Many computing applications such as computer games, multimedia applications, or the like use controls to allow users to manipulate game characters or other aspects of an application. Typically, such controls are input using, for example, controllers, remotes, keyboards, mice, or the like. Unfortunately, such controls can be difficult to learn, thus creating a barrier between a user and such games and applications. Furthermore, the user actions required for operating such controls may be different than the actions that a user may take to realistically interact with virtual or real environments displayed in a game or other application.
For example, buttons of a handheld controller may be used to cause a game character or an avatar to navigate or to change perspectives in a three-dimensional (3D) virtual environment. In this example, the use of buttons on the handheld controller to interact with the virtual environment is physically different than the realistic movements a person may preferably normally use to interact with a like real environment. For example, rather than pushing a controller button to move a game character forward in a virtual environment, it may be preferable for a user to make a walking motion to effect forward movement of the game character in the virtual environment.
Accordingly, it is desirable to provide systems and methods for allowing a user to interact within a display environment by use of intuitive, natural movements or gestures.
Disclosed herein are systems and methods for altering a view perspective within a display environment. For example, gesture data corresponding to a plurality of inputs may be stored. The input may be input into a game or application implemented by a computing device. Images of a user of the game or application may be captured. For example, a suitable capture device may capture several images of the user over a period of time. The images may be analyzed and/or processed for detecting a user's gesture. One or more aspects of the user's gesture may be compared to one or more aspects of the stored gesture data for determining an intended gesture input for the user. The comparison may be part of an analysis for determining one or more of the inputs corresponding to the gesture data, where one or more of the inputs are input into the game or application and cause a view perspective within the display environment to be altered. The altered view perspective of the display environment may be displayed.
In one embodiment, the user's gestures or movements may be used for controlling actions of an avatar or game character. For example, the user's gestures may be compared against gesture filters. If the movements of the points meet speed and/or position filtering criteria, the movements may be mapped directly onto a corresponding point of the user's avatar. The movements may be scaled so that the movements are correct regardless of the difference in proportion between the user's skeletal model and the avatar model.
The gesture filters may allow filtering conditions to be specified on a per-bone and/or per-joint basis. Conditions may be expressed in terms of angular or linear distance from other bones and/or joints, a neutral “rest” position, or fixed positions in a play space or room. Conditions may also be expressed in terms of velocity or acceleration. If a user movement or motion meets the criteria of the filter, the system may reflect the movement in the avatar and/or reflect the movement in a first-person game character's view perspective shown on a display.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
The systems, methods, and computer readable media for altering a view perspective within a virtual environment in accordance with this specification are further described with reference to the accompanying drawings in which:
As will be described herein, a user may alter a view perspective within a display environment by making one or more gestures. According to one embodiment, the user may make one or more physical movements or gestures that change a displayed perspective within a 3D virtual environment. For example, the user may be represented by an avatar or game character in the virtual environment, and a shoulder turn movement by the user to the left or right may cause a corresponding shift of a view of the virtual environment. In another embodiment, a display environment may be a real environment captured by video equipment, and movement by a user may cause corresponding “movement” of the user's avatar or game character such that a displayed perspective is correspondingly altered in the displayed real environment.
In an embodiment, user gestures may be detected by, for example, a capture device. For example, the capture device may capture a depth image of a scene. In one embodiment, the capture device may determine whether one or more targets or objects in the scene correspond to a human target such as the user. If the capture device determines that one or more objects in the scene is a human, it may determine the depth to the human as well as the size of the person. The device may then center a virtual screen around each human target based on stored information, such as, for example a look up table that matches size of the person to wingspan and/or personal profile information. Each target or object that matches the human pattern may be scanned to generate a model such as a skeletal model, a mesh human model, or the like associated therewith. The model may then be provided to the computing environment such that the computing environment may track the model, render an avatar associated with the model, determine clothing, skin and other colors based on a corresponding RGB image, and/or determine which controls to perform in an application executing on the computer environment based on, for example, the model.
In an example embodiment of showing an avatar, typically the avatar may be shown from a third-person view perspective of over-the-shoulder of the avatar. The view perspective may stay from a position behind the avatar, such as a user feels like the on-screen avatar is mimicking the user's actions. This view perspective may remove any ambiguity, from the user's perspective, between right and left, meaning the user's right is the avatar's right, and the player's left is the avatar's left.
In an example embodiment, the system may monitor registration points on a user's skeletal model for tracking user movement. When the points move, the system may compare the motion against gesture filters. If the movements of the points meet speed and/or position filtering criteria, the movements may be mapped directly onto a corresponding point of the user's avatar. The movements may be scaled so that the movements are correct regardless of the difference in proportion between the user's skeletal model and the avatar model.
The gesture filters may allow filtering conditions to be specified on a per-bone and/or per-joint basis. Conditions may be expressed in terms of angular or linear distance from other bones and/or joints, a neutral “rest” position, or fixed positions in a play space or room. Conditions may also be expressed in terms of velocity or acceleration. If a user movement or motion meets the criteria of the filter, the system may reflect the movement in the avatar and/or reflect the movement in a first-person game character's view perspective shown on a display.
In an example, a first time a gesture filter recognizes a user gesture after any number of rejections, the system may begin a transition process whereby an avatar's limbs are smoothly animated into a position that matches the user. During this transition, additional gesture input actions may be recognized, causing the target location of the animation and/or the view perspective to change. The animation may be dynamically updated to target the user's new position. The retargeting may continue until the avatar's position matches that of the user. If the gesture filter rejects actions as being outside of its parameters while a transition is still in progress, the transition may continue to the last-known gesture target unless overridden by another gesture animation.
User movements may be tracked over a period of time for determining whether movements by the user were intended as input gestures for interacting with a display environment. For example, the tracked movements may be used along with gesture models for determining whether the user intended to alter a view perspective within an environment. In an example embodiment, a computing environment may store gesture data including gesture models for defining movements corresponding to input gestures. For example, a gesture model can define a forward movement, a backward movement, a turn movement, a duck movement, a crouch movement, a swim movement, a flying movement, a zoom movement, a strafe movement, or a circle movement. When a user makes a movement, the movement can be analyzed using the gesture models for determining whether the user intended to make the defined gesture. Based on the analysis, the computing environment may determine that one or more aspects of the movement are a sufficiently similar to one or more aspects of a defined gesture such that it may be determined that the gesture is detected. If it is determined that a user's movements are sufficiently similar to one of the gesture models, the input corresponding to the gesture model may be used as an input into a game or application for altering a view perspective within an environment, and/or for controlling an avatar or game character.
As shown in
As shown in
According to one embodiment, the system 10 may be connected to the audiovisual device 16. The audiovisual device 16 may be any type of display, such as a television, a monitor, a high-definition television (HDTV), or the like that may provide game or application visuals and/or audio to a user such as the user 18. For example, the computing environment 12 may include a video adapter such as a graphics card and/or an audio adapter such as a sound card that may provide audiovisual signals associated with the game application, non-game application, or the like. The audiovisual device 16 may receive the audiovisual signals from the computing environment 12 and may then output the game or application visuals and/or audio associated with the audiovisual signals to the user 18. According to one embodiment, the audiovisual device 16 may be connected to the computing environment 12 via, for example, an S-Video cable, a coaxial cable, an HDMI cable, a DVI cable, a VGA cable, or the like.
As shown in
According to other embodiment, the system 10 may further be used to interpret target movements as operating system and/or application controls that are outside the realm of games. For example, virtually any controllable aspect of an operating system and/or application may be controlled by movements of the target such as the user 18.
As shown in
According to another example embodiment, time-of-flight analysis may be used to indirectly determine a physical distance from the capture device 20 to a particular location on the targets or objects by analyzing the intensity of the reflected beam of light over time via various techniques including, for example, shuttered light pulse imaging. This information may also be used to determine user movement.
In another example embodiment, the capture device 20 may use a structured light to capture gesture information. In such an analysis, patterned light (i.e., light displayed as a known pattern such as grid pattern or a stripe pattern) may be projected onto the scene via, for example, the IR light component 26. Upon striking the surface of one or more targets or objects in the scene, the pattern may become deformed in response. Such a deformation of the pattern may be captured by, for example, the 3-D camera 27 and/or the RGB camera 28 and may then be analyzed to determine a physical distance from the capture device to a particular location on the targets or objects.
According to another embodiment, the capture device 20 may include two or more physically separated cameras that may view a scene from different angles, to obtain visual stereo data that may be resolved to generate gesture information.
The capture device 20 may further include a microphone 30. The microphone 30 may include a transducer or sensor that may receive and convert sound into an electrical signal. According to one embodiment, the microphone 30 may be used to reduce feedback between the capture device 20 and the computing environment 12 in the system 10. Additionally, the microphone 30 may be used to receive audio signals that may also be provided by the user to control applications such as game applications, non-game applications, or the like that may be executed by the computing environment 12.
In an example embodiment, the capture device 20 may further include a processor 32 that may be in operative communication with the image camera component 25. The processor 32 may include a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions that may include instructions for receiving the gesture-related images, determining whether a suitable target may be included in the gesture image(s), converting the suitable target into a skeletal representation or model of the target, determine arm length or size by any means, including a skeletal tracking system or any other suitable instruction.
The capture device 20 may further include a memory component 34 that may store the instructions that may be executed by the processor 32, images or frames of images captured by the 3-D camera or RGB camera, player profiles or any other suitable information, images, or the like. According to an example embodiment, the memory component 34 may include random access memory (RAM), read only memory (ROM), cache, flash memory, a hard disk, or any other suitable storage component. As shown in
As shown in
Additionally, the capture device 20 may provide the gesture information and images captured by, for example, the 3-D camera 27 and/or the RGB camera 28, and a skeletal model that may be generated by the capture device 20 to the computing environment 12 via the communication link 36. The computing environment 12 may then use the skeletal model, gesture information, and captured images to, for example, create a virtual screen, adapt the user interface and control an application such as a game or word processor. For example, as shown, in
A graphics processing unit (GPU) 108 and a video encoder/video codec (coder/decoder) 114 form a video processing pipeline for high speed and high resolution graphics processing. Data is carried from the graphics processing unit 108 to the video encoder/video codec 114 via a bus. The video processing pipeline outputs data to an A/V (audio/video) port 140 for transmission to a television or other display. A memory controller 110 is connected to the GPU 108 to facilitate processor access to various types of memory 112, such as, but not limited to, a RAM (Random Access Memory).
The multimedia console 100 includes an I/O controller 120, a system management controller 122, an audio processing unit 123, a network interface controller 124, a first USB host controller 126, a second USB controller 128 and a front panel I/O subassembly 130 that are preferably implemented on a module 118. The USB controllers 126 and 128 serve as hosts for peripheral controllers 142(1)-142(2), a wireless adapter 148, and an external memory device 146 (e.g., flash memory, external CD/DVD ROM drive, removable media, etc.). The network interface 124 and/or wireless adapter 148 provide access to a network (e.g., the Internet, home network, etc.) and may be any of a wide variety of various wired or wireless adapter components including an Ethernet card, a modem, a Bluetooth module, a cable modem, and the like.
System memory 143 is provided to store application data that is loaded during the boot process. A media drive 144 is provided and may comprise a DVD/CD drive, hard drive, or other removable media drive, etc. The media drive 144 may be internal or external to the multimedia console 100. Application data may be accessed via the media drive 144 for execution, playback, etc. by the multimedia console 100. The media drive 144 is connected to the I/O controller 120 via a bus, such as a Serial ATA bus or other high speed connection (e.g., IEEE 1394).
The system management controller 122 provides a variety of service functions related to assuring availability of the multimedia console 100. The audio processing unit 123 and an audio codec 132 form a corresponding audio processing pipeline with high fidelity and stereo processing. Audio data is carried between the audio processing unit 123 and the audio codec 132 via a communication link. The audio processing pipeline outputs data to the A/V port 140 for reproduction by an external audio player or device having audio capabilities.
The front panel I/O subassembly 130 supports the functionality of the power button 150 and the eject button 152, as well as any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the multimedia console 100. A system power supply module 136 provides power to the components of the multimedia console 100. A fan 138 cools the circuitry within the multimedia console 100.
The CPU 101, GPU 108, memory controller 110, and various other components within the multimedia console 100 are interconnected via one or more buses, including serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include a Peripheral Component Interconnects (PCI) bus, PCI-Express bus, etc.
When the multimedia console 100 is powered ON, application data may be loaded from the system memory 143 into memory 112 and/or caches 102, 104 and executed on the CPU 101. The application may present a graphical user interface that provides a consistent user experience when navigating to different media types available on the multimedia console 100. In operation, applications and/or other media contained within the media drive 144 may be launched or played from the media drive 144 to provide additional functionalities to the multimedia console 100.
The multimedia console 100 may be operated as a standalone system by simply connecting the system to a television or other display. In this standalone mode, the multimedia console 100 allows one or more users to interact with the system, watch movies, or listen to music. However, with the integration of broadband connectivity made available through the network interface 124 or the wireless adapter 148, the multimedia console 100 may further be operated as a participant in a larger network community.
When the multimedia console 100 is powered ON, a set amount of hardware resources are reserved for system use by the multimedia console operating system. These resources may include a reservation of memory (e.g., 16 MB), CPU and GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 kbs), etc. Because these resources are reserved at system boot time, the reserved resources do not exist from the application's view.
In particular, the memory reservation preferably is large enough to contain the launch kernel, concurrent system applications and drivers. The CPU reservation is preferably constant such that if the reserved CPU usage is not used by the system applications, an idle thread will consume any unused cycles.
With regard to the GPU reservation, lightweight messages generated by the system applications (e.g., popups) are displayed by using a GPU interrupt to schedule code to render popup into an overlay. The amount of memory required for an overlay depends on the overlay area size and the overlay preferably scales with screen resolution. Where a full user interface is used by the concurrent system application, it is preferable to use a resolution independent of application resolution. A scaler may be used to set this resolution such that the need to change frequency and cause a TV resynch is eliminated.
After the multimedia console 100 boots and system resources are reserved, concurrent system applications execute to provide system functionalities. The system functionalities are encapsulated in a set of system applications that execute within the reserved system resources described above. The operating system kernel identifies threads that are system application threads versus gaming application threads. The system applications are preferably scheduled to run on the CPU 101 at predetermined times and intervals in order to provide a consistent system resource view to the application. The scheduling is to minimize cache disruption for the gaming application running on the console.
When a concurrent system application requires audio, audio processing is scheduled asynchronously to the gaming application due to time sensitivity. A multimedia console application manager (described below) controls the gaming application audio level (e.g., mute, attenuate) when system applications are active.
Input devices (e.g., controllers 142(1) and 142(2)) are shared by gaming applications and system applications. The input devices are not reserved resources, but are to be switched between system applications and the gaming application such that each will have a focus of the device. The application manager preferably controls the switching of input stream, without knowledge the gaming application's knowledge and a driver maintains state information regarding focus switches. The cameras 27, 28 and capture device 20 may define additional input devices for the console 100.
In
The computer 241 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 241 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 246. The remote computer 246 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 241, although only a memory storage device 247 has been illustrated in
When used in a LAN networking environment, the computer 241 is connected to the LAN 245 through a network interface or adapter 237. When used in a WAN networking environment, the computer 241 typically includes a modem 250 or other means for establishing communications over the WAN 249, such as the Internet. The modem 250, which may be internal or external, may be connected to the system bus 221 via the user input interface 236, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 241, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
According to an example embodiment, gesture data corresponding to different inputs to a game or other application may be stored by computing environment 12 of the system 10 at 505. For example, the computing environment 12 may store gesture modeling data that may be used to compare against a user's gestures. The gesture data may include a collection of gesture filters, each comprising information concerning a gesture that may be performed by the user's skeletal model (as the user moves). The gesture data may contain certain aspects used for comparison to aspects of a user's movement to determine whether the user is making a particular gesture intended as input into a game or other application.
According to an example embodiment, a process may take place to determine if a target is a human when a target enters a capture device scene. If it is determined that a target is a human, movement of the target may be captured over a period of time. The capture device 20 may detect gesture information at 510. The detected gesture or motion of the user 18 may be analyzed using the stored gesture data at 515. For example, the computing environment may compare one or more aspects of the detected gesture to the stored gesture data for determining whether the detected gesture should be considered an input corresponding to one of the stored gesture data. For example, the computing environment may compare a user's foot movement to determine whether the movement should be considered to be a walking gesture.
Based on the analysis at 515, the computing environment 12 may determine at least one of the inputs that correspond to the gesture data for altering a view perspective within a display environment at 520. In this example, if the movement is considered a walking gesture, the movement can cause the view perspective within a display environment to move forward. At 525, the altered view perspective may be displayed via display such as, for example, the audiovisual device 16.
According to one embodiment, the user may be scanned periodically during a session. These scans may be used to generate a movement model of a user, where the model may be a skeletal movement model, a mesh human movement model, or any suitable representation thereof. This movement model may include specific data about gestures made by the user. This data can be compared to the stored gesture data for determining whether a gesture should be considered an input for altering a view perspective.
In an example embodiment, as described above, the movement of the user 18 described above with respect to
In an example embodiment, a user may be able to navigate, interact, and alter a view perspective within a 3D virtual environment or other environment by making one or more gestures. Certain actions may be input into an application implementing the environment by detection one or more of the user's gestures. Exemplary input actions for controlling a user's avatar include walk forward, walk backward, rotate left to any desired facing, rotate right to any desired facing, run forward, strafe left, strafe right, arm movement, leg movement, and avatar interaction with object, such as with the avatar's hands and/or arms.
A walking motion may be detected when the user moves his or her legs up and down. Table 1 below provides exemplary user gestures for resulting in a corresponding input action.
A directional stepping motion may utilize all the same actions and behaviors as the above-described walking motion, but instead of using the walking in place action to establish movement. To move forward, a user places one foot forward to initiate and maintain forward and/or backward motion. Table 2 below provides exemplary user gestures for resulting in a corresponding input action.
Table 3 below provides exemplary predetermined avatar animation descriptions for input actions. These predetermined avatar animations may be preprogrammed movements of the avatar that are enacted when a user makes defined gestures.
In an example embodiment, predetermined avatar animations may be shown in combination with sounds. For example, when an avatar is caused to walk, light footsteps sounds may be played. In another example, when an avatar is caused to run, heavy footsteps sounds may be played. In another example, when an avatar is caused to strafe, scraping or sliding footstep sounds may be played. In another example, when an avatar is caused to bump into an object, a bumping sound may be played. In another example, when an avatar causes an object to fall or collide with another object, a heavy bumping sound may be played.
In an example embodiment, a user may make action inputs by positioning his or her body entirely within a new sector or area of a play space. A play space may be divided into different sectors within which the user may move to cause an input action.
In an example embodiment, a center position, such as at center area 65 in
In an example embodiment, the system may recognize that the user desires to stop the avatar's movement even if the user does not fully return to the center area 65 from one of the other areas. For example, the system may recognize that the user makes a step in the direction of the center area 65 and/or that the user is positioned almost entirely within the center area 65. In one or both of these cases, the control input may be to stop the avatar's current action. Additionally, after such recognition by the system, the new position of the user may be considered the center area 65 with the position of the other areas being similarly redefined with respect to the center area 65.
A user may make one or more predefined gestures for redefining the position of the center area 65 within a play space. For example, the user may position his or her feet side-by-side to define the center area 65 as being at the current position of the user. The other areas would also be relocated with respect to the newly defined center area. The system may be configured to recognize the predefined gesture for defining the position of the center area, and configured to redefined the positions of the center area and other areas when the gesture is recognized. The gesture may be recognized at the beginning of game play or during game play.
A jump motion may be detected when the user moves in one or more different ways. In an example of a recognized jump action input, a user may jump in place with his or her feet leaving the floor. In another example, a jump action input may be recognized when a user quickly stands up on his or her toes followed by moving back to being flat-footed. In another example, a jump action input may be recognized when a user quickly drops downward by bending his or her knees quickly and then standing back up straight. In this example, this movement may be considered a prepare-for-jump action that initiates a full jump for the game character or avatar. Any of these movements may be recognized and similarly serve as an input for controlling an avatar or a view perspective within a display environment.
A crouch motion may be detected when the user makes a crouching movement. For example, a user may bend his or her knees and arch his or her back while leaning slightly forward to cause a crouch input action. This movement may be recognized and similarly serve as an input for controlling an avatar or a view perspective within a display environment.
Any of the jump and crouch actions may be performed in combination with any other motion gesture described herein. For example, a user may run and jump forward or back in combination, strafe left or right and jump in combination, run and crouch in combination, or strafe and crouch in combination. Any of these movements may be recognized and similarly serve as an input for controlling an avatar or a view perspective within a display environment.
According to an example embodiment, movements of a user from the waist up (e.g., head, arms, and torso) are mimicked nearly fully or 1:1 by the user's avatar. An exception to mimicking the user nearly fully or 1:1 is during a predetermined avatar animation. During predetermined animations, the user's upper body movement may be mimicked unless the user's arms are at rest or in a normal walking motion, in which case a predetermined animation for the avatar may take priority.
In an example embodiment, predetermined avatar animations may take precedence over exactly mimicking the movement of a user. For example, if a “walk in place” or “run in place” gesture filter returns TRUE (that is, the game interprets the return value as walk or run, respectively), a walk or run animation for the avatar may be displayed. Further in this example, otherwise if the player triggers a movement animation by stepping in a direction, a predetermined movement animation for the avatar is displayed until the player stops the triggering movement. Otherwise, in this example, the movement of the avatar mimics the movement of the user. Thus, predetermined animations may typically take precedence over mimicking the movement of a user.
Referring back to
In an example embodiment, the system 10 may be used for detecting the gestures of more than one user simultaneously. In one example, the gestures of multiple users can be used for altering the view perspectives of display environments displayed on a corresponding number of portions of an audiovisual device, such as, for example, audiovisual device 16.
In an example embodiment, user movements may be partially or fully tracked for partially or fully controlling movements of the user's avatar. In an example, the system may not utilize every user movement for controlling the user's avatar. Such fidelity may be distracting to a user in some applications. The fidelity of a gesture filter may be adjusted, as needed, on a component-by-component basis in a user's skeletal model or other model. In an example, a user's arms may not be tracked to enable them to be free for operating a controller, such as a game play controller. In another example, a portion of a user's body, such as, for example, the left side of a user's body, may be exactly mimicked by the avatar, while movements of the right side of the user's body may be tracked for only “sweeping” gestures, or to reflect no control at all in the avatar. Sensitivity may be based on a distance of a user's body part from a normal position, speed of motion, and/or the like.
In another example embodiment, the system 10 may correct for drift of a target within a physical area. For example, during play, the user may move or drift from a central area. To correct for drift, the user may make one or more gestures for redefining a central position for the user. For example, the user may stand with his or her feet together for redefining the user's current position as the central position. Thus, in this way, the system can be indifferent to the user's position in a playspace, because the user may re-center his or her position when he or she notices that his or her position has drifted.
In another example embodiment, an avatar can mimic a user's movements in real-time. A gesture filter may, for example, recognize the user's gesture, and cause the avatar to mimic the gesture using a predetermined animation of the gesture. For example, if a user makes a throwing motion, an avatar's arm can be moved to mimic the user's throwing motion utilizing a predetermined throwing motion. In addition, a result of the throwing motion may be predetermined. For example, an object held by the avatar may be thrown by the avatar in real-time response to the user's throwing motion.
In another example embodiment, an avatar may transition between a state where the avatar is controlled by user gesture and a state where the avatar is not controlled by user gesture. For example, a user's body may make gestures for moving between the states. For example, avatar-control by user gesture may be enabled when a user's foot and knee are raised to certain heights, such as in preparation for a stomp movement. In any other user position or movement in this example, the avatar is not controlled by user movement, other than, for example, by control of a joystick. When the user makes a movement to enable gesture-based control, the avatar may move to mimic the user's body position and movement.
In another example embodiment, a user may place his or her feet together to cause the avatar to stay in position. As a result, the control input may result in the avatar remaining in the same position within the virtual world, such that the next view perspective is only altered by other inputs. The next view perspective may be the same or altered based on other user control inputs or application inputs.
In yet another example embodiment, a user may make one or more gestures, as described herein, for altering a virtual viewport of a display environment. For example, a user's gesture may be used as an input for moving a camera view (virtual viewport). For example, the user may jump in place, and as a result, the camera view within the display environment may correspondingly move upwards. In another example, the user may move to the left or right, and as a result, the camera view within the display environment may correspondingly move to the left or right. In an embodiment, movement of one or more appendages of the user may be tracked, and the camera view within the display environment may move in a corresponding direction.
It should be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered limiting. The specific routines or methods described herein may represent one or more of any number of processing strategies. As such, various acts illustrated may be performed in the sequence illustrated, in other sequences, in parallel, or the like. Likewise, the order of the above-described processes may be changed.
Additionally, the subject matter of the present disclosure includes combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or processes disclosed herein, as well as equivalents thereof.
The present application claims priority to U.S. Provisional Application No. 61/174,893, titled “Altering a View Perspective within a Display Environment” filed May 1, 2009, the contents of which are incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4720789 | Hector et al. | Jan 1988 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5139261 | Openiano | Aug 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson et al. | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6057909 | Yahav et al. | May 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng et al. | Jun 2000 | A |
6088042 | Handelman | Jul 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100517 | Yahav et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6322074 | Forrest et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6450886 | Oishi | Sep 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6498628 | Iwamura | Dec 2002 | B2 |
6502515 | Burckhardt et al. | Jan 2003 | B2 |
6503195 | Keller et al. | Jan 2003 | B1 |
6512838 | Rafii et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6554434 | Sciammarella et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6674877 | Jojic et al. | Jan 2004 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6771277 | Ohba | Aug 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7006236 | Tomasi et al. | Feb 2006 | B2 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050177 | Tomasi et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7151530 | Roeber et al. | Dec 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7224384 | Iddan et al. | May 2007 | B1 |
7227526 | Hildreth | Jun 2007 | B2 |
7259747 | Bell | Aug 2007 | B2 |
7293235 | Powers | Nov 2007 | B1 |
7293356 | Sohn et al. | Nov 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7386799 | Clanton et al. | Jun 2008 | B1 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7528835 | Templeman | May 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7542040 | Templeman | Jun 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7562459 | Fourquin | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7665041 | Wilson | Feb 2010 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729515 | Mandella | Jun 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7755608 | Chang | Jul 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7815508 | Dohta | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
8009022 | Kipman et al. | Aug 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
8083588 | Pryor | Dec 2011 | B2 |
8194921 | Kongqiao et al. | Jun 2012 | B2 |
8241125 | Hughes | Aug 2012 | B2 |
8274535 | Hildreth et al. | Sep 2012 | B2 |
8277316 | Haigh-Hutchinson | Oct 2012 | B2 |
8419545 | Yen | Apr 2013 | B2 |
8503086 | French | Aug 2013 | B2 |
8571698 | Chen et al. | Oct 2013 | B2 |
8605990 | Izumi | Dec 2013 | B2 |
8797260 | Mao | Aug 2014 | B2 |
8929612 | Ambrus | Jan 2015 | B2 |
20020041327 | Hildreth | Apr 2002 | A1 |
20030138130 | Cohen | Jul 2003 | A1 |
20040189720 | Wilson | Sep 2004 | A1 |
20040193413 | Wilson | Sep 2004 | A1 |
20040207597 | Marks | Oct 2004 | A1 |
20050059488 | Larsen et al. | Mar 2005 | A1 |
20050166163 | Chang | Jul 2005 | A1 |
20060142081 | Kil | Jun 2006 | A1 |
20060188144 | Sasaki et al. | Aug 2006 | A1 |
20060239558 | Rafii et al. | Oct 2006 | A1 |
20070003915 | Templeman | Jan 2007 | A1 |
20070013718 | Ohba | Jan 2007 | A1 |
20070060336 | Marks et al. | Mar 2007 | A1 |
20070070072 | Templeman | Mar 2007 | A1 |
20070098222 | Porter et al. | May 2007 | A1 |
20070180718 | Fourquin | Aug 2007 | A1 |
20070211239 | Mandella | Sep 2007 | A1 |
20070216894 | Garcia et al. | Sep 2007 | A1 |
20070260984 | Marks et al. | Nov 2007 | A1 |
20070279485 | Ohba et al. | Dec 2007 | A1 |
20070283296 | Nilsson | Dec 2007 | A1 |
20070298882 | Marks et al. | Dec 2007 | A1 |
20080001951 | Marks et al. | Jan 2008 | A1 |
20080013793 | Hillis et al. | Jan 2008 | A1 |
20080018595 | Hildreth et al. | Jan 2008 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080062257 | Corson | Mar 2008 | A1 |
20080100620 | Nagai et al. | May 2008 | A1 |
20080126937 | Pachet | May 2008 | A1 |
20080134102 | Movold et al. | Jun 2008 | A1 |
20080152191 | Fujimura et al. | Jun 2008 | A1 |
20080170123 | Albertson | Jul 2008 | A1 |
20080191864 | Wolfson | Aug 2008 | A1 |
20080215972 | Zalewski et al. | Sep 2008 | A1 |
20080215973 | Zalewski et al. | Sep 2008 | A1 |
20080215974 | Harrison | Sep 2008 | A1 |
20080244468 | Nishihara et al. | Oct 2008 | A1 |
20080309618 | Okada | Dec 2008 | A1 |
20090002333 | Maxwell | Jan 2009 | A1 |
20090077504 | Bell | Mar 2009 | A1 |
20090098939 | Hamilton, II | Apr 2009 | A1 |
20090141933 | Wagg | Jun 2009 | A1 |
20090143124 | Hughes | Jun 2009 | A1 |
20090167679 | Klier et al. | Jul 2009 | A1 |
20090217211 | Hildreth et al. | Aug 2009 | A1 |
20090221368 | Yen | Sep 2009 | A1 |
20090221372 | Casey | Sep 2009 | A1 |
20090221374 | Yen | Sep 2009 | A1 |
20090244309 | Maison et al. | Oct 2009 | A1 |
20090278820 | Fourquin | Nov 2009 | A1 |
20090318224 | Ealey | Dec 2009 | A1 |
20100050133 | Nishihara et al. | Feb 2010 | A1 |
20100060722 | Bell | Mar 2010 | A1 |
20100295779 | Pearce et al. | Nov 2010 | A1 |
20110080490 | Clarkson et al. | Apr 2011 | A1 |
20110172927 | Sahasrabudhe | Jul 2011 | A1 |
20110193939 | Vassigh | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
1797284 | Jul 2006 | CN |
20125344 | Jun 2010 | CN |
0583061 | Feb 1994 | EP |
1621977 | Feb 2006 | EP |
1879130 | Jan 2008 | EP |
08044490 | Feb 1996 | JP |
9310708 | Jun 1993 | WO |
9717598 | May 1997 | WO |
WO 9915863 | Apr 1999 | WO |
9944698 | Sep 1999 | WO |
WO 0159975 | Jan 2002 | WO |
WO 02082249 | Oct 2002 | WO |
WO 03001722 | Mar 2003 | WO |
WO 03046706 | Jun 2003 | WO |
WO 03073359 | Nov 2003 | WO |
WO 03054683 | Dec 2003 | WO |
WO 03071410 | Mar 2004 | WO |
WO2008014826 | Feb 2008 | WO |
WO 2009059065 | May 2009 | WO |
Entry |
---|
Ahn, Sang Chul et al.; Large Display Interaction using Video Avatar and Hand Gesture Recognition; Imaging Media Research Center, Seoul, Korea; 8 pages http://www.imrc.kist.re.kr/˜kij/LNCS—2004.pdf. |
Lee, ChanSu et al.; The Control of Avatar Motion Using Hand Gesture for Immersive Virtual Environment; VR Lab, Human-Computer Interface Dept. SERI; 8 pages http://vr.kaist.ac.kr/publication/techmemo/tm99-3.doc. |
Kaiser, Ed et al.; Mutual Disambiguation of 3D Multimodal Interaction in Augmented and Virtual Reality; 8 pages http://research.microsoft.com/en-us/um/people/benko/publications/2003/p128-kaiser.pdf. |
PCT Application No. PCT/US2010/032447: International Search Report and Written Opinion of the International Searching Authority, Dec. 7, 2010, 8 pages. |
Qian et al., “A Gesture-Driven Multimodal Interactive Dance System”, IEEE International Conference on Multimedia and Expo, Taipei, Jun. 2004, 3, 1579-1582. |
Shivappa et al., “Person Tracking with Audio-Visual Cues Using Iterative Decoding Framework”, IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, AVSS '08, Santa Fe, NM, Sep. 1-3, 2008, 260-267. |
GestureTek, “Custom 3D Depth Sensing Prototype System for Gesture Control,” http://www.gesturetek.com/3ddepth/introduction.php, printed Apr. 6, 2009, 2 pages. |
Tollmar, K. et al., “Gesture + Play Exploring Full-Body Navigation for Virtual Environments,” Conference on Computer Vision and Pattern Recognition Workshop, Jun. 16-22, 2003, 8 pages. |
Kanade et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, pp. 196-202,The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
Miyagawa et al., “CCD-Based Range Finding Sensor”, Oct. 1997, pp. 1648-1652, vol. 44 No. 10, IEEE Transactions on Electron Devices. |
Rosenhahn et al., “Automatic Human Model Generation”, 2005, pp. 41-48, University of Auckland (CITR), New Zealand. |
Aggarwal et al., “Human Motion Analysis: A Review”, IEEE Nonrigid and Articulated Motion Workshop, 1997, University of Texas at Austin, Austin, TX. |
Shao et al., “An Open System Architecture for a Multimedia and Multimodal User Interface”, Aug. 24, 1998, Japanese Society for Rehabilitation of Persons with Disabilities (JSRPD), Japan. |
Kohler, “Special Topics of Gesture Recognition Applied in Intelligent Home Environments”, In Proceedings of the Gesture Workshop, 1998, pp. 285-296, Germany. |
Kohler, “Vision Based Remote Control in Intelligent Home Environments”, University of Erlangen-Nuremberg/Germany, 1996, pp. 147-154, Germany. |
Kohler, “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments”, 1997, Germany. |
Hasegawa et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator”, Jul. 2006, vol. 4, No. 3, Article 6C, ACM Computers in Entertainment, New York, NY. |
Qian et al., “A Gesture-Driven Multimodal Interactive Dance System”, Jun. 2004, pp. 1579-1582, IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan. |
Zhao, “Dressed Human Modeling, Detection, and Parts Localization”, 2001, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
He, “Generation of Human Body Models”, Apr. 2005, University of Auckland, New Zealand. |
Isard et al., “CONDENSATION—Conditional Density Propagation for Visual Tracking”, 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands. |
Livingston, “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality”, 1998, University of North Carolina at Chapel Hill, North Carolina, USA. |
Wren et al., “Pfinder: Real-Time Tracking of the Human Body”, MIT Media Laboratory Perceptual Computing Section Technical Report No. 353, Jul. 1997, vol. 19, No. 7, pp. 780-785, IEEE Transactions on Pattern Analysis and Machine Intelligence, Caimbridge, MA. |
Breen et al., “Interactive Occlusion and Collusion of Real and Virtual Objects in Augmented Reality”, Technical Report ECRC-95-02, 1995, European Computer-Industry Research Center GmbH, Munich, Germany. |
Freeman et al., “Television Control by Hand Gestures”, Dec. 1994, Mitsubishi Electric Research Laboratories, TR94-24, Caimbridge, MA. |
Hongo et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras”, Mar. 2000, pp. 156-161, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France. |
Pavlovic et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review”, Jul. 1997, pp. 677-695, vol. 19, No. 7, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Azarbayejani et al., “Visually Controlled Graphics”, Jun. 1993, vol. 15, No. 6, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Granieri et al., “Simulating Humans in VR”, The British Computer Society, Oct. 1994, Academic Press. |
Brogan et al., “Dynamically Simulated Characters in Virtual Environments”, Sep./Oct. 1998, pp. 2-13, vol. 18, Issue 5, IEEE Computer Graphics and Applications. |
Fisher et al., “Virtual Environment Display System”, ACM Workshop on Interactive 3D Graphics, Oct. 1986, Chapel Hill, NC. |
“Virtual High Anxiety”, Tech Update, Aug. 1995, pp. 22. |
Sheridan et al., “Virtual Reality Check”, Technology Review, Oct. 1993, pp. 22-28, vol. 96, No. 7. |
Stevens, “Flights into Virtual Reality Treating Real World Disorders”, The Washington Post, Mar. 27, 1995, Science Psychology, 2 pages. |
“Simulation and Training”, 1994, Division Incorporated. |
Number | Date | Country | |
---|---|---|---|
20100281438 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61174893 | May 2009 | US |