Hodgson et al (Am. J. Trop. Med. Hyg. 49[3 suppl.]:195-196, 1993).* |
Verma et al. Nature, vol. 389, p. 239-242, Sep. 18, 1997.* |
Orkin et al, Report and recommendations of the panel to assess the NIH investment in research on gene therapy, Dec. 7, 1995.* |
Corsini, et al.: Efficiency of Transduction by Recombinant Sindbis Replicon Virus Varies Among Cell Lines, Including Mosquito Cells and Rat Sensory Neurons, BioTechniques, 21:3 (492-497), Sep. 1996. |
Simpson, et al., Complete Nucleotide Sequence and Full-Length cDNA Clone of S.A.AR86, a South African Alphavirus Related to Sindbis1, Virology 222 (464-469) Article No. 0445, 1996. |
Russell et al., Sindbis Virus Mutations Which Coordinately Affect Glycoprotein Processing, Penetration, and Virulence In Mice, J. of Viro., 63:4:1619-1629 (1989). |
Davis et al.; Attenuated Mutants of Venezuelan Equine Encephalitis Virus Containing Lethal Mutations in the PE2 Cleavage Signal Combined with a Second-Site Suppressor Mutation in E1, Virology, 212:102-110 (1995). |
N.L. Davis et al.; Attenuating Mutations in the E2 Glycoprotein Gene of Venezuelan Equine Encephalitis Virus: Construction of Single and Multiple Mutants in a Full-Length cDNA Clone; Virology, 183:20-31 (1991). |
Davis et al.; A Genetically Engineered Live Virus Vaccine for Venezuelan Equine Encephalitis; J. Cell Biochemistry, Supplement O No. 17 Part D, Abstract N404 (1993). |
R.J. Schoepp and R.E. Johnston; Directed Mutagenesis of a Sindbis Virus Pathogenesis; Virology, 193:149-159 (1993). |
J.M. Polo and R.E. Johnston; Attenuating Mutations in Glycoproteins E1 and E2 of Sindbis Virus Produce a Highly Attenuated Strain When Combined in Vitro; J. of Virology, 64:9:4438-4444 (1990). |
P.J. Bredenbeek et al.; Sindbis Virus Expression Vectors: Packaging of RNA Replicons by Using Defective Helper RNAs; J. of Virology; 67:11:6439-6446 (1993). |
Liljestrom et al.; A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon; Bio/Technology, 9:1356-1360 (1991). |
Morgenstern et al., Advanced Mammalian Gene Transfer; High Titre Retroviral Vectors with Multiple Drug Selection Markers and a Complementary Helper-Free Packaging Cell Line; Nuclear Acids Research; 18:12:3587-3596 (199). |
Suomalainen et al.; Spike Protein-Nucleocapsid Interactions Drive the Budding of Alphaviruses; J. of Virology; 66:8:4737-4747 (1992). |
Grieder et al.; “Specific Restrictions in the Progression of Venezuelan Equine Encephalitis Virus-Induced Disease Resulting from Single Amino Acid Changes in the Glycoproteins”, Virology 206:994-1006 (1995). |
Lemm et al.; “Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation if minus- and plus-strand RNA,” EMBO J. 13:12 2925-2934 (1994). |
Strauss et al.; “The Alphaviruses: Gene Expression, Replication, and Evolution”, Microbioligical Reviews 58:3 491-562 (Sep. 1994). |
Cheng Xiong, et al., “Sindbis Virus: An Efficient, Broad Host Range Vector for Gene Expression in Animal Cells.” Science, New Series, vol. 243, Issue 4895 (Mar. 3, 1989), 1188-1191. |
Ute Geigenmuller-Gnirke, et al. “Complementation Between Sinbis Viral RNAs Produces Infectious Particles with a Bipartite Genome.” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, Issue 8 (Apr. 15, 1991), 3253-3257. |
Barbara G. Weiss and Sondra Schlesinger. “Recombination between Sindbis Virus RNAs.” Journal of Virology. vol. 65, No. 8 (Aug. 1991), 4017-4025. |
Sondra Schlesinger. “Alphaviruses—vectors for the expression of heterologous genes”. TiBTech. (1993), 18-22. |
Richard M. Kinney. “Attenuation of Venzuelan Equine Encephalitis Virus Strain TC-83 Is Encoded by the 5′-Noncoding Region and the E2 Envelope Glycoprotein.” Journal of Virology. vol. 67, No. 3, (Mar. 1993), 1269-1277. |
N.L. Davis. “A molecular genetic approach to the study of Venezuelan equine encephalitis virus pathogenesis.” Archives of Virology. (1994), 99-109. |
E. Mathilda Sjöberg, et al. “A Significantly Improved Semliki Forest Virus Expression System Based on Translation Enhancer Segments from the Viral Capsid Gene.” Bio/Technology. vol. 12, (Nov. 1994), 1127-1131. |
Peter Liljeström. “Alphavirus expression systems.” Current Opinion in Biotechnology. vol. 5, No. 5, (Oct. 1994), 495-500. |
S. Schlesinger and B.G. Weiss. “Recombination between Sindbis virus RNAs.” Archives of Virology. Suppl. 9, (1994), 213-220. |
Virology, vol. 183, issued 1991, Davis et al, “Attenuating Mutations in the E2 Glycoprotein Gene of Venezuelan Equine Encephalitis Virus: Construction of Single and Multiple Mutants in a Full-length cDNA Clone”, pp. 20-31, see pages 20 and 21. |
Journal Cell Biochemistry, Supplement O, No. 17, Part D, issued 1993, Davis et al, “A Genetically Engineered Live Virus Vaccine for Venezuelan Equine Encephalitis”, p. 79, see entire document. |
Virology, vol. 193, issued 1993, Schoepp et al, “Directed Mutagenesis of a Sindbis Virus Pathogenesis Site”, pp. 149-159, see pp. 154-155. |
Journal of Virology, vol. 64, No. 9, issued Sep. 1990, Polo et al, “Attenuating Mutations in Glycoproteins E1 and E2 of Sinbis Virus Produce a Highly Attenuated Strain when Combined in vitro”, pp. 4438-4444, see p. 4443. |
Bio/Technology, vol. 9, issued Dec. 1991, Liljestrom et al, “A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon”, pp. 1356-1360, see p. 1358. |
Journal of Virology, vol. 67, No. 11, issued Nov. 1993, Bredenbeek et al, “Sindbis Virus Expression Vectors: Packaging of RNA Replicons by Using Defective Helper RNAs”, pp. 6439-6446, see pp. 6440 and 6445. |