1.74-1.83 (m, 1H), 1.25-1.33 (m, 1H), 0.93-1.01 (m, 1H), 0.74 (d, 3H, J=7.0), 0.63 (d, 3H, J=7.0).
46



EXAMPLE 65

[0179] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-dimethyl aminobenzyl)amino]-4-methylpentanoic acid amide


[0180] (2R)-2-[N-(4-Chlorobenzene-sulfonyl)-N-(4-aminobenzyl)amino]-4-methyl-pentanoic acid amide (Example 48, 0.10 g, 0.22 mmol) was dissolved in DMF (5 mL). To this solution was added iodomethane (62 mg, 0.44 mmol), and cesium carbonate (220 mg, 0.66 mmol). The reaction was then stirred at 40° C. for 18 h. The reaction was poured into EtOAc and water. The organic was collected, dried over MgSO4, and concentrated to an oily residue. The residue was further purified (Biotage 40S, loaded in CH2Cl2, eluted in 25% EtOAc/hexanes) to yield a yellow powder (15 mg, 16%). MS(ESI), (M+H)+ 438.1; 1H NMR (DMSO-d6, 500 MHz) δ7.74 (dd, 2H, J=1.9, 6.7), 7.54 (dd, 2H, J=1.9, 6.8), 7.43 (s, 1H), 7.16 (d, 2H, J=8.6), 7.01 (s, 1H), 6.61 (d, 2H, J=8.8), 4.59 (q, 2H, J=16,25), 4.34 (dd, 1H, J=5.0, 9.3), 2.85 (s, 6H), 1.27-1.47 (m, 3H), 0.80 (d, 3H, J=5.9), 0.52 (d, 3H, J=6.1).


[0181] Exemplification of Reaction Scheme 5
47



EXAMPLE 46

[0182] {N-[(1R)-1-Carbamoyl-3-methyl-butyl]-N-(4-chlorobenzenesulfonyl)amino}acetic acid tert-butyl ester


[0183] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-methylpentanoic acid amide (3.00 g, 9.87 mmol) was dissolved in DMF (50 mL). To the solution was added potassium carbonate (6.0 g, 39 mmol) and bromoacetic acid tert-butyl ester (6.0 mL, 39 mmol). The solution was heated to 70° C. for 3 h. The reaction was quenched with EtOAc and saturated NaHCO3. The organic layer was washed with brine, dried over MgSO4, and concentrated. The crude oil was further purified on a Biotage 40M (loaded in CH2Cl2, eluted in 30% EtOAc/hexanes) to afford a white powder (1.2 g, 35%). MS(ESI), (M+H)+ 446.3; 1H NMR (CDCl3) δ7.76 (d, 2H, J=8.0), 7.52 (d, 2H, J=8.0), 6.61 (br s, 1H) 5.45 (s, 1H), 4.15-4.18 (m, 1H), 3.09-3.24 (m, 2H), 2.50-2.58 (m, 4H), 2.31-2.39 (m, 2H), 1.92-1.99 (m, 1H), 1.15-1.59 (m, 8H), 1.00-1.04 (m, 7H), 0.71-0.74 (m, 6H).
48



EXAMPLE 59

[0184] {N-[(IR)-1-Carbamoyl-3-methyl-butyl]-N-(4-chlorobenzenesulfonyl)amino}acetic acid


[0185] Trifluoroacetic acid (15 mL) was added to a solution of {N-[(1R)-1-carbamoyl-3-methyl-butyl]-N-(4-chlorobenzenesulfonyl)amino}acetic acid tert-butyl ester (0.50 g, 1.2 mmol) in CH2Cl2 (15 mL). The reaction was stirred at rt for 4 h. The reaction was then concentrated to a white solid (0.40 g, 92%), which was used without further purification. MS(ESI), (M+H)+ 363.1; 1H NMR (DMSO-d6, 500 MHz) δ7.90 (dd, 2H, J=2.0, 6.8), 7.65 (dd, 2H, J=2.0, 6.8), 7.60 (s, 1H), 7.06 (s, 1H), 4.32 (d, 1H, J=18), 4.12 (t, 1H, J=8.0), 4.02 (d, 1H, J=18), 1.55-1.65 (m, 1H), 1.35-1.45 (m, 2H), 0.78 (d, 3H, J=6.1), 0.73 (d, 3H, J=6.1).
49



EXAMPLE 88

[0186] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(cyclopropylcarbamoylmethyl)amino]-4-methyl-pentanoic acid amide


[0187] To a solution of {N-[(1R)-1-carbamoyl-3-methyl-butyl]-N-(4-chlorobenzenesulfonyl)amino}acetic acid (Example 59, 175 mg, 0.480 mmol), cyclopropylamine (41 uL, 0.58 mmol)in CH2Cl2 (3 mL) was added 1-hydroxybenzotriazole (47 mg, 0.72 mmol), and 1,3-dicyclohexylcarbodiimide (144 mg, 0.720 mmol). The reaction was stirred for 18 h at rt, and then was poured into an EtOAc/water mixture. The organic layer was separated, dried over MgSO4, and concentrated to a clear oil residue. The residue was further purified by Biotage 40S (eluted in 40% EtOAc in hexanes) to afford a white solid (54 mg, 29%). MS(ESI), (M+H)+ 402.2; 1H NMR (CDCl3, 500 MHz) δ7.85 (dd, 2H, J=1.9, 8.9), 7.50 (dd, 2H, J=2.0, 8.7), 7.40 (br s, 1H), 6.55 (br s, 1H), 6.30 (br s, 1H), 4.23 (dd, 1H, J=2.9, 8.9), 3.92 (d, 1H, J=17), 3.83 (d, 1H, J=17), 2.68-2.73 (m, 1H), 1.75-1.83 (m, 1H), 1.50-1.57 (m, 1H), 1.40-1.49 (m, 1H), 0.88 (d, 3H, J=6.4), 0.87 (d, 3H, J=6.7), 0.80 (d, 2H, J=7.0), 0.51 (t, 2H, J=4.0).


[0188] Exemplification of Reaction Scheme 6
50



EXAMPLE 89

[0189] 4-{[N-((1R)-1-Carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-benzoic acid


[0190] A solution of the compound of Example 61 [4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-benzoic acid methyl ester, 354 mg, 0.782 mmol] was dissolved in methanol (4 mL). A solution of 5 N NaOH (1 mL) was added, followed by enough THF (1 mL) to achieve homogeneity. After 1 h, an additional aliquot of 5 N NaOH (1 mL) was added, and stirring was continued for 2.5 h. The solution was acidified to pH 2 with 1 N HCl and extracted with CHCl3 (2×). The combined organic layers were dried (Na2SO4) and concentrated to give a white solid (343 mg, 100%). MS (ESI), (M+H)+ 439.17; 1H NMR (CDCl3, 300 MHz) δ7.91 (d, 2H, J=8.2), 7.81-7.84 (m, 3H), 7.56 (d, 2H, J=8.6), 7.49 (d, 2H, J=8.2), 6.55 (br s, 1H), 5.10 (d, 1H, J=15.4), 4.23 (dd, 1H, J=4.6, 9.7), 4.05 (d, 1H, J=15.4), 2.04-2.14 (m, 1H), 1.20-1.31 (m, 1H), 0.80-0.89 (m, 1H), 0.74 (d, 3H, J=6.6), 0.68 (d, 3H, J=6.6).
51



EXAMPLE 101

[0191] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[4-(morpholine-4-carbonyl)-benzyl]amino}-4-methyl-pentanoic acid amide


[0192] To a 0° C. solution of 4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}benzoic acid (50.0 mg, 0.114 mmol) in DMF (0.3 mL) was added morpholine (12.9 mg, 0.148 mmol), followed by 1-hydroxybenzotriazole (18.5 mg, 0.137 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (26.2 mg, 0.137 mmol), and iPr2NEt (26 μL, 0.15 mmol). After 2 h, the solution was warmed to rt. After 4 h, the solution was poured into 10% aq. citric acid and extracted with EtOAc (2×). The combined organic layers were washed sequentially with water and sat. aq. NaHCO3, then dried (MgSO4) and concentrated. Flash column chromatography (SiO2, 40 to 100% EtOAc/hexanes) gave the title compound as a white solid (46.0 mg, 79%). MS (ESI), (M+H)+ 508.22; 1H NMR (CDCl3, 300 MHz) δ7.68 (d, 2H, J=8.6), 7.29-7.47 (m, 6H), 6.38 (br s, 1H), 5.75 (br s, 1H), 4.65 (d, 1H, J=16.0), 4.42 (d, 1H, J=16.0), 4.32 (t, 1H, J=7.5), 3.30-3.85 (br m, 8H), 1.69-1.78 (m, 1H), 1.28-1.37 (m, 1H), 1.08-1.14 (m, 1H), 0.76 (d, 3H, J=6.5), 0.63 (d, 3H, J=6.6).


[0193] Exemplification of Reaction Scheme 7
52



EXAMPLE 92

[0194] 4-{[N-((1R)-1-Carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-piperidine-1-carboxylic acid tert-butyl ester


[0195] To a solution of (2R)-2-(4-chlorobenzenesulfonylamino)-4-methylpentanoic acid amide (4.2 grams, 14 mmol) in DMF (50 mL) was added cesium carbonate (13.6 grams, 417 mmol). To this reaction was added 4-(toluene-4-sulfonyloxymethyl)-piperidine 1-carboxylic acid tert-butyl ester (ref.: Gilissen, C.; Bormans, G.; De Groot, T.; Verbruggen, A. J. Labeled Cmpd. Radiopharm. 1999, 42, 1289; 10.4 g, 282 mmol). The reaction was stirred at 70° C. for 18 h. The reaction was then quenched with sat. aq. NaHCO3 and extracted with EtOAc. The organic layer was collected, washed with brine, dried over MgSO4, and concentrated to a clear oil. The oil was then purified on a Biotage 40S (eluted with 30% EtOAc in hexanes) to afford a white solid (3.0 g, 44%). MS(ESI), (M+H)+ 502.1; 1H NMR (DMSO-d6, 500 MHz) δ7.86 (dd, 2H, J=2.0, 6.8), 7.65 (dd, 2H, J=2.0, 6.8) 7.37 (br s, 1H), 7.07 (br s, 1H), 4.19 (t, 1H, J=7.6), 3.92 (br s, 2H), 3.35 (dd, 1H, J=15, 6.8), 3.05 (dd, 1H, J=15, 8.1), 1.85 (br s, 1H), 1.50-1.70 (m, 4H), 1.38 (s, 9H), 1.10-1.20 (m, 1H), 0.80-1.00 (m, 3H), 0.82 (d, 6H, J=7.6).
53


[0196] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(piperidin-4-ylmethyl)amino]-4-methyl-pentanoic acid amide (Example 126):


[0197] To a solution of 4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-piperidine-1-carboxylic acid tert-butyl ester (Example 92, 2.6 grams, 5.2 mmol) in CH2Cl2 (25 mL) was added trifluoroacetic acid (10 mL). The reaction was stirred at rt for 1 h and then was concentrated to give a white solid (1.6 grams, 84%). MS(ESI), (M+H)+ 402.15; 1H NMR (DMSO-d6, 500 MHz), δ7.87 (d, 2H, J=8.5), 7.66 (d, 2H, J=8.6), 7.41 (s, 1H), 7.04 (s, 1H), 4.17 (t, 1H, J=7.3), 3.40-3.50 (m, 1H), 3.20-3.25 (m, 1H), 3.03-3.10 (m, 1H), 2.65-2.80 (m, 2H), 1.85-2.00 (m, 1H), 1.20-1.85 (m, 2H), 1.45-1.60 (m, 1H), 1.30-1.40 (m, 1H), 1.10-1.30 (m, 4H), 0.75-0.90 (m, 1H), 0.82 (d, 3H, J=7.3), 0.80 (d, 3H, J=7.0).
54



EXAMPLE 278

[0198] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[1-(pyridine-4-carbonyl)-piperidin-4-ylmethyl]-amino}-4-methyl-pentanoic acid amide


[0199] To a solution of (2R)-2-[N-(4-chlorobenzenesulfonyl)-N-(piperidin-4-ylmethyl)amino]-4-methyl-pentanoic acid amide (Example 126, 0.10 g, 0.22 mmol) and Et3N (0.06 mL, 0.5 mmol) in CH2Cl2 (3.0 mL) was added isonicotinoyl chloride hydrochloride (56 mg, 0.32 mmol). The reaction was stirred at rt for 18 h and then was poured into a mixture of EtOAc and sat. aq. NaHCO3. The organic solution was separated and washed with brine, dried over MgSO4, and concentrated to an oily residue. The residue was purified on a Biotage 10M (eluted with 80% EtOAc/hexanes) to give a white solid (36 mg, 30%). MS(ESI), (M+H)+ 509.20; 1H NMR (CDCl3, 500 MHz) δ8.66 (br s, 2H), 7.80 (d, 1H, J=8.6), 7.73 (d, 2H, J=8.5), 7.51 (d, 2H, J=7.6), 7.41 (br s, 1H). 6.64 (br s, 1H), 5.35 (br s, 1H), 4.70 (br s, 1H), 4.10 (br s, H), 3.71 (br s, 1H), 3.33 (br s, 1H), 3.02 (dd, 2H, J=4.8, 16), 2.70-2.85 (br s, 1H), 1.50-2.09 (m, 5H), 1.18-1.33 (m, 4H), 0.73 (d, 3H, J 6.7), 0.68 (d, 3H, J=6.5).
55



EXAMPLE 256

[0200] 4-{[N-((1R)-1-Carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-piperidine-1-carboxylic acid phenethylamide


[0201] To a solution of (2R)-2-[N-(4-chlorobenzenesulfonyl)-N-(piperidin-4-ylmethyl)amino]-4-methyl-pentanoic acid amide (Example 126, 0.10 g, 0.22 mmol) and Et3N (32 μL, 0.25 mmol) in CH2Cl2 (3.0 mL) was added (2-isocyanato-ethyl)-benzene (0.040 mL, 0.30 mmol). The reaction was stirred at rt for 18 h and then was poured into sat. aq. NaHCO3 and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO4, and concentrated to an oily residue. The residue was further purified on a Biotage system (eluted with 75% EtOAc/hexanes) to afford the desired product as a white solid (67 mg, 52%). MS(ESI), (M+H)+ 549.00; 1H NMR (CDCl3, 500 MHz) δ7.71 (d, 2H, J=8.6), 7.71 (d, 2H, J=8.9), 7.15-7.35 (m, 5H), 6.64 (s, 1H), 5.86 (s, 1H), 4.15 (dd, 1H, J=5.2, 9.5), 3.88 (d, 1H, J=13), 3.76 (d, 1H, J=13), 3.46 (t, 2H, J=6.7), 3.21-3.29 (m, 1H), 2.97 (dd, 1H, J=4.6, 14), 2.65-2.85 (m, 4H), 1.75-1.95 (m, 3H), 1.00-1.30 (m, 5H), 0.75-0.80 (m, 1H), 0.72 (d, 3H, J=6.7), 0.67 (d, 3H, J=6.7).
56



EXAMPLE 286

[0202] (2R)-2-(N-(4-Chlorobenzenesulfonyl)-N-{1-[2-(4-cyanophenyl)-2-oxo-ethyl]-piperidin-4-ylmethyl}-amino)-4-methyl-pentanoic acid amide


[0203] To a solution of (2R)-2-[N-(4-chlorobenzenesulfonyl)-N-(piperidin-4-ylmethyl)amino]-4-methyl-pentanoic acid amide (Example 126, 0.050 g, 0.12 mmol) and Et3N (0.040 mL, 0.30 mmol) in CH2Cl2 (2.0 mL) was added 4-(2-chloro-acetyl)-benzonitrile (55 mg, 0.30 mmol). The reaction was stirred at rt for 18 h and then was concentrated to residue. The residue was purified on a Biotage system (eluted with 80% EtOAc/hexanes) to produce 29 mg (48%) of the desired product as a white solid. MS(ESI), (M+H)+ 545.16; 1H NMR (CDCl3, 500 MHz) δ7.72 (d, 2H, J=8.5), 7.50-7.65 (m, 2H), 7.50 (d, 2H, J=7.0), 7.35-7.45 (m, 2H), 6.67 (s, 1H), 5.32 (s, 1H), 4.14 (dd, 1H, J=5.0, 9.0), 3.52 (br s, 1H), 3.28 (t, 1H, J=14), 2.97 (dd, 1H, J=3.5, 14), 2.82 (br s, 1H), 1.00-2.00 (m, 10H), 0.71 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.5).


[0204] Exemplification of Reaction Scheme 8
57


[0205] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[4-(tetrahydro-pyran-2-yloxymethyl)-benzyl]-amino}-4-methyl-pentanoic acid amide:


[0206] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-methylpentanoic acid amide (6.35 g, 196 mmol), Cs2CO3 (5.62 g, 196 mmol), and 2-[(4-bromomethyl)benzyl]oxy)tetrahydropyran (5.62 g, 196 mmol) in acetonitrile (200 mL) were heated to reflux for 1 h. The reaction was filtered hot with suction through Celite. The filtrate was reduced in vacuo to a white foam (9.5 g, 96%). The foam was used as is in the next reaction. MS (ESI), (M+H)+ 510.9, 1H NMR (CDCl3) δ7.83 (d, 2H, J=8.0), 7.75 (d, 2H, J=8.0), 7.39 (d, 2H, J=8.0), 7.24 (d, 2H, J=8.0), 6.25 (br s, 1H), 5.35 (br s, 1H), 4.82 (d, 1H, Jab=12), 4.65 (m, 1H), 4.52 (d, 1H, Jab=12), 4.30 (d, 1H, Jab=16), 4.20 (d, 1H, Jab=16), 3.74 (m, 2H), 3.46 (m, 1H), 1.89 (m, 1H), 1.66 (m, 6H), 0.97 (d, 3H, J=7.0), 0.94 (d, 3H, J=7.0).
58



EXAMPLE 95

[0207] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-hydroxymethyl)benzylamino]-4-methyl-pentanoic acid amide


[0208] To a solution of (2R)-2-[N-(4-chlorobenzenesulfonyl)-N-[4-(tetrahydropyran-2-yloxymethyl)benzylamino]-4-methyl-pentanoic acid amide (9.5 g, 186 mmol) in methanol (200 mL) was added a catalytic amount of p-toluenesulfonic acid. The mixture was stirred overnight at rt. The solvent was removed in vacuo. The resulting foam was dissolved in CH2Cl2 (100 mL) washed with l N NaOH, H2O, brine, and dried over MgSO4 The filtrate solvent was removed in vacuo. The resulting foam was crystallized from hot hexane affording the product as a white solid (7.7g) in 92% yield. MS (ESI), (M+H)+ 425.17, 1H NMR (CDCl3) δ7.68 (d, 2H, J=7.0), 7.46 (d, 2H, J=7.0), 7.33 (d, 2H, J=8.0), 7.28 (d, 2H, J=8.0), 6.26 (br s, 1H), 5.35 (br s, 1H), 4.67 (br s, 2H), 4.59 (d, 1H, Jab=16), 4.37 (d, 1H, Jab=16), 4.26 (t, 1H, 7.0), 1.86-1.80 (m, 2H), 1.34-1.28 (m, 1H), 1.16-1.10 (m, 1H), 0.96 (d, 3H, J=7.0), 0.93 (d, 3H, J=7.0).
59


[0209] Methanesulfonic acid 4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzene-sulfonyl)-amino]methyl}benzyl ester:


[0210] To a stirred solution of (2R)-2-[N-(4-chloro-benzenesulfonyl)-N-(4-hydroxymethyl-benzyl)amino]-4-methyl-pentanoic acid amide (1.5 g, 3.5 mmol) in CH2Cl2 (15 mL) cooled to 0° C. was added Et3N (0.74 mL, 5.3 mmol). A solution of methanesulfonyl chloride (0.29 mL, 3.5 mmol) in 5 mL CH2Cl2 was added dropwise and the reaction was allowed to stir at 0° C. for 1 h. The reaction mixture was diluted with 25 mL CH2Cl2, quickly washed with 1 N HCl, brine, and dried by passing the organic phase through a cotton plug. The solvent was removed in vacuo affording the title compound in quantitative yield. The resulting foam was used as is in subsequent reactions. MS (ESI), (M-95)+, 409.15 1H NMR (CDCl3) δ7.70 (d, 2H, J=8.0), 7.48 (d, 2H, J=8.0), 7.41 (d, 2H, J=8.0), 7.38 (d, 2H, J=8.0), 6.27 (br s, 1H), 5.32 (br s, 1H), 5.24 (s, 2H), 4.64 (d, 1H, Jab=16), 4.43 (d, H, Jab=16), 4.33 (t, 1H, J=6), 2.90 (s, 3H), 1.90 (m, 1H), 1.60 (m, 2H), 0.96 (d, 3H, J=7.0), 0.91 (d, 3H, J=7.0)
60



EXAMPLE 110

[0211] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-dimethylaminomethyl-benzyl)amino]-4-methyl-pentanoic acid amide


[0212] To a stirred solution of methanesulfonic acid 4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl }-benzyl ester (150 mg, 0.298 mmol) in (3 mL) CH2Cl2 at 0° C. was added 1 equivalent of Et3N, followed by dimethylamine (0.3 mL, 2 M in THF). The reaction was stirred overnight at rt. The mixture was diluted with CH2Cl2, washed with H2O, brine, dried over MgSO4, and concentrated to give an amber glass. Purification by flash chromatography (SiO2, 10% MeOH/CH2Cl2) afforded the title compound (95 mg) in 71% yield. MS (ESI), (M+H)+ 452.23, 1H NMR (CDCl3) δ7.94 (d, 2H, J=8.0), 7.74 (d, 2H, J=8.0), 7.63 (d, 2H, J=8.0) 7.38 (d, 2H, J=8.0), 6.23 (br s, 1H), 5.35 (br s, 1H), 4.22 (d, 1H, Jab=16), 4.14 (d, 1H, Jab=16), 3.28-3.23 (m, 3H), 2.17 (br s, 6H), 1.95 (m, 1H), 1.55 (m, 2H), 0.96 (d, 3H, J=7.0), 0.93 (d, 3H, J=7.0).


[0213] Exemplification of Reaction Scheme 9
61



EXAMPLE 163

[0214] (2R)-2-[N-(4-Acetylaminobenzyl)-N-(4-chlorobenzenesulfonyl)amino]-4-methyl-pentanoic acid amide


[0215] A solution of the compound of Example 48 [(2R)-2-[N-(4-chlorobenzenesulfonyl)-N-(4-aminobenzyl)amino]-4-methyl-pentanoic acid amide (250 mg, 0.60 mmol) and Et3N (120 mg, 1.2 mmol) in CH2Cl2 (20 mL) was treated with acetyl chloride (56 mg, 0.72 mmol). After stirring for 18 h, the reaction was concentrated, chromatographed using silica gel flash chromatography (1% methanol/CH2Cl2) to afford the titled compound (110 mg, 41%). MS (ESI), (M−H)422.9; 1H NMR (CDCl3) δ7.67 (d, 2H, J=8.0), 7.28-7.46 (m, 6H), 7.12 (br s, 1H), 6.24 (br s, 1H), 5.19 (br s, 1H), 4.48 (dd, 2H, J=50, 15), 4.27 (t, 1H, J=7.0), 2.18 (s, 3H), 1.80-2.01 (m, 1H), 1.12-1.32 (m, 2H), 0.75 (d, 3H, J=7.0), 0.67 (d, 3H, J=7.0).
62



EXAMPLE 272

[0216] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-{[(2-dimethylamino-acetyl)-methyl-amino]-methyl}-benzyl)-amino]-4-methyl-pentanoic acid amide


[0217] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(4-methylaminomethyl-benzyl)-amino]-4-methyl-pentanoic acid amide (75 mg, 0.17 mmol), (α-dimethylamino)acetic acid (18 mg, 0.17 mmol), 1-hydroxybenzotriazole (24 mg, 0.17 mmol), and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (33 mg, 0.17 mmol) were combined in 3 mL CH2Cl2 and stirred overnight. The reaction mixture was diluted with 5 mL CH2Cl2 and washed with 1 N NaOH and brine. The organic phase was dried by filtering through cotton and the solvent was removed in vacuo. Purification via preparative HPLC afforded the title compound (61 mg) in 68% yield. MS (ESI), 523.4 (M+H)+ 1H NMR (CDCl3) δ8.02 (d, 2H, J=8.0), 7.71 (d, 2H, J=8.0), 7.37 (d, 2H, J=8.0), 7.28 (d, 2H, J=8.0), 6.23 (br s, 1H), 5.51 (br s, 1H), 4.46 (s, 2H), 4.70 (d, 1H, Jab=16), 4.33 (d, 1H, Jab=16), 3.25 (t, 1H, J=6.0), 2.69 (s, 3H), 2.63 (s, 2H), 2.20 (s, 6H), 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0), 0.94 (d, 3H, J=7.0).


[0218] Exemplification of Reaction Scheme 10
63



EXAMPLE 254

[0219] (2R)-2-[N-(4-Chlorobenzenesulfonyl)-N-(2-dimethylaminopyridin-5-ylmethyl)amino]-4-methylpentanoic acid amide TFA salt


[0220] A solution of (2R)-2-[N-(4-chlorobenzenesulfonyl)-N-(2-chloropyridin-5-ylmethyl)amino]-4-methylpentanoic acid amide (prepared via Reaction Scheme 1, 18 mg, 41 mmol) in dimethylamine/THF (2 M, 20 mL, 40 mmol) was stirred at 95° C. for 30 h in a pressure vessel. Five mL of reaction mixture (25% of total reaction volume) was purified by reverse phase preparative HPLC (YMC S5, ODS, MeOH-water-TFA) to afford the title compound as a white foam (17 mg, 30% yield). HRMS (ESI), (M−H) for C20H26SClN4O3 calcd: 437.1426, found: 437.1420; 1H NMR (CDCl3): δ8.04 (s, 1H), 8.03 (d, 1H, J=9.8), 7.76 (d, 2H, J=7.6), 7.54 (d, 2H, J=7.6), 6.83 (d, 1H, J=9.8), 6.62 (br s, 1H), 6.40 (br s 1H), 4.64 (d, 1H, J=15.9), 4.29 (m, 1H), 4.18 (d, 1H, J=15.9), 3.30 (s, 6H), 1.84 (m, 1H), 1.29 (m, 1H), 0.93 (m, 1H), 0.77 (d, 3H, J=6.5), 0.72 (d, 3H, J=6.5).


[0221] Exemplification of Reaction Scheme 11
64


[0222] (2R)-2-[N-(4-Allyloxy-3-fluorobenzyl)-N-(4-chlorobenzenesulfonyl)amino]-4-methyl-pentanoic acid amide:


[0223] To a solution of (2R)-2-(4-chlorobenzenesulfonylamino)-4-methyl-pentanoic acid amide (1.00 g, 3.29 mmol), and Cs2CO3 (1.29 g, 3.95 mmol) in DMF (25 mL) was added 1-allyloxy-4-bromomethyl-2-fluorobenzene (ref.: Graham, Samuel L; et al., Eur. Pat. Appl. (1992): EP 487270; 0.88 g, 3.67 mmol). The resulting solution was stirred at rt for 18 h. The reaction was then diluted with 9:1 EtOAc:hexanes (350 mL) and washed with H2O (4×200 mL), brine, and dried over Na2SO4, to afford the titled compound (393 mg) as a white solid in 26% yield. MS (ESI), (M+H)+ 469.1; 1H NMR (CDCl3) δ7.66 (d, 2H, J=8.1), 7.45 (d, 2H, J=8.1), 7.11 (d, 1H, J=12.0), 6.98 (m, 1H), 6.84 (t, 1H, J=8.0), 6.22 (br s, 1H), 6.04 (m, 2H), 5.42 (m, 1H), 5.16 (br s, 1H), 4.59 (m, 2H), 4.40 (m, 3H), 1.83 (m, 1H), 1.32 (m, 1H), 1.14 (m, 1H), 0.76 (d, 3H, J=7.0), 0.68 (d, 3H, J=7.0).
65



EXAMPLE 427

[0224] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[3-fluoro-4-(2-morpholin-4-yl-ethoxy)-benzyl]-amino}-4-methyl-pentanoic acid amide


[0225] A mixture of the allyloxy intermediate (0.39 g, 0.84 mmol) from above, osmium tetraoxide (0.01 g, 0.04 mmol), and trimethylamine N-oxide (0.140 g, 1.81 mmol) was dissolved in acetone (10 mL) and stirred for 4 h at rt. The solution was concentrated in vacuo and redissolved in 1.5:1 dioxane:H2O (15 mL). Sodium periodate (0.22 g, 1.0 mmol) was added and the solution was stirred at rt for 18 h. The reaction was then diluted with EtOAc (200 mL) and washed with H2O, brine, dried over NaSO4 and concentrated to give (2R)-{N-(4-chloro-benzenesulfonyl)-N-[3-fluoro-4-(2-oxo-ethoxy)-benzyl]-amino}-4-methyl-pentanoic acid amide as a crude beige solid. This crude material was taken onto the next step without further purification. (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[3-fluoro-4-(2-oxo-ethoxy)-benzyl]-amino}-4-methyl-pentanoic acid amide (0.16 g, 0.34 mmol) and morpholine (0.090 g, 1.0 mmol) was dissolved in EtOH (5 mL) and heated to 80° C. for approximately 15 min. The oil bath was removed and sodium triacetoxyborohydride (0.290 g, 1.36 mmol) was added and the slurry was stirred at rt for 16h. The solution was concentrated to dryness, taken up in brine, extracted with EtOAc (2×100 mL), dried over Na2SO4, and concentrated in vacuo to give a crude orange residue. Further purification by Prep HPLC (20×100 mm YMC S5 ODS C-18 column, 25 mL/min, 0-100% MeOH/H2O 0.1% TFA 15 min) afforded as a TFA salt the titled compound (69.5 mg) as a pale yellow solid in 31% yield. [α]D+23 (c 6.4, CH2Cl2); LCMS (M+H)+ 542.25; 1H NMR (CDCl3) δ7.71 (d, 2H, J=8.0), 7.50 (d, 2H, J=8.0), 7.16 (d, 1H, J=12.0), 7.05 (d, 1H, J=8.0), 6.87 (t, 1H, J=8.0), 6.38 (br s, 1H), 5.91 (br s, 1H), 4.41 (ABq, 2H, J=16, Jab=176), 4.45 (m, 2H), 4.27 (t, 1H, J=8.0), 4.03 (m, 4H), 3.70 (m, 2H), 3.51 (m, 2H), 3.10 (m, 2H), 1.83 (m, 1H), 1.29 (m, 1H), 1.05 (m, 1H), 0.75 (d, 3H, J=8.0), 0.68 (d, 3H, J=8.0).


[0226] Exemplirication of Reaction Scheme 12
66



EXAMPLE 287

[0227] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[4-(1-hydroxy-1-methyl-ethyl)-benzyl]-amino}-4-methyl-pentanoic acid amide


[0228] A solution of the compound of Example 61 [4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-benzoic acid methyl ester, 101 mg, 0.221 mmol] was cooled to 0° C. in THF (2 mL). A solutionof methyl magnesium bromide (1.4 M in toluene/THF, 0.50 mL, 0.71 mmol) was added dropwise. The dark yellow solution was stirred at 0° C., and after 30 min, additional methyl magnesium bromide solution (0.25 mL, 0.353 mmol) was added. After 1 h, the solution was allowed to warm to rt. After 3.5 h, the reaction was quenched by the addition of sat. aq. NH4Cl, and the mixture was extracted with EtOAc (2×). The combined organic layers were dried (NaSO4) and concentrated. Flash column chromatography (SiO2, 20 to 100% EtOAc/hexanes) provided the title compound as a white foam (62 mg, 62%). MS (ESI), (M+H)+ 453.16; 1H NMR (CDCl3, 300 MHz) δ7.61 (d, 2H, J=8.7), 7.40 (d, 2H, J=8.7), 7.37 (d, 2H, J=8.4), 7.26 (d, 2H, J=8.4), 6.28 (br s, 1H), 5.25 (br s, 1H), 4.49 (d, 1H, J=15.9), 4.41 (d, 1H, J=15.9), 4.33 (t, 1H, J=6.6), 1.73-1.80 (m, 1H), 1.55 (s, 6H), 1.28-1.35 (m, 1H), 1.20-1.25 (m, 1H), 0.77 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.6).


[0229] Exemplification of Reaction Scheme 13
67



EXAMPLE 436

[0230] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-[4-(5-methyl-[1, 3, 4]oxadiazol-2-yl)-benzyl]-amino}-4-methyl-pentanoic acid amide


[0231] Step 1: A solution of the compound of Example 61 [4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-benzoic acid methyl ester, 0.500 g, 1.10 mmol] was diluted with methanol (10 mL) and hydrazine (2 mL) was added. The starting material slowly dissolved over 5 min. After 30 min, the solution was heated at reflux. After 22 h, the solution was cooled to rt. Water (15 mL) was added, and a white precipitate formed. The mixture was extracted with EtOAc (2×). The combined organic layers were washed with brine, dried (Na2SO4), and concentrated to give the corresponding acyl hydrazide as a white foam, which was carried directly on to the cyclization step without purification.


[0232] Step 2: The crude acyl hydrazide (0.150 g, 0.331 mmol) was dissolved in pyridine (2.2 mL) and ethyl acetimidate hydrochloride (60.0 mg, 0.364 mmol) was added. The mixture was heated at reflux for 1.25 h. The solution was cooled to rt and concentrated to remove pyridine. The residue was taken up in EtOAc, and was washed sequentially with water, 1 N HCl (2×), sat. aq. NaHCO3, and brine. The solution was dried (MgSO4) and concentrated. Flash column chromatography (SiO2, 50 to 100% EtOAc/hexanes) provided the listed compound as a white solid (138 mg, 88% for 2 steps). [α]D +11.1 (c 7.0 mg/ml, CHCl3); MS (ESI), (M+H)+ 477.22; 1H NMR (CDCl3, 300 MHz) δ7.94 (dd, 2H, J=1.8, 8.4), 7.69 (dd, 2H, J=1.8, 8.7), 7.45-7.50 (m, 4H), 6.23 (br s, 1H), 5.19 (br s, 1H), 4.65 (d, 1H, J=15.9), 4.46 (d, 1H, J=15.9), 4.31 (dd, 1H, J=6.6, 7.8), 2.61 (s, 3H), 1.75-1.85 (m, 1H), 1.28-1.35 (m, 1H), 1.08-1.15 (m, 1H), 0.76 (d, 3H, J=6.6), 0.64 (d, 3H, J=6.6).


[0233] Exemplification of Reaction Scheme 14
68



EXAMPLE 437

[0234] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[4-(3-methyl-[1, 2, 4]oxadiazol-5-yl)-benzyl]-amino}-4-methyl-pentanoic acid amide


[0235] Step 1: To a rt solution of the compound of Example 89 [4-{[N-((1R)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzene-sulfonyl)-amino]-methyl}-benzoic acid, 520 mg, 1.2 mmol] in DMF (2.4 mL) and CH2Cl2 (7.1 mL) was added 1-hydroxybenzotriazole (192 mg, 1.42 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (272 mg, 1.42 mmol), and iPr2NEt (0.31 mL, 1.8 mmol). N-Hydroxyacetamide (105 mg, 1.42mmol) was also added. After 21 h, starting material was evident, so additional portions of all reagents were added periodically to push the reaction forward. After 3 d, the mixture was concentrated and partitioned between sat. aq. NaHCO3 and EtOAc (2×). The combined organic layers were washed with brine, dried (MgSO4), and concentrated to a yellow oil, which was carried on to the next step without purification.


[0236] Step 2: The crude acetamidoxime was dissolved in toluene (10 mL) and the solution was heated at reflux. After 1 h, pyridine (2 mL) was added and heating was continued for another 15 h. The mixture was concentrated and diluted with EtOAc. The organic phase was washed sequentially with water, 1 N HCl (2×), sat. aq. NaHCO3, and brine, then was dried (MgSO4) and concentrated. Flash column chromatography (SiO2, 10 to 40% EtOAc/hexanes) gave the title compound as a pale yellow solid (238 mg, 42% for two steps). [α]23D +9.30 (c 5.93, CHCl3); MS (ESI), (M+H)+ 477.18; 1H NMR (CDCl3, 300 MHz) δ8.04 (d, 2H, J=8.4), 7.70 (dd, 2H, J=1.8, 8.4), 7.45-7.52 (m, 4H), 6.23 (br s, 1H), 5.19 (br s, 1H), 4.67 (d, 1H, J=16.2), 4.47 (d, 1H, J=15.9), 4.31 (t, 1H, J=7.2), 2.47 (s, 3H), 1.75-1.85 (m, 1H), 1.28-1.35 (m, 1H), 1.08-1.15 (m, 1H), 0.76 (d, 3H, J=6.6), 0.64 (d, 31H, J=6.6).


[0237] Exemplification of Reaction Scheme 15
69



EXAMPLE 465

[0238] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[4-(5-methyl-[1, 2, 4]oxadiazol-3-yl)-benzyl]-amino}-4-methyl-pentanoic acid amide


[0239] A solution of the compound of Example 6 [(2R)-2-[N-(4-chlorobenzenesulfonyl)-N-(4-cyanobenzyl)amino]-4-methyl-pentanoic acid amide (0.20 g, 0.47 mmol) in ethanol (6 mL) was treated with hydroxylamine (50% solution in water, 0.050 mL, 0.71 mmol). The reaction was heated to 80° C. for 18 h. The reaction was concentrated to a residue and recrystallized from EtOAc/hexanes to produce a white solid (136 mg, 51%). This solid (0.18 mmol) was then dissolved in chloroform and treated with Et3N (0.030 mL, 0.24 mmol) and acetyl chloride (0.020 mL, 0.18 mmol). The reaction was stirred at rt for 2 h and then was poured into EtOAc and brine. The organic layer was separated, dried over MgSO4, and concentrated to residue. The residue was taken up in toluene and heated at reflux for 24 h. The reaction was concentrated to a residue and purified on a Biotage system (eluted in 1:1 EtOAc/hexanes) to afford the desired product as a white solid (35 mg, 39% yield). MS(ESI), (M+H)+ 477.13; 1H NMR (CDCl3, 500 MHz) δ7.98 (d, 2H, J=8.2), 7.68 (d, 2H, J=8.9), 7.45 (d, 4H, J=8.5), 6.21 (s, 1H), 5.19 (s, 1H), 4.62 (d, 1H, J=15), 4.48 (d, 1H, J=16), 4.31 (t, 1H, J=7.0), 2.65 (s, 3H), 1.75-1.85 (m, 1H), 1.20-1.35 (m, 4H), 1.10-1.17 (m, 1H), 0.85-0.90 (m, 1H), 0.75 (d, 3H, J=6.7), 0.64 (d, 3H, J=6.4).


[0240] Exemplification of Reaction Scheme 16
70



EXAMPLE 273

[0241] (2R)-2-[N-(4-Acetylbenzyl)-N-(4-chlorobenzenesulfonyl)amino]-4-methyl-pentanoic acid amide


[0242] A solution of the compound of Example 251 [4-{[N-((lS)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)-amino]-methyl}-N-methoxy-N-methyl-benzamide, 0.100 g, 0.207 mmol] was cooled to 0° C. in THF (2.1 mL). A solution of methyl magnesium bromide (1.4 M in toluene/THF, 0.178 mL, 0.249 mmol) was added dropwise. The resulting solution was stirred at 0° C. for 3 h, at which time additional methyl magnesium bromide solution (0.178 mL, 0.249 mmol) was added. After another 30 min, a final portion of MeMgBr solution (0.3 mL) was added. After a final 15 min, the reaction was quenched by the addition of sat. aq. NH4Cl and 1 N HCl, and the mixture was extracted with EtOAc (2×). The combined organic layers were washed with sat. aq. NaHCO3 and brine, dried (Na2SO4) and concentrated. Flash column chromatography (SiO2, 20 to 60% EtOAc/hexanes) gave the desired compound as an off-white foam (79 mg, 87%). [α]23D +20.4 (c 7.57, CHCl3); MS (ESI), (M+H)+ 437.13; 1H NMR (CDCl3, 300 MHz) δ7.87 (d, 2H, J=8.4), 7.67 (dd, 2H, J=1.8, 8.7), 7.42-7.46 (m, 4H), 6.21 (br s, 1H), 5.28 (br s, 1H), 4.64 (d, 1H, J=15.9), 4.45 (d, 1H, J=15.9), 4.31 (t, 1H, J=6.6), 2.58 (s, 3H), 1.73-1.80 (m, 1H), 1.25-1.35 (m, 1H), 1.05-1.14 (m, 1H), 0.74 (d, 3H, J=6.5), 0.65 (d, 3H, J=6.6).


[0243] Exemplification of Reaction Scheme 17
71



EXAMPLE 274

[0244] (2R)-2-{N-(4-Chlorobenzenesulfonyl)-N-[4-(3-piperidin-1-yl-propionylamino)-benzyl]-amino}-4-methyl-pentanoic acid amide


[0245] To a solution of N-(4-{[N-((1S)-1-carbamoyl-3-methyl-butyl)-N-(4-chlorobenzenesulfonyl)amino]-methyl}-phenyl)-acrylamide (0.10 g, 0.22 mmol) in toluene (5 mL) was added piperidine (20 mg, 0.24 mmol). The mixture was heated at a gentle reflux for 1 h and then the solvent was removed in vacuo. Purification by flash chromatography (SiO2, 10% MeOH/CH2Cl2) afforded the title compound (105 mg) in 86% yield. MS (ESI), (M+H)+ 449.16, 1H NMR (CDCl3, 400 MHz) δ7.69 (d, 2H, J=8.0), 7.63 (d, 2H, J=8.0), 7.38 (d, 2H, J=8.0), 7.23 (d, 2H, J=8.0), 6.25 (br s, 1H), 5.35 (br s, 1H), 4.75 (d, 1H, Jab=16), 4.38 (d, 1H, jab=16), 3.25 (t, 1H, J=6.0), 2.65 (t, 2H, J=6.0), 2.56-2.44 (m, 6H), 1.95 (m, 1H), 1.68-1.45 (m, 8H), 0.98 (d, 3H, J=7.0), 0.94 (d, 3H, J=7.0)


[0246] Exemplification of Reaction Scheme 18
72


[0247] (2R)-2-(Benzhydrylidene-amino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01, 5]dec-4′-yl}-4-fluorobutan-1-one:


[0248] To a −78° C. solution of N-2-(benzhydrylidene-amino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01, 5]dec-4′-yl}ethanone (ref: Josien, H.; Martin, A.; Chassaing, G. Tetrahedron Lett. 1991, 32, 6547; 30.0 g, 68 mmol) in HMPA (60 mL) and THF (300 mL) was added n-BuLi (1.6 M in hexane, 42.4 mL, 68 mmol) dropwise, maintaining the temperature below −65° C. The reaction was allowed to come to rt, at which time a solution of 1-bromo-3-fluoroethane (17.4 g, 137 mmol) in THF (30 mL) was added dropwise at rt. After 18 h the reaction was poured over H2O/HOAc (200 mL/2 mL), diluted with EtOAc, and the organic layers were washed with saturated NH4Cl, brine, dried over MgSO4, and concentrated. The resulting orange oil was then further purified by silica gel chromatography (25% EtOAc/hexanes) to afford a white solid which was recrystallized from 15% EtOAc/hexanes to give the desired material (24.3 g, 70%). MS (ESI) (M+H+) 483.27; 1H NMR (CDCl3) δ7.66 (d, 2H, J=7.2), 7.13-7.44 (m, 8H), 4.82-4.83 (m, 2H), 4.39-4.81 (m, 2H), 3.84-3.87 (m, 1H), 3.28 (ABq, 2H, J=18, 10) 2.33-2.41 (m, 2H), 2.02-2.04 (m, 2H), 1.84-1.87 (m, 2H), 1.32-1.39 (m, 2H), 1.10 (s, 3H), 0.91 (s, 3H).
73


[0249] (2R)-2-Amino-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5]dec-4′-yl}-4-fluorobutan-1-one:


[0250] A solution of (2R)-2-(benzhydrylidene-amino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5]dec-4′-yl}-4-fluorobutan-1-one (20.0 g, 41.0 mmol) in THF (400 mL) was treated with 1 N HCl (200 mL). After 3 h, the reaction was diluted with H2O and extracted with Et2O. The aqueous phase was then neutralized by the addition of 0.5 N NaOH. The basic phase was then extracted with CH2Cl2, dried over MgSO4, and concentrated to give a white solid (11.9 g, 90%). 1H NMR (CDCl3) δ4.56-4.71 (m, 2H), 4.23-4.31 (m, 1H), 3.40-3.49 (m, 3H), 3.11 (d, 2H, J=4.4), 1.17-2.23 (m, 8H), 1.13 (s, 3H), 0.93-1.12 (m, 3H).
74


[0251] (2R)-2-(4-Chlorobenzensulfonylamino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5dec-4′-yl}-4-fluorobutan-1-one:


[0252] To a solution of (2R)-2-amino-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2:1.01,5]dec-4′-yl}-4-fluorobutan-1-one: (12 g, 36 mmol) and Et3N (10.4 mL, 72.0 mmol) in CH2Cl2 (350 mL) was added 4-chlorobenzenesulfonyl chloride (9.1 g, 43 mmol) in one portion. After 18 h the reaction was concentrated and the resulting residue was taken into EtOAc and washed with H2O, brine, dried over MgSO4, and concentrated. The material was then further purified by silica gel chromatography (30% EtOAc/hexanes) to afford the titled compound (16.0 g, 92%) as a white wax. 1H NMR (CDCl3) δ7.79 (d, 2H, J=8.0), 7.43 (d, 2H, J=8.0), 5.69 (br d, 8.0), 4.42-4.77 (m, 4H), 3.71-3.72 (m, 1H), 3.10 (ABq, 2H, J=9, 4.4) 2.11-2.29 (m, 2H), 1.33-1.99 (m, 6H), 1.04 (s, 3H), 0.91 (s, 3H).
75


[0253] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-fluorobutanoic acid:


[0254] To a rapidly stirred solution of (2R)-2-(4-chlorobenzensulfononylamino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5]dec-4′-yl}-4-fluorobutan-1-one: (16 g, 32 mmol) in acetonitrile (200 mL) was added LiBr (13.9 g, 16 mmol), tetrabutylammonium bromide (4.13 g, 12.8 mmol), and LiOH (5.45 g, 0.130 mol). After 4.5 h the reaction was concentrated to half volume then diluted with H2O and extracted with CH2Cl2. The aqueous layer was acidified with 1 N HCl and extracted with EtOAc. The EtOAc extracts were combined, dried over MgSO4, and concentrated to give a white solid of which 9.4 g was taken directly towards the next step. 1H NMR (DMSO-d6) δ8.39 (d, 11H, J=9.0), 7.76 (d, 2H, J=6.8), 7.64 (d, 2H, J=6.8), 7.00 (br s, 1H), 4.29-4.48 (m, 2H), 3.80-3.88 (m, 1H), 1.66-1.96 (m, 2H).
76


[0255] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-fluorobutanoic acid amide:


[0256] To a solution of (2R)-2-(4-chlorobenzenesulfonylamino)-4-fluorobutanoic acid (9.0 g, 31 mmol) in DMF (250 mL) was added consecutively 1-hydroxybenzotriazole hydrate (6.2 g, 46 mmol), N, N-diisopropylethylamine (23 mL, 124 mmol), ammonium chloride (3.34 g, 62 mmol), and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (8.8 g, 46 mmol) under N2. The resulting solution was stirred at rt for 18 h. The solution was poured over ice water (500 mL) and the solid was filtered off and dried. The material was then precipitated from 10% EtOAc/hexanes to afford a clean white solid (4.5g) in 50% yield. [α]D=−21.0 (c 1.00, DMF); MS (ESI) (M−H) 293.01; 1H NMR (DMSO-d6) δ8.12 (d, 1H, J=8.8), 7.77 (d, 2H, J=7.0), 7.62 (d, 2H, J=7.0), 7.38 (br s, 1H), 7.03 (br s, 1H), 4.22-4.47 (m, 2H), 3.71-3.85 (m, 1H), 1.65-1.92 (m, 2H).
77



EXAMPLE 360

[0257] (2R)-2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino] -4-fluorobutyramide


[0258] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-fluorobutyramide (20 mg, 0.7 mmol) was converted to the title compound as in Reaction Scheme 1, method A to afford the titled compound (208 mg) in 73% yield. MS (ESI) (M−H)407.99; [α]D=+39.13 (c 1.00, MeOH); 1H NMR (CDCl3) δ7.72 (d, 2H, J=8.4) 7.58 (d, 2H, J=8.4), 7.50 (d, 2H, J=8.4), 7.45 (d, 2H, J=8.4), 6.29 (br s, 1H), 5.21 (br s, 1H), 4.19-4.67 (m, 5H), 2.17-2.28 (m, 1H), 1.49-1.61 (m, 1H).


[0259] Exemplification of Reaction Scheme 19
78


[0260] 2-(4-Chlorobenzenesulfonylamino)-6-fluoro-hexanoic acid amide (III):


[0261] A mixture of (benzhydrylidene-amino)acetic acid ethyl ester (8.6 g, 32 mmol), 4-bromo-1-fluorobutane (10.0 g, 64.5 mmol), K2CO3 (13.4 g, 96.9 mmol), tetrabutylammonium bromide (2.1 g, 6.5 mmol), and acetonitrile (300 mL) was heated at reflux for 72 h. The reaction was cooled to rt and filtered through a sintered glass funnel. The filtrate was concentrated in vacuo. The residue was dissolved in diethyl ether (250 mL) and a white solid precipitated. The solid was removed by vacuum filtration. A solution of 1 N HCl (100 mL) was added to the filtrate, which contained the crude product (2-(benzhydrylideneamino)-6-fluoro-hexanoic acid ethyl ester). The resulting biphasic mixture was stirred vigorously for 3 h. The mixture was transferred to a separatory funnel. The aqueous layer was collected. The organic layer was extracted with 1 N HCl (30 mL). The combined aqueous layers were washed with 200 mL of diethyl ether. Concentrated HCl (10.8 mL) was added to the aqueous portion and the resulting solution was heated at reflux for 6 h. The reaction mixture was cooled to rt and concentrated in vacuo. Toluene was added to the residue and the mixture was reconcentrated in vacuo to afford 2-amino-6-fluoro-hexanoic acid hydrochloride as a white solid. The crude amino acid salt was used without purification or characterization. 2-Amino-6-fluorohexanoic acid hydrochloride (32.3 mmol, theoretically) was suspended in anhydrous methanol (300 mL) and cooled to 0° C. Thionyl chloride (10.3 mL, 129 mmol) was slowly was over 5 min. The resulting solution was allowed to warm to rt and stir for 18 h. The reaction mixture was concentrated in vacuo to afford methyl 2-amino-6-fluoro-hexanoic acid hydrochloride. Toluene (100 mL) and 28% ammonia in water (75 mL) were added to the crude amino ester. The resulting biphasic mixture was stirred vigorously at rt for 24 h. The reaction mixture was concentrated in vacuo. The residual solid was suspended in toluene (200 mL) and reconcentrated in vacuo to afford 6-fluorohexanoic acid amide (II) as a white solid. The crude amino acid amide was dissolved in anhydrous DMF (50 mL) and CH2Cl2 (350 mL) and reacted with 4-chlorobenzenesulfonylchloride (82 g, 32.3 mmol) and Et3N (13.5 mL, 96.9 mmol). After 2 h, a second portion of 4-chlorobenzenesulfonylchloride (1.70 g, 8.1 mmol) was added. After an additional 18 h, the resulting mixture was poured into 1 N HCl (500 mL). The organic layer was collected and washed with water (2×500 mL). Hexane (600 mL) was added to the organic layer. A white precipitate formed. The solid was collected by vacuum filtration, rinsed with cold ethanol (50 mL), and dried in vacuo to afford 4.95 g (48% yield, 6 steps) of 2-(4-chlorobenzenesulfonylamino)-6-fluoro-hexanoic acid amide (III): LCMS (M+Na)+ 345.2; 1H NMR (400 MHz, DMSO-d6) 7.99 (d, 1H, J=8.8), 7.77 (d, 2H, J=8.8), 7.62 (d, 2H, J=8.8), 7.29 (s, 1H), 6.95 (s, 1H), 4.34 (dt, 2H, Jd=47.5, Jt=6.1), 3.65 (dt, 1H, Jd=5.6, Jt=8.6), 1.60-1.39 (m, 4H), 1.36-1.15 (m, 2H); Anal. Calcd for C12H16ClFN2O3S: C, 44.65; H, 4.99; N, 8.67. Found: C, 44.61; H, 5.08; N, 8.75.
79



EXAMPLE 333

[0262] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-6-fluoro-hexanoic acid amide


[0263] 2-(4-Chlorobenzenesulfonylamino)-6-fluoro-hexanoic acid amide (0.500 g, 1.55 mmol) was converted to the title compound (360 mg, 50% yield) as in Reaction Scheme 1, method A. LCMS (M+Na)+ 459.9; 1H NMR (400 MHz, DMSO-d6) δ7.82 (d, 2H, J=8.8), 7.79 (d, 2H, J=8.5), 7.63 (d, 2H, J=8.8), 7.58 (d, 2H, J=8.3), 7.52 (s, 1H), 7.09 (s, 1H). 4.82 (ABq, 2H, Δv=37.2, Jab=17.6), 4.34 (dd, 1H, J=8.0, 6.6), 4.25 (dt, 2H, Jd=47.2, Jt=5.7), 1.58 (m, 1H), 1.49-1.12 (m, 5H); Anal. Calcd for C20H21ClFN3O3S: C, 54.85; H, 4.83; N, 9.59. Found: C, 54.92; H, 4.76; N, 9.54.


[0264] Exemplification of Reaction Scheme 20
80


[0265] (2R)-2-(4-Chlorobenzensulfonylamino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5]dec-4′-yl}-4-fluoro-4-methyl-pentan-1-one:


[0266] To a solution of (2R)-2-(4-chlorobenzensulfonylamino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5]dec-4′yl}-4-methyl-4-penten-1-one [500 mg, 1 mmol, prepared as in Reaction Scheme 18 from N-2-(benzhydrylidene-amino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5]dec-4′-yl}ethanone (ref: Josien, H.; Martin, A.; Chassaing, G. Tetrahedron Lett. 1991, 32, 6547) and 1-bromo-2-methyl-2-propene] in THF (5 mL) at 0° C. was added hydrofluoric acidpyridine (10 mL). The reaction mixture was allowed to warm to rt and stir for 18 h. The reaction contents were carefully added to a saturated aqueous solution of NaHCO3 (300 mL). The aqueous mixture was extracted with EtOAc (3×100 mL). The combined organic layers were sequentially washed with 1 N HCl (200 mL) and brine (100 mL). The organic layer was dried over MgSO4, filtered, and concentrated in vacuo to afford 490 mg (94%) of the title compound as a white solid: 1H NMR (400 MHz, DMSO-d6) δ7.83 (d, 2H, J=8.8), 7.45 (d, 2H, J=8.8), 5.37 (d, 1H, J=8.1), 4.65 (m, 1H), 3.64 (t, 1H, J=6.4), 3.43 (ABq, 2H, Δv =54, Jab=13.7), 2.19-1.83 (m, 7H), 1.41-1.31 (m, 8H), 1.04 (s, 3H), 0.94 (s, 3H).
81


[0267] (2R)-2-(4-Chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoic acid amide:


[0268] (2R)-2-(4-Chlorobenzensulfonylamino)-1-{(1′S),(5′S)-10′,10′-dimethyl-3′,3′-dioxo-3′λ6-thia-4′-aza-tricyclo-[5.2.1.01,5]dec-4′-yl}-4-fluoro-4-methyl-pentan-1-one was converted to the title compound in two steps as in Reaction Scheme 18 (165 mg, 55% yield): LCMS (M+Na)+ 345.1; 1H NMR (500 MHz, DMSO-d6) δ8.10 (d, 1H, J=9.2), 7.77 (d, 2H, J=8.5), 7.62 (d, 2H, J=8.9), 7.34 (s, 1H), 6.92 (s, 1H). 3.85 (m, 1H), 1.89 (m, 1H), 1.74 (m, 1H), 1.31 (d, 3H, J=21.7), 1.29 (d, 3H, J=21.9).


[0269] Exemplification of Reaction Scheme 21
82


[0270] Ethyl 2-(4-chlorobenzenesulfonylamino)-4-methyl-4-pentenoate:


[0271] A solution of ethyl 2-amino-4-methyl-4-pentenoate (2.84 g, 18.1 mmol, prepared as in Reaction Scheme 19 from (benzhydrylideneamino)acetic acid ethyl ester and 1-bromo-2-methyl-2-propene) in CH2Cl2 (250 mL) was reacted with 4-chlorobenzenesulfonyl chloride (4.20 g, 19.9 mmol) and Et3N (3.78 mL, 27.2 mmol). After 4 h, the resulting mixture was poured into 1 N aqueous HCl (500 mL) and extracted with EtOAc (3×150 mL). The organic layer was washed with brine (50 mL), dried (MgSO4), filtered, and concentrated in vacuo. The crude concentrate was purified using silica gel column chromatography (10:1 to 5:1 gradient, hexanes/EtOAc) to afford 3.04 g (25% yield over 3 steps) of ethyl 2-(4-chlorobenzenesulfonylamino)-4-methyl-4-pentenoate: LCMS (M+Na)+ 354.2; 1H NMR (400 MHz, CDCl3) 7.77 (d, 2H, J=9.1), 7.46 (d, 2H, J=8.8), 5.07 (d, 1H, J=9.0), 4.84 (s, 1H), 4.73 (s, 1H), 4.05 (m, 1H), 3.95 (q, 2H, J 7.1), 2.40 (m, 2H), 1.66 (s, 3H), 1.13 (t, 3H, J=7.1).
83


[0272] 2-(4-Chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoic acid ethyl ester and 4-Chloro-N-(5, 5-dimethyl-2-oxo-tetrahydro-furan-3-yl)-benzenesulfonamide:


[0273] Hydrogen fluorideepyridine (10 mL) was added to a 0° C. solution of ethyl 2-(4-chloro-benzenesulfonylamino)-4-methyl-4-pentenoate (1.0 g, 3.0 mmol) in THF (15 mL). The reaction mixture was allowed to warm to rt. After 5 h, an additional portion (10 mL) of hydrogen fluoride-pyridine was added. The mixture was stirred for 24 h, then a third portion of hydrogen fluoride-pyridine (10 mL) was added. After a total of 53 h, the reaction was quenched with ice chips (20 mL). The crude mixture was poured into ice water (500 mL) and extracted with CH2Cl2 (2×200 mL). The combined organic layers were washed with sat. aq. NaHCO3 (100 mL) and concentrated in vacuo. The crude concentrate was purified using silica gel column chromatography (10:1 to 5:1 gradient, hexanes/EtOAc) to afford 0.395 g (37% yield) of ethyl 2-(4-chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoate and 0.425 g (46% yield) of 4-chloro-N-(5,5-dimethyl-2-oxo-tetrahydro-furan-3-y)-benzenesulfonamide. Data for ethyl 2-(4-chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoate: LCMS (M+Na)+ 374.1; 1H NMR (500 MHz, CDCl3) 7.78 (d, 2H, J=8.9), 7.47 (d, 2H, J=8.5), 5.19 (d, 1H, J=7.9), 4.08 (m, 1H), 3.93 (m, 2H), 2.09-1.94 (m, 2H), 1.42 (d, 3H, J=21.6), 1.37 (d, 3H, J=21.6), 1.12 (t, 3H, J=7.0). Data for 4-chloro-N-(5, 5-dimethyl-2-oxo-tetrahydro-furan-3-y)-benzenesulfonamide: LCMS (M+Na)+ 326.0; 1H NMR (400 MHz, DMSO-d6) 8.41 (d, 1H, J=9.1), 7.86 (d, 2H, J=8.6), 7.67 (d, 2H, J=8.8), 4.57 (m, 1H), 2.22 (dd, 1H, J=12.4, 9.0), 1.72 (t, 1H, J=12.0), 1.33 (s, 3H), 1.31 (s, 3H).
84


[0274] 2-(4-Chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoic acid amide:


[0275] A solution of 2-(4-chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoic acid ethyl ester (457 mg, 1.30 mmol) in MeOH (20 mL) was treated with 10 N NaOH (780 tL, 7.8 mmol) at rt for 18 h. The crude reaction mixture was concentrated in vacuo. The residue was treated with water (50 mL) and 1 N HCl (20 mL). The aqueous solution was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO4, filtered and concentrated in vacuo to afford a white solid containing 2-(4-chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoic acid. A mixture of the crude solid, 1-hydroxybenzotriazole (263 mg, 1.95 mmol), diisopropylethylamine (670 mg, 5.2 mmol), ammonium chloride (140 mg, 2.6 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (373 mg, 1.95 mmol), and DMF (20 mL) was stirred at rt for 24 h. The crude mixture was poured into water (500 mL). The aqueous solution was extracted with EtOAc/hexane (90: 10, 3×150 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude concentrate was purified using silica gel column chromatography (95:5, chlorofor/MeOH) to afford 0.426 g (100% yield) of the title compound: LCMS (M+Na)+ 345.3; 1H NMR (400 MHz, DMSO-d6) δ8.10 (d, 1H, J=9.2), 7.77 (d, 2H, J=8.5), 7.62 (d, 2H, J=8.9), 7.34 (s, 1H), 6.92 (s, 1H). 3.85 (m, 1H), 1.89 (m, 1H), 1.74 (m, 1H), 1.31 (d, 3H, J=21.7), 1.29 (d, 3H, J=21.9).
85



EXAMPLE 357

[0276] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-4-fluoro-4-methyl-pentanoic acid amide


[0277] 2-(4-Chlorobenzenesulfonylamino)-4-fluoro-4-methyl-pentanoic acid amide was converted to the title compound as in Reaction Scheme 1, method A. LCMS (M+Na)+ 460.2; 1H NMR (400 MHz, DMSO-d6) δ7.83 (d, 2H, J=8.5), 7.75 (d, 2H, J=8.3), 7.68 (s, 1H), 7.64 (d, 2H, J=8.6), 7.49 (d, 2H, J=8.1), 7.20 (s, 1H), 4.67 (ABq, 2H, Δv=28.3, Jab=17.3), 4.54 (dd, 1H, J=9.3, 3.2), 2.23 (m, 1H), 1.42 (m, 1H), 1.25 (d, 3H, J=21.6), 1.21 (d, 3H, J=21.7).
86



Example 443

[0278] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-4-hydroxy-4-methyl-pentanoic acid amide


[0279] A sealed vial containing a mixture of 4-chloro-N-(5,5-dimethyl-2-oxo-tetrahydro-furan-3-yl)-benzenesulfonamide (0.20 g, 0.66 mmol) and 28% ammonia in water (3 mL) was heated in a microwave reactor at 80° C. for 40 min. The reaction mixture was cooled to rt and concentrated to dryness in vacuo to afford a white solid containing 2-(4-chlorobenzenesulfonylamino)-4-hydroxy-4-methyl-pentanoic acid amide. The crude solid was converted to the title compound (98 mg, 34% yield) as in Reaction Scheme 1, method A: LCMS (M+Na)+ 458.2; 1H NMR (400 MHz, DMSO-d6) δ7.84 (d, 2H, J 8.6), 7.76 (d, 2H, J=8.3), 7.62 (d, 2H, J=8.8), 7.51 (d, 2H, J=8.3), 7.40 (s, 1H), 7.11 (s, 1H), 4.63 (ABq, 2H, Δv=5.9, Jab=17.6), 4.56 (dd, 1H, J=8.3, 2.5), 4.54 (s, 1H), 1.95 (dd, 1H, J=13.7, 8.6), 1.26 (dd, 1H, J=13.6, 2.4), 1.04 (s, 3H), 0.99 (s, 3H). Anal. Calcd for C20H22ClN3O4S: C, 55.10; H, 5.08; N, 9.64. Found: C, 54.96; H, 5.14; N, 9.58.


[0280] Exemplification of Reaction Scheme 22
87


[0281] 2-(4-Chlorobenzenesulfonylamino)-5-hexenoic acid ethyl ester:


[0282] A mixture of (benzhydrylidene-amino)acetic acid ethyl ester (20 g, 74.8 mmol), 4-bromo-1-butene (10.1 g, 74.8 mmol), K2CO3 (31.0 g, 224 mmol), tetrabutylammonium bromide (2.41 g, 7.48 mmol), and acetonitrile (150 mL) was heated at reflux for 6 h. The reaction was cooled to rt and filtered through a sintered glass funnel. The filtrate was concentrated in vacuo. The residue was dissolved in diethyl ether (250 mL) and a white solid precipitated. The solid was removed by vacuum filtration. A solution of 1 N HCl (150 mL) was added to the filtrate, which contained the crude product (2-(benzhydrylidene-amino)-hex-5-enoic acid ethyl ester). The resulting biphasic mixture was stirred vigorously for 18 h. The mixture was transferred to a separatory funnel. The aqueous layer was collected and concentrated in vacuo. The residue was dissolved in toluene (2×200 mL) and reconcentrated. The crude amino ester was dissolved in CH2Cl2 and reacted with 4-chlorobenzenesulfonyl chloride (15.8 g, 74.8 mmol) and Et3N (31.2 mL, 224 mmol). After 18 h, the resulting mixture was poured into 1 N HCl (500 mL). The organic layer was collected and washed sequentially with 1 N HCl (500 mL) and brine (50 mL). The organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The crude concentrate was purified using silica gel column chromatography (5:1, hexanes/EtOAc) to afford 5.57 g (23% yield over 3 steps) of the title compound: LCMS (M+Na)+ 354.0; 1H NMR (400 MHz, DMSO-d6) δ8.47 (d, 1H, J=8.8), 7.76 (d, 2H, J=8.8), 7.66 (d, 2H, J=8.8), 5.69 (m, 1H), 4.95-4.88 (m, 2H). 3.86 (q, 2H, J=7.1), 3.76 (m, 1H), 1.98 (m, 2H), 1.71-1.54 (m, 2H), 1.03 (t, 3H, J=7.1).
88


[0283] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-hex-5-enoic acid ethyl ester:


[0284] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-hex-5-enoic acid ethyl ester was made in a similar manner to Reaction Scheme 1 starting from 2-(4-chloro-benzenesulfonylamino)-hex-5-enoic acid ethyl ester. 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-hex-5-enoic acid ethyl ester was isolated as a crude yellow solid (1.14 g) and used in the next step without further purification. 1H NMR (CDCl3) δ7.71 (d, 2H, J=8.0), 7.61 (d, 2H, J=8.0), 7.53 (d, 2H, J=8.0), 7.46 (d, 2H, J=8.0), 5.54 (m, 2H), 4.90 (m, 2H), 4.74 (d, 1H, J=16.0), 4.48 (m, 2H), 3.90 (m, 1H), 1.95 (m, 2H), 1.81 (m, 1H), 1.48 (m, 1H), 1.11 (t,3H,J=8.0).
89


[0285] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-5-oxo-pentanoic acid ethyl ester


[0286] A mixture of (4-chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-hex-5-enoic acid ethyl ester (1.14 g, 2.56 mmol), osmium tetraoxide (0.030 g, 0.13 mmol), and trimethylamine N-oxide (0.41 g, 5.5 mmol) was dissolved in acetone (50 mL) and stirred for 4 h at rt. Upon completion, the solution was concentrated in vacuo and redissolved in 1.5:1 dioxane:H2O (50 mL). To this solution, sodium periodate (0.66 g, 3.07 mmol) was added and stirred at rt for 18 h. The reaction was then diluted with EtOAc (500 mL) and washed with H2O, brine, dried over Na2SO4 and concentrated to give a crude colorless oil. Further purification by flash chromatography (SiO2, 5 to 75% EtOAc/hexanes) afforded 2-[(4-chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-5-oxo-pentanoic acid ethyl ester (0.26 g) as a colorless oil in 23% yield. 1H NMR (CDCl3) δ9.57 (s, 1H), 7.69 (d, 2H, J=8.0), 7.51 (m, 6H), 5.99 ABq, 2H, Δv=16, Jab=168), 4.47 (m, 1H) 3.89 (m, 2H), 2.53 (m, 1H), 2.32 (m, 1H), 2.11 (m, 1H), 1.61 (m, 1H), 1.06 (t, 3H, J=8.0).
90


[0287] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-5,5-difluoro-pentanoic acid ethyl ester:


[0288] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-5-oxo-pentanoic acid ethyl ester (0.05 g, 0.11 mmol) was slowly added to a solution of DAST (0.020 mL, 0.11 mmol) in CH2Cl2 (2 mL) at rt and stirred for 16 h. The reaction was diluted with CH2Cl2 (20 mL) and extracted with H2O (2×25 mL). The combined organic layers were washed with H2O, brine, dried over Na2SO4 and concentrated to give 2-[(4-Chloro-benzenesulfonyl)-(4-cyanobenzyl)-amino]-5,5-difluoro-pentanoic acid ethyl ester as a crude yellow residue (61 mg). This crude residue was taken onto the next step without further purification.
91



EXAMPLE 377

[0289] 2-[(4-Chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-5,5-difluoro-pentanoic acid amide


[0290] The crude 2-[(4-chlorobenzenesulfonyl)-(4-cyanobenzyl)-amino]-5, 5-difluoro-pentanoic acid ethyl ester (0.061 g, 0.13 mmol) was dissolved in MeOH (2 mL). To this mixture was added 10 N NaOH (0.052 mL, 0.52 mmol) and the resulting solution was stirred at rt for 16 h. The reaction was diluted with H2O (25 mL), acidified with 1 N HCl, and extracted with CH2Cl2 (4×100 mL). The combined organic layers were dried over Na2SO4 and concentrated in vacuo to give the carboxylic acid moiety as a crude colorless oil. The carboxylic acid intermediate was then dissolved in DMF (10 mL) and mixed with 1-hydroxybenzotriazole (0.030 g, 0.20 mmol), iPr2NEt (0.090 mL, 0.52 mmol), NH4Cl (0.01 g, 0.26 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.04 g, 0.20 mmol) and stirred at rt for 72 h. The reaction was diluted with EtOAc (150 mL) and washed with H2O (4×50 mL). The organic layer was dried over Na2SO4 and concentrated in vacuo to give a crude off-white solid. Further purification by flash chromatography (SiO2, 5 to 85% EtOAc/hexanes) afforded the titled compound (10.7 mg) as a white solid in 19% yield. LCMS (M+Na)+ 464.01; 1H NMR (CDCl3) δ7.69 (d, 2H, J=8.3), 7.60 (d, 2H, J=8.3), 7.49 (m, 4H), 6.18 (br s, 1H), 5.67 (tt, 1H, J=56, 4.0), 5.22 (br s, 1H), 4.52 (ABq, 2H, Δv=16, Jab=100), 4.34(m, 1H), 2.03 (m, 1H), 1.68 (m, 1H), 1.38 (m, 1H), 0.86 (m, 1H).


[0291] Exemplification of Reaction Scheme 23
92


[0292] (2R)-2-[[4-(2-Bromo-acetylamino)-benzyl]-(4-chlorobenzenesulfonyl)-amino]-4-methyl-pentanoic acid amide:


[0293] To a solution of (2R)-2-[(4-aminobenzyl)-(4-chloro-benzenesulfonyl)amino]-4-methyl-pentanoic acid amide (248 mg, 0.56 mmol) and Et3N (176 mg, 1.74 mmol) in CH2Cl2 (3 mL) was added bromoacetylchloride (105 mg, 0.67 mmol). The reaction mixture was stirred overnight at rt. The reaction mixture was diluted with CH2Cl2 (5 mL), washed with 1 N HCl, brine, and dried through a cotton plug. The solvent was removed in vacuo. Purification by flash chromatography (SiO2, 10% acetone/CH2Cl2) afforded the title compound (124 mg) in 42% yield. MS (ESI), (M+H)+ 531.86, 1H NMR (CDCl3, 400 MHz) δ8.78 (br s, NH), 7.95 (d, 2H, J=8.0), 7.82 (d, 2H, J=8.0), 7.42 (d, 2H, J=8.0), 7.33 (d, 2H, J=8.0), 6.20 (br s, 1H), 5.20 (br s, 1H), 4.30 (s, 2H), 4.22 (d, 1H, Jab=16), 4.14 (d, 1H, Jab=16), 3.25 (t, 1H, J=6.0), 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0), 0.94 (d, 3H, J=7.0)
93



EXAMPLE 308

[0294] (2R)-2-{(4-Chlorobenzenesulfonyl)-[4-(2-dimethylamino-acetylamino)-benzyl]-amino}-4-methyl-pentanoic acid amide


[0295] To a solution of (2R)-2-[[4-(2-bromo-acetylamino)-benzyl]-(4-chlorobenzenesulfonyl)-amino]-4-methyl-pentanoic acid amide (41 mg, 0.77 mmol) in CH2Cl2 (2 mL) was added excess 2.0 M dimethylamine in THF. The reaction mixture was stirred overnight. The solvent was removed in vacuo. Purification by flash chromatography (SiO2, 10% MeOH/CH2Cl2) afforded the title compound (24 mg) in 63% yield. MS (ESI), (M+H)+ 495.14, 1H NMR (CDCl3, 400 MHz) δ8.85 (s, 1H), 8.02 (d, 2H, J=8.0), 7.75 (d, 2H, J=8.0), 7.38 (d, 2H, J=8.0), 7.29 (d, 2H, J=8.0), 6.23 (br s, 1H), 5.39 (br s, 1H), 4.62 (m, 4H), 3.25 (t, 1H, J=6.0), 2.95 (s, 6H), 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0), 0.94 (d, 3H, J=7.0)


[0296] Starting Materials


[0297] The following ax-amino amides were commercially available or obtained by standard methods from commercially available amino acids:
94


[0298] 5,5,5-Trifluoro-2-aminopentanoic acid amide and 6,6,6-trfluoro-2-aminohexanoic acid were prepared according to: Ojima, I.; Kato, K.; Nakahashi, K. J. Org. Chem. 1989, 54, 4511.


[0299] The benzyl bromide used in the synthesis of the compounds of Examples 100 and 155 was prepared according to: Ishihara, Y.; Fujisawa, Y.; Furuyama, N. PCT Int. Appl. WO 9846590; Senanayake, C. H.; Fang, Q. K.; Wilkinson, S. H. PCT Int. Appl. WO 9833789.


[0300] The aldehydes required for the synthesis of the compounds of Examples 91, 248, 249, 289, 290, and 300 (see Reaction Scheme 2) were prepared as exemplified for 4-(piperidin-1-yl)benzaldehyde. A suspension of 4-fluorobenzaldehye (0.48 mL, 4 mmol), K2CO3 (522 mg, 4 mmol), piperidine (340 mg, 4 mmol) in DMSO (5 mL) was heated in a sealed tube at 150° C. for 18h. after which time, the reaction was concentrated and purified by silica gel chromatography (CH2Cl2, then 2% MeOH/CH2Cl2) to afford 4-(piperidin-1-yl)benzaldehyde, 748 mg, 98% yield.


[0301] The aldehydes used in the synthesis of the compounds of Examples 317, 318, and 320 were prepared as exemplified for 4-(piperidin-1-yl)-3-fluorobenzaldehyde. A suspension of 4,3-difluorobenzaldehye (500 mg, 3.5 mmol), K2CO3 (483 mg, 3.5 mmol), piperidine (298 mg, 3.5 mmol) in DMSO (5 mL) was heated in a sealed tube at 130° C. for 18h. The reaction mixture was allowed to cool to rt, concentrated and purified by silica gel chromatography (CH2Cl2, then 2% MeOH/CH2Cl2) to afford 4-(piperidin-1-yl)3-fluorobenzaldehyde, 740 mg, 99% yield.


[0302] The benzyl chloride used in the preparation of the compounds of Examples 433, 474, 480, and 500 was prepared by the following method. To a solution of 2-[(4-chloromethyl)phenyl]propan-2-ol (769 mg, 4.16 mmol) (ref: Creary, X.; Mehrsheikh-Mohammadi, M. E.; McDonald, S. J. Org. Chem. 1987, 52, 3254.) in CH2Cl2 (14 mL) at −78° C. was added DAST (0.72 mL, 5.4 mmol). After 1.5 h, the solution was quenched with water and warmed to rt. The mixture was extracted with CH2Cl2 (3×). The combined organic layers were dried (Na2SO4) and concentrated. Flash column chromatography (SiO2, 0 to 5% EtOAc/hexanes) provided the chloride as a pale yellow liquid (512 mg, 66%). 1H NMR (CDCl3, 300 MHz) δ7.30-7.48 (m, 4H), 4.58 (s, 2H), 1.70 (s, 3H), 1.63 (s, 3H).


[0303] The preparation of the 2-trimethylsilanyl ethyl ester of 4-bromomethyl benzoic acid, which is used in the synthesis of the compound of Example 470 is described by Graffner-Nordberg, M.; Sjoedin, K.; Tunek, A.; Hallberg, A. Chem. Pharm. Bull. 1998, 46, 591.


[0304] Conditions for Chromatographic Separation of Enantiomeric Mixtures


[0305] Condition 1: Example 345 was separated using the following method. 4.6×250 mm, 10 μM, Chiracel O J column, 1.0 mL/min, 85% Hexane/EtOH 0.1% DEA, over 20 min.


[0306] Condition 2: Example 346 was separated using the following method. 4.6×250 mm, 10 μM, Chiralpak AD column, 1.0 mL/min, 80% Hexane/EtOH 0.15% DEA, over 20 min.


[0307] Condition 3: Example 347 was separated using the following method. 4.6×250 mm, 10 μM, Chiralpak AD column, 1.0 mL/min, 65% Hexane/IPA 0.1% DEA, over 18 min.


[0308] Condition 4: Examples 365 and 366 were separated using the following method. 4.6×250 mm, 10 μM, Chiralpak AD column, 1.0 mL/min, 75% Hexane/EtOH 0.15% DEA, over 25 min.


[0309] Condition 5: Examples 408 and 409 were separated using the following method. 4.6×250 mm, 10 μM, Chiracel OD column, 1.0 mL/min, 90% Hexane/EtOH 0.15% DEA, over 36 min.
4TABLE 495Ex.ReactionCalc.Ret. Time/No.R1R2R3SchemeAppearanceMWMethodM + H+NMR Data1969798  1.2white solid424.951.76 Method B425.1 1H NMR (CDCl3) δ 7.63 (d, 2H, J=7.0Hz), 7.42 (d, 2H, J=7.0Hz), (d, 2H, J=7.0Hz), 7.42 (d, 2H, J=7.0Hz), 7.25 (d, 2H, J=8.0Hz), 6.79 (d, 2H, # J=8.0Hz), 6.25 (s, br, 1H), 5.35 (s, br, 1H), 4.36 (dd, 2H, J=50Hz, 15Hz), 4.26 (t, 1H, J=7.2Hz), 3.78 (s, 3H), 1.83 (m, 1H), 1.18-1.34 (m, 3H), 0.75 (d, 3H, J=7.0Hz), 0.67 (d, 3H, J=7.0Hz).2991001011white solid394.921.71 Method B395.2 1H NMR (d6DMSO) δ 7.81 (d, 2H, J=7.0Hz), 7.60 (d, 2H, J=7.0Hz), 7.50 (s, br, 1H), 7.41, (d, 2H, J=8.0Hz), 7.32 (m, 2H), 7.24 (m, 1H), 7.18 (s, br, # 1H), 4.76 (dd, 2H, J=50Hz, 15Hz), 4.36 (t, 1H, J=7.0Hz), 3.33 (s, 3H), 1.20-1.34 (m, 3H), 0.79 (d, 3H, J=6.0Hz), 0.46 (d, 3H, J=6.0Hz).31021031041white solid462.921.71 Method A463.1 1H NMR (d6DMSO) δ 7.83 (d, 2H, J=7.0Hz), 7.67 (d, 2H, J=7.0Hz), 7.57-7.62 (m, 4H), 7.06 (s, br, 1H), # 4.79 (dd, 2H, J=70Hz, 17Hz), 4.38 (t, 1H, J=6.0Hz), 3.32 (s, 3H), 1.23-1.35 (m, 3H), 0.81 (d, 3H, J=6.0Hz), 0.50 (d, 3H, J=6.0Hz)41051061071white solid429.371.69 Method A429.1 1H NMR (d6DMSO) δ 7.83 (d, 2H, J=7.0Hz), 7.61 (d, 2H, J=7.0Hz), 7.52 (s, br, 1H), 7.41 (d, 2H, J=8.2Hz), 7.37 # (d, 2H, J=8.2Hz), 7.03 (s, br, 1H), 4.70 (dd, 2H, J=50Hz, 15Hz), 4.35 (t, 1H, J=7.0Hz), 1.28-1.30 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.51 (d, 3H, J=6.0Hz).51081091101white solid422.981.71 Method A423.2 1H NMR (d6DMSO) δ 7.76 (d, 2H, J=7.0Hz), 7.61 (d, 2H, J=7.0Hz), 7.42 (s, br, 1H), 7.16-7.20 (m, 5H), 6.99 (s, br, # 1H), 4.24 (m, 1H), 3.45-3.51 (m, 1H), 3.10-3.18 (m, 1H), 2.52-2.59 (m, 2H), 1.95-2.05 (m, 1H), 1.69-1.80 (m, 1H), 1.55-1.34 (m, 3H), 0.84 (m, 6H).61111121131white solid419.931.45 Method A420.131H NMR (d6DMSO) δ 7.84 (d, 2H, J=8.0Hz), 7.79 (d, 2H, J=8.0Hz), 7.63 (d, 2H, J=8.0Hz), 7.58 (m, 3H), 7.03 (s, br, 1H), 4.87 (dd, 2H, J=50Hz, 15Hz), 4.32 (t, 1H, J=7.0Hz), 1.28-1.30 (m, 3H), 0.81 (d, 3H, J=6.0Hz), 0.53 (d, 3H, J=6.0Hz)71141151161white solid412.911.58 Method A413.4 1H NMR (d6DMSO) δ 7.81 (d, # 2H, J=7.0Hz), 7.61 (d, 2H, J=7.0Hz), 7.51 (s, br, 1H) 7.43 (m, 1H), 7.11-7.14 (m, 2H), 7.03 (s, br, 1H), 4.77 (dd, 2H, J=50Hz, 15Hz), 4.33 (t, 1H, J=6.0Hz), 1.21-1.31 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.50 (d, 3H, J=6.0Hz)81171181191white solid412.911.58 Method A413.2 1H NMR (d6DMSO) δ 7.82 (d, 2H, J=8.0Hz), 7.61 (d, 2H, J=8.0Hz), 7.55 # (s, br, 1H) 7.39 (m, 1H), 7.05-7.32 (m, 4H), 7.03 (s, br, 1H), 4.78 (dd, 2H, J=50Hz, 15Hz), 4.38 (t, 1H, J=6.0Hz), 1.26-1.32 (m, 3H), 0.81 (d, 3H, J=6.0Hz), 0.54 (d, 3H, J=6.0Hz)91201211221white solid451.032.99 Method C451.2 1H NMR (d6DMSO) δ 7.75 (d, # 2H, J=8.5Hz), 7.55 (d, 2H, J=8.5Hz), 7.51 (s, br, 1H), 7.25-7.29 (m, 4H), 7.03 (s, br, 1H), 4.69 (dd, 2H, J=25Hz, 14Hz), 4.35 (m, 1H), 1.21-1.31 (m, 3H), 1.25 (s, 9H) 0.81 (d, 3H, J=6.0Hz), 0.46 (d, 3H, J=6.0Hz)101231241251white solid424.951.56 Method A425.2 1H NMR (d6DMSO) δ 7.80 (d, # 2H, J=8.0Hz), 7.58 (d, 2H, J=8.0Hz), 7.50 (s, br, 1H) 7.21 (m, 1H), 7.04 (m, 1H), 6.80-6.95 (m, 3H), 4.70 (dd, 2H, J=50Hz, 15Hz), 4.37 (m, 1H), 3.70 (s, 3H), 1.30-1.39 (m, 3H), 0.81 (d, 3H, J=6.0Hz), 0.52 (d, 3H, J=6.0Hz)111261271281white solid463.811.76 Method A463  1H NMR (d6DMSO) δ 7.80 (d, 2H, J=8.0Hz), 7.61 (d, 2H, # J=8.0Hz), 7.55-7.60 (m, 2H) 7.40 (m, 1H), 7.10 (s, br, 1H), 4.72 (dd, 2H, J=50Hz, 15Hz), 4.40 (m, 1H), 1.26-1.40 (m, 3H), 0.83 (d, 3H, J=6.0Hz), 0.60 (d, 3H, J=6.0Hz)121291301311white solid462.921.68 Method A463.1 1H NMR (d6DMSO) # δ 7.80 (d, 2H, J=8.0Hz), 7.68-7.80 (m, 2H), 7.54-7.61 (m, 4H), 7.08 (s, br, 1H), 4.80 (dd, 2H, J=50Hz, 15Hz), 4.38 (t, 1H, J=6.0Hz), 1.26-1.33 (m, 3H), 0.82 (d, 3H, J=6.0Hz), 0.52 (d, 3H, J=6.0Hz)131321331341white solid442.941.55 Method A443.2 1H NMR (d6DMSO) δ 7.78 (d, # 2H, J=8.0Hz), 7.61 (d, 2H, J=8.0Hz), 7.56 (s, br, 1H), 7.05-7.24 (m, 4H), 4.65 (dd, 2H, J=50Hz, 15Hz), 4.40 (t, 1H, J=6.0Hz), 3.81 (s, 3H) 1.28-1.35 (m, 3H), 0.81 (d, 3H, J=6.0Hz), 0.56 (d, 3H, J=6.0Hz)141351361371white solid410.921.51 Method B411.2 1H NMR (CDCl3) δ 7.69 # (d, 2H, J=8.0Hz), 7.45 (d, 2H, J=8.5Hz), 7.26 (d, 2H, J=8.5Hz), 6.73 (d, 2H, J=8.0Hz), 6.33 (s, br, 1H), 5.24 (s, br, 1H), 4.28 (dd, 2H, J=70Hz, 20Hz), 4.23 (m, 1H), 1.67-1.93 (m, 2H), 1.12-1.32 (m, 2H), 0.77 (d, 3H, J=7.0Hz), 0.68 (d, 3H, J=7.0Hz)151381391401sticky pale yellow foam408.51.58 Method B409.3 1H NMR (CDCl3) δ 7.77 (d, 2H, J=8.0Hz), 7.74-7.59 (m, 3H), # 7.02-7.13 (m, 2H), 6.84 (t, 1H, J=8.4Hz), 6.32 (s, br, 1H), 5.31 (s, br, 1H), 4.48 (dd, 2H, J=50Hz, 17Hz), 4.26 (m, 1H), 3.85 (s, 3H), 1.79-1.84 (m, 1H), 1.25-1.30 (m, 1H), 1.04-1.11 (m, 1H), 0.72 (d, 3H, J=7.0Hz), 0.63 (d, 3H, J=7.0Hz)161411421431white film426.491.63 Method B427.3 1H NMR (CDCl3) δ 7.73-7.77 (m, # 2H), 6.81-7.18 (m, 5H), 6.29 (s, br, 1H), 5.37 (s, br, 1H), 4.45 (dd, 2H, J=50Hz, 17Hz), 4.26 (m, 1H), 3.89 (s, 3H), 1.76-1.84 (m, 1H), 1.26-1.33 (m, 1H), 1.08-1.17 (m, 1H), 0.74 (d, 3H, J=7.0Hz), 0.66 (d, 3H, J=7.0Hz)171441451461pale yellow solid476.491.79 Method B477.2 1H NMR (CDCl3) δ 7.84 (d, 2H, J=8.0Hz), # 7.72 (d, 1H, J=8.0Hz), 7.10 (d, 1H, J=9.5Hz), 6.99 (d, 2H, J=8.5Hz), 6.82 (t, 1H, J=8.5Hz), 6.21 (s, br, 1H), 5.35 (s, br, 1H), 4.46 (dd, 2H, J=50Hz, 15Hz), 4.31 (t, 1H, J=7.5Hz), 3.87 (s, 3H), 1.78-1.85 (m, 1H), 1.30-1.35 (m, 1H), 1.12-1.21 (m, 1H), 0.77 (d, 3H, J=7.0Hz), 0.68 (d, 3H, J=7.0Hz)181471481491pale yellow solid476.491.76 Method B477.2 1H NMR (CDCl3) δ 7.79-7.89 (m, 3H), 7.59-7.64 # (m, 1H), 7.01-7.08 (m, 1H), 6.83 (t, 1H, J=8.8Hz), 6.25 (s, br, 1H), 5.42 (s, br, 1H), 4.45 (dd, 2H, J=50Hz, 17Hz), 4.33 (m, 1H), 3.88 (s, 3H), 1.78-1.85 (m, 1H), 1.31-1.35 (m, 1H), 1.17-1.23 (m, 1H), 0.77 (d, 3H, J=7.0Hz), 0.70 (d, 3H, J=7.0Hz)191501511521white solid442.941.73 Method B443.2 1H NMR (CDCl3) δ 7.42-7.63 (m, 4H), 7.02-7.10 # (m, 2H), 6.86 (t, 1H, J=8.5Hz), 6.24 (s, br, 1H), 5.42 (s, br, 1H), 4.45 (dd, 2H, J=50Hz, 17Hz), 4.27 (m, 1H), 3.87 (s, 3H), 1.79-1.87 (m, 1H), 1.27-1.33 (m, 1H), 1.14-1.22 (m, 1H), 0.78 (d, 3H, J=7.0Hz), 0.71 (d, 3H, J=7.0Hz)201531541551pale yellow oil422.521.68 Method B423.2 1H NMR (CDCl3) δ 7.52-7.57 (m, 2H), 7.37-7.39 (m, 2H), # 7.02-7.12 (m, 2H), 6.84 (t, 1H, J=8.5Hz), 6.34 (s, br, 1H), 5.35 (s, br, 1H), 4.45 (dd, 2H, J=50Hz, 17Hz), 4.25 (m, 1H), 3.86 (s, 3H), 2.38 (s, 3H), 1.78-1.87 (m, 1H), 1.25-1.31 (m, 1H), 1.04-1.11 (m, 1H), 0.72 (d, 3H, J=7.0Hz), 0.65 (d, 3H, J=7.0Hz)211561571581pale yellow oil422.521.67 Method B423.2 1H NMR (CDCl3) δ 7.64 (d, 2H, J=8.0Hz), # 7.25-7.30 (m, 2H), 7.02-7.12 (m, 2H), 6.84 (t, 1H, J=8.5Hz), 6.34 (s, br, 1H), 5.32 (s, br, 1H), 4.45 (dd, 2H, J=50Hz, 17Hz), 4.26 (t, 1H, J=10Hz), 3.86 (s, 3H), 2.42 (s, 3H), 1.76-1.85 (m, 1H), 1.25-1.31 (m, 1H), 1.05-1.12 (m, 1H), 0.72 (d, 3H, J=7.0Hz), 0.62 (d, 3H, J=7.0Hz)221591601613clear oil455.021.94 Method B455.2 1H NMR (d6DMSO) δ 7.82 (d, 2H, J=8.0Hz), 7.68 # (d, 2H, J=8.0Hz), 7.56 (s, br, 1H), 7.45 (m, 1H), 7.16 (m, 1H), 7.04 (s, 1H), 6.86 (m, 1H), 4.25 (m, 1H), 3.94 (m, 1H), 3.40-3.55 (m, 2H), 3.02-3.14 (m, 1H), 1.18-1.69 (m, 10H), 0.76 (s, br, 6H).231621631641white solid441.011.67 Method A441.2 1H NMR (d6DMSO) δ 7.79 (d, 2H, J=8.0Hz), # 7.59 7.51 (s, br, 1H), 7.31 (d, 2H, J=8.0Hz), 7.19 (d, 2H, J=8.0Hz), 7.03 (s, br, 1H), 4.68 (dd, 2H, J=50Hz, 15Hz), 4.35 (t, 1H, J=7.0Hz), 3.32 (s, 3H), 1.24-1.35 (m, 3H), 0.81 (d, 3H, J=6.0Hz), 0.51 (d, 3H, J=6.0Hz)241651661671white solid467.861.75 Method A469.1 1H NMR (d6DMSO) δ 7.83 (d, 2H, J=8.0Hz), # 7.64 (d, 2H, J=8.0Hz), 7.42 (s, br, 1H), 7.01 (s, 1H), 4.25 (m, 1H), 3.35-3.51 (m, 3H), 3.08-3.14 (m, 1H), 1.19-1.82 (m, 11H), 0.86 (d, 6H, J=6.0Hz).251681691703clear oil474.071.34 Method A474.4 1H NMR (d6DMSO) δ 7.82 (d, 2H, J=8.0Hz), # 7.64 (d, 2H, J=8.0Hz), 7.42 (s, br, 1H), 6.99 (s, 1H), 4.25 (m, 1H), 3.51-3.60 (s, br, 4H), 3.18-3.41 (m, 2H), 2.25-2.35 (s, br, 4H), 2.27 (m, 2H) 1.15-1.62 (m, 9H), 0.80 (d, 6H, J=6.0Hz).261711721733clear oil472.091.27 Method A472  1H NMR (d6DMSO) δ 7.83 (d, 2H, J=8.0Hz), 7.64 (d, # 2H, J=8.0Hz), 7.42 (s, br, 1H), 7.00 (s, 1H), 4.23-4.26 (m, 1H), 3.22-3.45 (m, 1H), 3.11-3.14 (m, 1H), 2.16-2.28 (m, 5H), 1.19-1.52 (m, 18H), 0.86 (m, 6H).271741751763clear oil490.131.21 Method A490  1H NMR (d6DMSO) δ 7.83 (d, 2H, J=8.0Hz), 7.64 (d, # 2H, J=8.0Hz), 7.44 (s, br, 1H) 7.06 (s, 1H), 4.21-4.25 (m, 1H), 3.55 (s, br, 4H), 3.19-3.40 (m, 4H), 2.43-2.57 (m, 8H), 2.23-2.30 (m, 2H), 1.18-1.59 (m, 9H), 0.82 (m, 6H).281771781793clear oil446.011.08 Method A446.2 1H NMR (d6DMSO) δ 7.84 (d, 2H, J=8.0Hz), # 7.66 (d, 2H, J=8.0Hz), 7.49 (s, br, 1H) 7.02 (s, 1H), 4.23-4.26 (m, 1H), 3.94 (s, br, 2H), 3.71 (s, br, 2H), 3.52-3.57 (m, 1H), 3.14-3.17 (m, 1H), 3.06 (s, br, 4H), 1.17-1.65 (m, 7H), 0.86 (m, 6H).291801811821white solid428.911.51 Method A429.1 1H NMR (CDCl3) δ 7.69 (d, 2H, J=9.0Hz), 7.47 (d, 2H, J=9.0Hz), 7.13 # (d, 1H, J=11.2Hz), 7.00 (d, 1H, J=8.0Hz), 6.88 (m, 1H), 6.27 (s, br, 1H), 5.49 (s, br, 1H), 5.24 (s, br, 1H), 4.40 (dd, 2H, J=90Hz, 18Hz), 3.20 (m, 1H), 1.09-1.82 (m, 3H), 0.77 (d, 3H, J=7.0Hz), 0.68 (d, 3H, J=7.0Hz).301831841851white solid484.591.89 Method A485.0 1H NMR (CDCl3) δ 7.73 (d, 2H, J=8.0Hz), # 7.65 (d, 2H, J=8.0Hz), 7.18-7.27 (m, 4H), 6.25 (s, br, 1H), 5.29 (s, br, 1H), 4.40-4.69 (m, 3H), 1.80-1.88 (m, 1H), 1.29 (s, 9H), 1.25-1.33 (m, 2H), 0.80 (d, 3H, J=7.0Hz), 0.69 (d, 3H, J=7.0Hz)311861871881white solid430.611.82 Method A431.2 1H NMR (CDCl3) δ 7.60 (d, 2H, J=8.2Hz), 7.24-7.39 # (m, 6H), 6.34 (s, br, 1H), 5.19 (s, br, 1H), 4.42-4.44 (m, 2H), 4.30 (t, 1H, J=8Hz), 2.41 (s, 3H), 1.74-1.83 (m, 1H), 1.28 (s, 9H), 1.25-1.33 (m, 1H), 0.93-1.01 (m, 1H), 0.72 (d, 3H, J=7.0Hz), 0.60 (d, 3H, J=7.0Hz)321891901913brown oil460.041.15 Method A460.2 1H NMR (d6DMSO) δ 7.83 (d, 2H, J=8.0Hz), 7.64 # (d, 2H, J=8.0Hz), 7.42 (s, br, 1H) 7.00 (s, 1H), 4.22-4.26 (m, 1H), 3.55 (s, br, 4H), 3.11-3.32 (m, 2H), 2.13-2.37 (m, 6H), 1.12-1.51 (m, 9H), 0.86 (m, 6H).331921931941white solid400.971.85 Method A401  1H NMR (d6DMSO) δ 7.85 (d, 2H, J=8.0Hz), 7.65 (d, # 2H, J=8.0Hz), 7.32 (s, br, 1H) 7.05 (s, br, 1H), 4.19 (t, 1H, J=7.5Hz), 2.99-3.02 (m, 1H), 1.07-1.65 (m, 14H), 0.78-0.84 (m, 7H).341951961973clear Oil476.11.28 Method A476.1 1H NMR (CDCl3) δ 7.76 (d, 2H, J=8.0Hz), 7.51 (d, 2H, J=8.0Hz), 6.55 # (s, br, 1H), 5.41 (s, 1H), 4.17-4.20 (m, 1H), 3.26-3.38 (m, 1H), 3.13-3.17 (m, 1H), 2.62-2.92 (m, 8H), 2.32-2.36 (m, 2H), 1.85-1.87 (m, 1H), 1.25-1.47 (m, 7H), 0.96-0.99 (m, 1H), 0.75 (d, 3H, J=6.6Hz), 0.72 (d, 2H, J=6.6Hz).351981992003clear oil462.081.31 Method A462.2 1H NMR (CDCl3) δ 7.75 (d, 2H, J=8.0Hz), 7.52 (d, 2H, J=8.0Hz), # 6.51 (s, br, 1H), 6.05 (s, 1H), 4.15-4.18 (m, 1H), 3.56-3.78 (m, 4H), 3.45-3.47 (m, 1H), 3.09-3.14 (m, 1H), 2.90-3.08 (m, 4H), 2.61-2.69 (m, 2H), 1.62-2.05 (m, 5H), 1.21-1.29 (m, 1H), 0.80-0.83 (m, 1H), 0.78 (d, 3H, J=6.6Hz), 0.71 (d, 2H, J=6.6Hz).362012022033clear oil418.01.25 Method A418.2 1H NMR (CDCl3) δ 7.77 (d, 2H, J=8.5Hz), 7.51 (d, 2H, J=8.5Hz), 6.56 (s, br, # 1H), 5.41 (s, 1H), 4.18-4.21 (m, 1H), 3.15-3.32 (m, 2H), 2.25-2.28 (m, 2H), 2.24 (s, 6H), 1.84-1.88 (m, 1H), 1.25-1.49 (m, 7H), 0.97-1.00 (m, 1H), 0.71-0.74 (m, 6H).372042052061tan solid428.911.5 Method A429.1 1H NMR (CDCl3) δ 7.57 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=9.0Hz), 7.03-7.13 # (m, 2H), 6.80 (t, 1H, J=8.8Hz), 6.17 (s, br, 1H), 5.39 (s, br, 1H), 4.48 (dd, 2H, J=55Hz, 16Hz), 3.84 (s, 3H), 3.75-3.84 (m, 1H), 1.11-1.30 (m, 1H), 0.91 (d, 3H, J=7.0Hz), 0.54 (d, 3H, J=7.0Hz).382072082091white solid412.461.46 Method A413.2 1H NMR (CDCl3) δ 7.65-7.70 (m, 2H), 7.04-7.12 (m, 4H), 6.79 (t, 1H, J=8.5Hz), 6.21 # (s, br, 1H), 5.27 (s, br, 1H), 4.48 (dd, 2H, J=50Hz, 15Hz), 3.86 (s, 3H), 3.79-3.85 (m, 1H), 2.16-2.22 (m, 1H), 0.90 (d, 3H, J=7.0Hz), 0.51 (d, 3H, J=7.0Hz).392102112121white solid403.481.47 Method A404.2 1H NMR (CDCl3) δ 7.77-7.80 (m, 2H), 7.59 (d, 2H, J=8.0Hz), # 7.49 (d, 2H, J=8.0Hz), 7.17-7.22 (m, 2H), 6.17 (s, br, 1H), 5.20 (s, br, 1H), 4.50 (dd, 2H, J=60Hz, 17Hz), 4.28 (t, 1H, J=10Hz), 1.74-1.83 (m, 1H), 1.25-1.33 (m, 1H), 0.99-1.10 (m, 1H), 0.77 (d, 3H, J=7.0Hz), 0.66 (d, 3H, J=7.0Hz).402132142151white solid453.491.65 Method A454.1 1H NMR (CDCl3) δ 7.88 (d, 2H, J=8.2Hz), 7.78 (d, 2H, J=8.5Hz), 7.59 (d, 2H, # J=8.5Hz), 7.49 (d, 2H, J=8.5Hz), 6.10 (s, br, 1H), 5.19 (s, br, 1H), 4.59 (dd, 2H, J=50Hz, 16Hz), 4.33 (t, 1H, J=10Hz), 1.76-1.81 (m, 1H), 1.25-1.35 (m, 1H), 1.02-1.07 (m, 1H), 0.78 (d, 3H, J=7.0Hz), 0.65 (d, 3H, J=7.0Hz)412162172181white solid399.521.53 Method A400.2 1H NMR (CDCl3) δ 7.65 (d, 2H, J=8.0Hz), 7.58 (d, 2H, J=8.2Hz), 7.47 (d, 2H, # J=8.0Hz), 7.31 (d, 2H, J=8.5Hz), 6.24 (s, br, 1H), 5.16 (s, br, 1H), 4.50 (dd, 2H, J=50Hz, 17Hz), 4.27 (t, 1H, J=10Hz), 2.44 (s, 3H), 1.74-1.83 (m, 1H), 1.25-1.33 (m, 1H), 0.93-1.01 (m, 1H), 0.74 (d, 3H, J=7.0Hz), 0.63 (d, 3H, J=7.0Hz)422192202213clear oil441.01.27 Method A441.2 1H NMR (CDCl3) δ 7.74 (d, 2H, J=8.2Hz), 7.67 (s, 1H), 7.50 (d, 2H, J=8.2Hz), 7.10 (s, # 1H)). 6.93 (s, 1H), 6.51 (s, br, 1H) 5.55 (s, br, 1H), 4.14-4.17 (m, 1H), 3.97 (t, 2H, J=6.0Hz), 3.29-3.35 (m, 1H), 3.09-3.14 (m, 1H), 1.62-1.66 (m, 3H), 1.55-1.62 (m, 2H), 1.25-1.29 (m, 3H), 0.80-0.83 (m, 1H), 0.74 (d, 3H, J=6.6Hz), 0.71 (d, 2H, J=6.6Hz).432222232243clear oil446.061.29 Method A446.3 1H NMR (CDCl3) δ 7.76 (d, 2H, J=8.0Hz), 7.52 (d, 2H, J=8.0Hz), 6.61 (s, br, 1H) 5.45 (s, 1H), 4.15-4.18 # (m, 1H), 3.09-3.24 (m, 2H), 2.50-2.58 (m, 4H), 2.31-2.39 (m, 2H), 1.92-1.99 (m, 1H), 1.15-1.59 (m, 8H), 1.00-1.04 (m, 7H), 0.71-0.74 (m, 6H).442252262271tan wax428.911.58 Method A429.1 1H NMR (CDCl3) δ 7.67 (d, 2H, J=8.0Hz), 7.45 (d, 2H, J=9.0Hz), 7.03-7.15 # (m, 2H), 6.84 (t, 1H, J=8.0Hz), 6.25 (s, br, 1H), 5.19 (s, br, 1H), 4.45 (dd, 2H, J=80Hz, 18Hz), 4.19-4.22 (m, 1H), 3.87 (s, 3H), 1.82-1.95 (m, 1H), 0.96-1.30 (m, 3H), 0.72-0.77 (m, 3H).452282292303clear oil506.111.39 Method A506.2 1H NMR (CDCl3) δ 7.75 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.5Hz), 7.01-7.13 #(m, 4H), 6.55 (s, br, 1H), 5.39 (s, br, 1H), 4.18 (t, 1H, J=6.0Hz), 3.32-3.60 (m, 1H), 3.16-19 (m, 1H), 2.91 (s, br, 2H), 2.76 (s, br, 2H), 2.52 (s, br, 2H), 1.27-1.86 (m, 8H), 0.97-1.00 (m, 1H), 0.73 (m, 6H).462312322331white solid418.942.7 Method A441  (M + Na+)1H NMR (d6DMSO) δ 7.89 (d, 2H, J=8.2Hz), 7.65 (d, 2H, J=8.4Hz), 7.52 (s, br, # 1H) 7.00 (s, br, 1H), 4.25 (dd, 2H, J=80Hz, 18Hz), 4.10-4.13 (m, 1H), 2.59-2.60 (m, 1H), 1.35 (s, 9H), 1.32-1.35 (m, 2H), 0.860 (d, 3H, J=6.0Hz), 0.75 (d, 3H, J=6.0Hz).472342352361yellow solid439.921.69 Method A440.2 1H NMR (CDCl3) δ 8.17 (d, 2H, J=7.0Hz), 7.72 (d, 2H, J=7.0Hz), 7.54 # (d, 1H, J=8.8Hz), 7.49 (d, 1H, J=8.8Hz), 6.14 (s, br, 1H), 5.18 (s, br, 1H), 4.60 (dd, 2H, J=70Hz, 18Hz), 4.29-4.34 (m, 1H), 1.74-1.83 (m, 1H), 1.00-1.34 (m, 2H), 0.78 (d, 3H, J=7.0Hz), 0.67 (d, 3H, J=7.0Hz).482372382394tan solid409.941.26 Method A410.1 1H NMR (CDCl3) δ 7.80 (d, 2H, J=8.5Hz), 7.63 (d, 2H, J=8.5Hz), 7.52 (s, br, 1H), # 7.46 (d, 1H, J=8.0Hz), 7.26 (d, 1H, J=8.0Hz), 7.02 (s, br, 1H), 4.70 (dd, 2H, J=50Hz, 18Hz), 4.30-4.41 (m, 1H), 3.67 (s, br, 2H), 1.28-1.33 (m, 3H), 0.86 (d, 3H, J=7.0Hz), 0.57 (d, 3H, J=7.0Hz).492402412423Tan foam431.991.19 Method A432  1H NMR (d6DMSO) δ 7.81 (d, 2H, J=8.0Hz), 7.66 (d, 2H, J=8.0Hz), 7.45 # (s, br, 1H) 7.02 (s, 1H), 4.27 (m, 1H), 3.56 (s, br, 4H), 3.55-3.57 (m, 1H), 3.08-3.14 (m, 1H), 2.22-2.32 (m, 6H), 1.79-1.82 (m, 11H), 1.17-1.62 (m, 4H), 0.86 (d, 6H, J=6.0Hz).502432442451white solid436.511.58 Method A437.1 1H NMR (CDCl3) δ 7.95 (d, 2H, J=8.0Hz), 7.74-7.79 (m, 2H), 7.42 (d, # 2H, J=8.0Hz), 7.14-7.19 (m, 2H) 6.24 (s, br, 1H), 5.20 (s, br, 1H), 4.50 (dd, 2H, J=50Hz, 17Hz), 4.12 (m, 1H), 3.91 (s, 3H), 1.75-1.82 (m, 1H), 1.25-1.31 (m, 1H), 1.05-1.12 (m, 1H), 0.75 (d, 3H, J=7.0Hz), 0.64 (d, 3H, J=7.0Hz)512462472484tan solid423.971.21 Method A424.1 1H NMR (CDCl3) δ 7.65 (d, 2H, J=8.0Hz), 7.58 (d, 2H, # J=8.2Hz), 7.47 (d, 2H, J=8.0Hz), 7.31 (d, 2H, J=8.5Hz), 6.24 (s, br, 1H), 5.16 (s, br, 1H), 4.50 (dd, 2H, J=50Hz, 17Hz), 4.27 (t, 1H, J=10Hz), 2.44 (s, 3H), 1.74-1.83 (m, 1H), 1.25-1.33 (m, 1H), 0.93-1.01 (m, 1H), 0.74 (d, 3H, J=7.0Hz), 0.63 (d, 3H, J=7.0Hz)522492502511white solid448.901.79 Method A449.0 1H NMR (CDCl3) δ 7.66 (d, 2H, J=8.5Hz), 7.43 (d, 2H, J=8.5Hz), 7.12 # (d, 1H, J=8.0Hz), 6.49 (d, 1H, J=8.0Hz), 6.24 (s, br, 1H), 5.22 (s, br, 1H), 4.35 (dd, 2H, J=50Hz, 15Hz), 4.22-4.27 (m, 1H), 2.04 (s, 3H), 1.27-1.89 (m, 3H), 0.74 (d, 3H, J=7.0Hz), 0.68 (d, 3H, J=7.0Hz).532522532541-Method Awhite solid424.951.58 Method A425.2 1H NMR (DMSO-d6, 500MHz) δ 7.82 (d, 2H, J=8.2), 7.62 (d, # 2H, J=8.3), 7.44 (d, 2H, J=7.1), 7.21 (t, 1H, J=6.7), 6.97 (s, 1H), 6.92 (d, 2H, J=6.9), 4.99 (d, 1H, J=17), 4.40 (d, 1H, J=17), 4.33 (br s, 1H), 3.76 (s, 3H), 1.20-1.40 (m, 3H), 0.79 (d, 3H, 5.2), 0.54 (d, 3H, J=5.2).542552562571-Method Awhite solid400.861.81 min Method B398.94 (M − H)1H NMR (CDCl3) δ 7.71 (d, 2H, J=6.8Hz), 7.48 (d, 2H, J=6.8Hz), # 7.15 (d, 2H, J=10Hz), 7.02 (d, 2H, J=8.0Hz), 6.85 (t, 1H, J=7.5Hz), 6.19 (s, br, 1H), 5.13 (s, br, 1H), 4.31 (dd, 2H, J=50Hz, 15Hz), 4.43-4.45 (m, 1H), 3.87 (s, 3H), 1.17 (d, 3H, J=6.8Hz).552582592601-Method Awhite solid478.921.76 Method A479.1 1H NMR (DMSO-d6, 500MHz) δ 7.81 (d, 2H, J=8.5), 7.60 (d, 2H, J=8.2), # 7.54 (s, 1H), 7.51 (d, 2H, J=8.5), 7.30 (d, 2H, J=8.2), 7.04 (s, 1H), 4.83 (d, 1H, J=17), 4.71 (d, 1H, J=17), 1.20-1.35 (m, 3H), 0.80 (d, 3H, J=6.1), 0.47 (d, 3H, J=6.2).562612622631-Method Awhite solid434.581.95 min Method A435.241H NMR (CDCl3, 300MHz) δ 7.67 (dd, 2H, J=5.0, 8.9), 7.20-7.30 (m, 4H), # 7.09 (dd, 2H, J=8.6, 8.6), 6.28 (br s, 1H), 5.24 (br s, 1H), 4.44 (s, 2H), 4.34 (t, 1H, J=7.8), 1.75-1.90 (m, 1H), 1.22-1.38 (m, 2H), 1.30 (s, 9H), 0.77 (d, 3H, J=6.4), 0.67 (d, 3H, J=6.4).572642652663brown oil458.072.16 Method C458.2 1H NMR (CDCl3, 500MHz) δ 7.77 (dd, 2H, J=1.6, 6.8), 7.53 (dd, 2H, J=2.0, 6.7), 6.55 # (s, 1H), 5.64 (s, 1H), 4.15 (dd, 1H, J=5.6, 9.2), 3.57 (t, 2H, J=12), 3.35-3.45 (m, 1H), 3.10-3.17 (m, 1H), 2.87-3.00 (m, 2H), 2.57-2.70 (m, 2H), 227-2.40 (m, 2H), 1.80-2.00 (m, 6H), 1.63-1.73 (m, 2H), 1.20-1.50 (m, 4H), 0.85-0.90 (m, 1H), 0.73 (d, 3H, J=6.4), 0.70 (d, 3H, J=6.9).582672682695colorless oil390.891.51 Method A391.2 1H NMR (CDCl3, 500MHz) δ 7.91 (dd, 2H, J=2.0, # 6.8), 7.51 (dd, 2H, J=2.2, 6.9), 7.06 (s, 1H), 5.33 (s, 1H), 4.13-4.25 (m, 2H), 4.03-4.15 (m, 3H), 1.77-1.85 (m, 1H), 1.35-1.45 (m, 1H), 1.30 (t, 3H, J=7.1), 1.15-1.22 (m, 1H), 0.74 (d, 3H, J=6.6), 0.71 (d, 3H, J=6.5).592702712725white solid362.831.28 Method A363.1 1H NMR (DMSO-d6, 500MHz) δ 7.90 (dd, 2H, J=2.0, 6.8), 7.65 (dd, 2H, # J=2.0, 6.8), 7.60 (s, 1H), 7.06 (s, 1H), 4.32 (d, 1H, J=18), 4.12 (t, 1H, J=8.0), 4.02 (d, 1H, J=18), 1.55-1.65 (m, 1H), 1.35-1.45 (m, 2H), 0.78 (d, 3H, J=6.1), 0.73 (d, 3H, J=6.1).602732742751-solid supportwhite solid408.951.82 min Method B409.1 1H NMR (CDCl3) δ 7.64 (d, 2H, J=8.0Hz), 7.44 (d, 2H, J=8.0Hz), 7.22 (d, 2H, # J=8.0Hz), 7.08 (d, 2H, J=8.0Hz), 6.29 (s, br, 1H), 5.34 (s, br, 1H), 4.53 (d, 1H, J=15.20Hz), 4.34 (d, 1H, J=15.20Hz), 4.27 (t, 1H, J=7.2Hz), 2.32 (s, 3H), 1.84 (m, 1H), 1.30 (m, 1H), 1.21 (m, 1H), 0.75 (d, 3H, J=6.8Hz), 0.67 (d, 3H, J=6.8Hz)612762772781-Method Awhite solid452.961.85 min Method A453.081H NMR (CDCl3, 300MHz) δ 7.97 (dd, 2H, J=1.7, 8.4), 7.68 (dd, # 2H, J=2.0, 8.7), 7.41-7.48 (m, 4H), 6.23 (br s, 1H), 5.16 (br s, 1H), 4.64 (d, 1H, J=15.8), 4.47 (d, 1H, J=15.9), 4.31 (t, 1H, J=7.8), 3.92 (s, 3H), 1.76-1.83 (m, 1H), 1.26-1.35 (m, 1H), 1.08-1.13 (m, 1H), 0.76 (d, 3H, J=6.0), 0.65 (d, 3H, J=6.7).622792802811-solid supportwhite solid430.951.81 min Method B431.061H NMR (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.49 (d, 2H, J=8.0Hz), # 7.24 (m, 1H), 6.95 (m, 2H), 6.25 (s, br, 1H), 5.27 (s, br, 1H), 4.62 (d, 1H, J=16.0Hz), 4.45 (d, 1H, J=16.0Hz), 4.33 (t, 1H, J=6.8Hz), 1.84 (m, 1H), 1.30 (m, 1H), 1.21 (m, 1H), 0.78 (d, 3H, J=6.8Hz), 0.70 (d, 3H, J=6.8Hz)632822832841-solid supportpale yellow solid471.022.04 min Method B471.091H NMR (CDCl3) δ 7.65 (d, 2H, J=8.0Hz), 7.58 (d, 2H, J=8.0Hz), # 7.47 (d, 2H, J=8.0Hz), 7.37-7.44 (m, 6H), 6.27 (s, br, 1H), 5.33 (s, br, 1H), 4.58 (d, 1H, J=15.2Hz), 4.45 (d, 1H, J=15.2Hz), 4.36 (t, 1H, J=7.2Hz), 1.84 (m, 1H), 1.30 (m, 1H), 1.21 (m, 1H), 0.78 (d, 3H, J=6.8Hz), 0.70 (d, 3H, J=6.8Hz)642852862871-solid supportpale pink solid372.921.82 min Method B395.11 M + Na1H NMR (CDCl3) δ 7.65 (d, 2H, J=8.0Hz), 7.50 (d, # 2H, J=8.0Hz), 6.75 (s, br, 1H), 6.70 (s, br, 1H), 5.04 (m, 1H), 4.32 (t, 1H, J=7.2Hz), 3.91 (d br, 2H, J=7.0Hz), 1.81 (m, 1H), 1.66 (s br, 6H), 1.30 (m, 1H), 1.21 (m, 1H), 0.77 (d, 3H, J=6.5Hz), 0.76 (d, 3H, J=6.5Hz)652882892904white solid437.991.39 Method A438.1 1H NMR (DMSO-d6, 500 MHz) δ 7.74 (dd, 2H, J=1.9, 6.7), 7.5 # (dd, 2H, J=1.9, 6.8), 7.43 (s, 1H), 7.16 (d, 2H, J=8.6), 7.01 (s, 1H), 6.61 (d, 2H, J=8.8), 4.59 (q, 2H, J=16, 25), 4.34 (dd, 1H, J=5.0, 9.3), 2.85 (s, 6H), 1.27-1.47 (m, 3H), 0.80 (d, 3H, J=5.9), 0.52 (d, 3H, J=6.1).662912922931-Method Awhite solid473.011.58 Method A437.0 1H NMR (DMSO-d6, 500 MHz) δ 7.87 (d, 2H, J=8.2), 7.83 (d, 2H, # J=8.3), 7.64 (d, 2H, J=8.5), 7.63 (d, 2H, J=8.5), 7.59 (s, 1H), 7.08 (s, 1H), 4.92 (d, 1H, J=17), 4.76 (d, 1H, J=17), 4.39 (t, 1H, J=6.9), 3.35 (br s, 1H), 1.20-1.40 (m, 3H), 0.81 (d, 3H, J=6.2), 0.54 (d, 3H, J=6.2).672942952961-Method Acolorless oil346.881.79 Method A347.1 1H NMR (DMSO-d6, 500 MHz) δ 7.83 (d, 2H, J=8.8), 7.63 (d, 2H, # J=8.6), 7.41 (s, 1H), 7.0 (s, 1H), 4.25 (dd, 1H, J=4.8, 8.9), 3.38-3.47 (m, 1H), 3.0-3.13 (m, 1H), 1.55-1.70 (m, 1H), 1.40-1.55 (m, 1H), 1.30-1.40 (m, 1H), 0.87 (t, 3H, J=7.6), 0.73 (d, 3H, J=6.4), 0.72 (d, 3H, J=6.7).682972982993white oil448.051.25 min Method C448.191H NMR (CDCl3, 500MHz), δ 7.76 (dd, 2H, J=2.0, 6.7), 7.50 (dd, 2H, J=2.0, # 6.7), 6.51 (s, 1H), 5.45 (s, 1H), 4.20 (dd, 1H, J=6.4, 8.2), 3.35-3.45 (m, 1H), 3.20-3.30 (m, 1H), 2.68 (br s, 8H), 2.35 (br s, 2H), 1.70-1.90 (m, 3H), 1.20-1.40 (m, 1H), 0.95-1.05 (m, 1H), 0.75 (d, 3H, J=4.3), 0.73 (d, 3H, J=4.4).693003013026white solid422.481.56 min Method A423.141H NMR (CDCl3, 300MHz) δ 7.89-7.93 (m, 4H), 7.84 (br s, 1H), 7.49 (d, # 2H, J=8.2), 7.24-7.29 (m, 2H), 6.58 (br s, 1H), 5.12 (d, 1H, J=15.3), 4.23 (dd, 1H, J=4.6, 9.7), 4.05 (d, 1H, J=15.4), 2.04-2.14 (m, 1H), 1.23-1.32 (m, 1H), 0.79-0.88 (m, 1H), 0.72 (d, 3H, J=6.6), 0.67 (d, 3H, J=6.6).703033043051-Method Awhite solid466.891.77 min Method B467.031H NMR (CDCl3) δ 7.65 (d, 2H, J=6.8Hz), 7.52-7.56 (m, # 2H), 7.47 (d, 2H, J=6.8Hz), 7.11 (t, 1H, J=8.5Hz), 6.22 (s, br, 1H), 5.24 (s, br, 1H), 4.41 (dd, 2H, J=50Hz, 15Hz), 4.28 (t, 1H, 7.5Hz), 1.80-1.92 (m, 1H), 1.21-1.30 (m, 1H), 0.95-1.19 (m, 2H), 0.76 (t, 3H, J=7.0Hz).713063073081-Method Awhite wax398.891.80 min Method B388.0 1H NMR (CDCl3) δ 7.67 (d, 2H, J=8.0Hz) 7.54 (d, 2H, # J=8.0Hz), 7.42-7.49 (m, 4H), 6.20 (s, br, 1H), 5.21 (s, br, 1H), 4.54 (dd, 2H, J=50Hz, 15Hz), 4.25-4.29 (m, 1H), 1.82-1.95 (m, 1H), 1.26-1.33 (m, 1H), 0.98-1.12 (m, 2H), 0.75 (t, 3H, J=7.0Hz).723093103111-Method Awhite solid482.011.79 min Method B482.061H NMR (CDCl3) δ 7.76 (d, 1H, J=7.5Hz), 7.63-7.67 # (m, 4H), 7.43-7.50 (m, 8H), 6.24 (s, br, 1H), 5.28 (s, br, 1H), 4.53 (dd, 2H, J=50Hz, 15Hz), 4.27 (t, 1H, J=7.3Hz), 1.87-1.99 (m, 1H), 1.30-1.39 (m, 1H), 1.03-1.11 (m, 2H), 0.76 (t, 3H, J=8.0Hz).733123133141-Method Apale yellow solid426.901.86 min Method A427.091H NMR (CDCl3, 300MHz) δ 7.69 (ddd, 2H, J=2.0, 2.7, 8.7), 7.47 (dd, 2H, J=2.0, 8.7), 7.15 (dd, 1H, # J=2.1, 12.0), 7.03 (d, 1H, J=8.4), 6.84 (t, 1H, J=8.5), 6.30 (br s, 1H), 5.25-5.30 (m, 2H), 4.96 (d, 1H, J=1.4), 4.87 (td, 1H, J=1.4, 9.9), 4.57 (d, 1H, J=15.4), 4.23-4.32 (m, 2H), 3.87 (s, 3H), 2.60-2.67 (m, 1H), 2.15-2.24 (m, 1H).743153163171-Method Acolorless oil436.921.88 min Method A437.091H NMR (CDCl3, 300MHz) δ 7.97 (dd 2H, J=1.7, 8.3), 7.71 (dd, 2H, J=2.0, 8.7), 7.43-7.50 # (m, 4H), 6.26 (br s, 1H), 5.22-5.35 (m, 1H), 5.18 (br s, 1H), 4.84-4.96 (m, 2H), 4.69 (d, 1H, J=15.8), 4.41 (d, 1H, J=15.8), 4.31 (t, 1H, J=7.5), 3.91 (s, 3H), 2.60-2.67 (m, 1H), 2.11-2.24 (m, 1H).753183193201-Method Awhite solid403.891.63 min Method A404.031H NMR (CDCl3, 300MHz) δ 7.71 (ddd, 2H, J=2.0, 2.6, 8.7), 7.60 (dd, 2H, J=1.9, 8.3), # 7.49-7.52 (m, 4H), 6.21 (br s, 1H), 5.22-5.33 (m, 1H), 5.17 (br s, 1H), 4.88-4.98 (m, 2H), 4.71 (d, 1H, J=16.2), 4.40 (d, 1H, J=16.1), 4.32 (t, 1H, J=7.6), 2.54-2.63 (m, 1H), 2.09-2.19 (m, 1H).763213223231-Method Awhite solid446.882.04 min Method A447.051H NMR (CDCl3, 300MHz) δ 7.67 (d, 2H, J=8.6), 7.45-7.56 (m, 6H), # 6.24 (br s, 1H), 5.25-5.39 (m, 1H), 5.19 (br s, 1H), 4.88-4.98 (m, 2H), 4.68 (d, 1H, J=15.8), 4.42 (d, 1H, J=15.81), 4.34 (t, 1H, J=7.5), 2.58-2.68 (m, 1H), 2.13-2.23 (m, 1H).773243253261-Method Awhite solid405.911.51 min Method B406.2 1H NMR (CDCl3) δ 7.70 (d, 2H, J=8.0Hz) 7.68 (d, 2H, J=8.0Hz), 7.47-7.51 # (m, 4H), 6.15 (s, br, 1H), 5.16 (s, br, 1H), 4.53 (dd, 2H, J=50Hz, 15Hz), 4.21-4.26 (m, 1H), 1.82-1.87 (m, 1H), 1.20-1.25 (m, 1H), 0.97-1.09 (m, 2H), 0.74 (t, 3H, J=7.0Hz).783273283291-solid supportwhite foam408.951.84 min Method B431.04 M + Na1H NMR (CDCl3) δ 7.83 (d, 2H, J=8.0Hz), 7.52 (d, 2H, J=8.0Hz), 7.34-7.45 # (m, 5H), 5.85 (s, br, 2H), 5.17 (q, 1H, 7.2Hz), 3.78 (dd 1H, J=8.4Hz, 4Hz), 2.36 (m, 1H), 1.62 (m, 1H), 1.50 (d, 3H, J=7.2Hz), 1.23 (m, 1H), 0.91 (d, 3H, J=6.6Hz), 0.84 (d, 3H, J=6.6Hz)793303313321-solid supportcolorless syrup408.951.89 Method B431.04 M + Na1H NMR (CDCl3) δ 7.77 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.0Hz), 7.17-7.32 # (m, 5H), 6.67 (s, br, 1H), 6.15 (s, br, 1H), 5.17 (q, 1H, 7.2Hz), 4.26 (dd 1H, J=6.6Hz), 3.48 (m, 1H), 3.37 (m, 1H), 2.97 (m, 1H), 2.90 (m, 1H), 1.92 (m, 1H), 1.33 (m, 1H), 1.10 (m, 1H), 0.76 (d, 3H, J=6.6Hz), 0.75 (d, 3H, J=6.6Hz)803333343351-solid supportyellow solid430.361.64 min Method B430.021H NMR (CDCl3) δ 8.34 (s, 1H), 7.67 (d, 1H, J=6.8Hz), 7.48 (d, 1H, 6.8Hz), 7.25 # (d, 1H, J=6.8Hz), 6.1 (br. S, 1H), 5.29 (br. s, 1H), 4.59 (d, 1H, J=16Hz), 4.39 (d, 1H, J=16Hz), 1.8 (m, 1H), 1.32 (m, 1H), 1.06 (m, 1H), 0.78 (d, 3H, J=64.Hz), 0.68 (d, 3H, J=6.4Hz)813363373381-solid supportwhite solid435.391.87 Method B456.92 M + Na1H NMR (CDCl3) δ 7.64 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.0Hz), 6.79 (d, 1H, J=3.7Hz), # 6.72 (d, 1H, J=3.7Hz), 4.60 (d, 1H, J=21.9), 4.56 (d, 1H, J=21.9Hz), 4.28 (t, 1H, J=7.4Hz), 1.86 (m, 1H), 1.33 (m, 1H), 1.25 (m, 1H), 0.76 (d, 3H, J=6.5Hz), 0.73 (d, 3H, J=6.5Hz)823393403411-Method Awhite solid420.961.97 Method A421.2 1H NMR (CDCl3, 500 MHz) δ 7.77 (d, 2H, J=8.6), 7.45 (d, 2H, J=9.10), 7.26-7.35 (m, 5H), 6.54 (d, 1H, # J=16), 6.38 (br s, 1H), 6.00-6.07 (m, 1H), 5.34 (br s, 1H), 4.36 (t, 1H, J=7.2), 4.02-4.15 (m, 2H), 1.83-1.92 (m, 1H), 1.35-1.43 (m, 1H), 1.25-1.32 (m, 1H), 0.79 (d, 3H, J=6.7), 0.77 (d, 3H, J=6.7).833423433445white solid389.901.91 Method D390.2 1H NMR (DMSO-d6, 500 MHz) δ 8.08 (br s, 1H), 7.97 (d, 2H, J=8.7), 7.65 (d, 2H, J=8.5), # 7.01 (br s, 1H), 4.46 (d, 1H, J=18), 4.22 (d, 1H, J=18), 3.91 (t, 1H, J=6.3), 3.00 (s, 3H), 2.85 (s, 3H), 1.40-1.50 (m, 2H), 1.30-1.40 (m, 1H), 0.85 (d, 3H, J=6.1), 0.64 (d, 3H, J=6.0).843453463475white solid375.881.38 Method A376.0 1H NMR (CDCl3, 500 MHz) δ 7.85 (dd, 2H, J=1.8, 6.8), 7.50 (dd, 2H, J=2.0, # 6.8), 7.40 (br s, 1H), 6.37 (br s, 1H), 5.25 (br s 1H), 4.26 (dd, 1H, J=6.2, 8.6), 3.97 (d, 1H, J=17), 3.85 (d, 1H, J=17), 2.85 (d, 3H, J=4.8), 1.75-1.85 (m, 1H), 1.40-1.48 (m, 1H), 0.88 (d, 3H, J=6.4), 0.87 (d, 3H, J=6.6).853483493505white solid448.012.18 Method C448.1 1H NMR (CDCl3, 500 MHz) δ 8.10 (br s, 1H), 7.92 (d, 2H, J=8.5), 7.50 (d, 2H, J=8.5), 5.18 (br s, 1H), 4.35 # (d, 1H, J=17), 4.15 (t, 1H, J=7.4), 3.97-4.05 (m, 1H), 3.95 (d, 1H, J=17), 3.70-3.89 (m, 3H), 2.55-2.85 (m, 4H), 1.85-1.91 (m, 1H), 1.55-1.85 (m, 1H), 1.30-1.40 (m, 1H), 0.85 (d, 3H, J=6.4), 0.83 (d, 3H, J=6.4).863513523535white solid429.972.26 Method C430.2 1H NMR (CDCl3 500MHz) δ 8.59 (br s, 1H), 7.92 (d, 2H, J=9.1), 7.47 (d, 2H, J=8.6), 5.16 (br s, 1H), 4.42 (d, # 1H, J=17), 4.23 (dd, 1H, J=5.6, 8.6), 3.87 (d, 1H, J=17), 3.55-3.65 (m, 1H), 3.40-3.52 (m, 3H), 1.80-2.00 (m, 1H), 1.45-1.80 (m, 7H), 1.35-1.45 (m, 1H), 0.89 (d, 3H, J=6.7), 0.86 (d, 3H, J =6.5).873543553565white solid437.952.37 Method C438.2 1H NMR (CDCl3, 500MHz) δ 8.95 (br s, 1H), 7.83 (d, 2H, J=8.6), 7.47 (d, 2H, J=8.1), 7.43 (d, 2H, J=8.6), # 7.33 (t, 2H, J=8.1), 7.13 (t, 1H, J=7.6), 6.65 (br s, 1H), 5.45 (br s, 1H), 4.40 (dd, 1H, J=6.1, 8.6), 4.07 (d, 1H, J=17), 4.03 (d, 1H, J=17), 1.70-1.80 (m, 1H), 1.55-1.65 (m, 2H), 0.93 (d, 3H, J=7.0), 0.90 (d, 3H, 6.4).883573583595white solid401.921.94 Method C402.2 1H NMR (CDCl3, 500MHz) δ 7.85 (dd, 2H, J=1.9, 8.9), 7.50 (dd, 2H, J=2.0, 8.7), 7.40 (br s, 1H), 6.55 # (br s, 1H), 6.30 (br s, 1H), 4.23 (dd, 1H, J=2.9, 8.9), 3.92 (d, 1H, J=17), 3.83 (d, 1H, J=17), 2.68-2.73 (m, 1H), 1.75-1.83 (m, 1H), 1.50-1.57 (m, 1H), 1.40-1.49 (m, 1H), 0.88 (d, 3H, J=6.4), 0.87 (d, 3H, J=6.7), 0.80 (d, 2H, J=7.0), 0.51 (t, 2H, J=4.0).893603613626white solid438.931.67 min Method A439.171H NMR (CDCl3, 300MHz) δ 7.91 (d, 2H, J=8.2), 7.81-7.84 (m, 3H), 7.56 (d, 2H, J=8.6), 7.49 (d, 2H, J=8.2), # 6.55 (br s, 1H), 5.10 (d, 1H, J=15.4), 4.23 (dd, 1H, J=4.6, 9.7), 4.05 (d, 1H, J=15.4), 2.04-2.14 (m, 1H), 1.20-1.31 (m, 1H), 0.80-0.89 (m, 1H), 0.74 (d, 3H, J=6.6), 0.68 (d, 3H, J=6.6).903633643656white solid422.891.41 min Method A423.051H NMR (DMSO-d6, 300MHz) δ 7.86 (d, 2H, J=8.2), 7.85 (br s, 1H), 7.81 (d, 2H, J=8.6), 7.61 (d, # 2H, J=8.6), 7.47 (d, 2H, J=8.0), 7.10 (br s, 1H), 5.45-5.55 (m, 1H), 4.83-4.95 (m, 3H), 4.71 (d, 1H, J=17.0), 4.47 (t, 1H, J=7.4), 2.29-2.37 (m, 1H), 2.13-2.22 (m, 1H).913663673682tan solid450.01.62 min Method B450.2 1H NMR (CDCl3) δ 7.67 (d, 2H, J=7.0Hz) 7.42 (d, 2H, J=7.0Hz), 7.17-7.26 (m, 2H), 6.49-6.58 (m, 2H), 6.18 (s, br, 1H), # 5.11 (s, br, 1H), 4.33 (dd, 2H, J=50Hz, 15Hz), 4.12-4.20 (m, 1H), 3.21-3.30 (m, 4H), 1.91-2.04 (m, 5H), 1.32-1.38 (m, 1H), 0.94-1.09 (m, 2H), 0.75 (t, 3H, J=8.0Hz).923693703717white solid502.081.72 Method A502.1 1H NMR (DMSO-d6, 500MHz) δ 7.86 (dd, 2H, J=2.0, 6.8), 7.65 (dd, 2H, J=2.0, 6.8) 7.37 (br s, 1H), 7.07 (br s, # 1H), 4.19 (t, 1H, J=7.6), 3.92 (br s, 2H), 3.35 (dd, 1H, J=15, 6.8), 3.05 (dd, 1H, J=15, 8.1), 1.85 (br s, 1H), 1.50-1.70 (m, 4H), 1.38 (s, 9H), 1.10-1.20 (m, 1H), 0.80-1.00 (m, 3H), 0.82 (d, 6H, J=7.6).933723733745white solid478.011.60 Method A478.1 1H NMR (DMSO-d6, 500MHz) δ 8.05 (s, 1H), 7.98 (d, 2H, J=7.8), 7.65 (d, 2H, J=7.8), 7.05 (s, 1H), 4.73 (s, 1H), 4.55-4.65 # (m, 2H), 4.37 (t, 1H, J=16), 3.95 (br s, 1H), 3.70 (br s, 2H), 2.90 (br s, 1H), 2.77 (br s, 1H), 1.00-1.55 (m, 4H), 0.70 (d, 6H, J=4.1).943753763775white solid530.201.59 Method A531.2 1H NMR (DMSO-d6, 500MHz) δ 7.96 (d, 2H, J=8.7), 7.65 (d, 2H, 8.6), 7.02 (s, 1H), 4.5 (d, 1H, J=18), 4.27 (d, 2H, J=18), 3.95 # (br s, 1H). 3.35-3.50 (m, 8H), 1.30-1.55 (m, 3H), 1.41 (s, 9H), 0.74 (d, 3H, J=6.5) 0.66 (d, 3H, J=6.0).953783793808white solid424.951.49 min Method A425.171H NMR, 500Hz, (CDCl3) δ 7.68 (d, 2H, J=8.0Hz), 7.46 (d, 2H, J=8.0Hz), 7.33 (d, 2H, J=8.0Hz), 7.28 (d, # 2H, J=8.0Hz), 6.26 (s, br, 1H), 5.35 (s, br, 1H), 4.67 (s, br, 2H), 4.56 (d, 1H, Jab=16Hz), 4.36 (d, 1H, Jab=16Hz), 4.26 (t, 1H, J=7.6Hz), 1.86-1.80 (m, 2H), 1.34-1.28 (m, 1H), 1.16-1.10 (m, 1H), 0.96 (d, 3H, J=7.0Hz), 0.93 (d, 3H, J=7.0Hz)963813823831-Method Awhite solid452.961.75 min Method A453.1 1H NMR (CDCl3) δ 7.96-7.90 (m, 2H), 7.64 (A of ABq, 2H, J=8.8Hz), 7.56 (d, 1H, J=7.5Hz), 7.43 (B of ABq, 2H, J=8.8Hz), 7.37 # (t, 1H, J=7.5Hz), 6.28 (bs, 1H), 5.25 (bs, 1H), 4.61 (A of ABq, 1H, J=15.7Hz,), 4.48 (B of ABq, 1H, J=15.7Hz), 4.36 (t, 1H, J=7.3Hz), 3.91 (s, 3H), 1.86-1.76 (m, 1H), 1.39-1.30 (m, 1H), 1.23-1.13 (m, 1H), 0.78 (d, 3H, J=6.6Hz), 0.68 (d, 3H, J=6.6Hz).973843853861-Method Awhite solid417.921.53 min Method A418.111H NMR (CDCl3, 300MHz) δ 7.71 (d, 2H, J=8.7), 7.60 (d, 2H, J=8.4), 7.47-7.51 (m, 4H), 6.28 (br s, 1H), 5.17 # (br s, 1H), 4.73 (d, 1H, J=16.2), 4.41 (d, 1H, J=15.9), 4.32 (dd, 1H, J=1.5, 8.1), 1.65-1.82 (m, 1H), 1.14-1.30 (m, 1H), 0.27-0.40 (m, 2H), 0.12-0.22 (m, 1H), −0.18-0.05 (m, 2H).983873883891-Method Awhite solid460.911.76 min Method A461.051H NMR (CDCl3, 300MHz) δ 7.67 (d, 2H, J=8.4), 7.44-7.56 (m, 6H), 6.32 (br s, 1H), 5.20 (br s, 1H), 4.70 (d, 1H, J=15.6), 4.43 # (d, 1H, J=15.6), 4.35 (t, 1H, J=7.8), 1.70-1.84 (m, 1H), 1.26-1.32 (m, 1H), 0.32-0.40 (m, 2H), 0.16-0.24 (m, 1H), −0.14-0.00 (m, 2H).993903913921-Method Awhite solid450.941.63 min Method A451.061H NMR (CDCl3, 300MHz) δ 7.97 (d, 2H, J=8.3), 7.70 (d, 2H, J=8.7), 7.43-7.48 (m, 4H), 6.32 (br s, 1H), 5.15 # (br s, 1H), 4.70 (d, 1H, J=15.8), 4.43 (d, 1H, J=15.8), 4.35 (t, 1H, J=7.8), 3.91 (s, 3H), 1.70-1.82 (m, 1H), 1.23-1.35 (m, 1H), 0.32-0.40 (m, 2H), 0.10-0.21 (m, 1H), −0.25-−0.05 (m, 2H).1003933943951-Method Awhite solid509.061.94 min Method A509.2 1H NMR (CDCl3) δ 7.58 (A of ABq, 2H, J=8.8Hz), 7.40 (B of ABq, 2H, J=8.8Hz), 7.24 (bs, 4H), 6.20 (bs, 1H), 5.23 (bs, 1H), # 4.45 (s, 2H), 4.36 (t, 1H, J=7.3Hz), 4.12 (q, 2H, J=7.2Hz), 1.83-1.74 (m, 1H), 1.55 (s, 3H), 1.55 (s, 3H), 1.39-1.20 (m, 2H), 1.19 (t, 3H, J=7.2Hz), 0.78 (d, 3H, J=6.6Hz), 0.66 (d, 3H, J=6.6Hz).1013963973986white solid508.041.48 min Method A508.221H NMR (CDCl3, 300MHz) δ 7.68 (d, 2H, J=8.6), 7.29-7.47 (m, 6H), 6.38 (br s, 1H), 5.75 (br s, 1H), 4.65 (d, 1H, J=16.0), 4.42 (d, 1H, # J=16.0), 4.32 (t, 1H, J=7.5), 3.30-3.85 (br m, 8H), 1.69-1.78 (m, 1H), 1.28-1.37 (m, 1H), 1.08-1.14 (m, 1H), 0.76 (d, 3H, J=6.5), 0.63 (d, 3H, J=6.6).1023994004016white solid491.591.39 min Method A492.231H NMR (CDCl3, 300MHz) δ 7.75-7.80 (m, 2H), 7.42 (d, 2H, J=8.2), 7.33 (d, 2H, J=8.2), 7.14-7.20 # (m, 2H), 6.37 (br s, 1H), 5.64 (br s, 1H), 4.64 (d, 1H, J=16.0), 4.44 (d, 1H, J=16.0), 4.31 (t, 1H, J=7.1), 3.20-3.85 (br m, 8H), 1.70-1.78 (m, 1H), 1.28-1.35 (m, 1H), 1.05-1.14 (m, 1H), 0.76 (d, 3H, J=6.5), 0.63 (d, 3H, J=6.6).1034024034046colorless oil551.111.32 min Method A551.241H NMR (CDCl3, 300MHz) δ 7.67-7.72 (m, 4H), 7.42-7.48 (m, 4H), 6.82 (br s, 1H), 6.25 (br s, 1H), 5.31 (br s, 1H), 4.65 (d, 1H, # J=15.9), 4.43 (d, 1H, J=15.9), 4.30 (t, 1H, J=7.9), 3.70-3.79 (m, 4H), 3.53-3.59 (m, 2H), 2.53-2.65 (m, 6H), 1.79-1.86 (m, 1H), 1.29-1.38 (m, 1H), 1.08-1.14 (m, 1H), 0.76 (d, 3H, J=6.5), 0.65 (d, 3H, J=6.6).1044054064076white solid534.661.22 min Method A535.281H NMR (CDCl3, 300MHz) δ 7.75-7.80 (m, 2H), 7.71 (d, 2H, J=8.2), 7.43 (d, 2H, J=8.1), 7.14-7.20 (m, 2H), 6.81 (br s, 1H), 6.28 (br s, 1H), # 5.31 (br s, 1H), 4.64 (d, 1H, J=15.9), 4.44 (d, 1H, J=15.9), 4.29 (t, 1H, J=7.6), 3.70-3.79 (m, 4H), 3.53-3.59 (m, 2H), 2.52-2.63 (m, 6H), 1.77-1.85 (m, 1H), 1.29-1.38 (m, 1H), 1.06-1.13 (m, 1H), 0.75 (d, 3H, J=6.5), 0.65 (d, 3H, J=6.6).1054084094106white solid607.171.70 min Method A607.291H NMR (CDCl3, 300MHz) δ 7.69 (d, 2H, J=8.6), 7.30-7.47 (m, 6H), 6.38 (br s, 1H), 5.75 (br s, 1H), 4.65 (d, 1H, # J=16.0), 4.43 (d, 1H, J=16.0), 4.33 (t, 1H, J=7.5), 3.30-3.85 (br m, 8H), 1.72-1.79 (m, 1H), 1.45 (s, 9H), 1.24-1.39 (m, 1H), 1.05-1.18 (m, 1H), 0.76 (d, 3H, J=6.5), 0.62 (d, 3H, J=6.6).1064114124136white solid554.111.75 min Method A554.191H NMR (CDCl3, 300MHz) δ 7.70 (ddd, 2H, J=1.9, 2.4, 8.6), 7.47 (ddd, 2H, J=2.0, 2.3, 8.7), 7.37-7.42 (m, 4H), 7.15-7.20 (m, 4H), # 6.31 (br s, 1H), 5.60 (br s, 1H), 4.87 (br s, 1H), 4.65 (d, 1H, J=15.9), 4.52 (br s, 1H), 4.47 (d, 1H, J=15.9), 4.33 (t, 1H), J=7.2), 4.05 (br s, 1H), 3.61 (br s, 1H), 2.85-3.01 (br m, 2H), 1.72-1.85 (m, 1H), 1.30-1.42 (m, 1H), 1.08-1.18 (m, 1H), 0.79 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.6).1074144154161-Method Aclear wax456.971.60 min Method B455.1 (M − H)1H NMR (CDCl3) δ 7.61 (d, 2H, J=8.0Hz) 7.43 (d, 2H, J=8.0Hz), 6.82-7.10 (m, 3H), 6.21 (s, br, 1H), 5.15 (s, br, 1H), 4.35 (dd, 2H, # J=50Hz, 15Hz), 4.15-4.22 (m, 1H), 3.89 (s, br, 3H), 2.30-2.33 (m, 1H), 0.86-0.98 (m, 1H), 0.74 (s, 9H).1084174184191-Method Awhite solid433.961.58 min Method B432.14 (M − H)1H NMR (CDCl3) δ 7.67 (d, 2H, J=8.0Hz) 7.58 (d, 2H, J=8.0Hz), 7.45-7.49 (m, 4H), 6.19 (s, br, 1H), 5.15 (s, br, 1H), # 4.55 (dd, 2H, J=50Hz, 15Hz), 4.20-4.24 (m, 1H), 2.25-2.31 (m, 1H), 0.84-0.88 (m, 1H), 0.74 (s, 9H).1094204214221-Method Awhite solid476.951.62 min Method B475.12 (M − H)1H NMR (CDCl3) δ 7.61 (d, 2H, J=8.0Hz) 7.51 (d, 2H, J=8.0Hz), 7.40-7.44 (m, 4H), 6.20 (s, br, 1H), 5.21 (s, br, 1H), 4.51 (dd, 2H, J=50Hz, # 15Hz), 4.24-4.28 (m, 1H), 2.28-2.32 (m, 1H), 0.91-0.96 (m, 1H), 0.76 (s, 9H).1104234244258tan solid452.021.25 min Method A452.231H NMR, 400Hz, (CDCl3) δ 7.94 (d, 2H, J=8.0Hz), 7.74 (d, 2H, J=8.0Hz), 7.63 (d, 2H, J=8.0Hz), 7.38 (d, 2H, # J=8.0Hz), 6.27 (s, br, 1H), 5.40 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.44 (d, 1H, Jab=16Hz), 3.28-3.23 (m, 3H), 2.17 (s, br, 6H), 1.95 (m, 1H), 1.55 (m, 2H), 0.96 (d, 3H, J=7.0Hz), 0.93 (d, 3H, J=7.0Hz)1114264274285white solid535.972.65 min Method C536.041H NMR (CDCl3, 400MHz) δ 7.80 (dd, 2H, J=2.0, 9.0), 7.45 (dd, 2H, J=2.0, 9.0), 7.32 (dd, 2H, J=1.8, # 9.0), 7.24 (br s, 1H), 7.17 (d, 2H, J=9.0), 5.50 (br s, 1H), 4.43 (qd, 2H, J=6.0, 15), 4.22 (t, 1H, J=7.0), 4.05 (d, 1H, J=17), 3.90 (d, 1H, J=17), 1.70-1.80 (m, 1H), 1.42-1.55 (m, 1H), 1.32-1.41 (m, 1H), 0.83 (d, 6H, J=7.9).1124294304315white foam487.931.52 min Method A488.201H NMR (CDCl3, 400MHz) δ 7.77 (d, 2H, J=8.3), 7.45 (d, 2H, J=9.0), 7.30 (br s, 1H), 7.05-7.10 (m, 1H), 6.90-7.05 (m, # 2H), 5.53 (br s, 1H), 4.39-4.50 (m, 2H), 4.24 (t, 1H, J=7.1), 4.02 (d, 1H, J=17), 3.90 (d, 2H, J=17), 1.70-1.80 (m, 1H), 1.42-1.55 (m, 1H), 1.35-1.42 (m, 1H), 0.83 (d, 6H, J=7.7).1134324334345white oily solid417.961.52 min Method A418.231H NMR (CDCl3, 400MHz) δ 7.92 (br s, 1H), 7.82 (d, 2H, J=8.2), 7.47 (d, 2H, J=8.2), 7.25 (br s, 1H), 6.23 (br s, 1H), 5.47 # (br s, 1H), 4.25 (t, 1H, J=7.2), 3.91 (d, 1H, J=17), 3.75 (d, 1H, J=17), 1.75-1.82 (m, 1H), 1.50-1.62 (m, 1H), 1.38-1.50 (m, 1H), 1.35 (s, 9H), 0.89 (d, 3H, J=5.4), 0.87 (d, 3H, J=5.6).1144354364375white solid458.021.62 min Method A458.261H NMR (CDCl3, 400MHz) δ 7.84 (dd, 2H, J=2.0, 8.8), 7.68 (br s, 1H), 7.47 (dd, 2H, 2.0, 8.3), 6.62 (br t, 1H, J=5.3), 5.45 (br # s, 1H), 4.25 (dd, 1H, J=2.3, 6.1), 3.98 (d, 1H, J=17), 3.85 (d, 1H, J=17), 303-3.15 (m, 2H), 1.86-1.92 (m, 1H), 1.40-1.85 (m, 7H), 1.05-1.35 (m, 4H), 0.90-0.99 (m, 2H), 0.88 (d, 3H, J=6.6), 0.87 (d, 3H, J=6.4).1154384394405white solid452.961.14 minMethod A453.221H NMR (CDCl3, 400MHz) δ 8.53 (d, 2H, J=5.2), 8.04 (t, 1H, J=5.2), 7.80 (dd, 2H, J=1.8, 8.5), 7.46 (dd, 2H, # J=1.8, 8.7), 7.33 (br s, 1H), 7.29 (d, 2H, J=5.4), 5.78 (br s, 1H), 4.47 (qd, 2H, J=6.0, 16,), 4.21 (t, 1H, J=7.4), 4.07 (d, 1H, J=17), 3.92 (d, 1H, J=17), 1.67-1.77 (m, 1H), 1.30-1.47 (m, 2H), 0.81 (d, 3H, J=6.5), 0.77 (d, 3H, J=7.0).1164414424435white foam419.931.29 Min Method A420.231H NMR (CDCl3, 400MHz) δ 7.87 (dd, 2H, J=2.0, 8.5), 7.85 (br s, 1H), 7.49 (dd, 2H, J=2.1, 9.0), 6.73 (br s, # 1H), 5.55 (br s, 1H), 4.22 (dd, 1H, J=6.1, 8.3), 4.02 (d, 1H, J=17), 3.87 (d, 1H, J=17), 3.40-3.50 (m, 4H), 3.36 (s, 3H), 1.77-1.86 (m, 1H), 1.46-1.57 (m, 1H), 1.30-1.41 (m, 1H), 0.84 (d, 3H, J=6.7), 0.83 (d, 3H, J=6.5).1174444454465white foam475.011.16 min Method A475.261H NMR (CDCl3, 400MHz) δ 7.85 (dd, 2H, J=2.0, 8.5), 7.64 (br s, 1H), 7.47 (dd, 2H, J=1.5, 7.1), 6.87 (br s, # 1H), 5.55 (br s, 1H), 4.22 (dd, 1H, J=6.2, 7.9), 4.00 (d, 1H, J=17), 3.87 (d, 1H, J=17), 3.72 (t, 1H, J=4.2), 3.30-3.45 (m, 2H), 2.45-2.55 (m, 6H), 1.75-1.85 (m, 1H), 1.50-1.63 (m, 1H), 1.30-1.41 (m, 1H), 0.86 (d, 6H, J=9.0).1184474484491-Method Awhite solid459.791.62 min Method B461.1 1H NMR (CDCl3) δ 7.67 (d, 2H, J=7.0Hz) 7.48 (d, 2H, J=7.0Hz), 7.41 (d, 2H, J=6.5Hz), 7.21 (d, 2H, J-6.5Hz), 6.21 (s, # br, 1H), 5.20 (s, br, 1H), 4.43 (dd, 2H, J=50Hz, 15Hz), 4.12-4.24 (m, 1H), 1.88-1.90 (m, 1H), 1.24-1.29 (m, 1H), 0.98-1.08 (m, 2H), 0.74 (t, 3H, J=7.0Hz).1194504514521-Method Ayellow solid437.061.84 min Method F(M + Na)+459.9 1H NMR (400 MHz, DMSO) δ 7.83 (d, 2H, J=8.8), 7.80 (d, 2H, J=8.3), 7.64 (d, 2H, J=8.5), 7.59 (d, 2H, J=8.6), 7.48 (s, 1H), 7.15 (s, 1H), 4.79 # (ABq, 2H, Δυ=22.2, Jab=17.4), 4.44 (dd, 1H, J=8.0, 6.3), 2.21 (m, 2H), 1.84 (m, 1H), 1.81 (s, 3H), 1.53 (m, 1H).1204534544551-Method Awhite solid480.062.08 min Method F(M + Na)+503.0 1H NMR (400 MHz, DMSO) δ 7.82 (d, 2H, J=8.8), 7.68 (d, 2H, J=8.6), 7.61 (m, 4H), 7.48 (s, 1H), 7.16 (s, 1H), 4.80 (ABq, 2H, , Δυ=16.7, # Jab=17.0), 4.45 (dd, 1H, J=8.2, 6.2), 2.22 (m, 2H), 1.82 (m, 1H), 1.78 (s, 3H), 1.61 (m, 1H).1214564574585white solid488.191.20 min Method A489.261H NMR (CDCl3, 400MHz) δ 7.95 (br s, 1H), 7.85 (dd, 2H, J=2.5, 9.2), 7.70 (br s, 1H), 7.47 (dd, 2H, 2.0, 8.8), 5.42 (br s, 1H), 4.23 (dd, 1H, J=6.3, 8.3), # 3.94 (d, 1H, J=17), 3.83 (d, 1H, J=17), 3.73 (t, 4H, J=4.7), 3.39-3.48 (m, 1H), 3.22-3.33 (m, 1H), 2.42-2.55 (m, 4H), 1.79-1.88 (m, 2H), 1.63-1.75 (m, 2H), 1.49-1.61 (m, 1H), 1.31-1.45 (m, 1H), 1.05-1.11 (m, 1H), 0.88 (d, 6H, J=6.6).1224594604615white solid432.161.59 min Method C433.121H NMR (CDCl3, 400MHz) δ 8.04 (br s, 1H), 7.88 (dd, 2H, J=1.9, 6.9), 7.46 (dd, 2H, J=1.8, 6.8), 6.93 (br s, 1H), 5.55 (br s, 1H), 4.20 (dd, 1H, J=6.2, # 8.3), 4.01 (d, 1H, J=17), 3.80 (d, 1H, J=17), 3.25-3.40 (m, 2H), 2.40-2.50 (m, 2H), 2.25 (s, 6H), 1.75-1.90 (m, 1H), 1.45-1.60 (m, 1H), 1.30-1.45 (m, 1H), 0.84 (d, 3H, J=6.1), 0.82 (d, 3H, J=6.4).1234624634646white solid466.001.49 min Method A466.171H NMR (CDCl3, 500MHz) δ 7.68 (d, 4H, J=8.6), 7.47 (ddd, 2H, J=1.6, 2.4, 8.6), 7.41 (d, 2H, J=8.2), # 6.25 (br s, 1H), 6.12 (br s, 1H), 5.30 (br s, 1H), 4.63 (d, 1H, J=15.8), 4.44 (d, 1H, J=15.8), 4.30 (t, 1H, J=6.8), 3.47-3.52 (m, 2H), 1.78-1.84 (m, 1H), 1.30-1.34 (m, 1H), 1.25 (t, 3H), J=7.2), 1.08-1.13 (m, 1H), 0.76 (d, 3H, J=6.6), 0.65 (d, 3H, J=6.6).1244654664676colorless oil546.051.65 min Method A546.191H NMR (CDCl3, 500MHz) δ 7.71 (d, 2H, J=8.2), 7.67 (d, 2H, J=8.6), 7.46 (d, 2H, J=8.6), 7.41 (d, 2H, # J=8.0), 6.52 (br s, 1H), 6.24 (br s, 1H), 5.40 (br s, 1H), 4.63 (d, 1H, J=15.9), 4.59 (d, 2H, J=5.6), 4.42 (d, 1H, J=15.9), 4.29 (t, 1H, J=6.6), 1.78-1.84 (m, 1H), 1.29-1.34 (m, 1H), 1.25 (t, 3H), J=7.2), 1.06-1.11 (m, 1H), 0.76 (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).1254684694706colorless oil494.061.67 min Method A494.241H NMR (CDCl3, 500MHz) δ 7.68 (dd, 2H, J=1.7, 8.6), 7.63 (d, 2H, J=8.2), 7.46 (d, 2H, J=8.6), # 7.39 (d, 2H, J=8.2), 6.28 (br s, 1H), 5.94 (br s, 1H), 5.35 (br s, 1H), 4.63 (d, 1H, J=15.8), 4.41 (d, 1H, J=15.8), 4.29 (t, 1H, J=6.6), 1.78-1.84 (m, 1H), 1.46 (s, 9H), 1.29-1.34 (m, 1H), 1.25 (t, 3H), J=7.2), 1.06-1.11 (m, 1H), 0.76 (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).1264714724737white solid401.151.34 min Method A402.151H NMR (DMSO-d6, 500MHz), δ 7.87 (d, 2H, J=8.5), 7.66 (d, 2H, J=8.6), 7.41 (s, 1H), 7.04 (s, 1H), 4.17 (t, 1H, # J=7.3), 3.40-3.50 (m, 1H), 3.20-3.25 (m, 1H), 3.03-3.10 (m, 1H), 2.65-2.80 (m, 2H), 1.85-2.00 (m, 1H), 1.20-1.85 (m, 2H), 1.45-1.60 (m, 1H), 1.30-1.40 (m, 1H), 1.10-1.30 (m, 4H), 0.75-0.90 (m, 1H), 0.82 (d, 3H, J=7.3), 0.80 (d, 3H, J=7.0).1274744754768white solid480.071.34 min Method A480.251H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.60 (d, 2H, J=8.0Hz), 7.39-7.33 (m, 4H), 6.26 (s, br, 1H), 5.40 (s, # br, 1H), 4.53 (d, 1H, Jab=16Hz), 4.42 (d, 1H, Jab=16Hz), 2.58 (q, 4H, J=8.0Hz), 1.94 (m, 1H), 1.59 (m, 2H), 1.06 (t, 6H, J=8.0Hz), 0.97 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1284774784798white solid504.11.32 min Method A504.251H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.73 (d, 2H, J=8.0Hz), 7.48 (d, 2H, J=8.0Hz), 7.35 (d, 2H, J=8.0Hz), # 6.25 (s, br, 1H), 5.35 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.44 (d, 1H, Jab=16Hz), 3.35 (s, 2H), 3.47-3.42 (m, 1H), 3.01 (s, br, 1H), 1.90 (m, 1H), 1.63 (m, 2H) 0.97 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1294804814828white solid583.21.26 min Method A583.401H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.37 (m, 4H), 7.21 (m, 5H), 6.35 (s, br, # 1H), 5.87 (s, br, 1H), 4.72 (d, 1H, Jab=16Hz), 4.48 (d, 1H, Jab=16Hz), 3.55 (s, 3H), 3.52 (s, 3H), 3.74-3.43 (m, 1H), 2.45 (m, 8H), 1.59 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1304834844858amber glass496.061.32 min Method A496.251H NMR, 400Hz, (CDCl3) δ 7.68 (d, 2H, J=8.0Hz), 7.72 (d, 2H, J=8.0Hz), 7.40-7.36 (m, 4H), 6.35 (s, br, 1H), 5.37 (s, # br, 1H), 4.59 (d, 1H, Jab=16Hz), 4.37 (d, 1H, Jab=16Hz), 3.7-3.5 (m, 4H), 3.48 (s, 3H), 3.46 (m, 1H), 2.23-2.1 (m, 4H), 1.85 (m, 1H), 1.55 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1314864874888amber oil510.121.33 min Method A510.231H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.65 (s, b, 4H), 7.37 (d, 2H, J=8.0Hz), 6.25 (s, b, 1H), 5.36 # (s, b, 1H), 4.60 (d, 1H, Jab=16Hz), 4.38 (d, 1H, Jab=16Hz), 3.47-3.43 (m, 3H), 2.61 (m, 4H), 2.30 (m, 4H), 1.90 (m, 1H), 1.59 (m, 2H), 0.96 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1324894904918amber glass535.151.24 min Method A535.321H NMR, 400Hz, (CDCl3) δ 8.02 (d, 2H, J=8.0Hz), 7.71 (d, 2H, J=8.0Hz), 7.40 (d, 2H, J=8.0Hz), 7.36 (d, 2H, J=8.0Hz), 6.27 (s, b, 1H), 5.40 (s, b, 1H), # 4.52 (d, 1H, Jab=16Hz), 4.44 (d, 1H, Jab=16Hz), 3.61 (s, 2H), 3.45 (m, 1H), 2.72-2.63 (m, 3H), 2.41 (s, 3H), 2.32 (s, 3H), 2.05 (t, 4H, J=12.0Hz), 1.90 (m, 3H), 1.74-1.55 (m, 3H), 0.96 (d, 3H, J=7.0Hz), 0.93 (d, 3H, J=7.0Hz)1334924934948amber glass540.131.28 min Method A540.341H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.70 (d, 2H, J=8.0Hz), 7.52 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.24-7.14 (m, 3H), 6.88 (m, 1H), # 6.25 (s, br, 1H), 5.39 (s, br, 1H), 4.62 (d, 1H, Jab=16Hz), 4.40 (d, 1H, Jab=16Hz), 3.45 (s, 2H), 3.46 (m, 1H), 3.35-3.19 (m, 2H), 3.93 (m, 1H), 2.71 (m, 1H), 2.61 (m, 1H), 2.49-2.43 (m, 2H), 1.89 (m, 1H), 1.67-1.54 (m, 2H), 0.97 (d, 3H, # J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1344954964978white solid476.041.31 min Method A476.171H NMR, 400Hz, (CDCl3) δ 7.79 (d, 2H, J=8.0Hz), 7.65 (d, 2H, J=8.0Hz), 7.47 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), # 6.35 (s, br, 1H), 5.85 (s, br, 1H), 4.60 (s, 2H), 4.76 (d, 1H, Jab=16Hz), 4.30 (d, 1H, Jab=16Hz), 3.72 (s, br, 2H), 3.46 (m, 1H), 2.40 (s, br, 3H), 2.20 (s, 1H), 1.90 (m, 1H), 1.63 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1354984995008white solid532.141.34 min Method A532.321H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.62 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 7.33 (d, 2H, J=8.0Hz), 6.27 (s, # br, 1H), 5.40 (s, br, 1H), 4.59 (d, 1H, Jab=16Hz), 4.37 (d, 1H, Jab=16Hz), 3.53 (s, 3H), 3.44 (m, 1H), 2.79 (t, 2H, J=8.0Hz), 2.62 (q, 2H, J=8.0Hz), 2.41 (t, 2H, J=8.0Hz), 2.25 (s, 6H), 1.95-1.85 (m, 1H), 1.67-1.54 (m, 2H), 1.07 # (t, 3H, J=8.0Hz), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1365015025038white solid537.171.24 min Method A537.341H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.41-7.36 (m, 4H), 6.57 (s, br, 1H), 5.40 (s, br, 1H), 4.59 (d, 1H, Jab=16Hz), 4.37 (d, 1H, Jab=16Hz), 3.51 (s, 2H), 3.45 # (m, 1H), 2.69 (t, 2H, J=8.0Hz), 2.62 (t, 2H, J=8.0Hz), 2.55 (q, 4H, J=8.0Hz), 2.35 (s, 3H), 1.89 (m, 1H), 1.60 (m, 2H), 1.00 (t, 6H, J=8.0Hz), 0.96 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1375045055068white solid509.121.32 min Method A309.331H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 8.01 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.40 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), # 6.27 (s, br, 1H), 5.39 (s, br, 1H), 4.58 (d, 1H, Jab=16Hz), 4.36 (d, 1H, Jab=16Hz), 3.51 (s, 2H), 3.45 (m, 1H), 2.66 (t, 2H, J=8.0Hz), 2.39 (t, 2H, J=8.0Hz), 2.35 (s, 3H), 2.25 (s, 6H), 1.90 (m, 1H), 1.59 (m, 2H), 0.97 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1385075085098clear glass494.11.37 min Method A494.271H NMR, 400Hz, (CDCl3) δ 7.72 d, 2H, J=8.0Hz), 7.74 (d, 2H, J=8.0Hz), 7.52 (d, 2H, J=8.0Hz), 7.37 (d, 2H, # J=8.0Hz), 6.26 (s, br, 1H), 5.39 (s, br, 1H), 4.55 (d, 1H, Jab=16Hz), 4.42 (d, 1H, Jab=16Hz), 3.70 (s, 3H), 3.46 (m, 1H), 2.38-2.35 (m, 5H), 1.91 (m, 2H), 1.60 (m, 2H), 0.96 (d, 3H, J=7.0Hz), 0.90 (d, 3H, J=7.0Hz)1395105115128white solid494.11.33 min Method A494.261H NMR, 400Hz, (CDCl3) δ 7.63 (d, 2H, J=8.0Hz), 7.73 (d, 2H, J=8.0Hz), 7.48 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.35 (s, # br, 1H), 5.38 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.44 (d, 1H, Jab=16Hz), 3.47-3.40 (m, 3H), 2.12 (s, 3H), 1.88 (m, 1H), 1.60 (m, 2H), 1.03 (s, 9H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1405135145158amber glass521.131.27 min Method A521.311H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.65 (d, 2H, J=8.0Hz), 7.39-7.36 (m, 4H), 6.30 (s, br, 1H), 5.35 (s, br, 1H), # 4.59 (d, 1H, Jab=16Hz), 4.37 (d, 1H, Jab=16Hz), 3.55 (s, 2H), 3.45 (m, 1H), 2.84 (m, 4H), 2.48 (q, 2H, J=7.0Hz), 2.28 (m, 4H), 1.88 (m, 1H), 1.60 (m, 2H), 1.20 (t, 3H, J=7.0Hz), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1415165175188white solid478.061.31 min Method A478.221H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.71 (d, 2H, J=8.0Hz), 7.48 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 6.27 (s, br, # 1H), 5.40 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.43 (d, 1H, Jab=16Hz), 3.58 (s, br, 2H), 3.45 (m, 1H), 2.66 (m, 4H), 1.86 (m, 5H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1425195205218white foam468.021.58 min Method A468.251H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.76 (d, 2H, J=8.0Hz), 7.75 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.25 (s, # br, 1H), 5.38 (s, br, 1H), 4.76 (d, 1H, Jab=16Hz), 4.30 (d, 1H, Jab=16Hz), 3.75 (s, 2H), 3.45 (m, 1H), 3.36 (s, 3H), 2.61 (s, 3H), 1.88 (m, 1H), 1.59 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1435225235248white solid482.051.28 min Method A482.241H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.72 (d, 2H, J=8.0Hz), 7.42-7.36 (m, 4H), 6.35 (s, br, 1H), 5.83 (s, br, 1H), 4.58 (d, 1H, # Jab=16Hz), 4.39 (d, 1H, Jab=16Hz), 3.52 (s, 1H), 3.50 (s, 2H), 3.48 (s, 1H), 3.45 (m, 1H), 2.55 (t, 2H, J=8.0Hz), 2.20 (s, 3H), 1.90 (m, 1H), 1.59 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1445255265278clear glass512.071.22 min Method A512.251H NMR, 400Hz, (CDCl3) δ 7.71 (d, 2H, J=8.0Hz), 7.74 (d, 2H, J=8.0Hz), 7.39 (d, 2H, J=8.0Hz), 7.31 (d, 2H, J=8.0Hz), 6.27 (s, br, 1H), 5.40 (s, br, 1H), 4.72 (d, # 1H, Jab=16Hz), 4.39 (d, 1H, Jab=16Hz), 3.76 (t, 4H, J=8.0Hz), 3.45 (m, 1H), 3.38 (s, br, 2H), 3.15 (s, br, 2H), 3.76 (t, 4H, J=8.0Hz), 1.89 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1455285295308white solid492.091.31 min Method A492.211H NMR, 400Hz, (CDCl3) δ 7.63 (d, 2H, J=8.0Hz), 7.71 (d, 2H, J=8.0Hz), 7.47 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.26 (s, br, # 1H), 5.39 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.43 (d, 1H, Jab=16Hz), 3.47-3.43 (m, 3H), 2.26 (m, 4H), 1.89 (m, 2H), 1.60 (m, 2H), 1.46-1.29 (m, 4H), 0.97 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1465315325338white solid564.151.33 min Method A564.241H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.71 (d, 2H, J=8.0Hz), 7.48 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.35 (s, br, 1H), 5.40 (s, br, 1H), 4.72 (d, 1H, Jab=16Hz), # 4.48 (d, 1H, Jab=16Hz), 4.03 (q, 2H, J=8.0Hz), 3.47-3.42 (m, 3H), 3.21 (m, 1H), 2.62 (m, 1H), 2.63-2.36 (m, 3H), 2.06-1.95 (m, 1H), 1.93-1.80 (m, 3H), 1.67-1.50 (m, 3H), 1.13 (t, 3H, J=8.0Hz), 0.98 (d, 3H, J=.07Hz), 0.95 (d, 3H, J=7.0Hz)1475345355368white solid582.211.46 min Method A582.411H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.71 (d, 2H, J=8.0Hz), 7.47 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.24 (t, 1H, J=8.0Hz), 7.03 (t, 2H, # J=8.0Hz), 6.95 (d, 2H, J=8.0Hz), 6.27 (s, br, 1H), 5.40 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.44 (d, 1H, Jab=16Hz), 3.48-3.43 (m, 3H), 2.76 (m, 2H), 2.61 (m, 2H), 1.88 (m, 3H), 1.69-1.54 (m, 6H), 1.26 (m, 1H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1485375385398white foam570.161.41 min Method A570.341H NMR, 400Hz, (CDCl3) δ 8.09 (d, 1H, J=4.0Hz), 8.02 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.41-7.36 (m, 5H), 6.72 (d, 1H, J=12.0Hz), # 6.49 (t, 1H, J=8.0Hz), 6.35 (s, br, 1H), 5.87 (s, br, 1H), 4.80 (d, 1H, Jab=16Hz), 4.30 (d, 1H, Jab=16Hz), 3.84 (m, 4H), 3.55 (s, 2H), 3.46 (m, 1H), 2.57 (m, 4H), 1.89 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 2H, J=7.0Hz)1495405415428white solid542.151.45 min Method A542.241H NMR, 400Hz, (CDCl3) δ 7.70 (d, 2H, J=8.0Hz), 7.68 (d, 2H, J=8.0Hz), 7.47 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.29-7.16 # (m, 5H), 6.28 (s, br, 1H), 5.38 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.42 (d, 1H, Jab=16Hz), 3.54 (s, 2H), 3.45 (m, 1H), 2.62 (q, 2H, J=7.0Hz), 1.89 (m, 1H), 1.60 (m, 2H), 1.08 (t, 3H, J=7.0Hz), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1505435445458amber film528.121.45 min Method A528.331H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.68 (d, 2H, J=8.0Hz), 7.54 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 7.35-7.29 # (m, 5H), 6.27 (s, br, 1H), 5.37 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.43 (d, 1H, Jab=16Hz), 3.55 (s, 2H), 3.45 (m, 1H), 2.17 (s, 3H), 1.89 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.95 (d, 3H, J=7.0Hz)1515465475488clear glass542.151.46 min Method A542.291H NMR, 400Hz, (CDCl3) δ 7.68 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.45 (d, 2H, J=8.0Hz), 7.39-7.26 (m, 4H), 6.97 # (d, 1H, J=8.0Hz), 6.27 (s, br, 1H), 5.38 (s, br, 1H), 4.54 (d, 1H, Jab=16Hz), 4.44 (d, 1H, Jab=16Hz), 3.43 (s, 2H), 3.25 (t, 1H, J=4.0Hz), 2.77-2.69 (m, 4H), 2.40 (s, 3H), 1.94 (m, 1H), 1.60 (m, 2H), 0.97 (d, 2H, J=7.0Hz), 0.94 (d, 2H, J=7.0Hz)1525495505518amber glass564.21.22 min Method A564.321H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.59 (d, 2H, J=8.0Hz), 7.39-7.33 (m, 4H), 6.21 (s, br, 1H), 5.34 (s, br, # 1H), 4.76 (d, 1H, Jab=16Hz), 4.31 (d, 1H, Jab=16Hz), 3.57 (s, 2H), 2.69-2.55 (m, 6H), 2.36-2.18 (m, 12H), 1.95 (m, 1H), 1.66-1.50 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1535525535545474.21white solid1.78 min Method C476.171H NMR (CDCl3, 400 MHz) δ 8.41 (br s, 2H), 7.85 (dd, 2H, J=2.0, 6.8), 7.46 (dd, 2H, J=2.0, 6.8), 5.46 (s, 1H), 4.21 (dd, 1H, J=5.9, # 8.8), 3.92 (d, 1H, J=17), 3.77 (d, 1H, J=17), 3.27-3.41 (m, 2H), 2.48-2.62 (m, 6H), 1.80-1.90 (m, 1H), 1.50-1.72 (m, 3H), 1.35-1.49 (m, 1H), 1.05 (t, 6H, J=7.1), 0.87 (d, 3H, J=6.4), 0.85 (d, 3H, J=6.7).1545555565575white solid516.181.53 min Method A517.301H NMR (CDCl3, 500 MHz) δ 7.83 (dd, 2H, J=1.9, 6.8), 7.47 (dd, 2H, J=2.0, 6.8), 7.31 (br s, 1H), 7.11 (br s, 1H), 5.57 (br s, 1H), 4.23 # (dd, 1H, J=6.8, 8.4), 4.00-4.15 (m, 2H), 3.95 (d, 1H, J=17), 3.83 (d, 1H, J=17), 2.93 (br s, 2H), 1.75-1.95 (m, 4H), 1.60-1.75 (1H, 1.25-1.55 (m, 1H), 1.25 (t, 5H, J=7.7), 0.85 (d, 3H, J=6.3), 0.83 (d, 3H, J=6.3).1555585595601-Method Awhite solid495.041.88 min Method A495.1 1H NMR (CDCl3) δ 7.62-7.59 (m, 2H), 7.43-7.39 (m, 2H), 7.28-7.25 (m, 2H), 7.22-7.19 (m, 2H), 6.22 (bs, 1H), 5.29 (bs, 1H), 4.53-4.43 (m, 2H), 4.42-4.37 (m, 1H), 4.16-4.07 (m, 2H), # 1.82-1.73 (m, 1H), 1.48 (d, 3H, J=7.3Hz, isomer A), 1.47 (d, 3H, J=7.3Hz, isomer B), 1.36-1.22 (m, 2H), 1.21 (t, 3H, J=7.1Hz), 0.77 (d, 3H, J=6.4Hz, isomer A), 0.77 (d, 3H, J=6.4Hz, isomer B), 0.65 (d, 3H, J=6.7Hz, isomer A), 0.65 (d, 3H, J=6.7Hz, isomer B).1565615625631-Method Awhite solid434.071.57 min Method B(M + H)+435.1 1H NMR (400 MHz, DMSO) δ 7.80 (d, 2H, J=8.7), 7.66 (d, 2H, J=8.3), 7.60 (m, 4H), 7.53 (s, 1H), 7.10 (s, 1H), 4.80 (ABq, 2H, Δυ=39.8, # Jab=17.2), 4.30 (t, 1H, J=7.5), 1.60 (m, 1H), 1.39 (m, 1H), 0.71 (t, 3H, J=7.3).1575645655661-Method Awhite solid391.081.32 min Method B(M + H)+392.1 1H NMR (400 MHz, DMSO) δ 7.81 (d, 2H, J=8.7), 7.78 (d, 2H, J=8.4), 7.62 (d, 2H, J=8.7), 7.57 (d, 2H, J=8.3,), 7.52 (s, 1H), 7.09 (s, 1H), # 4.80 (ABq, 2H, Δυ=45.0, Jab=17.6), 4.28 (t, 1H, J=7.5,), 1.58 (m, 1H), 1.36 (m, 1H), 0.70 (t, 3H, J=7.3).1585675685696white solid478.011.53 min Method A478.171H NMR (CD3OD, 300MHz) δ 7.80 (ddd, 2H, J=1.9, 2.4, 8.7), 7.73 (d, 2H, J=8.3), 7.48-7.54 (m, # 4H), 4.87 (m, 1H), 4.79 (d, 1H, J=16.0), 4.49 (t, 1H, J=6.2), 2.81-2.87 (m, 1H), 1.25-1.43 (m, 3H), 0.83 (d, 3H, J=6.2), 0.77-0.83 (m, 2H), 0.63-0.66 (m, 2H), 0.57 (d, 3H, J=6.1).1595705715726white solid496.031.50 min Method A496.211H NMR (CDCl3, 300MHz) δ 7.70 (d, 2H, J=8.0), 7.68 (d, 2H, J=8.6), 7.46 (d, 2H, J=8.6), 7.41 (d, 2H, J=8.1), 4.64 (d, 1H, # J=15.9), 4.43 (d, 1H, J=15.9), 4.30 (t, 1H, J=6.8), 3.63-3.66 (m, 2H), 3.55-3.58 (m, 2H), 3.39 (s, 3H), 1.76-1.84 (m, 1H), 1.28-1.34 (m, 1H), 1.05-1.11 (m, 1H), 0.75 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.7).1605735745756white solid551.151.33 min Method A551.281H NMR (CDCl3, 500MHz) δ 7.72 (d, 2H, J=8.2), 7.67 (dd, 2H, J=2.0, 8.7), 7.44 (dd, 2H, J=1.8, 8.6), 7.39 (d, 2H, J=8.2), 6.35 # (br s, 1H), 5.46 (br s, 1H), 4.60 (d, 1H, J=15.9), 4.50 (d, 1H, J=15.9), 4.31 (t, 1H, J=7.3), 3.54-3.57 (m, 2H), 2.56-2.64 (m, 6H), 1.72-1.80 (m, 3H), 1.28-1.34 (m, 1H), 1.13-1.16 (m, 1H), 1.03 (t, 6H, J=7.2), 0.74 (d, 3H, J=6.6), 0.61 (d, 3H, J=6.6).1615765775789white solid494.061.51 min Method B494.2 1H NMR (CDCl3) δ 7.69 (d, 2H, J=7.0Hz), 7.45-7.47 (m, 4H), 7.30 (d, 2H, J=8.0Hz), 7.12 (s, br, 1H), 6.25 (s, br, 1H), # 5.22 (s, br, 1H), 4.40 (dd, 2H, J=50Hz, 15Hz), 4.25 (t, 1H, J=7.4Hz), 2.48-2.51 (m, 1H), 1.54-1.86 (m, 1H), 1.17-1.34 (m, 10H), 0.75 (d, 3H, J=7.0Hz), 0.67 (d, 3H, J=7.0Hz).1625795805819tan solid504.011.52 min Method B504.1 1H NMR (CDCl3) δ 8.10 (s, br, 1H), 7.67 (d, 2H, J=7.0Hz), 7.58 (d, 2H, J=7.0Hz), 7.23-7.49 (m, 6H), # 6.54-6.57 (m, 1H), 6.27 (s, br, 1H), 5.50 (s, br, 1H), 4.51 (dd, 2H, J=50Hz, 15Hz), 4.28 (t, 1H, J=7.4Hz), 1.78-1.85 (m, 1H), 1.12-1.32 (m, 2H), 0.75 (d, 3H, J=7.0Hz), 0.67 (d, 3H, J=7.0Hz).1635825835849white solid451.981.50 min Method B450.18 (M − H)1H NMR (CDCl3) δ 7.67 (d, 2H, J=8.0Hz), 7.28-7.46 (m, 6H), 7.12 (s, br, 1H), 6.24 (s, br, 1H), 5.19 (s, br, 1H), 4.48 (dd, 2H, # J=50Hz, 15Hz), 4.27 (t, 1H, J=7.0Hz), 2.18 (s, 3H), 1.80-2.01 (m, 1H), 1.12-1.32 (m, 2H), 0.75 (d, 3H, J=7.0Hz), 0.67 (d, 3H, J=7.0Hz).1645855865878white solid491.061.31 min Method A491.241H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.51 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.25 (s, # br, 1H), 5.35 (s, br, 1H), 4.59 (d, 1H, Jab=16Hz), 4.36 (d, 1H, Jab=16Hz, 3.62 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.55-2.48 (m, 7H), 1.94 (m, 1H), 1.60 (m, 2H), 0.97 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1655885895908white solid520.141.40 min Method A520.321H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.66 (d, 2H, J=8.0Hz), 7.51 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.28 (s, br, 1H), 5.39 (s, br, 1H), 4.52 (d, # 1H, Jab=16Hz), 4.43 (d, 1H, Jab=16Hz), 3.57 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.59 (t, 2H, J=8.0Hz), 2.30 (d, 2H, J=6.0Hz), 2.01-1.90 (m, 1H), 1.68-1.49 (m, 4H), 1.02 (m, 1H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz), 0.89 (t, 3H, J=8.0Hz), 0.44-0.31 (m, 4H)1665915925938clear glass506.111.41 min Method A506.311H NMR, 400Hz, (CDCl3) δ 7.73 (d, 2H, J=8.0Hz), 7.65 (d, 2H, J=8.0Hz), 7.44 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 6.27 (s, br, 1H), 5.39 (s, br, 1H), 4.56 (d, # 1H, Jab=16Hz), 4.42 (d, 1H, Jab=16Hz), 3.45 (d, 1H, Jab=12Hz), 3.28 (d, 1H, Jab=12Hz), 3.25 (t, 1H, J=6.0Hz), 2.75 (m, 4H), 2.0-1.53 (m, 7H), 1.35 (m, 1H), 1.17 (m, 1H), 0.97 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz), 0.87 (m, 3H)1675945955968clear glass506.111.42 min Method A506.301H NMR, 400Hz, (CDCl3) δ 7.71 (d, 2H, J=8.0Hz), 7.65 (d, 2H, J=8.0Hz), 7.43 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.26 (s, br, # 1H), 5.40 (s, br, 1H), 4.56 (d, 1H, Jab=16Hz), 4.42 (d, 1H, Jab=16Hz), 3.48 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.56-2.42 (m, 4H), 1.93 (m, 1H), 1.89-1.48 (m, 6H), 1.34 (m, 1H), 0.98-0.93 (m, 9H)1685975985998clear glass546.181.46 min Method A546.351H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.65 (d, 2H, J=8.0Hz), 7.42 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 6.27 (s, br, 1H), 5.40 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.43 (d, 1H, Jab=16Hz), # 3.45 (d, 1H, Jab=12Hz), 3.28 (d, 1H, Jab=12Hz), 3, 25 (t, 1H, J=6.0Hz), 2.87 (m, 1H), 2.70-2.56 (m, 3H), 2.39 (m, 1H), 2.31-2.19 (m, 4H), 1.95 (m, 1H), 1.77 (m, 1H), 1.68-1.59 (m, 2H), 1.54-1.44 (m, 4H), 1.28 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 2H, J=7.0Hz)1696006016028clear glass508.131.39 min Method A502.281H NMR, 400Hz, (CDCl3) δ 7.70 (d, 2H, J=8.0Hz), 7.68 (d, 2H, J=8.0Hz), 7.55 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), # 6.28 (s, br, 1H), 5.37 (s, br, 1H), 4.57 (d, 1H, Jab=16Hz), 4.36 (d, 1H, Jab=16Hz), 3.38 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.83 (m, 2H), 1.92 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz), 0.84 (s, 6H), 0.82 (s, 6H)1706036046058clear glass494.11.34 min Method A494.261H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.67 (d, 2H, J=8.0Hz), 7.44 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 6.27 (s, # br, 1H), 5.39 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.44 (d, 1H, Jab=16Hz), 3.40 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.39 (s, 3H), 1.94 (m, 1H), 1.68-1.50 (m, 2H), 1.43 (m, 2H), 1.30 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz), 0.86 (t, 3H, J=7.0Hz)1716066076088clear glass508.131.40 min Method A508.271H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.4-7.33 (m, 4H), 6.25 (s, br, 1H), 5.35 (s, br, 1H), 4.52 (d, 1H, Jab=16Hz), 4.43 (d, # 1H, Jab=16Hz), 3.46 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.62 (t, 2H, J=6.0Hz), 2.52 (q, 2H, J=7.0Hz), 1.94 (m, 1H), 1.68-1.45 (m, 4H), 1.29 (m, 2H), 1.02 (t, 3H, J=7.0Hz), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz), 0.88 (t, 3H, J=7.0Hz)1726096106118amber glass575.221.34 min Method A575.321H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.59 (d, 2H, J=8.0Hz), 7.39-7.33 (m, 4H), 6.25 (s, br, 1H), 5.36 (s, br, 1H), 4.53 # (d, 1H, Jab=16Hz), 4.39 (d, 1H, Jab=16Hz), 3.57 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.62-2.32 (m, 9H), 1.94 (m, 1H), 1.68-1.50 (m, 2H), 1.48-1.20 (m, 12H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)1736126136148white solid436.921.52 min Method A437.161H NMR (dmso-d6, 300MHz) δ 7.85 (d, 2H, J=8.4), 7.82 (dd, 2H, J=1.8, 8.7), 7.61 (dd, 2H, J=1.8, 8.7), 7.54 (br s, # 1H), 7.47 (d, 2H, J=8.4), 7.09 (br s, 1H), 4.85 (d, 1H, J=17.4), 4.69 (d, 1H, J=17.1), 4.42 (t, 1H, J=7.2), 1.40-1.48 (m, 1H), 1.27-1.34 (m, 1H), 0.42-0.47 (m, 1H), 0.25-0.30 (m, 2H), 0.00-0.03 (m, 1H), −0.10-−0.07 (m, 1H).1746156166171-Method Aoff-white solid492.112.13 min Method DM + Na 514.951H NMR (DMSO) δ 7.76 (d, 2H, J=6.8Hz), 7.61 (m, 6H), 7.44 (s, br, 1H), 7.13 (s, br, 1H), 4.78 (dd, 2H, J=52Hz, 16Hz), 4.58 (t, 1H, J=8.0Hz), 3.47 (d, 2H, J=6.0Hz), 0.88 (s, 9H)1756186196201-Method Awhite solid449.121.94 min Method DM + Na 471.971H NMR (DMSO) δ 7.77 (m, 4H), 7.60 (m, 4H), 7.45 (s, br, 1H), 7.12 (s, br, 1H), 4.78 (dd, 2H, J=56Hz, 20Hz), 4.57 (t, 1H, J=8.0Hz), 3.47 (d, 2H, J=6.0Hz), 0.88 (s, 9H)1766216226231-solid support478.901.86 Method B479.021776246256261-solid support426.901.82 Method B449.02 M + Na1786276286291-solid support496.001.81 Method B496.061796306316321-solid support412.901.72 Method B413.041806336346351-solid support423.001.86 Method B445.02 M + Na1816366376381-solid support501.101.94 Method BM + Na1826396406411-solid support413.901.53 Method B414.051836426436441-solid support423.001.88 Method B423.081846456466471-solid support467.001.60 Method B467.061856486496501-solid support505.001.89 Method B505.071866516526531-solid support478.901.84 Method B479.021876546556561-solid support505.001.93 Method B505.061886576586591-solid support429.401.80 Method B450.90 M + Na1896606616621-solid support423.001.89 Method B423.091906636646651-solid support425.001.92 Method B425.111916666676681-solid support487.001.91 Method B487.041926696706711-solid support437.001.95 Method B459.05 M + Na1936726736741-solid support358.901.67 Method B381.07 M + Na1946756766771-solid support473.801.86 Method B472.9 1956786796801-solid support430.91.75 Method B431.041966816826831-solid support379.301.65 Method B400.981976846856861-solid support421.001.82 Method B443.06 M + Na1986876886891-solid support379.301.64 Method B400.991996906916921-solid support495.001.95 Method B494.982006936946951-solid support465.102.05 Method B487.10 M + Na2016966976981-solid support483.001.72 Method B483.042026997007011-solid support463.801.91 Method B486.96 M + Na2037027037041-solid support430.901.77 Method B431.042047057067071-solid support409.001.79 Method B409.072057087097101-solid support462.901.81 Method B463.042067117127131-solid support423.001.86 Method B423.102077147157161-solid support491.801.88 Method B492.912087177187191-solid support409.001,78 Method B431.04 M + Na2097207217221-solid support419.91.58 Method B442.04 M + Na2107237247251-solid support344.901.56 Method B367.05 M + Na2117267277281-solid support480.901.87 Method B481.022127297307311-solid support430.901.76 Method B453.022137327337341-solid support455.001.71 Method B455.072147357367371-solid support515.001.91 Method B515.092157387397401-solid support447.401.82 Method B468.99 M + Na2167417427431-solid support480.901.80 Method B481.002177447457461-solid support402.90 1.600 Method B403.122187477487491-solid support429.401.78 Method B429.042197507517521-solid support448.901.78 Method B471.002207537547551-solid support430.901.75 Method B453.032217567577581-solid support480.901.85 Method B503.00 M + Na2227597607611-solid support445.001.87 Method B467.06 M + Na2237627637641-solid support453.001.62 Method B453.032247657667671-solid support453.001.63 Method B453.052257687697701-solid support416.001.53 Method B416.042267717727731-solid support401.901.45 Method B401.962277747757761-solid support395.901.12 Method B396.012287777787791-solid support358.901.62 Method B381.01 M + Na2297807817821-solid support439.001.80 Method B460.97 M + Na2307837847851-solid support424.901.72 Method B425.032317867877881-solid support463.801.85 Method B464.902327897907911-solid support456.901.64 Method B456.022337927937941-solid support447.401.78 Method B468.92 M + Na2347957967971-Method Awhite solid419.111.91 min Method F(M + Na)+442.01H NMR (400 MHz, DMSO) δ 7.82 (d, 2H, J=8.7), 7.80 (d, 2H, J=8.4), 7.62 (d, 2H, J=8.7), 7.59 (d, 2H, J=8.3,), 7.51 (s, 1H), 7.07 (s, 1H), # 4.81 (ABq, 2H, Δυ=38.0, Jab=17.5), 4.31 (t, 1H, J=6.7), 1.54 (m, 1H), 1.29 (m, 1H), 1.03 (m, 3H), 0.85 (m, 1H), 0.66 (t, 3H, J=6.9).2357987998001-Method Awhite solid462.102.13 min Method F(M + Na)+485.01H NMR (400 MHz, DMSO) δ 7.81 (d, 2H, J=8.7), 7.69 (d, 2H, J=8.3), 7.61 (m, 4H), 7.51 (s, 1H), 7.07 (s, 1H), 4.82 (ABq, 2H, Δυ=31.9, Jab=17.1), 4.32 # (t, 1H, J=8.3), 1.53 (m, 1H), 1.31 (m, 1H), 1.05 (m, 3H), 0.88 (m, 1H), 0.63 (t, 3H, J=6.8).2368018028031-solid supportwhite solid530.921.92 Method B530.992378048058061-solid supportwhite solid416.931.61 Method B417.072388078088091-solid supportwhite solid466.991.62 Method B467.062398108118121-solid supportwhite solid379.131.62400.98 M + Na2408138148151-solid supportwhite solid395.911.13396.012418168178188amber glass592.291.69 min Method A592.391H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.65 (d, 2H, J=8.0Hz), 7.43 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.27 (s, br, # 1H), 5.40 (s, br, 1H), 4.56 (d, 1H, Jab=16Hz), 4.40 (d, 1H, Jab=16Hz), 3.56 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.40 (t, 4H, J=6.0Hz), 1.95 (m, 1H), 1.68-1.52 (m, 2H), 1.42 (q, 4H, J=6.0Hz), 1.28-1.22 (m, 12H), 0.98 (d, 3H, J=7.0Hz), 0.88 (t, 6H, J=6.0Hz)2428198208218amber glass648.41.88 min Method A648.431H NMR, 400Hz, (CDCl3) δ 7.71 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.43 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.27 (s br, # 1H), 5.40 (s, br, 1H), 4.56 (d, 1H, Jab=16Hz), 4.40 (d, 1H, Jab=16Hz), 3.56 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.47 (t, 4H, J=6.0Hz), 1.95 (m, 1H), 1.68-1.50 (m, 2H), 1.43-1.14 (m, 14H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz), 0.88 (t, 6H, J=6.0Hz)2438228238249clear glass524.081.35 min Method A542.251H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 6.25 (s, br, 1H), 5.34 (s, br, 1H), 4.70 (d, # 1H, Jab=16Hz), 4.48 (d, 1H, Jab=16Hz), 4.24-4.08 (m, 4H), 3.42 (s, 2H), 3.25 (t, 1H, J=6Hz), 2.51 (s, 3H), 1.94 (M, 1H), 1.68-1.54 (m, 2H), 1.22 (t, 3H, J=6.0Hz), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)2448258268276white solid565.141.29 min Method B564.991H NMR (CDCl3, 300MHz) δ 8.12 (br s, 1H), 7.77 (d, 2H, J=8.8), 7.70 (d, 2H, J=8.6), 7.47 (d, 2H, J=8.4), 7.45 (d, 2H, J=8.0), # 6.25 (br s, 1H), 5.31 (br s, 1H), 4.66 (d, 1H, J=15.7), 4.38 (d, 1H, J=15.8), 4.27 (t, 1H, J=7.1), 3.51-3.89 (m, 4H), 2.35-2.74 (m, 4H), 1.78-1.88 (m, 2H), 1.40-1.65 (m, 4H), 1.24-1.32 (m, 2H), 1.03-1.10 (m, 1H), 0.74 (d, 3H, J=6.5), 0.65 (d, 3H, J=6.6).2458288298306white solid437.951.36 min Method B438.201H NMR (CDCl3, 300MHz) δ 7.72 (dd, 2H, J=8.3), 7.69 (dd, 2H, J=1.9, 8.7), 7.46 (dd, 2H, J=1.8, 8.7), 7.44 (d, 2H, J=8.6), 6.21 (br s, # 1H), 5.98 (br s, 1H), 5.88 (br s, 1H), 5.39 (br s, 1H), 4.66 (d, 1H, J=15.7), 4.41 (d, 1H, J=15.9), 4.29 (t, 1H, J=6.5), 1.77-1.87 (m, 1H), 1.25-1.36 (m, 1H), 1.03-1.11 (m, 1H), 0.75 (d, 3H, J=6.6), 0.65 (d, 3H, J=6.6).2468318328336white solid549.141.34 min Method B549.001H NMR (CDCl3, 300MHz) δ 7.82 (d, 2H, J=7.8), 7.67 (dd, 2H, J=2.0, 8.7), 7.40-7.46 (m, 5H), 6.22 (br s, 1H), 5.23 (br s, # 1H), 4.61 (d, 1H, J=15.9), 4.42 (d, 1H, J=15.7), 4.28 (t, 1H, J=7.2), 3.60-3.69 (m, 2H), 2.45-2.83 (m, 6H), 1.40-1.85 (m, 7H), 1.24-1.35 (m, 1H), 1.05-1.14 (m, 1H), 0.75 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.6).2478348358366white solid524.111.61 min Method B523.9411H NMR (CDCl3, 300MHz) δ 7.68 (d, 2H, J=8.4), 7.46 (d, 2H, J=8.4), 7.39 (d, 2H, J=8.1), 7.29 (d, 2H, J=8.1), 6.20 (br s, 1H), # 5.24 (br s, 1H), 4.60 (d, 1H, J=15.8), 4.44 (d, 1H, J=15.9), 4.30 (t, 1H, J=6.9), 3.70-4.05 (br m, 4H), 2.45-2.60 (m, 4H), 1.73-1.80 (m, 1H), 1.28-1.35 (m, 1H), 1.05-1.14 (m, 1H), 0.76 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.6).2488378388392red solid466.001.48 min Method B466.2 11H NMR (CDCl3) δ 7.65 (d, 2H, J=7.0Hz), 7.41 (d, 2H, J=7.0Hz), 7.20 (d, 2H, J=8.8Hz), 6.79 (d, 2H, # J=8.8Hz), 6.23 (s, br, 1H), 5.20 (s, br, 1H), 4.32 (dd, 2H, J=50Hz, 15Hz), 4.19-4.27 (m, 1H), 3.84-3.87 (m, 4H), 3.12-3.16 (m, 4H), 1.91-1.95 (m, 1H), 1.35-1.39 (m, 1H), 0.92-1.06 (m, 2H), 0.74 (t, 3H, J=8.0Hz).2498408418422yellow solid479.051.18 min Method B479.021H NMR (CDCl3) δ 7.63 (d, 2H, J=8.0Hz), 7.40 (d, 2H, J=8.0Hz), 7.19 (d, 2H, J=8.8Hz), 6.78 (d, 2H, J=8.8Hz), 6.25 (s, br, 1H), 5.21 # (s, br, 1H), 4.36 (dd, 2H, J=50Hz, 15Hz), 4.20-4.27 (m, 1H), 3.28-3.35 (m, 4H), 2.69-2.76 (m, 4H), 2.48 (s, 3H), 1.93-1.97 (m, 1H), 1.35-1.39 (m, 1H), 0.90-1.07 (m, 2H), 0.72 (t, 3H, J=8.0Hz).2508438448452tan solid474.031.92 min Method B474.2 1H NMR (CDCl3) δ 7.68 (d, 2H, J=8.8Hz), 7.43-7.45 (m, 4H), 7.12 (d, 2H, J=8.8Hz), 6.78 (d, 2H, # J=8.8Hz), 6.19 (s, br, 1H), 5.18 (s, br, 1H), 4.56 (dd, 2H, J=50Hz, 15Hz), 4.21-4.30 (m, 1H), 2.01 (s, 6H), 1.93-1.97 (m, 1H), 1.35-1.39 (m, 1H), 0.90-1.07 (m, 2H), 0.72 (t, 3H, J=8.0Hz).2518468478486white solid482.002.01 min Method B479.071H NMR (CDCl3, 300MHz) δ 7.67 (ddd, 2H, J=1.9, 2.4, 8.7), 7.58 (d, 2H, J=8.1), 7.43 (ddd, 2H, J=1.5, 2.4, 8.7), 7.37 (d, 2H, J=8.2), 6.30 # (br s, 1H), 5.70 (br s, 1H), 4.62 (d, 1H, J=15.9), 4.46 (d, 1H, J=15.9), 4.32 (t, 1H, J=7.3), 3.51 (s, 3H), 3.32 (s, 3H), 1.73-1.80 (m, 1H), 1.28-1.35 (m, 1H), 1.05-1.14 (m, 1H), 0.74 (d, 3H, J=6.5), 0.61 (d, 3H, J=6.6).2528498508511-Method Awhite solid466.981.92 min Method A467.2 1H NMR (CDCl3) δ 7.92 (d, 1H, J=8.0Hz), 7.79 (A of ABq, 2H, J=8.8Hz), 7.72 (d, 1H, J=7.7Hz), 7.50 (B of ABq, 2H, J=8.8Hz), 7.31 (t, # 1H, J=7.7Hz), 6.29 (bs, 1H), 5.21 (bs, 1H), 5.02 (s, 2H), 4.35 (q, 2H, J=7.0Hz), 4.27 (dd, 1H, J=8.6, (t, 5.5Hz), 1.88-1.78 (m, 1H), 1.39 (t, 3H, J=7.0Hz), 1.37-1.29 (m, 1H), 1.02-0.93 (m, 1H), 0.75 (d, 3H, J=6.6Hz), 0.66 (d, 3H, J=6.6Hz).2538528538541-Method Awhite solid481.011.81 min Method A481.2 1H NMR (CDCl3) δ 7.67 (A of ABq, 2H, J=8.8Hz), 7.44 (B of ABq, 2H, J=8.8Hz), 7.27-7.15 (m, 3H), 6.24 (bs, 1H), 5.26 (bs, 1H), 4.55 (A of ABq, # 1H, J=15.4Hz), 4.39 (B of ABq, 1H, J=15.4Hz), 4.29 (t, 1H, J=7.0Hz), 4.15 (q, 2H, J=7.2Hz), 1.87-1.78 (m, 1H), 1.37-1.29 (m, 1H), 1.26 (t, 3H, =7.2Hz), 1.24-1.13 (m, 1H), 0.76 (d, 3H, J=6.2Hz), 0.67 (d, 3H, J=6.6Hz).25485585685710 white solid438.981.20 Method B439.051H NMR (CDCl3) TFA salt: δ 8.04 (s, 1H), 8.03 (d, 1H, J=9.80Hz), 7.76 (d, 2H, J=7.6 Hz), 7.54 (d, 2H, J=7.6 Hz), 6.83 (d, 1H, # J=9.8 Hz), 6.62 (br s. 1H), 6.40 (br s, 1H), 4.64 (d, 1H, J=15.9 Hz), 4.29 (m, 1H), 4.18 (d, 1H, J=15.9 Hz), 3.30 (s, 6H), 1.84 (m, 1H), 1.29 (m, 1H), 0.93 (m, 1H), 0.77 (d, 3H, J=6.5Hz), 0.72 (d, 3H, J=6.5Hz)2558588598601-Method Alight orange residue450.142.02 min Method E450.981H NMR (DMSO) δ 7.78 (d, 2H, J=8.4Hz), 7.58 (d, 2H, J=8.8Hz), 7.47 (s, br, 1H), 7.29 (d, 2H, J=8.8Hz), 7.00 (s br, 1H), # 6.87 (d, 2H, J=8.8Hz), 6.03 (m, 1H), 5.32 (dd, 2H, J=12Hz, 56Hz), 4.63 (m, 4H), 5.32 (dd, 2H, J=12Hz, 56Hz), 4.35 (m, 1H), 1.33 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.50 (d, 3H, J=6.0Hz),2568618628637white solid548.221.87 min Method A549.001H NMR (CDCl3, 500MHz), δ 7.71 (d, 2H, J=8.6), 7.71 (d, 2H, J=8.9), 7.15-7.35 (m, 5H), 6.64 (s, 1H), 5.86 (s, 1H), 4.15 (dd, 1H, # J=5.2, 9.5), 3.88 (d, 1H, J=13), 3.76 (d, 1H, J=13), 3.46 (t, 2H, J=6.7), 3.21-3.29 (m, 1H), 2.97 (dd, 1H, J=4.6, 14), 2.65-2.85 (m, 4H), 1.75-1.95 (m, 3H), 1.00-1.30 (m, 5H), 0.75-0.80 (m, 1H), 0.72 (d, 3H, J=6.7), 0.67 (d, 3H, J=6.7).2578648658667white solid520.191.74 min Method A521.311H NMR (CDCl3, 500MHz) δ 7.72 (d, 2H, J=8.8), 7.51 (d, 2H, J=8.8), 7.33 (d, 2H, J=7.6), 7.28 (d, 2H, J=7.6), 7.03 # (t, 1H, J=7.3), 6.67 (s, 1H), 5.42 (s, 1H), 3.97-4.22 (m, 3H), 3.27-3.35 (m, 1H), 2.78-3.02 (m, 3H), 1.83-1.99 (m, 3H), 1.09-1.42 (m, 4H), 0.75-0.82 (m, 1H), 0.74 (d, 3H J=6.4), 0.67 (d, 3H, J=6.7).


[0310]

5














TABLE 4








Ex.



Reaction

Calc.
Ret. Time/




No.
R1
R2
R3
Scheme
Appearance
MW
Method
M + H+
NMR Data




































258


867







868







869





7
white solid
526.24
1.81 min Method A
527.34


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.9), 7.51 (d, 2H, 8.9), 6.65 (s, 1H), 5.37 (s, 1H), 4.15 (dd, 1H, J=5.1, 6.5), 3.92 (d, 1H,



# J=12), 3.82 (d, 1H, J=14), 3.57-3.67 (m, 1H), 3.26 (dd, 1H, J=10, 14), 2.98 (dd, 1H, J=4.5, 14), 2.74 (q, 2H, J=12, 24), 1.80-1.97 (m, 5H), 1.64-1.72 (m, 3H), 1.00-1.43 (m, 10H), 0.75-0.82 (m, 1H), 0.73 (d, 3H, J=6.4), 0.67 (d, 3H, 6.7).





259


870







871







872





7
white solid
548.22
1.78 min Method A
549.32


1
H NMR (CDCl3, 500 MHz) δ 7.71 (d, 2H, J=8.2), 7.50 (d, 2H, J=8.5), 7.30 (d, 4H, J=4.3), 7.20-7.25 (m, 1H), 6.65 (s, 1H), 5.74 (s, 1H), 4.99 (t, 1H, J=7.02), 4.70-4.77 (m, 1H),



# 4.10-4.25 (m, 1H), 4.00 (d, 1H, J=13), 3.90 (d, 1H, J=13), 3.15-3.35 (m, 1H), 2.90-3.00 (m, 1H), 2.60-2.75 (m, 2H), 1.50-1.95 (m, 5H), 1.46 (d, 3H, J=6.7), 1.00-1.30 (m, 2H), 0.75-0.83 (m, 1H), 0.73 (d, 3H, J=6.4), 0.67 (d, 3H, J=6.4).





260


873







874







875





7
white solid
588.18
1.90 min Method A
589.25


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.9), 7.62 (d, 4H, J=8.6), 7.45 (d, 2H, J=8.5), 6.67 (s, 1H), 6.52 (s, 1H), 4.45 (s, 1H), 4.16 (dd, 1H, J=5.2, 9.8), 4.12 (d, 1H, J=12), 4.03 (d, 1H,



# J=14), 3.80 (dd, 1H, J=10, 14), 3.00 (dd, 1H, J=4.5, 14), 2.84-2.92 (m, 2H), 1.85-2.00 (m, 3H), 1.69 (d, 1H, J=12), 1.10-1.35 (m, 3H), 0.75-0.82 (m, 1H), 0.74 (d, 3H, J=6.7), 0.68 (d, 3H, J=6.7).





261


876







877







878





7
white solid
554.14
1.86 min Method A
555.24


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.6), 7.52 (d, 2H, J=8.9), 7.45 (s, 1H), 7.18 (d, 2H, J=6.7), 6.95-7.02 (m, 1H), 6.65 (s, 1H), 6.50 (s, 1H), 5.50 (s, 1H), 4.16 (dd, 1H, J=5.2, 9.5), 4.08 (d, 1H, J=15), 3.99



# (d, 1H, J=14), 3.30 (dd, 1H, J=10, 15), 2.99 (dd, 1H, J=4.5, 15), 2.80-2.92 (m, 2H), 1.80-2.00 (m, 3H), 1.67 (d, 1H, J=13), 1.05-1.40 (m, 4H), 0.75-0.80 (m, 1H), 0.74 (d, 3H, J=6.7), 0.68 (d, 3H, J=6.7).





262


879







880







881





7
white solid
592.21
1.86 min Method A
593.30


1
H NMR (CDCl3, 500 MHz) δ 7.96 (d, 2H, J=8.9), 7.73 (d, 2H, J=8.9), 7.51 (d, J=8.6), 7.42 (d, 2H, J=8.6), 6.65 (s, 2H), 5.45 (s, 1H), 4.83 (q, 2H, J=7.0), 4.16 (dd, 1H, J=5.2, 9.8), 4.11 (d, 1H, J=13), 4.03



# (d, 1H, J=13), 3.30 (dd, 1H, J=10, 14), 3.00 (dd, 1H, J=4.2, 14), 2.81-2.95 (m, 2H), 1.84-2.01 (m, 3H), 1.68 (d, 1H, J=13), 1.37 (t, 3H, J=7.3), 1.08-1.34 (m, 4H), 0.76-0.82 (m, 1H), 0.74 (d, 3H, J=6.7), 0.68 (d, 3H, J=6.7).





263


882







883







884





7
white solid
530.20
2.18 min Method C
531.11


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.5), 7.51 (d, 2H, J=8.6), 6.67 (s, 1H), 5.41 (s, 1H), 4.97 (s, 1H), 4.20 (q, 2H,



# J=7.0), 4.15 (dd, 1H, J=5.1, 9.5), 3.90-4.04 (m, 4H), 3.26 (dd, 1H, J=10, 14), 2.99 (dd, 1H, J=4.5, 14), 2.70-2.82 (m, 2H), 1.80-1.95 (m, 3H), 1.28 (t, 3H, J=7.3), 1.05-1.25 (m, 3H), 0.75-0.80 (m, 1H), 0.72 (d, 3H, J=6.7), 0.67 (d, 3H, J=6.4).





264


885







886







887





1-Method A
white solid
462.96
1.47 Method B
462.98


1
H NMR (CDCl3) δ 7.81 (d, 2H, J=8.4Hz), 7.75 (d, 2H, J=8.0Hz), 7.55 (d, 2H, J=8.4Hz), 7.5 (d,



# 2H, J=8.0Hz), 6.86 (s, 1H), 6.44 (s, 1H), 4.96 (d, 1H, J=15.6Hz), 4.36 (dd, 1H, J=5.6Hz, 6.0Hz), 1.99 (m, 1H), 1.29 (m, 1H), 1.06 (m, 1H), 0.77 (d, 3H, J=6.8Hz), 0.74 (d, 3H, J=6.8Hz).





265


888







889







890





1-Method A
white solid
481.01
1.81 min Method A
481.3 


1
H NMR (CDCl3) δ 7.61 (A of ABq, 2H, J=8.8Hz), 7.42 (B of ABq, 2H, J=8.8Hz), 7.27 (A of ABq, 2H, J=8.4Hz), 7.19 (B of ABq, 2H, J=8.4Hz), 6.21 (bs, 1H), 5.19 (bs, 1H), 4.52 (A of ABq,



# 1H, J=15.5Hz, 1H), 4.39 (B of ABq, 1H, J=15.5Hz, 1H), 4.30 (t, 1H, J=7.3Hz), 4.14 (q, 2H, J=7.1Hz), 3.58 (s, 2H), 1.86-1.76 (m, 1H), 1.36-1.27 (m, 1H), 1.14 (t, 3H, J=7.1Hz), 1.23-1.13 (m, 1H), 0.76 (d, 3H, J=6.2Hz), 0.66 (d, 3H, J=6.6Hz).





266


891







892







893





8
white foam
570.16
1.17 min Method A
570.39


1
H NMR, 400Hz, (CDCl3) δ 8.21 (d, 2H, J=4.0Hz), 8.02 (d, 2H, J=8.0Hz), 7.59 (d, 2H, J=8.0Hz), 7.39-7.33 (m, 4H),



# 6.83 (d, 2H, J=4.0Hz), 6.23 (s, br, 1H), 5.34 (s, br, 1H), 4.60 (d, 1H, Jab=16Hz), 4.39 (d, 1H, Jab=16Hz), 3.57 (s, 2H), 3.27-3.15 (m, 5H), 2.58-2.45 (m, 4H), 1.94 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





267


894







895







896





8
white foam
508.08
1.28 min Method A
508.21


1
H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.63 (d, 2H, J=8.0Hz), 7.43-7.36 (m, 4H), 6.27 (s, br, 1H), 5.39 (s, br, 1H),



# 4.59 (d, 1H, Jab=16Hz), 4.36 (d, 1H, Jab=16Hz), 2.83 (m, 1H), 2.41 (m, 2H), 2.18 (m, 1H), 1.95 (m, 1H), 1.85 (m, 1H), 1.76-1.52 (m, 5H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





268


897







898







899





8
white foam
508.08
1.26 min Method A
508.18


1
H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.65 (d, 2H, J=8.0Hz), 7.45 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 6.27



# (s, br, 1H), 5.39 (s, br, 1H), 4.59 (d, 1H, Jab=16Hz), 4.36 (d, 1H, Jab=16Hz), 3.77 (m, 1H), 3.47 (s, 2H), 3.25 (t, 1H, J=6.0Hz), 2.80 (m, 4H), 1.95 (m, 1H), 1.77-1.50 (m, 6H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





269


900







901







902





8
white foam
437.99
1.28 min Method A
438.16


1
H NMR, 400Hz, (CDCl3) δ 7.71 (d, 2H, J=8.0Hz), 7.66 (d, 2H, J=8.0Hz), 7.43 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 6.35 (s, br, 1H),



# 5.87 (s, br, 1H), 4.76 (d, 1H, Jab=16Hz), 4.30 (d, 1H, Jab=16Hz), 3.54 (s, 5H), 3.25 (t, 1H, J=6.0Hz), 1.94 (m, 1H), 1.60 (m, 2H), 1.18 (s, br, NH), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





270


903







904







905





8
white solid
468.02
1.28 min Method A
468.16


1
H NMR, 400Hz, (CDCl3) δ 7.72 (d, 2H, J=8.0Hz), 7.67 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.33 (d, 2H, J=8.0Hz),



# 6.35 (s, br, 1H), 5.85 (s, br, 1H), 4.24-4.12 (m, 4H), 3.67 (s, 2H), 3.24 (t, 1H, J=6.0Hz), 3.06 (t, 2H, J=6.0Hz), 2.60 (s, br, NH), 1.95 (m, 1H), 1.68-1.52 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





271


906







907







908





8
clear glass
482.05
1.31 min Method A
482.18


1
H NMR, 400Hz, (CDCl3) δ 7.79 (d, 2H, J=8.0Hz), 7.69 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.33 (d, 2H, J=8.0Hz), 6.35 (s, br,



# 1H), 5.85 (s, br, 1H), 4.60 (d, 1H, Jab=16Hz), 4.43 (d, 1H, Jab=16Hz), 3.67 (s, 2H), 3.61 (t, 2H, J=6.0Hz), 3.35 (s, 3H), 3.29-3.24 (m, 3H), 1.94 (m, 1H), 1.62 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





272


909







910







911





9
white solid
523.1
1.30 min Method A
523.40


1
H NMR, 400Hz, (CDCl3) δ 8.02 (d, 2H, J=8.0Hz), 7.71 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 7.28 (d, 2H, J=8.0Hz), 6.23 (s,



# br, 1H), 5.51 (s, br, 1H), 4.46 (s, 2H), 4.70 (d, 1H, Jab=16Hz), 4.33 (d, 1H, Jab=16Hz), 3.25 (t, 1H, J=6.0Hz), 2.69 (s, 3H), 2.63 (s, 2H), 2.20 (s, 6H), 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





273


912







913







914





16
white solid
436.96
1.43 min Method B
437.13


1
H NMR (CDCl3, 300 MHz) δ 7.87 (d, 2H, J=8.4), 7.67 (dd, 2H, J=1.8, 8.7), 7.42-7.46 (m, 4H), 6.21 (br s, 1H), 5.28 (br



# s, 1H), 4.64 (d, 1H, J=15.9), 4.45 (d, 1H, J=15.9), 4.31 (t, 1H, J=6.6), 2.58 (s, 3H), 1.73-1.80 (m, 1H), 1.25-1.35 (m, 1H), 1.05-1.14 (m, 1H), 0.74 (d, 3H, J=6.5), 0.65 (d, 3H, J=6.6).





274


915







916







917





17
yellow foam
549.14
1.38 min Method A
549.16


1
H NMR, 400Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.63 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.23 (d, 2H, J=8.0Hz), 6.25 (s, br, 1H), 5.35 (s, br, 1H) 4.75 (d, 1H, Jab=16Hz), 4.38 (d, 1H, Jab=16Hz), 3.25 (t, 1H, J=6.0Hz), 2.65 (t, 2H, J=6.0Hz), 2.56-2.44 (m, 6H), 1.95 (m, 1H), 1.68-1.45 (m, 8H), 0.98 (d, 3H,



# J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





275


918







919







920





17
clear glass
564.15
1.21 min Method A
564.32


1
H NMR, 400Hz, (CDCl3) δ 9.30 (s, 1H, NH), 8.02 (d, 2H, J=8.0Hz), 7.61 (d, 2H, J=8.0Hz), 7.36 (d, 2H, J=8.0Hz), 7.23 (d, 2H, J=8.0Hz), 6.25 (s, br, 1H), 5.33 (s, br, 1H), 4.72 (d, 1H, Jab=16Hz), 4.48 (d, 1H, Jab=16Hz), 3.25 (t, 1H, J=6.0Hz), 2.65-2.38 (m, 12H), 2.28 (s, 2H), 1.95



# (m, 1H), 1.59 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





276


921







922







923





17
tan foam
509.07
1.33 min Method A
509.17


1
H NMR, 400Hz, (CDCl3) δ 9.31 (s, 1H, NH), 8.02 (d, 2H, J=8.0Hz), 7.63 (d, 2H, J=8.0Hz), 7.36 (d, 2H, J=8.0Hz), 7.23 (d, 2H, J=8.0Hz), 6.25 (s, br, 1H), 5.34 (s, br, 1H), 4.71 (d, 1H, Jab=16Hz), 4.48 (d, 1H, Jab=16H) 3.25 (t, 1H, J=6.0Hz), 2.66 (t, 2H, J=8.0Hz), 2.56 (t, 2H, J=8.0Hz), 2.38



# (s, 6H), 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





277


924







925







926





9
tan foam
515.04
1.47 min Method A
515.13


1
H NMR, 400Hz, (CDCl3) δ 8.95 (s, br, NH), 8.67 (d, 1H, J=8.0Hz), 8.17 (d, 1H, J=8.0Hz), 8.02 (d, 2H, J=8.0Hz), 7.77 (d, 2H, J=8.0Hz), 7.57 (m, 4H), 7.38 (d, 2H, J=8.0Hz), 6.27 (s, br, 1H), 5.39 (s, br, 1H), 4.72 (d, 1H, Jab=16Hz), 4.30 (d, 1H, Jab=16Hz), 3.25 (t, 1H, J=6.0Hz), 1.95 (m, 1H), 1.60 (m, 2H),



# 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





278


927







928







929





7
white solid
507.06
2.44 min Method C
509.20


1
H NMR (CDCl3, 500 MHz) δ 8.66 (br s, 2H), 7.80 (d, 1H, J=8.6), 7.73 (d, 2H,.J=8.5), 7.51 (d, 2H, J=7.6), 7.41 (br s, 1H), 6.64 (br s, 1H), 5.35 (br s, 1H), 4.70 (br s, 1H), 4.10 (br s, 1H), 3.71 (br s, 1H), 3.33 (br s, 1H), 3.02 (dd, 2H, J=4.8, 16), 2.70-2.85 (br s, 1H), 1.50-2.09 (m, 5H), 1.18-1.33



# (m, 4H), 0.73 (d, 3H, J=6.7), 0.68 (d, 3H, J=6.5)..





279


930







931







932





7
white solid
549.14
2.76 min Method C
549.07


1
H NMR (CDCl3, 500 MHz) δ 7.74 (dd, 2H, J=1.7, 6.7), 7.51 (dd, 2H, J=2.2, 6.9), 7.34 (d, 2H, J=8.0), 6.70 (br s, 1H), 6.60 (br s, 1H), 5.30 (br s, 1H), 4.13 (dd, 1H, J=5.5, 10), 3.35 (dd, 1H, J=11, 14), 3.00 (s, 6H), 2.85 (s, 2H), 1.80-2.00 (m, 3H), 1.50-1.70 (m, 1H), 1.10-1.30 (m, 4H), 0.80-0.90



# (m, 1H), 0.745 (d, 3H, J=6.7), 0.67 (d, 3H, J=6.5).





280


933







934







935





7
white solid
574.07
3.03 Method C
574.03


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.2), 7.65 (d, 2H, J=7.9), 7.51 (d, 2H, J=8.9), 7.48 (d, 2H, J=7.6), 6.65 (br s, 1H), 5.45 (br s, 1H), 4.71 (br s, 1H), 4.13 (br s, 1H), 3.65 (br s, 1H), 3.30 (br s, 1H), 2.97 (d, 2H J=12), 2.65-2.86 (m, 1H), 1.45-2.07 (m, 6H), 0.98-1.85 (m, 3H), 0.73 (br, s, 3H), 0.67 (br, s, 3H).






281


936







937







938





7
white solid
470.04
2.78 min Method C
470.03


1
H NMR (CDCl3, 500 MHz) δ 7.72 (d, 2H, J=8.5), 7.50 (d, 2H, J=8.6), 6.78-6.90 (m, 1H), 6.55-6.65 (m, 1H), 6.23 (dd, 1H, J=1.5, 15), 5.33-5.60 (m, 1H), 4.50-4.75 (m, 1H), 4.09-4.20 (m, 1H), 3.90-4.05 (m, 1H), 2.80-3.25 (m, 3H), 2.40-2.75 (m, 1H), 1.50-2.00 (m, 8H), 1.00-1.40 (m, 3H), 0.73 (br, s, 3H), 0.67 (br, s, 3H).






282


939







940







941





7
white solid
506.07
2.86 min Method C
508.03


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.5), 7.51 (d, 2H, J=8.5), 7.38 (br s, 4H), 6.65 (br s, 1H), 5.35 (br s, 1H), 4.71 (br s, 1H), 4.14 (br s, 1H), 3.76 (br s, 1H, 3.30 (br s, 1H), 2.60-3.05 (m, 3H), 0.99-2.05 (m, 10H), 0.73 (d, 3H, J=7.8), 0.67 (d, 3H, J=7.8).






283


942







943







944





7
white solid
517.09
1.34 min Method A
517.19


1
H NMR (CDCl3, 500 MHz) δ 7.72 (d, 2H, J=8.5), 7.50-7.65 (m, 2H), 7.50 (d, 2H, J=7.0), 7.35-7.45 (m, 2H), 6.67 (s, 1H), 5.32 (s, 1H), 4.14 (dd, 1H, J=5.0, 9.0), 3.52 (br s, 1H), 3.28 (t, 1H, J=14), 2.97 (dd, 1H, J=3.5, 14), 2.82 (br s, 1H), 1.00-2.00 (m, 10H), 0.71 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.5).






284


945







946







947





7
white solid
550.12
2.87 min Method C
550.06


1
H NMR (CDCl3, 500 MHz) δ 7.72 (d, 2H, J=8.6), 7.50 (d, 2H, J=8.5), 7.13 (d, 2H, J=8.5), 6.85 (br s, 2H), 6.63 (d, 1H, J=33), 5.41 (br s, 1H), 4.62 (t, 1H, J=14), 4.10-4.17 (m, 1H), 3.75-3.90 (m, 4H), 3.65 (s, 3H), 3.14-3.30 (m, 1H), 2.80-2.95 (m, 2H), 2.43-2.60 (m, 1H), 1.45-2.00, (m, 4H), 1.15-1.30



# (m, 2H), 0.71 (dd, 3H, J=7.6, 8.4), 0.65 (dd, 3H, J=6.0, 8.0).





285


948







949







950





7
white solid
541.50
2.76 min Method C
540.98


1
H NMR (CDCl3, 500 MHz) δ 8.43 (s, 1H), 7.73 (d, 2H, J=8.5), 7.70 (d, 1H, J=2.4, 8.4), 7.51 (d, 2H, J=8.6), 7.87 (d, 1H, J=8.2), 6.63 (br s, 1H), 5.35 (br s, 1H), 4.68 (br s, 1H), 4.15 (dd, 1H, J=4.9, 9.8), 3.71 (br s, 1H), 3.31 (br s, 1H), 3.00 (dd, 2H, J=4.8, 14), 2.65-2.86 (m, 1H), 1.77-2.07 (m, 3H), 1.6-1.76 (m, 1H),



# 1.00-1.86 (m, 3H), 0.85-0.93 (m, 1H), 0.73 (d, 3H, J=6.7), 0.67 (d, 3H, J=6.7).





286


951







952







953





7
white solid
545.11
1.36 min Method A
545.16


1
H NMR (CDCl3, 500 MHz) δ 8.11 (d, 2H, J=8.6), 7.75 (d, 2H, J=8.6), 7.73 (d, 2H, J=8.9), 7.50 (d, 2H, J=8.9), 6.65 (br s, 1H), 5.38 (br s, 1H), 4.14 (dd, 1H, J=5.5, 9.5), 3.80 (br s, 1H), 3.27 (dd, 1H, J=10, 14), 2.97 (dd, 2H, J=4.6, 14), 1.17-2.00 (m, 11H), 0.75-0.81 (m, 1H), 0.73 (d, 3H, J=6.4), 0.67 (d, 3H, J=6.7).






287


954







955







956





12
white solid
453.01
1.81 min Method A
453.16


1
H NMR (CDCl3, 300 MHz) δ 7.61 (d, 2H, J=8.7), 7.40 (d, 2H, J=8.7), 7.37 (d, 2H, J=8.4), 7.26 (d, 2H, J=8.4), 6.28 (br s, 1H), 5.25 (br s, 1H), 4.49 (d, 1H, J=15.9), 4.41 (d, 1H, J=15.9), 4.33 (t, 1H, J=6.6), 1.73-1.80 (m, 1H), 1.55 (s, 6H), 1.28-1.35 (m, 1H), 1.20-1.25 (m, 1H), 0.77 (d, 3H, J=6.5), 0.66 (d, 3H, J=6.6).






288


957







958







959





7
white solid
493.07
1.25 min Method A
493.23


1
H NMR (CDCl3, 500 MHz) δ 8.51 (s, 2H), 7.73 (d, 2H, J=8.5), 7.50 (d, 2H, J=8.5), 6.67 (s, 1H), 5.83 (s, 1H), 4.15 (dd, 1H, J=5.2, 8.9), 3.50 (br s, 2H), 3.25 (dd, 1H, J=8.5, 14), 2.75-3.05 (m, 3H), 1.60-2.10 (m, 6H), 1.10-1.40 (m, 4H), 0.75-0.85 (m, 1H), 0.72 (d, 3H, J=6.4), 0.67 (d, 3H, J=6.7).






289


960







961







962





2
yellow solid
493.07
0.93 min Method B
493.2 


1
H NMR (CDCl3) δ 7.67 (d, 2H, J=7.0Hz), 7.44 (d, 2H, J=7.0Hz), 7.19 (d, 2H, J=8.0Hz), 6.46 (d, 2H, J=8.0Hz), 6.21 (s, br, 1H), 5.17 (s, br, 1H), 4.31 (dd, 2H, J=50Hz, 15Hz), 4.15-4.22 (m, 1H), 3.84-3.87 (m, 4H), 3.91-3.99 (m, 1H), 3.51-3.54 (m, 3H), 3.22-3.26 (m, 1H), 2.75 (s, 3H), 2.72 (s, 3H), 2.23-2.36 (m, 2H),



# 1.91-1.98 (m, 1H), 1.32-1.40 (m, 1H), 0.81-1.04 (m, 2H), 0.73 (t, 3H, 7.2Hz).





290


963







964







965





2
tan solid
464.03
1.16 min Method B
464.2 


1
H NMR (CDCl3) δ 7.62 (d, 2H, J=8.8Hz), 7.40 (d, 2H, J=8.0Hz), 7.11-7.20 (m, 2H), 6.79-6.88 (m, 2H), 6.20 (s, br, 1H), 5.13 (s, br, 1H), 4.30 (dd, 2H, J=50Hz, 15Hz), 4.13-4.21 (m, 1H), 3.10-3.19 (m, 4H), 1.92-1.95 (m, 1H), 1.39-1.90 (m, 8H), 1.22-1.26 (m, 1H), 0.97-1.05 (m, 2H), 0.73 (t, 3H, J=8.0Hz).






291


966







967







968





11
orange solid
522.11
1.52 min Method E
522.1 


1
H NMR (DMSO) δ 7.78 (d, 2H, J=8.4Hz), 7.58 (d, 2H, J=8.8Hz), 7.47 (s, br, 1H), 7.27 (d, 2H, J=8.4Hz), 7.00 (s br, 1H), 6.85 (d, 2H, J=8.8Hz), 4.63 (dd, 2H, J=16Hz, 38Hz), 4.34 (m, 1H), 4.03 (s, 2H), 2.63 (m, 2H), 2.42 (m, 3H), 1.39 (m, 10H), 0.80 (d, 3H, J=6.0Hz), 0.50 (d, 3H, J=6.0Hz)






292


969







970







971





11
white solid
481.18
1.46 min Method E
482.06


1
H NMR (DMSO) δ 7.79 (d, 2H, J=8.8Hz), 7.60 (d, 2H, J=8.8Hz), 7.49 (s, br, 1H), 7.35 (d, 2H, J=8.4Hz), 7.01 (s br, 1H), 6.94 (d, 2H, J=8.8Hz), 4.68 (dd, 2H, J=16Hz, 53Hz), 4.35 (m, 1H), 4.28 (t, 2H, J=4.8Hz), 3.34 (m, 2H), 2.86 (s, 6H), 1.33 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.50 (d, 3H, J=6.0Hz)






293


972







973







974





11
white residue
509.21
1.52 min Method E
M + Na 532.03


1
H NMR (DMSO) δ 7.79 (d, 2H, J=8.4Hz), 7.60 (d, 2H, J=8.4Hz), 7.48 (s, br, 1H), 7.35 (d, 2H, J=8.8Hz), 7.01 (s br, 1H), 6.94 (d, 2H, J=8.8Hz), 4.68 (dd, 2H, J=17Hz, 54Hz), 4.35 (m, 1H), 4.28 (t, 2H, J=4.8Hz), 3.51 (m, 3H), 3.21 (m, 3H), 1.29 (m, 9H), 0.80 (d, 3H, J=6.0Hz), 0.50 (d, 3H, J=6.0Hz)






294


975







976







977





11
light brown solid
544.12
1.78 min Method E
544.13


1
H NMR (DMSO) δ 7.78 (d, 2H, J=8.9Hz), 7.57 (d, 2H, J=8.0Hz), 7.45 (s, br, 1H), 7.27 (d, 2H, J=8.0Hz), 7.17 (t, 2H, J=8.9Hz) 7.00 (s br, 1H), 6.84 (d, 2H, J=8.0Hz), 6.75 (d, 2H, J=8.0Hz), 6.62 (t, 1H, J=8.0Hz), 4.65 (dd, 2H, J=17Hz, 41Hz), 4.34 (m, 1H), 4.10 (t, 2H, J=5.5Hz), 3.71 (t, 2H, J=7.9Hz), 2.96 (m, 3H),



# 1.32 (m, 3H), 0.79 (d, 3H, J=6.0Hz), 0.49 (d, 3H, J=6.0Hz)





295


978







979







980





11
white powder
558.14
1.62 min Method E
558.10


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.6Hz), 7.60 (d, 2H, J=8.6Hz), 7.54 (m, 2H), 7.49 (m, 4H), 7.34 (d, 2H, J=8.6Hz) 7.01 (s br, 1H), 6.93 (d, 2H, J=8.6Hz), 4.68 (dd, 2H, J=17.0Hz, 54Hz), 4.47 (m, 1H), 4.36 (m, 4Hz), 3.50 (m, 2H), 2.80 (s, 3H), 1.34 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.51 (d, 3H, J=6.0Hz)






296


981







982







983





11
white powder
508.08
1.49 min Method E
508.07


1
H NMR (DMSO) δ 7.79 (d, 2H, J=8.6Hz), 7.61 (d, 2H, J=8.6Hz), 7.49 (s, br, 1H), 7.35 (d, 2H, J=8.6Hz), 7.00 (s br, 1H), 6.94 (d, 2H, J=8.6Hz), 4.68 (dd, 2H, J=17.0Hz, 53Hz), 4.35 (m, 1H), 4.27 (m, 2H), 3.59 (m, 4H), 3.13 (m, 2H), 2.03 (m, 2H), 1.89 (m, 2H), 1.34 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.52 (d, 3H, J=6.0Hz)






297


984







985







986





11
off white solid
524.08
1.46 min Method E
524.09


1
H NMR (DMSO) δ 7.78 (d, 2H, J=8.9Hz), 7.57 (d, 2H, J=8.0Hz), 7.45 (s, br, 1H), 7.27 (d, 2H, J=8.0Hz), 7.17 (t, 2H, J=8.9Hz) 7.00 (s br, 1H), 6.84 (d, 2H, J=8.0Hz), 6.75 (d, 2H, J=8.0Hz), 6.62 (t, 1H, J=8.0Hz), 4.65 (dd, 2H, J=17Hz, 41Hz), 4.34 (m, 1H), 4.10 (t, 2H, J=5.5Hz), 3.71 (t, 2H, J=7.9Hz), 2.96 (m, 3H),



# 1.32 (m, 3H), 0.79 (d, 3H, J=6.0Hz), 0.49 (d, 3H, J=6.0Hz)





298


987







988







989





11
white solid
540.15
1.52 min Method E
540.06


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.8Hz), 7.60 (d, 2H, J=8.0Hz), 7.48 (s br, 1H), 7.35 (d, 2H, J=8.8Hz), 7.01 (s br, 1H) 6.95 (d, 2H, J=8.8Hz), 4.68 (dd, 2H, J=16.4Hz, 55Hz), 4.34 (m, 3H), 3.79 (m, 2H), 3.58 (m, 2H), 3.27 (m, 2H), 3.02 (m, 2H), 2.89 (m, 2H), 1.34 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.52 (d, 3H, J=6.0Hz)






299


990







991







992





11
light orange solid
537.13
1.43 min Method E
537.13


1
H NMR (DMSO) δ 7.79 (d, 2H, J=8.8Hz), 7.59 (d, 2H, J=8.0Hz), 7.48 (s br, 1H), 7.31 (d, 2H, J=8.8Hz), 7.00 (s br, 1H) 6.88 (d, 2H, J=8.8Hz), 4.66 (dd, 2H, J=16.4Hz, 49Hz), 4.35 (m, 1H), 4.11 (m, 2H), 3.18 (m, 9H), 2.78 (m, 3H), 2.63 (m, 1H), 1.34 (m, 3H), 0.80 (d, 3H, J=6.0Hz), 0.51 (d, 3H, J=6.0Hz)






300


993







994







995





2
tan solid
507.10
1.19 min Method B
507.2 


1
H NMR (CDCl3) δ 7.63 (d, 2H, J=8.0Hz), 7.41 (d, 2H, J=8.0Hz), 7.13-7.24 (m, 2H), 6.74-6.80 (m, 2H), 6.23 (s, br, 1H), 5.13 (s, br, 1H), 4.37 (dd, 2H, J=50Hz, 15Hz), 4.11-4.19 (m, 1H), 3.77-3.81 (m, 1H), 3.44 (s, 6H), 3.06-3.13 (m, 8H), 1.93-1.96 (m, 1H), 1.25-1.29 (m, 1H), 0.95-1.09 (m, 2H), 0.71 (t, 3H, J=8.0Hz).






301


996







997







998





10
yellow foam
465.02
1.22 Method B
465.25


1
H NMR (CDCl3) TFA salt: δ 8.07 (s, 1H), 7.91 (d, 1H, J=9.6Hz), 7.74 (d, 2H, J=6.8Hz), 7.52(d, 2H, (J=6.8Hz), 6.64 (d, 1H, J=9.6Hz), 6.36 (s, 1H), 5.77 (s, 1H), 4.52 (d, 1H, J=16.0Hz), 4.28 (dd, 1H, J=5.6Hz, 6.0Hz), 4.21 (d, 1H, J=16.0Hz), 3.62 (m, 4H), 2.13 (m, 4H), 1.84 (m, 1H), 1.32 (m, 1H), 0.96 (m, 1H), 0.79 (d, 3H,



# J=6.8Hz), 0.72 (d, 3H, J=6.8Hz).





302


999







1000







1001





10
yellow foam
479.05
1.28 Method B
479.06


1
H NMR (CDCl3) TFA salt: δ 8.01 (s, 1H), 7.95 (d, 1H, J=9.6Hz), 7.75 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.4Hz), 6.88 (d, 1H, J=9.6Hz), 6.43 (s, 1H), 6.04 (s, 1H), 4.53 (d, 1H, J=16.0Hz), 4.28 (dd, 1H, J=5.6Hz, 6.0Hz), 4.20 (d, 1H, J=16.0Hz), 3.65 (m, 4H), 1.82 (m, 1H), 1.74 (m, 6H), 1.31 (m, 1H), 0.95 (m, 1H), 0.78 (d, 3H,



# J=6.4Hz), 0.71 (d, 3H, J=6.4Hz).





303


1002







1003







1004





10
white solid
481.02
1.16 Method B
481.05


1
H NMR (CDCl3) TFA salt: δ 8.25 (s, 1H), 8.06 (d, 1H, J=9.6Hz), 7.74 (d, 2H, J=8.0Hz), 7.54 (d, 2H, J=8.0Hz), 6.91 (d, 1H, J=9.6Hz), 6.55 (s, 1H), 6.28 (s, 1H), 4.61 (d, 1H, J=16.0Hz), 4.28 (dd, 1H, J=5.2Hz, 6.2Hz), 4.21 (d, 1H, J=16.0Hz), 3.87 (m, 4H), 3.67 (m, 4H), 1.84 (m, 1H), 1.27 (m, 1H), 0.93 (m,



# 1H), 0.76 (d, 3H, J=6.4Hz), 0.72 (d, 3H, J=6.4Hz).





304


1005







1006







1007





10
brown solid
493.07
1.357 Method B
493.04


1
H NMR (CDCl3) TFA salt: δ 8.04 (s, 1H), 7.93 (d, 1H, J=9.2Hz), 7.73 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.0Hz), 6.69 (d, 1H, J=9.2Hz), 6.38 (s, 1H), 5.98 (s, 1H), 4.50 (d, 1H, J=16.0Hz), 4.30 (dd, 1H, J=5.6Hz, 6.0Hz), 4.22 (d, 1H, J=16.0Hz), 4.20 (m, 2H), 3.87 (m, 4H), 2.24 (m, 2H), 1.90 (m, 2H), 1.84 (m, 1H), 1.36 (d, 3H,



# J=2.0Hz), 1.34 (d, 3H, J=2.0Hz), 1.32 (m, 1H), 0.98 (m, 1H), 0.79 (d, 3H, J=6.4Hz), 0.72 (d, 3H, J=6.4Hz).





305


1008







1009







1010





7
white solid
513
1.03 min Method A
513.36


1
H NMR (CDCl3, 500 MHz) δ 7.72 (d, 2H, J=8.5), 7.50 (d, 2H, J=7.0), 6.65 (s, 1H), 6.35 (s, 1H), 4.14 (dd, 1H, J=5.5, 9.0), 3.25 (dd, 1H, J=10, 14), 1.35-2.95 (m, 24H), 1.15-1.30 (m, 3H), 0.72 (d, 3H, J=6.5), 0.67 (d, 3H, J=6.7).






306


1011







1012







1013





7
white solid
487
1.43 min Method A
 487.019


1
H NMR (CDCl3, 300 MHz) δ 7.72 (d, 2H, J=8.4), 7.51 (d, 2H, J=8.7), 6.67 (d, 1H, J=24.3), 5.40 (d, 1H, J=12, 6), 4.54 (br s, 1H), 3.90-4.20 (m, 4H), 3.40-3.55 (m, 2H), 3.05-3.35 (m, 2H), 2.85-3.05 (m, 2H), 2.40-2.60 (m, 1H), 2.35 (d, 6H, J=8.1), 0.60-1.95 (m, 11H).






307


1014







1015







1016





1-Method A
clear oil
444.03
1.28 min Method B
444.04


1
H NMR (CDCl3) δ 7.72 (d, J=6.8Hz, 2H), 7.52 (d, J=6.8Hz, 2H), 6.75 (s, br, 1H), 5.79 (s, br, 1H), 4.14 (dd, J=9.6Hz, 4.8Hz, 1H), 3.23 (dd, J=14.4Hz, 10.0Hz, 1H), 3.12 (m, 1H), 2.92 (dd, J=14.4Hz, 4.8Hz, 1H), 2.77 (m, 6H), 2.09 (m, 2H), 1.83 (m, 1H), 1.71 (m, 1H), 0.75-1.52 (m, 8H), 0.73 (d,



# J=6.8Hz, 3H), 0.67 (d, J=6.8Hz, 3H).





308


1017







1018







1019





23
tan foam
495.04
1.31 min Method A
495.14


1
H NMR, 400Hz, (CDCl3) δ 8.85 (s, 1H, NH), 8.02 (d, 2H, J=8.0Hz), 7.75 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.29 (d, 2H, J=8.0Hz), 6.23 (s, br, 1H), 5.39 (s, br, 1H), 4.62 (m, 4H), 3.25 (t, 1H, J=6.0Hz), 2.95 (s, 6H), 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)






309


1020







1021







1022





23
tan foam
535.11
1.34 min Method A
535.29


1
H NMR, 400Hz, (CDCl3) δ 8.85 (s, 1H, NH), 8.02 (d, 2H, J=8.0Hz), 7.78 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.30 (d, 2H, J=8.0Hz), 6.25 (s, br, 1H), 5.36 (s, br, 1H), 4.62 (m, 4H), 3.25 (t, 1H, J=6.0Hz), 2.42 (m, 4H), 1.95 (m, 1H), 1.68-1.38 (m, 8H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)






310


1023







1024







1025





23
tan foam
550.12
1.24 min Method A
550.25


1
H NMR, 400Hz, (CDCl3) δ 8.83 (s, 1H, NH), 8.02 (d, 2H, J=8.0Hz), 7.78 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.30 (d, 2H, J=8.0Hz), 6.20 (s, br, 1H), 5.39 (s, br, 1H), 4.71 (d, 1H, Jab=16Hz), 4.48 (d, 1H, Jab=16Hz), 4.26 (s, 2H), 3.25 (m, 1H), 2.67 (m, 8H), 2.40 (s, 3H), 1.95 (m, 1H), 1.60



# (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





311


1026







1027







1028





7
white solid
492.09
2.30 min Method C
492.16


1
H NMR (CDCl3, 300 MHz) δ 7.73 (d, 2H, J=8.4), 7.48 (d, 2H, J=8.4), 7.15-7.38 (m, 5H), 6.67 (s, 1H), 5.37 (s, 1H), 4.14 (dd, 1H, J=5.4, 9.0), 3.47 (s, 2H), 3.24 (dd, 1H, J=10, 14), 2.75-3.05 (m, 3H), 1.45-2.05 (m, 10H), 0.75-0.90 (m, 1H), 0.71 (d, 3H, J=6.6), 0.65 (d, 3H, J=6.6).






312


1029







1030







1031





7
white solid
529.15
2.27 min Method C
529.16


1
H NMR (CDCl3, 300 MHz) δ 7.73 (d, 2H, J=8.7), 7.50 (d, 2H, J=8.7), 6.65 (d, 1H, J=5.1), 4.55 (br s, 1H), 4.05-4.30 (m, 1), 3.57-3.95 (m, 1H), 3.10-3.40 (m, 1H), 2.40-3.00 (m, 12H), 1.70-2.00 (m, 3H), 0.90-1.30 (m, 10H), 0.60-0.75 (m, 6H).






313


1032







1033







1034





7
white solid
573.16
1.78 min Method A
573.18


1
H NMR (CDCl3, 300 MHz) δ 7.72 (d, 2H, J=7.8), 7.50 (d, 2H, J=8.7), 6.65 (d, 1H, J=14), 5.35 (s, 1H), 4.45-4.65 (m, 1H), 3.67-4.25 (m, 3H), 3.35-3.60 (m, 3H), 3.10-3.25 (m, 1H), 2.80-3.10 (m, 2H), 2.90 (s, 3H), 0.95-2.00 (m, 7H), 1.46 (s, 9H), 0.73 (br, s, 3H), 0.67 (br, s, 3H).






314


1035







1036







1037





7
white solid
532.11
1.47 min Method A
532.19


1
H NMR (CDCl3, 300 MHz) δ 7.74 (d, 2H, J=8.8), 7.50 (d, 3H, 8.8), 7.17-7.27 (m, 3H), 6.63 (s, 1H), 5.60 (s, 1H), 4.13 (dd, 1H, J=5.5, 9.2), 3.80 (s, 2H), 3.28 (dd, 1H, J=9.5, 15), 2.80-305 (m, 3H), 1.50-2.25 (m, 6H), 1.15-1.45 (m, 5H), 0.72 (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).






315


1038







1039







1040





7
white solid
444.04
2.11 min Method C
444.13


1
H NMR (CDCl3, 300 MHz) δ 7.73 (d, 2H, J=8.7), 7.48 (d, 2H, J=8.4), 6.69 (br s, 1H), 5.45 (br s, 1H), 4.14 (dd, 1H, J=10, 15), 3.15-3.35 (m, 1H), 2.90-3.05 (m, 1H), 2.75-2.90 (m, 1H), 2.60-2.75 (m, 1H), 1.50-2.25 (m, 6H), 1.05-1.40 (m, 3H), 1.00 (d, 6H, J=11), 0.75-0.90 (m, 1H), 0.71 (d, 3H, J=10), 0.66 (d, 3H, J=10).






316


1041







1042







1043





9
yellow foam
515.04
1.50 min Method A
515.08


1
H NMR, 400Hz, (CDCl3) δ 9.97 (s, 1H, NH), 8.82 (d, 2H, J=4.0Hz), 8.02 (d, 2H, J=8.0Hz), 7.76 (d, 2H, J=8.0Hz), 7.73 (d, 2H, J=4.0Hz), 7.46 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 6.27 (s, br, 1H), 5.39 (s, br, 1H), 4.72 (d, 1H, Jab=16Hz), 4.30 (d, 1H, Jab=16Hz), 4.26 (s, 2H), 3.25 (t, 1H, J=6.0Hz),



# 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





317


1044







1045







1046





2
dark wax
482.02
1.42 min Method B
482.01


1
H NMR (CDCl3) δ 7.63 (d, 2H, J=8.2Hz), 7.42 (d, 2H, J=8.2Hz), 6.71-7.08 (m, 3H), 6.20 (s, br, 1H), 5.15 (s, br, 1H), 4.27 (dd, 2H, J=50Hz, 15Hz), 4.23-(t, 1H, J=7.0Hz), 2.99-3.10 (m, 4H), 192-1.95 (m, 1H), 1.53-1.59 (m, 2H), 1.41-1.90 (m, 4H), 1.21-1.24 (m, 1H), 0.98-1.08 (m, 2H), 0.74 (t, 3H, J=8.0Hz).






318


1047







1048







1049





2
dark solid
498.02
1.68 min Method B
498.2 


1
H NMR (CDCl3) δ 7.66 (d, 2H, J=8.0Hz), 7.42 (d, 2H, J=8.0Hz), 6.84-7.02 (m, 3H), 6.20 (s, br, 1H), 5.22 (s, br, 1H), 4.34 (dd, 2H, J=50Hz, 15Hz), 4.19-4.25 (m, 1H), 3.84-3.86 (m, 4H), 3.15-3.17 (m, 1H), 3.03-3.06 (m, 4H), 1.31-1.77 (m, 2H) , 0.95 (d, 3H, J=7.0Hz), 0.83 (d, 3H, J=7.0Hz).






319


1050







1051







1052





9
tan foam
515.04
1.77 min Method A
515.15


1
H NMR, 400Hz, (CDCl3) δ 9.90 (s, 1H, NH), 8.51 (d, 1H, J=4.0Hz), 8.11 (d, 2H, J=8.0Hz), 8.01 (d, 2H, J=8.0Hz), 7.78 (m, 3H), 7.59 (d, 2H, J=8.0Hz), 7.38 (d, 2H, J=8.0Hz), 7.32 (t, 1H, J=4.0Hz), 6.27 (s, br, 1H), 5.38 (s, br, 1H), 4.71 (d, 1H, Jab=16Hz), 4.31 (d, 1H, Jab=16Hz), 3.25 (t, 1H,



# J=6.0Hz), 1.95 (m, 1H), 1.60 (m, 2H), 0.98 (d, 3H, J=7.0Hz), 0.94 (d, 3H, J=7.0Hz)





320


1053







1054







1055





2
tan solid
511.06
1.12 min Method B
511.2 


1
H NMR (d6DMSO) δ 7.78 (d, 2H, J=8.2Hz), 7.55 (d, 2H, J=8.2Hz), 7.02-7.14 (m, 3H), 6.80 (s, br, 1H), 4.82 (s, br, 1H), 3.58-4.63 (m, 2H), 4.32-4.38 (m, 1H), 3.42-3.56 (m, 4H), 3.16-3.21 (m, 1H), 2.84 (s, 3H), 2.49-2.51 (m, 4H), 1.85 (s, 3H), 1.76-1.82 (m, 1H) , 1.21-1.33 (m, 2H), 0.82 (d, 3H,



# J=7.0Hz), 0.56 (d, 3H, J=7.0Hz).





321


1056







1057







1058





7
white solid
486.08
2.22 min Method C
486.12


1
H NMR (CDCl3, 300 MHz) δ 7.73 (d, 2H, J=8.5), 7.49 (d, 2H, J=8.6), 6.67 (s, 1H), 5.35 (s, 1H), 4.15 (dd, 1H, J=5.8, 9.2), 4.05 (br s, 1H), 3.85 (dd, 1H, J=7.0, 15), 3.73 (dd, 1H, J=7.3, 15), 3.20-3.29 (m, 1H, 2.95-3.05 (m, 3H), 2.43-2.51 (br s, 2H), 1.20-2.10 (m, 14H), 0.80-0.90 (m, 1H), 0.72 (d, 3H,



J=6.7), 0.67 (d, 3H, J=6.7).





322


1059







1060







1061





7
white solid
448.00
1.34 min Method A
448.24


1
H NMR (CDCl3, 300 MHz) δ 7.73 (d, 2H, J=8.7), 7.48 (d, 2H, J=8.7), 6.67 (s, 1H), 5.43 (s, 1H), 4.60 (d, 1H, J=5.1), 4.45 (d, 1H, J=4.8), 4.15 (dd, 1H, J=5.6, 9.0), 3.25 (dd, 1H, J=10, 15), 2.85-3.05 (m, 3H), 2.70 (t, 1H, J=5.0), 2.67 (t, 1H, J=4.7), 1.50-2.15 (m, 6H), 1.10-1.40 (3H), 0.75-0.90 (m, 1H),



# 0.71 (d, 3H, J=6.3), 0.66 (d, 3H, J=6.7).





323


1062







1063







1064





9
tan solid
465.14
1.52 min Method B
466.1 


1
H NMR (CDCl3) δ 7.68 (d, 2H, J=8.4Hz), 7.46 (d, 2H, J=8.4Hz), 7.43 (d, 2H, J=8.0Hz), 7.10 (d, 2H, J=8.0Hz), 6.19 (s, br, 1H), 5.16 (s, br, 1H), 4.44 (dd, 2H, J=50Hz, 15Hz), 4.31-4.35 (m, 1H), 3.23 (s, 3H), 1.85 (s, 3H), 1.76-1.82 (m, 1H), 1.14-1.35 (m, 2H), 0.78 (d, 3H, J=7.0Hz), 0.65 (d, 3H, J=7.0Hz).






324


1065







1066







1067





7
white powder
473.04
1.54 mins Method A
473.17


1
H NMR (CDCl3, 300 MHz) δ 7.73 (d, 2H, J=8.1), 7.50 (d, 2H, J=8.1), 6.67 (s, 1H), 5.85 (s, 1H), 4.15 (dd, 1H, J=5.1, 9.2), 3.65 (d, 2H, J=10), 1H, J=4.4, 14), 2.60-2.85 (m, 3H), 2.80 (s, 6H), 1.75-1.95 (m, 3H), 1.05-1.30 (m, 3H), 0.72 (d, 3H, J=6.2), 0.65 (d, 3H, J=6.6).






325


1068







1069







1070





7
white solid
507.06
1.41 min Method A
507.20


1
H NMR (CDCl3, 300 MHz), δ 8.64 (s, 2H), 7.72 (d, 3H, J=8.4), 7.50 (d, 2H, J=8.8), 7.35 (dd, 1H, J=4.8, 7.7), 6.63 (s, 1H), 5.39 (br s, 1H), 4.69 (br s, 1H), 4.05-4.20 (m, 1H), 3.72 (br s, 1H), 3..25 (m, 1H), 2.50-3.200 (m, 3H), 1.50-2.10 (m, 5H), 1.00-1.40 (m, 3H), 0.72 (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).






326


1071







1072







1073





1-Method A
white solid
423.90
1.55 min Method B
424.11


1
H NMR (CDCl3) δ 7.69-7.71 (m, 3H), 7.48-7.56 (m, 4H), 6.11 (s, br, 1H), 5.22 (s, br, 1H), 4.57 (dd, 2H, J=50Hz, 15Hz), 4.22-4.26 (m, 1H), 1.80-1.83 (m, 1H), 0.99-1.23 (m, 3H), 0.74 (t, 3H, J=8.0Hz).






327


1074







1075







1076





1-Method A
white solid
459.06
1.57 min Method G
(M + Na)+481.9 


1
H NMR (400 MHz, DMSO) δ 7.84 (d, 2H, J=8.8), 7.80 (d, 2H, J=8.6), 7.65 (d, 2H, J=8.7), 7.59 (d, 2H, J=8.3,), 7.47 (s, 1H), 7.25 (s, 1H). 4.43 (dd, 1H, J=8.5, 6.6), 2.05 (m, 2H), 1.82 (m, 1H), 1.49 (m, 1H).






328


1077







1078







1079





1-Method A
white solid
502.06
1.83 min Method G
(M + H)+502.9 


1
H NMR (400 MHz, DMSO) δ 7.84 (d, 2H, J=8.8), 7.68 (d, 2H, J=8.0), 7.65-7.60 (m, 4H), 7.47 (s, 1H), 7.26 (s, 1H). 4.79 (s, 2H), 4.45 (dd, 1H, J=8.8, 6.1), 2.03 (m, 2H), 1.82 (m, 1H), 1.52 (m, 1H).






329


1080







1081







1082





1-Method A
white solid
492.07
2.39 min Method G
(M + H)+492.9 


1
H NMR (400 MHz, DMSO) δ 7.91 (d, 2H, J=8.3), 7.85 (d, 2H, J=8.8), 7.64 (d, 2H, J=8.6), 7.54 (d, 2H, J=8.3), 7.43 (s, 1H), 7.23 (s, 1H). 4.79 (ABq, 2H, Δυ=3.4, Jab=17.2), 4.42 (dd, 1H, J=8.5, 6.1), 3.85 (s, 3H), 2.02 (m, 2H), 1.80 (m, 1H), 1.52 (m, 1H).






330


1083







1084







1085





1-Method A
white solid
473.08
1.60 Method G
(M + Na)+(495.9 


1
H NMR (400 MHz, DMSO) δ 7.83 (d, 2H, J=8.8), 7.80 (d, 2H, J=8.3), 7.63 (d, 2H, J=8.6), 7.59 (d, 2H, J=8.3), 7.50 (s, 1H), 7.13 (s, 1H). 4.83 (ABq, 2H, Δυ=36.2, Jab=17.6), 4.37 (dd, 1H, J=8.5, 6.3), 2.09 (m, 1H), 1.88 (m, 1H), 1.64 (m, 1H), 1.45 (m, 1H), 1.27 (m, 2H).






331


1086







1087







1088





1-Method A
white solid
516.07
1.84 Method G
(M + H)+516.9 


1
H NMR (400 MHz, DMSO) δ 7.82 (d, 2H, J=8.8), 7.69-7.60 (m, 6H), 7.49 (s, 1H), 7.13 (s, 1H). 4.85 (ABq, 2H, Δυ=27.9, Jab=17.1), 4.38 (dd, 1H, J=9.0, 5.9), 2.05 (m, 1H), 1.75 (m, 1H), 1.65 (m, 1H), 1.46 (m, 1H), 1.27 (m, 2H).






332


1089







1090







1091





1-Method A
white solid
506.09
1.67 Method G
(M + H)+506.9 


1
H NMR (400 MHz, DMSO) δ 7.90 (d, 2H, J=8.6), 7.83 (d, 2H, J=8.8), 7.62 (d, 2H, J=8.8), 7.54 (d, 2H, J=8.3), 7.47 (s, 1H), 7.11 (s, 1H). 4.84 (ABq, 2H, Δυ=36.3, Jab=17.4), 4.36 (dd, 1H, J=8.6, 6.1), 3.85 (s, 3H), 2.04 (m, 1H), 1.82 (m, 1H), 1.62 (m, 1H), 1.45 (m, 1H), 1.26 (m, 2H).






333


1092







1093







1094





19
white solid
437.10
1.48 Method G
(M + Na)+459.9 


1
H NMR (400 MHz, DMSO) δ 7.82 (d, 2H, J=8.8), 7.79 (d, 2H, J=8.5), 7.63 (d, 2H, J=8.8), 7.58 (d, 2H, J=8.3), 7.52 (s, 1H), 7.09 (s, 1H). 4.82 (ABq, 2H, Δυ=37.2, Jab=17.6), 4.34 (dd, 1H, J=8.0, 6.6), 4.25 (dt, 2H, Jd=47.2, Jt=5.7), 1.58 (m,



# 1H), 1.49-1.12 (m, 5H).





334


1095







1096







1097





19
white solid
480.09
1.76 Method G
(M + Na)+502.9 


1
H NMR (400 MHz, DMSO) δ 7.80 (d, 2H, J=8.6), 7.67 (d, 2H, J=8.6), 7.60 (m, 4H), 7.52 (s, 1H), 7.09 (s, 1H), 4.83 (ABq, 2H, Δυ=30.1, Jab=17.4), 4.36 (dd, 1H, J=8.6, 6.2), 4.22 (dt, 2H, Jd=47.5, Jt=6.4), 1.61 (m, 1H), 1.48-1.11 (m, 5H).






335


1098







1099







1100





19
white solid
470.11
1.58 Method G
(M + H)+471.0 


1
H NMR (400 MHz, DMSO) δ 7.90 (d, 2H, J=8.3), 7.82 (d, 2H, J=8.8), 7.62 (d, 2H, J=8.8), 7.53 (d, 2H, J=8.4), 7.50 (s, 1H), 7.07 (s, 1H). 4.82 (ABq, 2H, Δυ=39.4, Jab=17.4), 4.34 (dd, 1H, J=8.3, 6.6), 4.22 (dt, 2H, Jd=41.6, Jt=6.1), 3.85 (s, 3H), 1.58 (m, 1H), 1.46-1.12 (m, 5H).






336


1101







1102







1103





19
white solid
423.08
1.43 Method G
(M + H)+423.9 


1
H NMR (400 MHz, DMSO) δ 7.82 (d, 2H, J=8.8), 7.78 (d, 2H, J=8.3), 7.63 (d, 2H, J=6.8), 7.57 (d, 2H, J=8.6), 7.53 (s, 1H), 7.14 (s, 1H), 4.81 (ABq, 2H, Δυ=36.2, Jab=17.6), 4.38 (t, 1H, J=7.6), 4.27 (m, 1H), 4.15 (m, 1H), 1.64 (m, 1H), 1.54-1.36 (m, 3H).






337


1104







1105







1106





19
white solid
466.07
1.72 Method G
(M + Na)+489.0 


1
H NMR (400 MHz, DMSO) δ 7.80 (d, 2H, J=8.8), 7.66 (d, 2H, J=8.1), 7.62-7.57 (m, 4H), 7.54 (s, 1H), 7.15 (s, 1H), 4.81 (ABq, 2H, Δυ=29.1, Jab=17.1), 4.40 (t, 1H, J=6.9), 4.25 (m, 1H), 4.13 (m, 1H), 1.67 (m, 1H), 1.55-1.39 (m, 3H).






338


1107







1108







1109





19
yellow solid
456.09
1.54 Method G
(M + H)+457.0 


1
H NMR (400 MHz, DMSO) δ 7.90 (d, 2H, J=8.3), 7.83 (d, 2H, J=8.8), 7.62 (d, 2H, J=8.8), 7.52 (d, 2H, J=8.3), 7.50 (s, 1H), 7.11 (s, 1H), 4.82 (ABq, 2H, Δυ=54.5, Jab=17.3), 4.37 (t, 1H, J=8.0), 4.28-4.03 (m, 2H), 3.85 (s, 3H), 1.64 (m, 1H), 1.53-1.36 (m, 3H).






339


1110







1111







1112





19
white solid
452.86
1.85 min Method A
452.91


1
H NMR (CDCl3, 300 MHz) δ 7.70 (d, 2H, J=8.7), 7.54 (d, 2H, J=8.4), 7.42-7.49 (m, 4H), 6.31 (br s, 1H), 5.23 (br s, 1H), 4.58-4.63 (m, 2H), 4.33-4.41 (m, 2H), 4.19. (t, 1H, J=4.5), 2.18-2.37 (m, 1H), 1.54-1.66 (m, 1H).






340


1113







1114







1115





19
white solid
442.89
1.68 min Method A
442.90


1
H NMR (CDCl3, 300 MHz) δ 7.96 (d, 2H, J=8.4), 7.72 (d, 2H, J=8.7), 7.48 (d, 2H, J=8.7), 7.39 (d, 2H, J=8.4), 6.32 (br s, 1H), 5.18 (br s, 1H), 4.54-4.63 (m, 2H), 4.30-4.42 (m, 2H), 4.16 (t, 1H, J=4.5), 3.90 (s, 3H), 2.18-2.37 (m, 1H), 1.54-1.66 (m, 1H).






341


1116







1117







1118





19
white solid
409.87
1.57 min Method A
410.07


1
H NMR (CDCl3, 300 MHz) δ 7.72 (dd, 2H, J=1.8, 8.7), 7.59 (d, 2H, J=8.1), 7.50 (dd, 2H, J=2.1, 8.7), 7.46 (d, 2H, J=8.1), 6.30 (br s, 1H), 5.21 (br s, 1H), 4.56-4.68 (m, 2H), 4.31-4.37 (m, 2H), 4.18 (t, 1H, J=4.8), 2.17-2.37 (m, 1H), 1.48-1.64 (m, 1H).






342


1119







1120







1121





19
white solid
470.85
1.88 min Method A
470.89


1
H NMR (CDCl3, 300 MHz) δ 7.70 (d, 2H, J=8.7), 7.56 (d, 2H, J=8.4), 7.51 (d, 2H, J=8.4), 7.43 (d, 2H, J=8.1), 6.32 (br s, 1H), 5.75 (tm, 1H, JH-F=57), 5.34 (br s, 1H), 4.52-4.63 (m, 2H), 4.32 (d, 1H, J=15.6), 2.51-2.66 (m, 1H), 1.54-1.69 (m, 1H).






343


1122







1123







1124





19
white solid
460.88
1.74 min Method A
461.07


1
H NMR (CDCl3, 300 MHz) δ 7.97 (dd, 2H, J=2.0, 8.4), 7.72 (d, 2H, J=8.7), 7.51 (d, 2H, J=8.7), 7.38 (d, 2H, J=8.4), 6.32 (br s, 1H), 5.75 (tm, 1H, JH-F=57), 5.18 (br s, 1H), 4.60 (d, 1H, J=15.6), 4.50-4.55 (m, 1H), 4.32 (d, 1H, J=15.6), 3.91 (s, 3H), 2.51-2.66 (m, 1H), 1.54-1.69 (m, 1H).






344


1125







1126







1127





19
white solid
427.85
1.62 min Method A
428.06


1
H NMR (CDCl3, 300 MHz) δ 7.70 (d, 2H, J=8.7), 7.61 (d, 2H, J=8.1), 7.53 (d, 2H, J=8.7), 7.45 (d, 2H, J=7.8), 6.32 (br s, 1H), 5.71 (tm, 1H, JH-F=57), 5.21 (br s, 1H), 4.64 (d, 1H, J=15.6), 4.51-4.55 (m, 1H), 4.28 (d, 1H, J=15.6), 2.48-2.60 (m, 1H), 1.54-1.69 (m, 1H).






345


1128







1129







1130





1-Method A, sep cond 1
white solid
502.87
1.99 min Method E
503.02


1
H NMR (DMSO) δ 7.83 (d, 2H, J=8.8Hz), 7.64 (m, 6H), 7.46 (s br, 1H), 7.25 (s br, 1H) 4.79 (s, 2H), 4.44 (m, 1H), 2.03 (m, 2H), 1.83 (m, 1H), 1.50 (m, 1H)






346


1131







1132







1133





1-Method A, sep cond 2
white solid
459.88
1.76 min Method E
460.13


1
H NMR (DMSO) δ 7.84 (d, 2H, J=8.0Hz), 7.80 (d, 2H, J=7.7Hz), 7.65 (d, 2H, J=8.2Hz), 7.59 (d, 2H, J=7.7Hz), 7.47 (s br, 1H), 7.25 (s br, 1H), 4.78 (AB2, 2H, Δυ=5Hz, Jab=17Hz), 4.43 (m, 1H), 2.05 (m, 2H), 1.83 (m, 1H), 1.48 (m, 1H)






347


1134







1135







1136





1-Method A, sep cond 3
yellow waxy solid
437.92
1.67 min Method E
438.22


1
H NMR (DMSO) δ 7.81 (m, 4H), 7.61 (m, 4H), 7.53 (s br, 1H), 7.09 (s br, 1H), 4.81 (AB2, 2H, Δυ=5Hz, Jab=17Hz), 4.33 (m, 2H), 4.19 (t, 1H, J=6.0Hz), 1.44 (m, 6H)






348


1137







1138







1139





1-Method A, sep cond 3
white powder
480.91
1.94 min Method E
M + Na 503.14


1
H NMR (DMSO) δ 7.99 (d, 2H, J=8.8Hz), 7.82 (m, 6H), 7.70 (s br, 1H), 7.27 (s br, 1H), 5.00 (m, 2H), 4.51 (m, 2H), 4.33 (m, 1H), 1.77 (m, 1H), 1.47 (m, 6H)






349


1140







1141







1142





1-Method A
white powder
470.94
1.59 min Method B
493.17 M + Na+


1
H NMR (CDCl3) δ 7.94 (d, J=8.0Hz, 2H), 7.72 (d, J=6.8Hz, 2H), 7.46 (d, J=6.8Hz, 2H), 7.38 (d, J=8.0Hz, 2H), 6.25 (s, br, 1H), 5.26 (s, br, 1H), 4.37-4.62 (m, 3H), 3.90 (s, 3H), 2.45 (m, 1H), 1.45 (m, 1H), 1.27 (d, J=21.2Hz, 3H), 1.17 (d, J=21.6Hz, 3H).






350


1143







1144







1145





22
white solid
484.88
1.93 min Method E
485.09


1
H NMR (DMSO) δ 7.81 (d, 2H, J=8.8Hz), 7.63 (m, 6H), 7.51 (s br, 1H), 7.21 (s br, 1H), 5.85 (t, 1H, 56Hz), 4.81 (AB2, 2H, Δυ=5Hz, Jab=15Hz), 4.42 (t, 1H, J=8.0Hz), 1.49 (m, 4H)






351


1146







1147







1148





1-Method A
white solid
437.92
1.49 min Method B
460.13 M + Na+


1
H NMR (CDCl3) δ 7.72 (d, J=6.8Hz, 2H), 7.58 (d, J=8.4Hz, 2H), 7.48 (d, J=8.4Hz, 2H), 7.45 (d, J=6.8Hz, 2H), 6.25 (s, br, 1H), 5.28 (s, br, 1H), 4.32-4.64 (m, 3H), 2.45 (m, 1H), 1.38 (m, 1H), 1.24 (d, J=21.2Hz, 3H), 1.21 (d, J=22Hz, 3H),






352


1149







1150







1151





1-Method A
white solid
480.91
1.76 min Method B
503.12 M + Na+


1
H NMR (CDCl3) δ 7.69 (d, J=8.4Hz, 2H), 7.52 (d, J=8.0Hz, 2H), 7.45 (d, J=8.4Hz, 2H), 7.43 (d, J=8.0Hz, 2H), 6.30 (s, br, 1H), 5.44 (s, br, 1H), 4.34-4.66 (m, 3H), 2.49 (m, 1H), 1.46 (m, 1H), 1.26 (d, J=21.6Hz, 3H), 1.22 (d, J=21.6Hz, 3H),






353


1152







1153







1154





18
white solid
466.89
1.41 min Method B
466.16


1
H NMR (CDCl3) δ 7.66 (d, 2H, J=8.4Hz) 7.45-7.55 (m, 6H), 6.17 (s, br, 1H), 5.19 (s, br, 1H), 4.53 (dd, 2H, J=50Hz, 15Hz), 4.34-4.37 (m, 2H), 4.22-4.25 (m, 1H), 2.00-2.05 (m, 1H), 1.43-1.49 (m, 3H).






354


1155







1156







1157





18
white solid
423.90
1.54 min Method B
424.1 


1
H NMR (d6DMSO) δ 7.86 (d, 2H, J=8.0Hz) 7.48-7.75 (m, 6H), 6.56 (s, br, 1H), 5.69 (s, br, 1H), 4.72 (dd, 2H, J=42Hz, 16Hz), 4.51-4.55 (m, 3H), 1.43-2.07 (m, 4H).






355


1158







1159







1160





11
yellow solid
582.02
1.47 min Method E
582.22


1
H NMR (DMSO) δ 7.81 (d, 2H, J=8.8Hz), 7.63 (d, 2H, J=8.5Hz), 7.43 (s br, 1H), 7.24 (m, 4H), 4.64 (s, 2H), 4.42 (m, 3H), 3.99 (m, 2H), 3.62 (m, 6H), 3.23 (m, 2H), 1.85 (m, 4H)






356


1161







1162







1163





11
brown solid
595.06
1.42 min Method E
595.23


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.8Hz), 7.63 (d, 2H, J=8.5Hz), 7.42 (s br, 1H), 7.17 (m, 4H), 4.62 (s, 2H), 4.41 (m, 1H), 4.18 (m, 2H), 3.96 (s, 1H), 3.39 (m, 2H), 3.05 (m, 7H), 2.78 (s, 3H), 1.97 (m, 3H), 1.58 (m, 1H)






357


1164







1165







1166





21
white solid
437.10
1.50 Method G
(M + Na)+pnl 460.2 


1
H NMR (400 MHz, DMSO) δ 7.83 (d, 2H, J=8.5), 7.75 (d, 2H, J=8.3), 7.68 (s, 1H), 7.64 (d, 2H, J=8.6), 7.49 (d, 2H, J=8.1), 7.20 (s, 1H), 4.67 (ABq, 2H, Δυ=28.3, Jab=17.3), 4.54 (dd, 1H, J=9.3, 3.2), 2.23 (m, 1H), 1.42 (m, 1H), 1.25 (d, 3H, J=21.6), 1.21 (d, 3H, J=21.7).






358


1167







1168







1169





21
white solid
480.09
1.76 Method G
(M + Na)+503.2 


1
H NMR (400 MHz, DMSO) δ 7.80 (d, 2H, J=8.6), 7.69 (s, 1H), 7.61 (m, 4H), 7.50 (d, 2H, J=8.1), 7.22 (s, 1H), 4.68 (ABq, 2H, Δυ=2.7, Jab=17.l), 4.57 (dd, 1H, J=9.1, 3.0), 2.26 (m, 1H), 1.47 (m, 1H), 1.24 (d, 3H, J=21.5), 1.22 (d, 3H, J=21.5).






359


1170







1171







1172





21
white solid
470.11
1.62 Method G
(M + Na)+493.2 


1
H NMR (400 MHz, DMSO) δ 7.86 (d, 2H, J=8.3), 7.83 (d, 2H, J=8.8), 7.63 (m, 3H), 7.44 (d, 2H, J=8.3), 7.18 (s, 1H), 4.67 (ABq, 2H, □□=10.3, Jab=17.1), 4.53 (dd, 1H, J=9.3, 2.9), 3.85 (s, 3H), 2.22 (m, 1H), 1.46 (m, 1H), 1.22 (d, 3H, J=21.5), 1.19 (d, 3H, J=21.6).






360


1173







1174







1175





18
white solid
409.87
1.53 min Method B
407.99 (M − H)


1
H NMR (CDCl3) δ 7.72 (d, 2H, J=8.4Hz) 7.58 (d, 2H, J=8.4Hz), 7.50 (d, 2H, J=8.4Hz), 7.45 (d, 2H, J=8.4Hz), 6.29 (s, br, 1H), 5.21 (s, br, 1H), 4.19-4.67 (m, 5H), 2.17-2.28 (m, 1H), 1.49-1.61 (m, 1H).






361


1176







1177







1178





18
white solid
452.86
1.56 min Method B
452.85


1
H NMR (CDCl3) δ 7.69 (d, 2H, J=8.4Hz) 7.56 (d, 2H, J=8.4Hz), 7.49 (d, 2H, J=8.4Hz), 7.43 (d, 2H, J=8.4Hz), 6.31 (s, br, 1H), 5.24 (s, br, 1H), 4.19-4.62 (m, 5H), 2.16-2.30 (m, 1H), 1.56-1.63 (m, 1H).






362


1179







1180







1181





18
white solid
456.93
1.86 min Method B
457.16


1
H NMR (CDCl3, 300 MHz) δ 7.96 (d, 2H, J=8.4), 7.69 (dd, 2H, J=1.8, 8.4), 7.47 (ddd, 2H, J=1.5, 2.1, 8.7), 7.42 (d, 2H, J=8.4), 6.19 (br s, 1H), 5.18 (br s, 1H), 4.64 (d, 1H, J=15.6), 4.42 (d, 1H, J=15.9), 4.30-4.35 (m, 2H), 4.18 (t, 1H, J=3.6), 3.90 (s, 3H), 1.89-2.08 (m, 1H), 1.38-1.50 (m, 3H).






363


1182







1183







1184





18
white solid
456.97
1.80 min Method B
454.98 (neg. ion)


1
H NMR (CDCl3, 300 MHz) δ 7.64 (d, 2H, J=8.7), 7.42 (d, 2H, J=8.7), 7.38 (d, 2H, J=8.4), 7.26 (d, 2H, J=8.4), 6.19 (br, 1H), 5.28 (br s, 1H), 4.51 (d, 1H, J=15.6), 4.39 (d, 1H, J=15.3), 4.30-4.35 (m, 2H), 4.18 (t, 1H, J=3.6), 1.92-2.08 (m, 1H), 1.55 (s, 6H), 1.35-1.50 (m, 3H).






364


1185







1186







1187





18
white solid
442.90
1.73 min Method B
443.12


1
H NMR (CDCl3, 300 MHz) δ 7.81 (d, 2H,.J=8.4), 7.59 (dd, 2H, J=1.8, 8.4), 7.29-7.33 (m, 4H), 6.76 (br, 1H), 5.80 (br s, 1H), 4.62 (d, 1H, J=16.2), 4.44 (d, 1H, J=16.2), 4.31 (t, 1H, J=6.9), 3.85-4.10 (m, 2H), 1.70-1.85 (m, 1H), 1.30-1.48 (m, 3H).






365


1188







1189







1190





11, sep cond 4
off-white solid
585.02
1.47 min Method E
582.18


1
H NMR (DMSO) δ 7.80 (m, 2H), 7.62 (m, 2H), 7.42 (m, 1H), 7.18 (m, 4H), 4.62 (m, 3H), 4.42 (m, 1H), 4.14 (m, 1H), 4.00 (m, 3H), 3.58 (m, 4H), 2.93 (m, 1H), 2.70 (m, 2H), 2.01 (m, 2H), 1.85 (m, 1H), 1.59 (m, 1H)






366


1191







1192







1193





11, sep cond 4
yellow solid
595.06
1.43 min Method E
595.19


1
H NMR (CDCl3) δ 7.72 (d, 2H, J=8.7Hz), 7.52 (d, 2H, J=8.8Hz), 7.14 (m, 1H), 7.01 (m, 1H), 6.87 (m, 1H), 6.24 (s br, 1H), 5.36 (m, 1H), 4.51 (m, 1H), 4.28 (m, 4H), 3.23 (m, 9H), 2.77 (m, 3H), 1.94 (m, 3H), 1.40 (m, 1H)






367


1194







1195







1196





11, sep cond 4
white solid
595.06
1.42 min Method E
595.20


1
H NMR (DMSO) δ 7.80 (m, 2H), 7.62 (m, 2H), 7.42 (s br, 1H), 7.18 (m, 4H), 4.61 (m, 2H), 4.42 (m, 1H), 4.14 (m, 2H), 3.72 (m, 1H), 3.57 (m, 1H), 3.32 (s, 3H), 2.75 (m, 6H), 2.27 (m, 2H), 1.97 (m, 3H), 1.60 (m, 1H)






368


1197







1198







1199





11, sep cond 4
dark yellow solid
546.04
1.55 min Method E
546.20


1
H NMR (CDCl3) δ 7.77 (d, 2H, J=8.5Hz), 7.61 (d, 2H, J=8.5Hz), 7.53 (m, 1H), 7.19 (m, 4H), 4.67 (ABq, 2H, Δυ=35, Jab=16Hz), 4.30 (m, 6H), 4.01 (m, 4H), 3.48 (m, 4H), 1.68 (m, 1H), 1.49 (m, 4H)






369


1200







1201







1202





11, sep cond 4
orange- yellow solid
559.08
1.29 min Method E
559.22


1
H NMR (DMSO) δ 7.77 (d, 2H, J=8.3Hz), 7.60 (d, 2H, J=8.3Hz), 7.50 (s br, 1H), 7.16 (m, 4H), 4.65 (ABq, 2H, Δυ□20, Jab=16Hz), 4.33 (m, 2H), 4.18 (m, 4H), 3.17 (m, 7H), 2.78 (s, 3H), 1.67 (m, 1H), 1.50 (m, 5H)






370


1203







1204







1205





11, sep cond 4
yellow solid
528.05
1.32 min Method E
528.17


1
H NMR (DMSO) δ 7.74 (d, 2H, J=8.3Hz), 7.60 (d, 2H, J=8.3Hz), 7.44 (s br, 1H), 7.35 (d, 2H, J=8.5Hz), 7.08 (s br, 1H), 6.95 (d, 2H, J=8.5Hz), 4.68 (ABq, 2H, Δυ=24, Jab=16Hz), 3.77 (m, 13H), 1.66 (m, 1H), 1.45 (m, 5H)






371


1206







1207







1208





11, sep cond 4
light- orange solid
541.09
1.26 min Method E
541.24


1
H NMR (DMSO) δ 7.77 (d, 2H, J=8.3Hz), 7.59 (d, 2H, J=8.3Hz), 7.43 (s br, 1H), 7.31 (d, 2H, J=8.5Hz), 7.08 (s br, 1H), 6.87 (d, 2H, J=8.8Hz), 4.66 (ABq, 2H, Δυ=16, Jab=16Hz), 4.22 (m, 5H), 3.17 (m, 8H), 2.77 (m, 3H), 1.65 (m, 1H), 1.46 (m, 5H)






372


1209







1210







1211





18, 8
amber glass
511.05
1.09 min Method A
511.21


1
H NMR, 400 Hz, (CDCl3) δ 7.66 (d, 2H, J=8.0Hz), 7.43 (d, 2H, J=8.0Hz), 7.26 (d, 2H, J=8.0Hz), 7.21 (d, 2H, J=8.0Hz), 6.25 (s, br, 1H), 5.45 (s, br, 1H), 4.52 (d, 1H, Jab=12.0Hz), 4.38 (d, 1H, Jab=12.0Hz), 4.29 (m, 2H), 4.18 (t, 1H, J=6.0Hz), 3.72 (m, 1H), 3.47 (s, 2H), 2.29 (s, 3H), 2.0 (m, 2H), 1.83 (m, 2H)






373


1212







1213







1214





18, 8
amber glass
498.01
1.40 min Method A
498.20


1
H NMR, 400 Hz, (CDCl3) δ 7.66 (d, 2H, J=8.0Hz), 7.44 (d, 2H, J=8.0Hz), 7.27 (d, 2H, J=8.0Hz), 7.22 (d, 2H, J=8.0Hz), 6.24 (s, br, 1H), 5.42 (s, br, 1H), 4.52 (d, 1H, Jab=12.0Hz), 4.38 (d, 1H, Jab=12.0Hz), 4.29 (m, 2H), 4.18 (m, 1H), 3.68 (t, 4H, J=4.0Hz), 3.45 (s, 2H), 2.40 (s, br, 4H), 1.99 (m, 1H), 1.45 (m, 3H)






374


1215







1216







1217





18, 8
amber glass
529.08
1.17 min Method A
529.22


1
H NMR, 400 Hz, (CDCl3) δ 7.68 (d, 2H, J=8.0Hz), 7.46 (d, 2H, J=8.0Hz), 7.25 (t, 1H, J=6.0Hz), 7.05 (t, 1H, J=6.0Hz), 6.28 (s, br, 1H), 5.49 (s, br, 1H), 4.54 (d, 1H, Jab=12.0Hz), 4.33 (m, 2H), 4.22 (m, 1H), 3.57 (s, 2H), 2.32 (s, 3H), 2.01 (m, 1H), 1.44 (m, 2H)






375


1218







1219







1220





18, 8
amber glass
516.00
1.10 min Method A
516.17


1
H NMR, 400 Hz, (CDCl3) δ 7.68 (d, 2H, J=8.0Hz), 7.45 (d, 2H, J=8.0Hz), 7.28 (t, 1H, J=6.0Hz), 7.06 (t, 2H, J=6.0Hz), 6.24 (s, br, 1H), 5.40 (s, br, 1H), 4.53 (d, 1H, Jab=12.0Hz), 4.36 (d, 1H, Jab=12.0Hz), 4.34 (m, 2H), 4.21 (m, 1H), 3.69 (t, 4H, J=4.0Hz), 3.53 (s, 2H), 2.44 (s, br, 3H), 2.0 (m, 1H), 1.45 (m, 2H)






376


1221







1222







1223





18
white solid
451.91
1.39 min Method B
451.90


1
H NMR (CDCl3) δ 8.55 (s, 1H), 8.09 (s, 1H), 7.75 (d, 2H, J=8.0Hz) 7.62 (d, 2H, J=8.4Hz), 7.47-7.51 (m, 4H), 6.36 (s, br, 1H), 5.28 (s, br, 1H), 4.31-4.62 (m, 5H), 2.16-2.30 (m, 1H), 1.56-1.66 (m, 1H).






377


1224







1225







1226





22
white solid
441.89
1.65 min Method E
M + Na 464.01


1
H NMR (CDCl3) δ 7.69 (d, 2H, J=8.3Hz), 7.60 (d, 2H, J=8.3Hz), 7.49 (m, 4H), 6.18 (s br, 1H), 5.67 (tt, 1H, J=56Hz, 4.0Hz), 5.22 (s br, 1H), 4.52 (AB2, 2H, Δυ=16, Jab=100Hz), 4.34 (m, 1H), 2.03 (m, 1H), 1.68 (m, 1H), 1.38 (m, 1H), 0.86 (m, 1H)






378


1227







1228







1229





18
white solid
450.92
1.52 min Method B
450.91


1
H NMR (CDCl3) δ 7.91 (s, 1H), 7.71 (m, 3H) 7.63 (d, 2H, J=8.4Hz), 7.50 (d, 2H, J=8.4Hz), 7.41 (d, 2H, J=8.4Hz), 6.47 (s, 1H), 6.34 (s, br, 1H), 5.18 (s, br, 1H), 4.30-4.60 (m, 5H), 2.14-2.29 (m, 1H), 1.56-1.66 (m, 1H).






379


1230







1231







1232





18
white solid
468.96
1.53 min Method B
469.04


1
H NMR (CDCl3) δ 8.64 (s, 1H), 7.98 (d, 2H, J=8.4Hz), 7.75 (d, 2H, J=8.4Hz), 7.45-7.50 (m, 4H), 6.35 (s, br, 1H), 5.20 (s, br, 1H), 4.22-4.64 (m, 5H), 2.20-2.35 (m, 1H), 1.54-1.62 (m, 1H).






380


1233







1234







1235





18
white solid
464.95
1.54 min Method B
464.99


1
H NMR (CDCl3) δ 8.54 (s, 1H), 8.10 (s, 1H), 7.73 (d, 2H, J=8.4Hz), 7.62 (d, 2H, J=8.4Hz), 7.48-7.52 (m, 5H), 6.22 (s, br, 1H), 5.18 (s, br, 1H), 4.32-4.69 (m, 5H), 2.09-2.19 (m, 1H), 1.44-1.61 (m, 3H).






381


1236







1237







1238





18
white solid
465.94
1.49 min Method B
465.96


1
H NMR (CDCl3) δ 8.55 (s, 1H), 8.09 (s, 1H), 7.73 (d, 2H, J=8.4Hz), 7.62 (d, 2H, J=8.4Hz), 7.47-7.51 (m, 4H), 6.36 (s, br, 1H), 5.28 (s, br, 1H), 4.31-4.66 (m, 5H), 2.10-2.39 (m, 1H), 1.56-1.66 (m, 3H).






382


1239







1240







1241





1-Method A
white solid
501.92
1.53 min Method B
502.1 


1
H NMR (CDCl3) δ 8.56 (s, 1H), 8.10 (s, 1H), 7.72 (d, 2H, J=8.4Hz), 7.64 (d, 2H, J=8.4Hz), 7.49-7.52 (m, 4H), 6.23 (s, br, 1H), 5.22 (s, br, 1H), 4.32-4.64 (m, 3H), 1.44-2.20 (m, 4H).






383


1242







1243







1244





1-Method A
white solid
500.93
1.66 min. Method B
501.13


1
H NMR (CDCl3) δ 7.91 (s, 1H), 7.41-7.78 (m, 9H), 6.47 (s, 1H), 6.23 (s, br, 1H), 5.27 (s, br, 1H), 4.30-4.59 (m, 3H), 1.47-2.21 (m, 4H).






384


1245







1246







1247





18, 11
beige solid
532.01
1.36 min Method E
532.18


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.3Hz), 7.61 (d, 2H, J=8.3Hz), 7.56 (s br, 1H), 7.23 (s br, 1H), 7.19 (m, 3H), 4.64 (ABq, 2H, Δυ=16, Jab=16Hz), 4.51 (t, 1H, J=8.0Hz), 4.42 (m, 2H), 4.03 (m, 12H), 2.02 (m, 1H), 1.82 (m, 1H)






385


1248







1249







1250





18, 11
pale orange solid
545.05
1.32 min Method E
545.25


1
H NMR (DMSO) δ 7.79 (d, 2H, J=8.3Hz), 7.60 (d, 2H, J=8.3Hz), 7.54 (s br, 1H), 7.14 (m, 5H), 4.62 (ABq, 2H, Δυ=8.0Hz, Jab=16Hz), 4.51 (t, 1H, J=8.0Hz), 4.24 (m, 5H), 3.17 (m, 8H), 2.78 (m, 3H), 2.02 (m, 1H), 1.81 (m, 1H)






386


1251







1252







1253





18, 11
yellow residue
514.02
1.33 min Method E
514.20


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.3Hz), 7.61 (d, 2H, J=8.3Hz), 7.48 (s br, 1H), 7.33 (d, 2H, J=8.3Hz), 7.15 (s br, 1H), 6.95 (d, 2H, J=8.3Hz), 4.65 (ABq, 2H, Δυ=8.0Hz, Jab=16Hz), 3.86 (m, 15H), 2.03 (m, 1H), 1.79 (m, 1H)






387


1254







1255







1256





18, 11
orange solid
527.06
1.28 min Method E
527.20


1
H NMR (DMSO) δ 7.79 (d, 2H, J=8.3Hz), 7.60 (d, 2H, J=8.3Hz), 7.47 (s br, 1H), 7.30 (d, 2H, J=8.3Hz), 7.15 (s br, 1H), 6.89 (d, 2H, J=8.3Hz), 4.63 (ABq, 2H, Δυ=8.0Hz, Jab=16Hz), 4.48 (t, 1H, J=8.0Hz), 4.15 (m, 4H), 3.24 (m, 10H), 2.79 (m, 3H), 2.03 (m, 1H), 1.80 (m, 1H)






388


1257







1258







1259





18, 11
tan solid
560.06
1.65 min Method E
559.14


1
H NMR (DMSO) δ 7.76 (d, 2H, J=8.3Hz), 7.59 (m, 3H), 7.21 (s br, 1H), 7.08 (s br, 1H), 7.04 (m, 2H), 4.53 (m, 5H), 3.92 (m, 4H), 3.45 (m, 6H), 2.25 (m, 1H), 1.54 (m, 1H), 1.25 (d, 3H, J=20Hz), 1.22 (d, 3H, J=20Hz)






389


1260







1261







1262





18
yellow solid
478.91
1.55 min Method B
491.04 (M+Na)


1
H NMR (CDCl3) δ 7.92 (s, 1H), 7.72-7.76 (m, 3H), 7.65 (d, 2H, J=8.4Hz) 7.52 (d, 2H, J=8.4Hz), 7.40 (d, 2H, J=8.4Hz) 6.47 (s, 1H), 6.30 (s, br, 1H), 5.21 (s, br, 1H), 4.27-4.57 (m, 3H), 2.51-2.60 (m, 1H), 1.53-1.65 (m, 2H).






390


1263







1264







1265





18
white solid
469.90
1.48 min Method B
470.1 


1
H NMR (CDCl3) δ 7.90 (s, 1H), 7.40-7.76 (m, 9H), 6.50 (s, 1H), 6.27 (s, br, 1H), 5.22 (s, br, 1H), 4.25-4.55 (m, 3H), 2.49-2.58 (m, 1H), 1.51-1.62 (m, 2H).






391


1266







1267







1268





+TC,18, 6
white solid
469.97
1.59 min Method A
470.09


1
H NMR (MeOD, 400 MHz) δ 7.77 (ddd, 2H, J=2.0, 2.4, 8.8), 7.71 (d, 2H, J=8.4), 7.51 (ddd, 2H, J=2.0, 2.4, 8.8), 7.48 (d, 2H, J=8.0), 4.80 (d, 1H, J=16.4), 4.72 (d, 1H, J=16.4), 4.47 (t, 1H, J=7.2), 4.05-4.28 (m, 2H), 3.38 (q, 2H, J=7.2), 1.70-1.85 (m, 1H), 1.30-1.48 (m, 3H), 1.20 (t, 3H, J=7.2).






392


1269







1270







1271





18, 6
white solid
500.00
1.57 min Method A
500.10


1
H NMR (MeOD, 400 MHz) δ 7.72-7.81 (m, 4H), 7.48-7.52 (m, 4H), 4.80 (d, 1H, J=16.4), 4.72 (d, 1H, J=16.4), 4.47 (t, 1H, J=7.2), 4.05-4.28 (m, 2H), 3.54 (s, 3H), 3.25-2.36 (m, 4H), 1.70-1.85 (m, 1H), 1.30-1.48 (m, 3H).






393


1272







1273







1274





18, 6
white solid
484.00
1.65 min Method A
484.12


1
H NMR (MeOD, 400 MHz) δ 7.79 (d, 2H, J=8.8), 7.50-7.54 (m, 4H), 7.29-7.33 (m, 2H), 4.79 (d, 1H, J=16.4), 4.72 (d, 1H, J=16.4), 4.47 (t, 1H, J=7.2), 4.05-4.28 (m, 2H), 3.52-.356 (m, 2H), 3.03 and 2.94 (2 s, 3H), 1.70-1.85 (m, 1H), 1.30-1.48 (m, 3H), 1.15-1.25 (m, 3H).






394


1275







1276







1277





18, 6
white solid
533.03
1.36 min Method A
533.15


1
H NMR (MeOD, 400 MHz) δ 8.48 (d, 1H, J=4.8), 7.76-7.82 (m, 5H), 7.50-7.53 (m, 4H), 7.41 (d, 1H, J=8.0), 7.28-7.30 (m, 1H), 4.82 (d, 1H, J=16.0), 4.72 (d, 1H, J=16.4), 4.67 (s, 2H), 4.48 (t, 1H, J=7.2), 4.05-4.28 (m, 2H), 1.70-1.85 (m, 1H), 1.30-1.48 (m, 3H).






395


1278







1279







1280





18, 8
amber glass
501.98
1.17 min Method A
502.25


1
H NMR, 400 Hz, (CDCl3) δ 7.77 (d, 2H, J=8.0Hz), 7.51 (d, 2H, J=8.0Hz), 7.42 (t, 1H, J=6.0Hz), 7.26 (d, 1H, J=6.0Hz), 7.14 (d, 1H, J=6.0Hz), 6.35 (s, br, 1H), 6.07 (s, br, 1H), 4.82 (d, 1H, Jab=12.0Hz), 4.35 (m, 1H), 4.19 (m, 5H), 3.59 (s, br, 4H), 3.48 (d, br, 1H), 2.90 (d, br, 1H), 2.20 (m, 1H), 1.50 (m, 1H)






396


1281







1282







1283





18, 8
amber glass
515.02
1.21 min Method A
515.27


1
H NMR, 400 Hz, (CDCl3) δ 7.76 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.0Hz), 7.32 (m, 1H), 7.19 (d, 1H, J=8.0Hz), 7.07 (d, 1H, J=8.0Hz), 6.35 (s, br, 1H), 5.67 (s, br, 1H), 4.86 (d, 1H, Jab=12.0Hz), 4.70 (s, 2H), 4.56 (m, 2H), 4.17 (m, 6H), 2.80 (s, 3H), 2.22 (m, 1H), 1.54 (m, 1H)






397


1284







1285







1286





18, 8
amber glass
483.98
1.21 min Method A
483.98


1
H NMR, 400 Hz, (CDCl3) δ 7.77 (d, 2H, J=8.0Hz), 7.51 (d, 2H, J=8.0Hz), 7.41 (d, 2H, J=8.0Hz), 7.31 (d, 2H, J=8.0Hz), 6.34 (s, br, 1H), 6.05 (s, br, 1H), 4.83 (d, 1H, Jab=12.0Hz), 4.51 (m 1H), 4.20 (m, 4H), 3.94 (m, 5H), 3.51 (d, 1H, J=12.0Hz), 3.40 (d, 1H, J=12.0Hz), 2.89 (t, 1H, J=6.0Hz), 2.76 (t, 1H, J=6.0Hz),



# 2.20 (m, 1H), 1.51 (m, 1H)





398


1287







1288







1289





18, 8
amber glass
497.03
1.16 min Method A
498.74


1
H NMR, 400 Hz, (CDCl3) δ 7.76 (d, 2H, J=8.0Hz), 7.51 (d, 2H, J=8.0Hz), 7.37 (d, 2H, J=8.0Hz), 7.27 (d, 2H, J=8.0Hz), 6.31 (s, br, 1H), 5.80 (s, br, 1H), 4.82 (d, 1H, Jab=l2.0Hz), 4.55 (m, 2H), 4.16 (m, 5H), 3.82 (d, 1H), 2.78 (s, 3H), 2.21 (m, 1H), 1.52 (m, 1H)






399


1290







1291







1292





20, 11
colorless residue
573.11
1.63 min Method E



1
H NMR (DMSO) δ 7.76 (d, 2H, J=8.3Hz), 7.59 (m, 3H), 7.20 (s br, 1H), 7.08 (s br, 1H), 7.03 (m, 2H), 4.53 (m, 11H), 3.92 (m, 4H), 3.45 (m, 3H), 2.24 (m, 1H), 1.54 (m, 1H), 1.25 (d, 3H, J=20Hz), 1.22 (d, 3H, J=20Hz)






400


1293







1294







1295





11
light yellow solid
564.03
1.51 min Method E
564.19


1
H NMR (DMSO) δ 7.81 (d, 2H, J=8.3Hz), 7.63 (d, 2H, J=8.3Hz), 7.36 (m, 3H), 7.20 (s br, 1H), 6.96 (d, 2H, J=8.0Hz), 4.64 (s, 2H), 4.37 (m, 3H), 4.00 (m, 2H), 3.61 (m, 6H), 3.21 (m, 2H), 1.97 (m, 2H), 1.82 (m, 1H), 1.60 (m, 1H)






401


1296







1297







1298





11
pale orange solid
577.07
1.47 min Method E
577.20


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.0Hz), 7.62 (d, 2H, J=8.0Hz), 7.33 (m, 3H), 7.20 (s br, 1H), 6.89 (d, 2H, J=8.0Hz), 4.63 (s, 2H), 4.39 (m, 1H), 4.10 (m, 2H), 3.25 (m, 10H), 2.77 (s, 3H), 1.89 (m, 2H), 1.81 (m, 1H), 1.60 (m, 1H)






402


1299







1300







1301





20, 11
pale yellow residue
542.07
1.51 min Method E
542.21


1
H NMR (DMSO) δ 7.77 (d, 2H, J=8.0Hz), 7.59 (d, 2H, J=8.0Hz), 7.55 (s br, 1H), 7.26 (d, 2H, J=8.0Hz), 7.15 (s br, 1H), 6.90 (d, 2H, J=8.0Hz), 4.52 (m, 2H), 4.32 (m, 2H), 4.00 (m, 2H), 3.71 (m, 2H), 3.38 (m, 7H), 2.23 (m, 1H), 1.55 (m, 1H), 1.23 (d, 3H, J=20Hz), 1.21 (d, 3H, J=20Hz)






403


1302







1303







1304





20, 11
light orange solid
555.12
1.45 min Method E
555.27


1
H NMR (DMSO) δ 7.76 (d, 2H, J=8.0Hz), 7.58 (d, 2H, J=8.0Hz), 7.54 (s br, 1H), 7.22 (d, 2H, J=8.0Hz), 7.16 (s br, 1H), 6.84 (d, 2H, J=8.0Hz), 4.52 (m, 2H), 4.13 (m, 2H), 3.25 (m, 11H), 2.79 (m, 3H), 2.20 (m, 1H), 1.56 (m, 1H), 1.23 (d, 3H, J=20Hz), 1.20 (d, 3H, J=20Hz)






404


1305







1306







1307





18, 11
pale yellow residue
532.01
1.43 min Method E
532.18


1
H NMR (DMSO) δ 7.81 (d, 2H, J=8.0Hz), 7.62 (d, 2H, J=8.0Hz), 7.48 (s br, 1H), 7.34 (d, 2H, J=8.0Hz), 7.25 (s br, 1H), 6.96 (d, 2H, J=8.0Hz), 5.72 (tt, 1H, J=8.0Hz, 56Hz), 4.61 (s, 2H), 4.52 (t, 1H, J=8.0Hz), 4.33 (t, 2H, J=8.0Hz), 3.96 (m, 2H), 3.56 (m, 2H), 3.22 (m, 2H), 2.24 (m, 1H), 1.95 (m, 1H)






405


1308







1309







1310





18, 11
pale yellow solid
545.05
1.37 min Method E
545.19


1
H NMR (DMSO) δ 7.81 (d, 2H, J=8.0Hz), 7.61 (d, 2H, J=8.0Hz), 7.46 (s br, 1H), 7.30 (d, 2H, J=8.0Hz), 7.25 (s br, 1H), 6.89 (d, 2H, J=8.0Hz), 5.64 (m, 1H), 4.60 (s, 2H), 4.52 (t, 1H, J=8.0Hz), 4.11 (m, 2H), 3.17 (m, 10H), 2.77 (m, 3H), 2.24 (m, 1H), 1.96 (m, 1H)






406


1311







1312







1313





18, 11
yellow residue
550.00
1.43 min Method E
550.16


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.0Hz), 7.62 (d, 2H, J=8.0Hz), 7.56 (s br, 1H), 7.23 (m, 4H), 5.80 (tt, 1H, J=4.0Hz, 56Hz), 3.93 (m, 15H), 2.29 (m, 1H), 1.99 (m, 1H)






407


1314







1315







1316





18, 11
orange solid
563.04
1.37 min Method E
563.21


1
H NMR (DMSO) δ 7.80 (d, 2H, J=8.0Hz), 7.62 (d, 2H, J=8.0Hz), 7.55 (s br, 1H), 7.29 (s br, 1H), 7.15 (m, 3H), 5.78 (tt, 1H, J=4.0Hz, 56Hz), 4.56 (m, 3H), 4.21 (m, 2H), 3.22 (m, 10H), 2.79 (m, 3H), 2.30 (m, 1H), 1.97 (m, 1H)






408


1317







1318







1319





18, 10, sep cond 5
clear oil
442.94
0.993 min Method B
443.19


1
H NMR (CDCl3) δ 8.07 (s, 1H), 7.67 (d, J=6.8Hz, 2H), 7.55 (d, J=8.8Hz, 1H), 7.44 (d, J=6.8Hz, 2H), 6.47 (d, J=8.8Hz, 1H), 6.30 (s, br, 1H), 5.45 (s, br, 1H), 4.20-4.46 (m, 5H), 3.12 (s, 6H), 1.22-1.85 (m, 4H).






409


1320







1321







1322





18, 10, sep cond 5
clear oil
442.94
0.993 min Method B
443.19


1
H NMR (CDCl3) δ 8.07 (s, 1H), 7.67 (d, J=6.5Hz, 2H), 7.55 (d, J=8.8Hz, 1H), 7.44 (d, J=6.8Hz, 2H), 6.47 (d, J=8.8Hz, 1H), 6.30 (s, br, 1H), 5.45 (s, br, 1H), 4.20-4.46 (m, 5H), 3.12 (s, 6H), 1.22-1.85 (m, 4H).






410


1323







1324







1325





20, 8
amber glass
512.04
1.44 min Method B
512.20


1
H NMR, 400 Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.42 (d, 2H, J=8.0Hz), 7.22 (dd, 4H, J=8.0Hz), 6.27 (s, br, 1H), 5.26 (s, br, 1H), 4.58 (d, 1H), 4.43 (d, 1H, Jab=16.0Hz), 4.36 (d, 1H, Jab=16.0Hz), 3.68 (m, 6H), 3.46 (s, 2H), 2.45 (m, 6H), 1.53 (m, 1H), 1.26 (d, 3H, J=20.0Hz), 1.17 (d, 3H, J=20.0Hz)






411


1326







1327







1328





20, 8
amber glass
525.08
1.38 min Method B
525.24


1
H NMR, 400 Hz, (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.42 (d, 2H, J=8.0Hz), 7.22 (dd, 4H, J=8.0Hz), 6.26 (s, br, 1H), 5.24 (s, br, 1H), 4.57 (m, 1H), 4.43 (d, 1H, Jab=16.0Hz), 4.35 (d, 1H, Jab=16.0Hz), 3.48 (s, 2H), 2.47 (m, 7H), 2.30 (s, 3H), 1.26 (d, 3H, J=22.0Hz), 1.18 (d, 3H, J=22.0Hz)






412


1329







1330







1331





18
white solid
427.87
1.39 min Method B
428.13


1
H NMR (CDCl3, 400 MHz) δ 7.72 (dd, 2H, J=2.0, 8.8), 7.61 (d, 2H, J=8.4), 7.53 (dd, 2H, J=2.0, 8.4), 7.45 (d, 2H, J=8.0), 6.32 (br s, 1H), 5.73 (tm, 1H, JH-F=57), 5.22 (br s, 1H), 4.64 (d, 1H, J=16.4), 4.50-4.60 (m, 1H), 4.28 (d, 1H, J=16.4), 2.42-2.60 (m, 1H), 1.50-1.63 (m, 1H).






413


1332







1333







1334





18
white solid
470.86
1.69 min Method B
471.13


1
H NMR (CDCl3, 400 MHz) δ 7.69 (dd, 2H, J=1.6, 8.8), 7.56 (d, 2H, J=8.4), 7.51 (ddd, 2H, J=2.0, 2.4, 8.4), 7.43 (d, 2H, J=8.4), 6.32 (br s, 1H), 5.75 (tm, 1H, JH-F=57), 5.25 (br s, 1H), 4.60 (d, 1H, J=15.6), 4.50-4.60 (m, 1H), 4.32 (d, 1H, J=15.6), 2.50-2.60 (m, 1H), 1.55-1.70 (m, 1H).






414


1335







1336







1337





18, 13
white solid
480.95
1.41 min Method B
481.22


1
H NMR (CDCl3, 400 MHz) δ 7.96 (d, 2H, J=8.4), 7.70 (d, 2H, J=8.4), 7.47-7.50 (m, 4H), 6.22 (br s, 1H), 5.18 (br s, 1H), 4.66 (d, 1H, J=15.6), 4.43 (d, 1H, J=15.6), 4.30-4.35 (m, 2H), 4.19-4.2 1 (m, 1H), 2.61 (s, 3H), 1.93-2.08 (m, 1H), 1.38-1.50 (m, 3H).






415


1338







1339







1340





18, 10
white foam
428.92
1.34 Method B
429.18


1
H NMR (CDCl3) TFA salt δ 8.10 (s, 1H), 8.04 (d, 1H, J=9.2Hz), 7.76 (d, 2H, J=6.8Hz), 7.52 (d, 2H, J=6.8Hz), 6.80 (d, 2H, J=9.2Hz), 6.46 (s, 1H), 6.00 (s, 1H), 4.60 (d, 1H, J=15.6Hz), 4.54 (dd, 1H, J=5.2Hz, 6.2Hz), 4.30 (m, 1H), 4.18 (m, 1H), 4.07 (d, 1H, J=15.6Hz), 3.29 (s, 6H), 2.25 (m, 1H), 1.55 (m, 1H).






416


1341







1342







1343





1-Method A
off-white solid
463.91
1.50 min Method B
464.11


1
H NMR (CDCl3, 300 MHz) δ 8.72 (d, 1H, J=2.4), 7.82 (dd, 1H, J=2.7, 8.4), 7.55 (d, 2H, J=8.1), 7.47 (d, 2H, J=8.1), 7.37 (d, 1H, J=8.4), 5.97 (br s, 1H), 5.26 (br s, 1H), 4.62 (d, 1H, J=16.2), 4.54 (d, 1H, J=15.9), 4.44 (t, 1H, J=7.5), 1.70-1.77 (m, 1H), 1.35-1.43 (m, 1H), 1.21-1.31 (m, 1H),



# 0.85 (d, 3H, J=6.3), 0.67 (d, 3H, J=6.6).





417


1344







1345







1346





1-Method A
white solid
453.95
1.37 min Method B
454.14


1
H NMR (CDCl3, 300 MHz) δ 8.71 (d, 1H, J=3.0), 7.96 (d, 2H, J=8.1), 7.85 (dd, 1H, J=2.4, 8.4), 7.37-7.43 (m, 3H), 5.99 (br s, 1H), 5.24 (br s, 1H), 4.61 (d, 1H, J=15.9), 4.53 (d, 1H, J=15.9), 4.41 (t, 1H, J=7.2), 3.91 (s, 3H), 1.70-1.76 (m, 1H), 1.35-1.43 (m, 1H), 1.21-1.31



# (m, 1H), 0.82 (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).





418


1347







1348







1349





1-Method A
white solid
420.92
1.64 min Method A
421.15


1
H NMR (CDCl3, 300 MHz) δ 8.74 (d, 1H, J=2.4), 7.90 (dd, 1H, J=2.4, 8.4), 7.61 (d, 2H, J=8.4), 7.50 (d, 2H, J=8.4), 7.44 (d, 1H, J=8.4), 5.92 (br s, 1H), 5.22 (br s, 1H), 4.65 (d, 1H, J=16.5), 4.52 (d, 1H, J=16.5), 4.40 (t, 1H, J=7.5), 1.65-1.74 (m, 1H), 1.33-1.40 (m, 1H), 1.18-1.25 (m, 1H), 0.83



# (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).





419


1350







1351







1352





7
white solid
528.12
1.35 min Method A
528.26


1
H NMR (CDCl3, 500 MHz) 8 7.72 (d, 2H, J=8.6), 7.51 (d, 2H, J=8.8), 6.65 (s, 1H), 5.35 (s, 1H), 4.14 (dd, 1H, J=5.1, 9.5), 3.63-3.75 (m, 2H), 3.35-3.55 (m, 3H), 3.25 (dd, 1H, J=9.8, 14), 2.98 (dd, 1H, J=4.5, 14), 2.35-2.87 (m, 8H), 1.77-1.92 (m, 3H), 1.59 (d, 2H, J=13),



# 1.05-1.30 (m, 3H), 0.75-0.80 (m, 1H), 0.72 (d, 3H, J=6.4), 0.67 (d, 3H, J=6.7).





420


1353







1354







1355





7
white solid
515.08
1.56 min Method A
515.33


1
H NMR (CDCl3, 500 MHz) δ 7.71 (d, 2H, J=8.5), 7.50 (d, 2H, J=8.5), 6.65 (s, 1H), 5.47 (s, 1H), 4.13 (dd, 1H, J=5.2, 9.2), 3.60-3.75 (m, 6H), 3.15-3.30 (m, 6H), 2.97 (dd, 1H, J=4.6, 14), 2.71 (dd, 2H, J=14, 25), 1.75-1.92 (m, 3H), 1.67 (d, 1H, J=12), 1.05-1.30 (m, 3H), 0.75-0.81



# (m, 1H), 0.71 (d, 3H, J=6.7), 0.65 (d, 3H, J=6.7).





421


1356







1357







1358





7
white solid
460.00
1.68 min Method A
460.17


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.5), 7.50 (d, 2H, J=8.6), 6.65 (s, 1H), 5.35 (s, 1H), 4.15 (dd, 3H, J=5.2, 9.5), 3.67 (s, 3H), 3.25 (t, 1H, J=10), 3.97 (dd, 1H,.J=4.8, 14), 2.61-2.80 (m, 2H), 1.74-1.94 (m, 3H), 0.89-1.40 (m, 4H), 0.75-0.80 (m, 1H), 0.72 (d, 3H, J=6.4), 0.67 (m, 3H, J=6.7).






422


1359







1360







1361





1-Method A
tan solid
491.81
1.84 min Method B
491.04


1
H NMR (CDCl3) δ 7.71 (d, 2H, J=8.0Hz), 7.50-7.58 (m, 2H), 7.41 (d, 2H, J=8.0Hz), 7.17-7.22 (m, 1H), 6.23 (s, br, 1H), 5.25 (s, br, 1H), 4.41 (dd, 2H, J=50Hz, 15Hz), 4.31-4.35 (m, 1H), 1.80-1.86 (m, 1H), 1.41-1.44 (m, 1H), 1.11-1.15 (m, 1H), 0.81 (d, 3H, J=7.0Hz), 0.71 (d, 3H, J=7.0Hz).






423


1362







1363







1364





1-Method A
white solid
424.09
1.54 min Method F
(M + H)+425.1 


1
H NMR (400 MHz, DMSO) δ 7.90 (d, 2H, J=8.1), 7.82 (d, 2H, J=8.5), 7.61 (d, 2H, J=8.5), 7.52 (d, 2H, J=8.1), 7.49 (s, 1H), 7.07 (s, 1H), 4.81 (ABq, 2H, Δυ=45.3, Jab=17.3), 4.27 (t, 1H, J=7.3), 3.85 (s, 3H), 1.55 (m, 1H), 1.38 (m, 1H), 0.68 (t, 3H, J=7.3).






424


1365







1366







1367





1-Method A
white solid
452.12
1.69 min Method F
(M + H)+453.1 


1
H NMR (400 MHz, DMSO) δ 7.90 (d, 2H, J=8.3), 7.83 (d, 2H, J=8.8), 7.62 (d, 2H, J=8.8), 7.54 (d, 2H, J=8.3), 7.48 (s, 1H), 7.04 (s, 1H), 4.82 (ABq, 2H, Δυ=41.3, Jab=17.3), 4.31 (t, 1H, J=8.1), 3.85 (s, 3H), 1.52 (m, 1H), 1.29 (m, 1H), 1.04 (m, 3H) 0.90 (m, 1H), 0.63 (t, 3H, J=7.3).






425


1368







1369







1370





1-Method A
pale yellow solid
460.99
1.48 min Method B
460.13


1
H NMR (CDCl3, 300 MHz) δ 7.91 (d, 1H, J=1.5), 7.67-7.72 (m, 3H), 7.62 (d, 2H, J=8.7), 7.42-7.48 (m, 4H), 6.46 (t, 1H, J=2.1), 6.24 (br s, 1H), 5.21 (br s, 1H), 4.62 (d, 1H, J=15.3), 4.42 (d, 1H, J=15.6), 4.29 (t, 1H, J=6.9), 1.80-1.88 (m, 1H), 1.28-1.40 (m, 1H),



# 1.12-1.21 (m, 1H), 0.75 (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).





426


1371







1372







1373





1-Method A
white solid
461.97
1.39 min Method B
462.18


1
H NMR (CDCl3, 300 MHz) δ 8.54 (s, 1H), 8.10 (s, 1H), 7.71 (d, 2H, J=8.4), 7.61 (d, 2H, J=8.4), 7.46-7.52 (m, 4H), 6.23 (br s, 1H), 5.19 (br s, 1H), 4.66 (d, 1H, J=15.9), 4.42 (d, 1H, J=15.9), 4.30 (t, 1H, J=6.9), 1.79-1.89 (m, 1H), 1.30-1.38 (m, 1H), 1.07-1.14 (m, 1H), 0.76 (d, 3H, J=6.6), 0.66 (d, 3H, J=6.6).






427


1374







1375







1376





11
pale yellow solid
542.07
1.48 min Method E
542.25


1
H NMR (ODd3) δ 7.71 (d, 2H, J=8.00Hz), 7.49 (d, 2H, J=8.0Hz), 7.16 (d, 1H, J=12.0Hz), 7.05 (d, 1H, J=8.0Hz), 6.86 (t, 1H, J=8.0Hz), 6.40 (s, br, 1H), 5.87 (s br, 1H), 4.42 (ABq, 2H, Δυ=16, Jab=164Hz), 4.49 (d, 2H, J=4.0Hz), 4.27 (t, 1H, J=8.0Hz), 4.04 (m, 4H),



# 3.69 (m, 2H), 3.51 (m, 2H), 3.10 (m, 2H), 1.83 (m, 1H), 1.29 (m, 1H), 1.07 (m, 1H), 0.75 (d, 3H, J=8.0Hz), 0.68 (d, 3H, J=8.0Hz).





428


1377







1378







1379





11
yellow solid
555.12
1.41 min Method E
555.28


1
H NMR (CDCl3) δ 7.71 (d, 2H, J=8.00Hz), 7.50 (d, 2H, J=8.0Hz), 7.16 (d, 1H, J=12.0Hz), 7.05 (d, 1H, J=8.0Hz), 6.87 (t, 1H, J=8.0Hz), 6.38 (s, br, 1H), 5.91 (s br, 1H), 4.41 (AB2, 2H, Δυ=16, Jab=176Hz), 4.45 (m, 2H), 4.27 (t, 1H, J=8.0Hz), 3.81 (m, 4H), 3.67 (m, 4H), 3.48 (m, 1H), 2.89 (s, 3H),



# 1.83 (m, 1H), 1.29 (m, 1H), 1.05 (m, 1H), 0, 75 (d, 3H, J=-8.0Hz), 0.68 (d, 3H, J=8.0Hz).





429


1380







1381







1382





7
white solid
545.17
1.84 min Method C
545.36


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=9.0), 7.51 (d, 2H, J=8.0), 6.65 (2 s, 1H), 5.40 (s, 1H), 4.54 (t, 1H, J=13), 3.85-4.20 (m, 2H), 2.40-3.50 (m, 12H), 1.75-2.00 (m, 3H), 0.92-1.20 (m, 1H), 0.73 (d, 3H, J=5.8, 6.1), 0.67 (d, 3H, J=6.1, 6.4).






430


1383







1384







1385





7
white solid
541.16
1.43 min Method A
541.24


1
H NMR (CDCl3, 500 MHz) δ 7.71 (d, 2H, J=6.4), 7.50 (d, 2H, J=8.2), 6.65 (d, 1H, J=41), 5.44 (s, 1H), 4.55 (t, 1H, J=13), 4.15 (br s, 1H), 3.95 (br s, 1H), 3.15-3.35 (m, 1H), 2.90-3.00 (m, 2H), 2.60-2.70 (m, 2H), 2.50-2.57 (m, 2H), 2.35-2.50 (m, 6H), 1.85-2.00 (m, 3H), 1.35-1.75 (m, 3H), 1.00-1.30



# (m, 5H), 0.90-1.00 (m, 1H), 0.72 (dd, 3H, J=7.0, 7.3), 0.66 (dd, 3H, J=6.1, 6.4).





431


1386







1387







1388





7
white solid
529.10
1.38 min Method A
529.27


1
H NMR (CDCl3, 500 MHz) δ 7.72 (d, 2H, 8.5), 7.51 (d, 2H, J=8.9), 6.65 (d, 1H, J=32), 5.43 (s, 1H), 4.55 (t, 1H, J=13) 4.14 (dd, 1H, J=4.8, 9.5), 3.88 (br s, 4H), 3.21-3.84 (m, 2H), 2.90-3.05 (m, 3H), 2.47-2.67 (m, 1H), 1.80-2.05 (m, 3H), 1.40-1.75 (m, 6H), 1.00-1.35



# (m, 4H), 0.73 (dd, 3H, J=3.4, 6.4), 0.67 (dd, 3H, J=2.7, 6.7).





432


1389







1390







1391





7
white solid
464.02
1.55 min Method A
474.28


1
H NMR (CDCl3, 500 MHz) δ 7.72 (d, 2H, J=7.6), 7.50 (d, 2H, J=8.6), 6.65 (d, 1H, J=40), 5.46 (s, 1H), 4.56 (t, 1H, J=13), 4.00-4.20 (m, 2H), 3.80-3.90 (m, 1H), 3.40 (s, 3H), 3.20-3.35 (m, 1H), 2.85-3.05 (m, 2H), 2.40-2.65 (m, 1H), 1.50-2.00 (m, 5H), 1.00-1.45 (m, 2H),



# 0.83-0.90 (m, 1H), 0.72 (dd, 3H, J=6.7, 8.2), 0.67 (dd, 3H, J=5.8, 6.4).





433


1392







1393







1394





1-Method A
white solid
455.00
1.83 min Method B
454.15


1
H NMR (CDCl3, 300 MHz) δ 7.61 (dd, 2H, J=1.8, 8.7), 7.40 (ddd, 2H, J=2.1, 2.4, 8.7), 7.26 (d, 4H, J=7.2), 6.25 (br s, 1H), 5.19 (br s, 1H), 4.51 (d, 1H, J=15.6), 4.43 (d, 1H, J=15.6), 4.34 (t, 1H, J=7.2), 1.75-1.85 (m, 1H), 1.69 (s, 3H), 1.62 (s, 3H), 1.22-1.35 (m, 2H), 0.78



# (d, 3H, J=6.3), 0.66 (d, 3H, J=6.3).





434


1395







1396







1397





7
white solid
542.15
1.73 min Method C
542.46


1
H NMR (CDCl3, 500 MHz) δ 7.72 (d, 2H, J=8.5), 7.51 (d, 2H, J=8.5), 6.65 (d, 1H, J=39), 5.42 (s, 1H), 4.55 (t, 1H, J=14), 4.00-4.17 (m, 2H), 3.05-3.33 (m, 3H), 2.85-3.05 (m, 2H), 2.40-2.70 (m, 8H), 2.32 (s, 3H), 1.55-2.10 (m, 6H), 1.00-1.30 (m, 6H), 0.72 (t, 3H, J=6.7, 6.7), 0.67 (t, 3H, J=6.1, 6.4).






435


1398







1399







1400





7
white solid
497.02
1.70 min Method A
479.19


1
H NMR (CDCl3, 500 MHz) δ 8.31 (s, 1H), 7.76 (d, 2H, J=8.9), 7.56 (d, 2H, J=8.5), 6.74 (s, 1H), 4.81 (t, 1H, J=7.6), 4.71 (br s, 1H), 4.20 (br s, 1H), 3.13 (t, 2H, J=8.6), 2.70-2.95 (m, 2H), 2.05-2.20 (m, 1H), 1.85-2.00 (m, 2H), 1.55-1.85 (m, 4H), 1.10-1.35 (m, 3H), 1.00



# (d, 3H, J=6.4), 0.97 (d, 3H, J=6.7), 0.87 (t, 1H, J=7.0).





436


1401







1402







1403





13
white solid
476.99
1.76 min Method B
477.22


1
H NMR (CDCl3, 300 MHz) δ 7.94 (dd, 2H, J=1.8, 8.4), 7.69 (dd, 2H, J=1.8, 8.7), 7.45-7.50 (m, 4H), 6.23 (br s, 1H), 5.19 (br s, 1H), 4.65 (d, 1H, J=15.9), 4.46 (d, 1H, J=15.9), 4.31 (dd, 1H, J=6.6, 7.8), 2.61 (s, 3H), 1.75-1.85 (m, 1H), 1.28-1.35 (m, 1H), 1.08-1.15 (m, 1H), 0.76 (d, 3H, J=6.6), 0.64 (d, 3H, J=6.6).






437


1404







1405







1406





14
pale yellow solid
476.99
1.92 min Method B
477.18


1
H NMR (CDCl3, 300 MHz) δ 8.04 (d, 2H, J=8.4), 7.70 (dd, 2H, J=1.8, 8.4), 7.45-7.52 (m, 4H), 6.23 (br s, 1H), 5.19 (br s, 1H), 4.67 (d, 1H, J=16.2), 4.47 (d, 1H, J=15.9), 4.31 (t, 1H, J=7.2), 2.47 (s, 3H), 1.75-1.85 (m, 1H), 1.28-1.35 (m, 1H), 1.08-1.15 (m, 1H), 0.76 (d, 3H, J=6.6), 0.64 (d, 3H, J=6.6).






438


1407







1408







1409





6
white solid
480.03
1.81 min Method B
480.26


1
H NMR (CDCl3, 300 MHz) δ 7.67 (d, 2H, J=8.7), 7.45 (d, 2H, J=8.7), 7.38 (d, 2H, J=8.1), 7.32 (d, 2H,.J=7.5), 6.23 (br s, 1H), 5.19 (br s, 1H), 4.59 (d, 1H, J=16.2), 4.45 (d, 1H, J=15.9), 4.30 (t, 1H, J=6.9), 3.47-3.56 (br m, 1H), 3.15-3.35 (br m, 1H), 2.81-3.09 (br m, 3H),



# 1.75-1.85 (m, 1H), 1.05-1.40 (m, 5H), 0.76 (d, 3H, J=6.6), 0.65 (d, 3H, J=6.6).





439


1410







1411







1412





6
white solid
529.06
1.60 min Method B
529.25


1
H NMR (CDCl3, 300 MHz) δ 8.57 (d, 1H, J=4.8), 7.80 (d, 2H, J=8.4), 7.70-7.73 (m, 2H), 7.67 (d, 2H, J=8.4), 7.45 (d, 2H, J=8.4), 7.42 (d, 2H, J=7.8), 7.36 (d, 1H, J=7.8), 7.28 (br s, 1H), 6.23 (br s, 1H), 5.22 (br s, 1H), 4.77 (d, 2H, J=4.8), 4.63 (d, 1H, J=15.9), 4.44 1H, J=15.9), 4.29 (t, 1H, J=7.2),



# 1.73-1.85 (m, 1H), 1.25-1.38 (m, 1H), 1.06-1.14 (m, 1H), 0.75 (d, 3H, J=6.3), 0.65 (d, 3H, J=6.6).





440


1413







1414







1415





8
amber glass
512.04
1.36 min Method A
512.24


1
H NMR 400 Hz (CDCl3) δ 7.70 (d, 2H, J=8.0Hz), 7.74 (d, 2H, J=8.0Hz), 7.31 (d, 2H, J=6Hz), 7.08 (d, 2H, J=8.0Hz), 6.25 (s, br, 1H), 5.41 (s, br, 1H), 4.56 (d, 1H, Jab=12Hz), 4.43 (d, 1H, Jab=12Hz), 4.35 (t, 1H, J=6.0Hz), 3.72 (t, 4H, J=4.0Hz), 3.56 (s, 2H), 2.48 (t, 4H.J=41.0Hz), 1.79 (m, 1H),



# 1.36 (m, 1H), 1.18 (m, 1H), 0.79 (d, 3H, J=6.0Hz), 0.69 (d, 3H, J=6.0Hz)





441


1416







1417







1418





8
amber glass
525.08
1.35 min Method A
525.23


1
H NMR 400 Hz (CDCl3) δ 7.69 (d, 2H, J=8.0Hz), 7.47 (d, 2H, J=8.0Hz), 7.28 (t, 1H, J=6.0Hz), 7.07 (dd, 2H, J=8.0Hz), 6.29 (s, br, 1H), 5.55 (s, br, 1H), 4.46 (d, 1H, Jab=14.0Hz), 4.41 (d, 1H, Jab=14.0Hz), 4.34 (t, 1H, J=6.0Hz), 3.58 (s, 2H), 2.33 (s, 3H), 1.78 (m, 1H), 1.18 (m, 1H), 0.79 (d,



# 3H, J=6.0Hz), 0.68 (d, 3H, J=6.0Hz)





442


1419







1420







1421





1-Method A
amber glass
470.94
1.74 min Method A
471.12


1
H NMR 400 Hz (CDCl3) δ 7.78 (t, 1H, J=6.0Hz), 7.72 (d, 2H, J=8.0Hz), 7.51 (d, 2H, J=8.0Hz), 7.19 (m, 2H), 6.21 (s, br, 1H), 5.37 (s, br, 1H), 4.64 (d, 1H, Jab=14.0Hz), 4.47 (d, 1H, Jab=14.0Hz), 4.34 (t, 1H, J=6.0Hz), 3.95 (s, 3H), 1.80 (m, 1H), 1.37 (m, 1H), 1.01



# (m, 1H), 0.80 (d, 3H, J=6.0Hz), 0.69 (d, 3H, J=6.0Hz)





443


1422







1423







1424





21
white solid
435.10
1.40 min Method D
(M + Na)+458.2 


1
H NMR (400 MHz, DMSO) δ 7.84 (d, 2H, J=8.6), 7.76 (d, 2H, J=8.3), 7.62 (d, 2H, J=8.8), 7.51 (d, 2H, J=8.3), 7.40 (s, 1H), 7.11 (s, 1H), 4.63 (ABq, 2H, Δυ=5.9, Jab=17.6), 4.56 (dd, 1H, J=8.3, 2.5), 4.54 (s, 1H), 1.95 (dd, 1H, J=13.7, 8.6),



# 1.26 (dd, 1H, J=13.6, 2.4), 1.04 (s, 3H), 0.99 (s, 3H).





444


1425







1426







1427





7
clear oil
465.17
1.38 min Method A
466.20


1
H NMR (CDCl3, 500 MHz) δ 7.73 (d, 2H, J=8.8), 7.50 (d, 2H, J=8.9), 6.67 (s, 1H), 5.37 (s, 1H), 4.14 (dd, 1H, J=5.5, 9.5), 3.25 (dd, 1H, J=10, 14), 2.97 (dd, 1H, J=4.5, 14), 2.87-2.95 (m, 2H), 2.65-2.75 (m, 2H), 2.07-2.23 (m, 2H), 1.83-1.90 (m, 1H), 1.50-1.82 (m, 4H), 1.15-1.40 (m, 3H),



# 0.77-0.85 (m, 1H), 0.72 (d, 3H, J=6.7), 0.66 (d, 3H, J=6.4).





445


1428







1429







1430





6
amber glass
456.92
1.62 min Method A
457.32


1
H NMR 400 Hz (CDCl3) δ 7.77 (d, 2H, J=6.0Hz), 7.68 (t, 1H, J=6.0Hz), 7.64 (d, 2H, J=8.0Hz), 7.39 (m, 3H), 6.21 (s, br, 1H), 5.35 (s, br, 1H), 4.67 (d, 1H, Jab=14.0Hz), 4.38 (d, 1H, Jab=14.0Hz), 3.44 (m, 1H), 1.88 (m, 1H), 1.59 (m, 2H), 0.79 (d, 3H, J=6.0Hz), 0.69 (d, 3H, J=6.0Hz)






446


1431







1432







1433





18
off-white solid
417.09
1.53 min Method F
(M + Na)+418.2 


1
H NMR (400 MHz, DMSO) δ 7.82 (d, 2H, J=8.8), 7.74 (d, 2H, J=8.5), 7.63 (d, 2H, J=8.8), 7.62 (s, 1H), 7.53 (d, 2H, J=8.5), 7.09 (s, 1H), 4.80 (ABq, 2H, Δυ=17.9, Jab=17.8), 4.70 (s, 1H), 4.62 (t, 1H, J=7.6), 4.60 (s, 1H), 2.34 (dd, 1H, J=14.4,



# 7.1), 2.02 (dd, 1H, J=14.6, 7.3), 1.57 (s, 3H).





447


1434







1435







1436





18
off-white solid
458.12
1.59 min Method G
(M + Na)+459.2 


1
H NMR (400 MHz, DMSO) δ 8.45 (d, 1H, J=2.2), .82 (d, 2H, J=8.6), 7.72 (m, 3H), 7.60 (d, 2H, J=8.8), 7.57 (s, 1H), 7.44 (d, 2H, J=8.5), 7.09 (s, 1H), 6.54 (t, 1H, J=2.0), 4.74 (ABq, 2H, Δυ=25.5, Jab=16.8), 4.71 (s, 1H), 4.61 (m, 2H), 2.37 (dd,



# 1H, J=14.2, 7.1), 2.08 (dd, 1H, J=14.7, 7.6), 1.57 (s, 3H).





448


1437







1438







1439





18
off-white solid
442.90
1.74 min Method A
443.05


1
H NMR (CDCl3, 400 MHz) δ 7.96 (d, 2H, J=8.2), 7.72 (d, 2H, J=8.0), 7.48 (d, 2H, J=8.0), 7.39 (d, 2H, J=8.0), 6.33 (br s, 1H), 5.20 (br s, 1H), 4.55-4.62 (m, 2H), 4.39 (d, 1H, J=15.4), 4.28-4.32 (m, 1H), 4.17-4.21 (m, 1H), 3.90 (s, 3H), 2.17-2.35 (m, 1H), 1.56-1.65 (m, 1H).






449


1440







1441







1442





18, 12
yellow foam
442.94
1.65 min Method A
442.11


1
H NMR (CDCl3, 400 MHz) δ 7.67 (ddd, 2H, J=2.0, 2.6, 8.8), 7.42 (ddd, 2H, J=2.0, 2.3, 8.8), 7.39 (d, 2H, J=8.2), 7.24 (d, 2H, J=8.2), 6.34 (br s, 1H), 5.35 (br s, 1H), 4.56 (dd, 1H, J=5.8, 8.5), 4.48 (d, 1H, J=15.5), 4.35 (d, 1H,.J=15.5), 4.30-4.33 (m, 1H), 4.18-4.22 (m,



# 1H), 2.23-2.39 (m, 1H), 1.56-1.670 (m, 2H), 1.57 (s, 6H).





450


1443







1444







1445





18, 13
white solid
466.92
1.61 min Method A
467.18


1
H NMR (CDCl3, 400 MHz) δ 7.96 (ddd, 2H, J=1.7, 2.0, 8.4), 7.73 (ddd, 2H, J=1.9, 2.5, 8.7), 7.49 (ddd, 2H, J=2.0, 2.3, 8.7), 7.46 (d, 2H, J=8.6), 6.34 (br s, 1H), 5.21 (br s, 1H), 4.64 (d, 1H, J=15.4), 4.57-4.60 (m, 1H), 4.39 (d, 1H, J=16.1), 4.30-4.32 (m, 1H), 4.18-4.21



# (m, 1H), 2.61 (s, 3H), 2.18-2.36 (m, 1H), 1.55-1.66 (m, 1H).





451


1446







1447







1448





18, 7
clear oil
533.07
1.71 min Method A
533.22


1
H NMR (CDCl3, 400 MHz) δ 7.73 (d, 2H, J=8.6), 7.51 (d, 2H, J=8.8), 6.67 (s, 1H), 5.51 (s, 1H), 4.14-4.52 (m, 4H), 3.76-3.95 (m, 2H), 3.50-3.72 (m, 1H), 3.19-3.27 (m, 1H), 2.86-3.07 (m, 1H), 2.56-2.80 (m, 2H), 1.70-1.99 (m, 7H), 1.36-1.63 (m, 10H).






452


1449







1450







1451





18, 7
clear oil
517.07
2.53 min Method A
517.32


1
H NMR (CDCl3, 400 MHz) δ 7.74 (d, 2H, J=8.6), 7.50 (d, 2H, J=8.5), 6.70 (s, 1H), 5.60 (s, 1H), 4.50 (dd, 1H, J=4.9, 9.8), 4.22-4.31 (m, 2H), 3.81-4.00 (m, 5H), 3.53-3.66 (m, 2H), 3.40-3.50 (m, 1H), 3.13-3.25 (m, 3H), 2.89 (dd, 1H, J=4.6, 14), 2.62-2.77 (m, 3H), 1.50-1.95 (m, 6H), 1.01-1.45 (m, 5H).






453


1452







1453







1454





18, 7
clear oil
531.09
2.27 min Method A
531.36


1
H NMR (CDCl3, 400 MHz) δ 7.73 (d, 2H, J=8.6), 7.51 (d, 2H, J=8.6), 6.65 (d, 1H, J=28), 5.47 (s, 1H), 4.50-4.63 (m, 1H), 4.20-4.45 (m, 1H), 4.05-4.15 (m, 2H), 3.55-3.65 (m, 2H), 3.05-3.35 (m, 6H), 2.85-3.00 (m, 3H), 2.55-2.35 (m, 2H), 1.50-2.00 (m, 6H), 1.00-1.45 (m, 7H).






454


1455







1456







1457





8
amber glass
533.99
1.40 min Method A
534.27


1
H NMR 400 Hz (CDCl3) δ 7.78 (d, 2H, J=8.0Hz), 7.39 (m, 6H), 6.34 (s, br, 1H), 5.80 (s, br, 1H), 4.72 (d, 1H, Jab=14.0Hz), 4.16 (m, 1H), 4.34 (d, 1H, Jab=14.0Hz), 3.60 (m, 4H), 3.84 (s, 2H), 2.62 (m, 2H), 2.25 (m, 4H)






455


1458







1459







1460





18, 8
amber glass
501.98
1.27 min Method A
502.24


1
H NMR 400 Hz (CDCl3) δ 7.79 (d, 2H, J=8.0Hz); 7.39 (m, 6H), 6.33 (s, br, 1H), 5.80 (s, br, 1H), 4.68 (d, 1H, Jab=14.0Hz), 4.22 (d, 1H, Jab=14.0Hz), 3.55 (s, 2H), 2.62 (m, 2H), 2.43 (m, 8H), 2.30 (s, 3H)






456


1461







1462







1463





18, 8
amber glass
515.02
1.22 min Method A
515.31


1
H NMR 400 Hz (CDCl3) δ 7.79 (d, 2H, J=8.0Hz), 7.52 (d, 2H, J=8.0Hz), 7.39 (m, 4H), 6.34 (s, br, 1H), 5.78 (s, br, 1H), 5.72 (t, 1H, J=54.0Hz), 4.68 (d, 1H, Jab=14.0Hz), 4.34 (d, 1H, Jab=14.0Hz), 3.88 (m, 1H), 3.56 (m, 4H), 2.49 (m, 2H), 2.26 (m, 4H)






457


1464







1465







1466





8
amber glass
547.03
1.26 min Method A
547.20


1
H NMR 400 Hz (CDCl3) δ 7.78 (d, 2H, J=8.0Hz), 7.50 (d, 2H, J=8.0Hz), 7.41 (m, 4H), 6.35 (s, br, 1H), 5.80 (s, br, 1H), 5.72 (t, 1H, J=54.0Hz), 4.68 (d, 1H, Jab=14.0Hz), 4.35 (d, 1H, Jab=14.0Hz), 3.87 (m, 1H), 3.55 (s, 2H), 2.44 (m, 10H), 2.30 (s, 3H)






458


1467







1468







1469





18, 1-Method B
white foam
446.91
1.01 Method B
447.13


1
H NMR (CDCl3) TFA salt δ 8.14 (s, 1H), 7.98 (d, 1H, J=9.6Hz), 7.76 (d, 2H, J=6.8Hz), 7.55 (d, 2H, J=6.8Hz), 6.81 (d, 2H, J=9.6Hz), 6.45 (s, 1H), 6.10 (s, 1H), 5.70 (t, 1H, J=110.0Hz), 4.60 (d, 1H, J=16.0Hz), 4.51 (m, 1H), 4.06 (d, 1H, J=16Hz), 3.30 (s, 6H), 2.55 (m, 1H), 1.60 (m, 1H).






459


1470







1471







1472





18, 1-Method B
white foam
456.97
1.14 Method B
457.23


1
H NMR(CDCl3) TFA salt δ 8.11 (s, 1H), 7.95 (d, 1H, J=9.6Hz), 7.77 (d, 2H, J=6.8Hz), 7.51 (d, 2H, J=6.8Hz), 6.76 (d, 2H, J=9.6Hz), 6.34 (s, 1H), 6.02 (s, 1H), 4.58 (d br., 1H, J=8.4Hz), 4.46 (d, 1H, J=16.0Hz), 4.06 (d, 1H, J=16Hz), 3.29 (s, 6H), 2.50 (m, 1H), 1.39 (m, 1H), 1.25



# (d, 3H, J=22.0Hz), 1.17 (d, 3H, J=22.0Hz).





460


1473







1474







1475





1-Method B
light yellow gummy solid
478.92
1.89 min 3 × 50 mm ODS-A C- 18 column, 4mL/min, 0-100% MeOH/H2O 0.1% TFA 4 min gradient
479.21


1
H NMR (CDCl3) δ 8.09 (s, 1H), 8.01 (d, 1H, J=9.2Hz), 7.75 (d, 2H, J=8.4Hz), 7.53 (d, 2H, J=8.4Hz), 6.82 (d, 1H, J=9.2Hz), 6.62 (s, br, 1H), 6.12 (s, br, 1H), 4.18-4.58 (m, 3H), 3.30 (s, 6H), 2.15 (m,



# 1H), 2.05 (m, 1H), 1.85 (m, 1H), 1.40 (m, 1H)





461


1476







1477







1478





18
clear oil
438.28
1.41 min Method B
438.01


1
H NMR (CDCl3) δ 8.33 (s, 1H), 7.73 (d, 1H, J=8.4Hz), 7.71 (d, 2H, J=8.8Hz), 7.51 (d, 2H, J=8.8Hz), 7.27 (d, 1H, J=8.4Hz), 6.56 (s, br, 1H), 6.11 (s, br, 1H), 5.69 (m, 1H), 4.21-4.62 (m, 3H), 2.52 (m, 1H), 1.63 (m, 1H)






462


1479







1480







1481





1
white solid
470.30
1.53 min Method B
470.02


1
H NMR (CDCl3) δ 8.38 (s, 1H), 7.79 (d, 1H, J=8.0Hz), 7.68 (d, 2H, J=8.4Hz), 7.50 (d, 2H, J=8.4Hz), 7.31 (d, 1H, J=8.0Hz), 6.57 (s, br, 1H), 6.25 (s, br, 1H), 4.29-4.64 (m, 3H), 2.12 (m, 1H), 1.98 (m, 1H), 1.81 (m, 1H), 1.43 (m, 1H)






463


1482







1483







1484





18
clear oil
434.32
1.43 min Method B
434.13


1
H NMR (CDCl3) δ 8.37 (s, 1H), 7.70 (d, 1H, J=8.8Hz), 7.68 (d, 1H, J=8.8Hz), 7.67 (d, 2H, J=6.8Hz), 7.48 (d, 2H, J=6.8Hz), 6.25 (s, br, 1H), 5.31 (s, br, 1H), 4.34-4.62 (m, 5H), 1.35-2.05 (m, 4H)






464


1485







1486







1487





18, 7
clear oil
469.14
1.14 min Method A
470.17


1
H NMR (CDCl3, 400 MHz) δ 7.73 (d, 2H, J=8.8), 7.51 (d, 2H, J=8.8), 6.65 (s, 1H), 5.39 (s, 1H), 4.05-4.35 (m, 2H), 3.25 (dd, 1H, J=10, 14), 2.85-3.04 (m, 3H), 2.65-2.85 (m, 2H), 2.09-2.29 (m, 2H), 1.93-2.10 (m, 1H), 1.83-1.91 (m, 10H).






465


1488







1489







1490





15
white solid
476.99
1.91 min Method A
477.13


1
H NMR (CDCl3, 500 MHz) δ 7.98 (d, 2H, J=8.2), 7.68 (d, 2H, J=8.9), 7.45 (d, 4H, J=8.5), 6.21 (s, 1H), 5.19 (s, 1H), 4.62 (d, 1H, J=15), 4.48 (d, 1H, J=16), 4.31 (t, 1H, J=7.0), 2.65 (s, 3H), 1.75-1.85 (m, 1H), 1.20-1.35 (m, 4H), 1.10-1.17 (m, 1H), 0.85-0.90 (m, 1H), 0.75 (d, 3H, J=6.7), 0.64 (d, 3H, J=6.4).






466


1491







1492







1493





1-Method A
clear gummy solid
520.96
1.17 min Method B
521.19


1
H NMR (CDCl3) δ 8.16 (s, 1H), 8.06 (d, 1H, J=9.2Hz), 7.75 (d, 2H, J=8.4Hz), 7.50 (d, 2H, J=8.4Hz), 7.31 (d, 1H, J=9.2Hz), 6.67 (s, br, 1H), 6.20 (s, br, 1H), 4.19-4.60 (m, 3H), 3.87 (m, 4H), 3.69 (m, 4H), 2.14 (m, 1H), 1.98 (m, 1H), 1.83 (m, 1H), 1.38 (m, 1H)






467


1494







1495







1496





18, 1-Method B
clear gummy solid
470.95
0.983 min Method B
471.19


1
H NMR (CDCl3) δ 8.15 (s, 1H), 8.10 (d, 1H, J=9.2Hz), 7.77 (d, 2H, J=8.4Hz), 7.53 (d, 2H, J=8.4Hz), 6.93 (d, 1H, J=9.2Hz), 6.65 (s, br, 1H), 6.22 (s, br, 1H), 4.09-4.67 (m, 5H), 3.87 (m, 4H), 3.68 (m, 4H), 2.25 (m, 1H), 1.63 (m, 1H)






468


1497







1498







1499





1-Method B
clear gummy solid
499.01
1.153 min Method B
499.23


1
H NMR (CDCl3) δ 8.12 (s, 1H), 8.07 (d, 1H, J=9.2Hz), 7.78 (d, 2H, J=8.4Hz), 7.52 (d, 2H, J=8.4Hz), 6.91 (d, 1H, J=9.2Hz), 6.63 (s, br, 1H), 6.19 (s, br, 1H), 4.07-4.62 (m, 3H), 3.86 (m, 4H), 3.68 (m, 4H), 2.46 (m, 1H), 1.31 (m, 1H), 1.25 (d, 3H, J=21.6), 1.17 (d, 3H, J=21.6)






469


1500







1501







1502





15
white solid
511.43
1.90 min Method C
511.13


1
H NMR (CDCl3, 400 MHz) δ 8.01 (d, 2H, J=8.3), 7.69 (d, 2H, J=8.8), 7.43-7.51 (m, 4H), 6.20 (s, 1H), 5.15 (s, 1H), 4.74 (s, 2H), 4.63 (d, 1H, J=15), 4.47 (d, 1H, J=16), 4.31 (t, 1H, J=6.8), 1.74-1.87 (m, 1H), 1.04-1.88 (m, 4H), 0.82-0.94 (m, 1H), 0.76 (d, 3H, J=6.6), 0.65 (d, 3H, J=6.6).






470


1503







1504







1505





1
white solid
529.11
2.17 min Method D
529.11


1
H NMR (CDCl3, 400 MHz) δ 7.95 (d, 2H, J=8.4), 7.71 (dd, 2H, J=1.6, 8.4), 7.48 (dd, 2H, J=2.4, 8.8), 7.38 (dd, 2H, J=2.4, 8.8), 6.31 (br s, 1H), 5.22 (br s, 1H), 4.60 (d, 1H, J=15.6), 4.55-4.58 (m, 1H), 4.38-4.42 (m, 3H), 4.29-4.32 (m, 1H), 4.17-4.21 (m, 1H), 2.18-2.32 (m, 2H), 1.12 (dd, 2H, J=6.8, 8.4), 0.08 (s, 9H).






471


1506







1507







1508





15, 23
white solid
510.14
1.86 min Method A
511.13


1
H NMR (CDCl3, 400 MHz) δ 8.01 (d, 2H, J=8.4), 7.69 (d, 2H, J=8.8), 7.47 (d, 2H, J=8.0), 7.46 (d, 2H, J=8.8), 6.20 (br s, 1H), 5.20 (br s, 1H), 4.74 (s, 2H), 4.64 (d, 1H, J=15), 4.49 (d, 1H, J=15), 4.31 (t, 1H, J=7.0), 1.73-1.87 (m, 1H), 1.20-1.37 (m, 1H), 1.07-1.17 (m, 1H), 0.76 (d, 3H, J=6.6), 0.65 (d, 3H, 6.6).






472


1509







1510







1511





15, 8
white solid
519.17
1.42 min Method A
520.18


1
H NMR (CDCl3, 400 MHz) δ 8.02 (d, 2H, J=7.6), 7.71 (d, 2H, J=8.4), 7.52 (d, 2H, J=8.0), 7.48 (d, 2H, J=8.4), 6.23 (br s, 1H), 5.17 (br s, 1H), 4.70 (d, 1H, J=16), 4.44 (d, 1H, J=16), 4.31 (t, 1H, J=6.4), 3.70 (s, 2H), 3.02 (s, 6H), 1.75-1.90 (m, 1H), 1.00-1.40 (m, 2H), 0.76 (d, 3H, J=6.8), 0.66 (d, 3H, J=6.4).






473


1512







1513







1514





1
off-white foam
460.89
2.11 min Method A
461.08


1
H NMR (CDCl3, 300 MHz) δ 7.97 (d, 2H, J=8.4), 7.72 (d, 2H, J=8.4), 7.51 (dd, 2H, J=2.0, 8.4), 7.38 (d, 2H, J=8.0), 6.32 (br s, 1H), 5.71 (tm, 1H, JH-F=55), 5.19 (br s, 1H), 4.60 (d, 1H, J=15.6), 4.49-4.53 (m, 1H), 4.33 (d, 1H, J=15.6), 3.91 (s, 3H), 2.42-2.68 (m, 1H), 1.54-1.65 (m, 1H).






474


1515







1516







1517





1
pale yellow foam
462.92
2.24 min Method A
485.07 (M + Na+)


1
H NMR (CDCl3, 400 MHz) δ 7.67 (d, 2H, J=8.4), 7.47 (d, 2H, J=8.8), 7.25-7.29 (m, 4H), 6.33 (br s, 1H), 5.72 (tm, 1H, JH-F=57), 5.23 (br s, 1H), 4.49-4.53 (m, 1H), 4.46 (d, 1H, J=15.6), 4.34 (d, 1H, J=15.0), 2.52-2.60 (m, 1H), 1.55-1.65 (m, 1H), 1.68 (s, 3H), 1.63 (s, 3H).






475


1518







1519







1520





1, 13
white foam
484.91
1.67 min Method D
485.07


1
H NMR (CDCl3, 400 MHz) δ 7.97 (d, 2H, J=8.0), 7.73 (dd, 2H, J=2.0, 8.8), 7.52 (dd, 2H, J=2.0, 8.8), 7.45 (d, 2H, J=8.4), 6.34 (br s, 1H), 5.73 (tm, 1H, JH-F=57), 5.20 (br s, 1H), 4.63 (d, 1H, J=15.6), 4.52-4.55 (m, 1H), 4.32 (d, 1H, J=15.6), 2.61 (s, 3H), 2.55-2.60 (m, 1H), 1.61-1.65 (m, 1H).






476


1521







1522







1523





1, 12
white foam
460.93
1.72 min Method D
483.07 (M + Na+)


1
H NMR (CDCl3, 400 MHz) δ 7.68 (dd, 2H, J=2.0, 8.8), 7.48 (dd, 2H, J=8.4), 7.41 (d, 2H, J=8.4), 7.23 (d, 2H, J=8.8), 6.30 (br s, 1H), 5.73 (tm, 1H, JH-F=57), 5.18 (br s, 1H), 4.48-4.52 (m, 1H), 4.44 (d, 1H, J=15.2), 4.34 (d, 1H, J=15.2),



# 2.50-2.65 (m, 1H), 1.61-1.70 (m, 1H), 1.56 (s, 6H).





477


1524







1525







1526





7
clear oil
455.93
0.99 min Method A
456.20


1
H NMR (CDCl3, 400 MHz) δ 7.72-7.86 (m, 2H), 7.45-7.52 (m, 2H), 6.70 (br s, 1H), 5.44 (br s, 1H), 4.46-4.57 (m, 2H), 4.00-4.37 (m, 2H), 3.24 (dd, 1H, J=4.4, 9.8), 2.70-3.15 (m, 6H), 2.15-2.34 (m, 2H), 1.80-1.93 (m, 2H), 1.54-1.63 (m, 2H), 1.25-1.35 (m, 2H).






478


1527







1528







1529





7
clear oil
519.04
1.12 min Method A
519.23


1
H NMR (CDCl3, 400 MHz) δ 7.71-7.84 (m, 2H), 7.39-7.55 (m, 2H), 6.70 (br m, 1H), 5.87 (br m, 1H), 4.88 (m, 1H), 4.50 (d, 1H, J=9.5), 4.21-4.31 (m, 2H), 4.11-4.20 (m, 2H), 3.80-3.87 (m, 2H), 3.69-3.77 (m, 2H), 3.3 1-3.50 (m, 2H), 3.00-3.21 (m, 2H), 2.80-3.95 (m, 2H), 2.10-2.50 (m, 4H), 1.85-1.95



# (m, 2H), 1.73 (d, 2H, J=8.5), 1.40-1.50 (m, 2H)





479


1530







1531







1532





7
clear oil
535.06
1.72 min Method A
535.18


1
H NMR (CDCl3, 400 MHz) δ 7.73 (d, 2H, J=8.6), 7.53 (d, 2H, J=8.6), 6.70 (br s, 1H), 5.70 (tm, 1H, JHF=50), 5.55 (br s, 1H), 4.46 (dd, 1H, J=3.8, 10), 3.80-4.00 (m, 3H), 3.50-3.70 (m, 1H), 3.15-3.30 (m, 1H), 2.80-3.95 (m, 1H), 2.60-2.80 (m, 2H), 2.40-2.60 (m, 1H), 1.05-2.00 (m, 16H)






480


1533







1534







1535





1
off-white foam
444.93
1.89 min Method D
467.09 (M + Na+)


1
H NMR (CDCl3, 400 MHz) δ 7.66 (ddd, 2H, J=2.0, 2.4, 8.8), 7.44 (ddd, 2H, J=2.0, 2.4, 8.8), 7.25-7.31 (m, 4H), 6.30 (br s, 1H), 5.22 (br s, 1H), 4.56-4.60 (m, 1H), 4.47 (d, 1H, J=15.6), 4.39 (d, 1H, J=16.0), 4.32-4.36 (m, 1H), 4.20-4.24 (m, 1H), 2.23-2.39 (m, 1H),



# 1.70-1.85 (m, 1H), 1.65-1.68 (m, 3H), 1.53 (s, 3H).





481


1536







1537







1538





6
white solid
428.87
1.58 min Method D
429.04


1
H NMR (CD3OD, 400 MHz) δ 7.92 (d, 2H, J=8.4), 7.79 (ddd, 2H, J=2.0, 2.4, 8.8), 7.52 (ddd, 2H, J=2.0, 2.8, 8.8), 7.47 (d, 2H, J=8.0), 4.80 (d, 1H, J=16), 4.66 (d, 1H, J=14.5), 4.64 (t, 1H, J=7.6), 4.10-4.33 (m, 2H), 2.05-2.12 (m, 1H), 1.72-1.80 (m, 1H).






482


1539







1540







1541





6
yellow solid
446.86
1.39 min Method B
447.06


1
H NMR (CDCl3, 400 MHz) δ 7.89 (d, 2H, J=8.0), 7.66 (dd, 2H, J=2.0, 8.0), 7.41 (dd, 2H, J=2.0, 8.4), 7.31 (d, 2H, J=8.0), 6.61 (br s, 1H), 5.90 (br s, 1H), 5.76 (tm, 1H, JH-F=57), 4.56 (d, 1H, J=16.0), 4.49-4.52 (m, 1H), 4.36 (d, 1H, J=12.0), 2.50-2.65 (m, 1H), 1.61-1.70 (m, 1H).






483


1542







1543







1544





6
white solid
455.94
1.34 min Method B
488.11 (M + Na+)


1
H NMR (CDCl3, 400 MHz) δ 7.72 (d, 2H, J=8.0), 7.68 (d, 2H, J=8.0), 7.49 (ddd, 2H, J=2.0, 2.4, 8.4), 7.38 (d, 2H, 1 8.0), 6.32 (br s, 1H), 6.06 (br s, 1H), 5.19 (br s, 1H), 4.59 (d, 1H, J=15.0), 4.56-4.60 (m, 1H), 4.37 (d, 1H, J=15.0), 4.29-4.32 (m, 1H), 4.16-4.19 (m, 1H),



# 3.45-3.49 (m, 2H), 2.15-2.30 (m, 1H), 1.50-1.65 (m, 1H), 1.25 (t, 3H, J=8.0).





484


1545







1546







1547





6
white solid
469.97
1.40 min Method B
470.15


1
H NMR (CDCl3, 400 MHz) δ 7.72 (d, 2H, J=8.0), 7.48 (d, 2H, J=8.0), 7.30-7.36 (m, 4H), 6.30 (br s, 1H), 5.26 (br s, 1H), 4.54-4.58 (m, 2H), 4.38 (d, 1H, J=15.2), 4.29-4.32 (m, 1H), 4.18-4.22 (m, 1H), 3.55-3.59 (m, 1H), 3.22-3.27 (m, 1H), 2.90 and 3.05 (2 s, 3H), 2.20-2.33 (m,



# 1H), 1.50-1.65 (m, 1H), 1.08-1.30 (m, 3H).





485


1548







1549







1550





6
white solid
473.93
1.33 min Method B
474.11


1
H NMR (CDCl3, 400 MHz) δ 7.72 (d, 2H, J=8.8), 7.70 (d, 2H, J=8.4), 7.51 (d, 2H, J=8.8), 7.38 (d, 2H, J=8.0), 6.31 (br s, 1H), 6.05 (br s, 1H), 5.72 (tm, 1H, JH-F=57), 5.20 (br s, 1H), 4.59 (d, 1H, J=15.6), 4.49-4.52 (m, 1H), 4.31 (d, 1H, J=15.6), 3.46-3.53 (m, 2H), 2.45-2.65



# (m, 1H), 1.57-1.65 (m, 1H), 1.25 (t, 3H, J=7.2).





486


1551







1552







1553





6
white solid
536.99
1.13 min Method B
537.17


1
H NMR (CDCl3, 400 MHz) δ 8.57 (d, 1H, J=4.8), 7.83 (d, 2H, J=8.4), 7.71-7.78 (m, 3H), 7.71 (br s, 1H), 7.52 (dd, 2H, J=1.6, 8.8), 7.40 (d, 2H, J=8.0), 7.30-7.35 (m, 1H), 7.23-7.28 (m, 1H), 6.32 (br s, 1H), 5.72 (tm, 1H, JH-F=57), 5.25 (br s, 1H), 4.75 (d, 2H, J=4.8),



# 4.59 (d, 1H, J=15.6), 4.49-4.53 (m, 1H), 4.33 (d, 1H, J=15.6), 2.48-2.65 (m, 1H), 1.58-1.65 (m, 1H).





487


1554







1555







1556





6
white solid
519.00
1.10 min Method B
519.35


1
H NMR (CDCl3, 400 MHz) δ 8.58 (d, 1H, J=4.4), 7.92 (d, 2H, J=8.4), 7.71-7.78 (m, 4H), 7.48 (dd, 2H, J=2.0, 8.8), 7.39-7.44 (m, 3H), 7.24-7.30 (m, 1H), 6.28 (br s, 1H), 5.20 (br s, 1H), 4.78 (d, 2H, J=4.8), 4.55-4.61 (m, 2H), 4.39 (d, 1H, J=15.6), 4.29-4.32 (m, 1H), 4.17-4.21



# (m, 1H), 2.20-2.33 (m, 1H), 1.50-1.65 (m, 1H).





488


1557







1558







1559





6
white solid
487.96
1.63 min Method D
488.34


1
H NMR (CDCl3, 400 MHz) δ 7.72 (dd, 2H, J=2.0, 8.8), 7.51 (dd, 2H, J=2.0, 8.4), 7.50 (s, 4H), 6.30 (br s, 1H), 5.72 (tm, 1H, JH-F=57), 5.24 (br s, 1H), 4.55 (d, 1H, J=15.5), 4.49-4.52 (m, 1H), 4.33 (d, 1H, J=15.5), 3.57 (br s, 1H), 3.23 (br s, 1H), 2.90 and 3.05 (2 s, 3H),



# 2.48-2.62 (m, 1H), 1.57-1.72 (m, 1H), 1.08-1.30 (m, 3H).





489


1560







1561







1562





6
off-white solid
503.96
1.40 min Method A
504.41


1
H NMR (CDCl3, 400 MHz) δ 7.72 (d, 4H, J=8.4), 7.52 (d, 2H, J=8.8), 7.38 (d, 2H, J=8.4), 6.49 (br s, 1H), 6.31 (br s, 1H), 5.72 (tm, 1H, JH-F=57), 5.19 (br s, 1H), 4.59 (d, 1H, J=15.0), 4.48-4.52 (m, 1H), 4.31 (d, 1H, J=15.6), 3.62-3.68 (m, 2H), 3.53-3.59 (m, 2H), 3.39



# (s, 3H), 2.48-2.62 (m, 1H), 1.57-1.72 (m, 1H).





490


1563







1564







1565





6
white solid
485.97
1.27 min Method B
486.14


1
H NMR (CDCl3, 300 MHz) δ 7.69-7.74 (m, 4H), 7.51 (dd, 2H, J=1.8, 8.4), 7.38 (d, 2H, J=8.1), 6.48 (br s, 1H), 6.32 (br s, 1H), 5.19 (br s, 1H), 4.54-4.62 (m, 2H), 4.30-4.41 (m, 2H), 4.13-4.19 (m, 1H), 3.61-3.67 (m, 2H), 3.53-3.59 (m, 2H), 3.39 (s, 3H), 2.48-2.62 (m, 1H), 1.57-1.72 (m, 1H).






491


1566







1567







1568





14
off-white solid
484.91
1.54 min Method B
485.12


1
H NMR (CDCl3, 400 MHz) δ 8.06 (d, 2H, J=8.4), 7.74 (d, 2H, J=8.8), 7.53 (d, 2H, J=8.8), 7.48 (d, 2H, J=8.4), 6.34 (br s, 1H), 5.72 (tm, 1H, JH-F=57), 5.20 (br s, 1H), 4.65 (d, 1H, J=15.4), 4.51-4.56 (m, 1H), 4.33 (d, 1H, J=15.8), 2.48-2.65 (m, 1H), 2.47 (s, 3H), 1.57-1.65 (m, 1H).






492


1569







1570







1571





14
off-white solid
466.92
1.65 min Method A
467.19


1
H NMR (CDCl3, 400 MHz) δ 8.04 (d, 2H, J=8.0), 7.74 (dd, 2H, J=1.6, 8.4), 7.48-7.51 (m, 4H), 6.32 (br s, 1H), 5.17 (br s, 1H), 4.65 (d, 1H, J=16.0), 4.56-4.60 (m, 1H), 4.40 (d, 1H, J=16.0), 4.29-4.32 (m, 1H), 4.18-4.21 (m, 1H), 2.47 (s, 3H), 2.18-2.38 (m, 1H), 1.50-1.65 (m, 1H).






493


1572







1573







1574





6
white solid
478.88
1.59 min Method A
479.15


1
H NMR (dmso-d6, 400 MHz) δ 7.88 (d, 2H, J=8.0), 7.85 (d, 2H, J=8.8), 7.63 (d, 2H, J=8.8), 7.51 (d, 2H, J=8.0), 7.42 (br s, 1H), 7.24 (br s, 1H), 4.77 (d, 2H, J=2.0), 4.40-4.44 (m, 1H), 1.97-2.05 (m, 2H), 1.75-1.84 (m, 1H), 1.42-1.50 (m, 1H).






494


1575







1576







1577





1
white solid
492.91
1.66 min Method A
493.11


1
H NMR (CDCl3, 400 MHz) δ 7.97 (d, 2H, J=8.4), 7.69 (dd, 2H, J=1.6, 8.4), 7.50 (dd, 2H, J=2.0, 8.4), 7.40 (d, 2H, J=8.4), 6.22 (br s, 1H), 5.19 (br s, 1H), 4.58 (d, 1H, J=16.0), 4.43 (d, 1H, J=15.6), 4.31-4.35 (m, 1H), 3.91 (s, 3H), 2.08-2.20 (m, 1H), 1.88-2.03 (m, 1H), 1.69-1.82 (m, 1H), 1.38-1.47 (m, 1H).






495


1578







1579







1580





6
off-white solid
519.97
1.48 min Method B
520.21


1
H NMR (CDCl3, 400 MHz) 8 7.70 (d, 2H, J=8.4), 7.50 (d, 2H, J=8.8), 7.37 (d, 2H, J=8.4), 7.33 (d, 2H, J=8.0), 6.20 (br s, 1H), 5.26 (br s, 1H), 4.45-4.52 (m, 2H), 4.33 (t, 1H,.J=7.2), 3.61-3.70 (m, 1H), 3.22-3.27 (m, 1H), 2.90 and 3.06 (2 s, 3H), 2.05-2.18 (m, 1H), 1.90-2.03 (m, 1H),



# 1.69-1.82 (m, 1H), 1.38-1.47 (m, 1H), 1.11-1.28 (m, 3H).





496


1581







1582







1583





6
off-white solid
569.01
1.21 min Method B
569.16


1
H NMR (CDCl3, 400 MHz) δ 8.57 (d, 1H, J=4.8), 7.82 (d, 2H, J=8.4), 7.68-7.72 (m, 4H), 7.50 (d, 2H, J=8.8), 7.42 (d, 2H, J=8.4), 7.35 (d, 1H, J=8.0), 7.24 (br s, 1H), 6.24 (br s, 1H), 5.26 (br s, 1H), 4.76 (d, 2H, J=4.8), 4.58 (d, 1H, J=15.6), 4.41 (d, 1H, J=15.6), 4.3 1-4.35



# (m, 1H), 2.10-2.19 (m, 1H), 1.90-2.03 (m, 1H), 1.69-1.82 (m, 1H), 1.38-1.47 (m, 1H).





497


1584







1585







1586





6
white solid
535.97
1.53 min Method A
536.16


1
H NMR (CDCl3, 400 MHz) δ 7.72 (d, 2H, J=8.0), 7.69 (d, 2H, J=8.4), 7.50 (d, 2H, J=8.4), 7.40 (d, 2H, J=8.4), 6.48 (br s, 1H), 6.22 (br s, 1H), 5.20 (br s, 1H), 4.57 (d, 1H, J=15.6), 4.41 (d, 1H, J=15.6), 4.30-4.34 (m, 1H), 3.63-3.67 (m, 2H), 3.55-3.57 (m, 2H), 3.39 (s, 3H), 2.10-2.20 (m, 1H),



# 1.88-2.03 (m, 1H), 1.69-1.82 (m, 1H), 1.38-1.47 (m, 1H).





498


1587







1588







1589





6
white solid
505.95
1.55 min Method A
506.10


1
H NMR (CDCl3, 400 MHz) δ 7.69 (dd, 2H, J=1.6, 8.4), 7.50 (d, 2H, J=8.4), 7.39 (d, 2H, J=8.0), 7.25-7.28 (m, 2H), 6.22 (br s, 1H), 6.03 (br s, 1H), 5.19 (br s, 1H), 4.57 (d, 1H, J=15.6), 4.41 (d, 1H, J=15.6), 4.30-4.33 (m, 1H), 3.48-3.53 (m, 2H), 2.10-2.20 (m, 1H), 1.88-2.03 (m, 1H),



# 1.69-1.82 (m, 1H), 1.38-1.47 (m, 1H), 1.25 (t, 3H, J=7.2).





499


1590







1591







1592





14
Beige solid
516.93
1.65 min Method B
517.15


1
H NMR (CDCl3, 400 MHz) δ 8.06 (dd, 2H, J=1.6, 8.4), 7.71 (dd, 2H, J=2.0, 8.4), 7.49-7.52 (m, 4H), 6.22 (br s, 1H), 5.20 (br s, 1H), 4.63 (d, 1H, J=15.6), 4.44 (d, 1H, J=15.6), 4.33-4.37 (m, 1H), 2.47 (s, 3H), 2.10-2.20 (m, 1H), 1.91-2.03 (m, 1H), 1.73-1.86 (m, 1H), 1.40-1.51 (m, 1H).






500


1593







1594







1595





1
off-white foam
494.94
1.74 min Method B
475.27 (M − HF +H+)


1
H NMR (CDCl3, 500 MHz) δ 7.65 (dd, 2H, J=2.0, 8.5), 7.46 (ddd, 2H, J=2.0, 2.5, 7.5), 7.25-7.31 (m, 4H), 6.18 (br s, 1H), 5.24 (br s, 1H), 4.47 (d, 1H, J=15.5), 4.41 (d, 1H, J=15.0), 4.35 (t, 1H, J=7.7), 2.08-2.20 (m, 1H), 1.88-2.03 (m, 1H), 1.69-1.82 (m, 1H), 1.68 (s, 3H),



# 1.63 (s, 3H), 1.38-1.47 (m, 1H).





501


1596







1597







1598





12
off-white solid
492.95
2.20 min Method A
475.96 (−H2O) 492.01 (neg ion)


1
H NMR (CDCl3, 400 MHz) δ 7.65 (d, 2H, J=8.8), 7.46 (d, 2H, J=8.4), 7.40 (d, 2H, 1 8.4), 7.25-7.27 (m, 2H), 6.19 (br s, 1H), 5.23 (br s, 1H), 4.46 (d, 1H, J=15.4), 4.41 (d, 1H, J=15.4), 4.34 (t, 1H, J=7.6), 2.08-2.20 (m, 1H), 1.88-2.03 (m,



# 1H), 1.69-1.82 (m, 1H), 1.56 (s, 3H), 1.54 (s, 3H), 1.38-1.47 (m, 1H).






Method A = 4.6 × 33 mm ODS-A C-18 column, 5 mL/min, 10:90:0.1 (MeOH/H2O/TFA) to 90:10:0.1 (MeOH/H2O/TFA), 2 min gradient




Method B = 3 × 50 mm ODS-A C-18 column, 5 mL/min, 10:90:0.1 (MeOH/H2O/TFA) to 90:10:0.1 (MeOH/H2O/TFA), 2 min gradient




Method C = 3 × 50 mm ODS-A C-18 column, 5 mL/min, 10:90:0.1 (MeOH/H2O/TFA) to 90:10:0.1 (MeOH/H2O/TFA), 3 min gradient




Method D = 4.6 × 50 mm Phenomenex Luna C-18 S5 column, 5 mL/min, 0-100% MeOH/H2O, 0.1% TFA, 2 min gradient




Method E = 4.6 × 50 mm Xterra C18 S5 column, 5 mL/min, 0-100% MeOH/H2O, 0.1% TFA, 2 min gradient




Method F = 4.6 × 50 mm Phenomenex Luna C-18 S5 column, 5 mL/min, 10:90:0.1 (MeOH/H2O/TFA) to 90:10:0.1 (MeOH/H2O/TFA), 2 min gradient




Method G = 3.0 × 50 mm Xterra C18 S7 column, 5 mL/min, 10:90:0.1 (MeOH/H2O/TFA) to 90:10:0.1 (MeOH/H2O/TFA), 2 min gradient








Claims
  • 1. A compound of formula I; or an optical isomer thereof
  • 2. The compound of claim 1 having the formula
  • 3. The compound of claim 2 in which R1 is a straight or branched-chain C1-6alkyl or C2-6alkenyl optionally substituted with substituents selected from the group consisting of hydroxy, C3-7cycloalkyl, C1-4alkoxy, C1-4alkylthio, and halogen.
  • 4. The compound of claim 2 in which R1 is C3-7cycloalkyl optionally substituted with hydroxy or halogen.
  • 5. The compound of claim 3 in which R1 is a straight or branched-chain C1-6alkyl optionally substituted with C3-7cycloalkyl.
  • 6. The compound of claim 3 in which R1 is a straight or branched-chain C1-6alkyl optionally substituted with halogen.
  • 7. The compound of claim 2 in which R3 is phenyl optionally substituted with substituents selected from the group consisting of halogen, hydroxy, C1-4alkoxy, C1-4alkyl, (halogen)3C—, (halogen)2CH—, and halogenCH2—.
  • 8. The compound of claim 2 in which R3 is pyridyl optionally substituted with substituents selected from the group consisting of halogen, hydroxy, C1-4alkoxy, C1-4alkyl, (halogen)3C—, (halogen)2CH—, and halogenCH2—.
  • 9. The compound of claim 7 in which R3 is phenyl optionally substituted with halogen.
  • 10. The compound of claim 2 in which R2 is a straight or branched-chain C1-6alkyl or C3-6alkenyl optionally substituted with substituents selected from the group consisting of halogen, C1-4alkoxy, and NR4R5.
  • 11. The compound of claim 2 in which R2 is C3-7cycloalkylmethyl optionally substituted with substituents selected from the group consisting of amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, C1-4alkylC(═O)NIH—, and C1-4alkylOC(═O)NH—.
  • 12. The compound of claim 2 in which R2 is a straight or branched-chain C1-6alkyl-C(═O)—A.
  • 13. The compound of claim 2 in which R2 is —B-naphthyl.
  • 14. The compound of claim 2 in which R2 is
  • 15. The compound of claim 2 in which R2 is —B-(heterocycle), in which said heterocycle is selected from the group consisting of furanyl, thiofuranyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, oxadiazolyl, oxazolyl, isoxazolyl, thiadiazolyl and thiazolyl wherein said heterocycle is optionally substituted with substituents selected from the group consisting of cyano, halogen, C1-4alkyl, CO2C1-4alkyl, amino, (C1-4alkyl)NH—, di(C1-4alkyl)N—, morpholin-4-yl, thiomorpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, and 4-(C1-6alkyl)piperazin-1-yl.
  • 16. The compound of claim 2 in which R2 is —B-(piperidin-4-yl), in which said piperidin-4-yl is optionally substituted with substituents selected from the group consisting of a straight or branched-chain C1-6alkyl, CH2C(═O)phenyl, phenyl or phenylmethyl in which said C1-6alkyl and said phenyl are optionally substituted with substituents selected from a group consisting of cyano, halogen, benzimidazol-2-yl, pyridyl and tetrahydrofuran-2-yl; and —C(═O)W′ wherein W′ is selected from the group consisting of C1-4alkoxy, R9, and —NR4R5.
  • 17. The compound of claim 14 in which B is straight-chain C1-4alkyl.
  • 18. The compound of claim 17 wherein Z is hydrogen.
  • 19. The compound of claim 17 wherein X is C(═O)W, E is a direct bond and Y is hydrogen.
  • 20. The compound of claim 17 wherein X is —NR4R5, E is a direct bond and Y is hydrogen.
  • 21. The compound of claim 17 wherein X is —OR6, E is a direct bond and Y is hydrogen.
  • 22. The compound of claim 17 wherein X is —NR7C(═O)R8, E is a direct bond and Y is hydrogen.
  • 23. A pharmaceutical composition for the treatment of disorders responsive to the inhibition of β-amyloid peptide production comprising a therapeutically effective amount of a compound of claim 1 in association with a pharmaceutically acceptable carrier or diluent.
  • 24. A method for the treatment of disorders responsive to the inhibition of β-amyloid peptide production in a mammal in need thereof, which comprises administering to said mammal a therapeutically effective amount of a compound of claim 1.
  • 25. A method of claim 24 wherein said disorder is Alzheimer's Disease and Down's Syndrome.
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This is a non-provisional application which claims the benefit of U.S. Provisional Application No. 60/344,322 filed Dec. 20, 2001.

Provisional Applications (1)
Number Date Country
60344322 Dec 2001 US