The present invention generally relates to door locks for motor vehicles, and more particularly to a powered door lock system that can be actuated utilizing wireless device such as a cell phone or the like, wherein the system includes a backup power supply and keypad that eliminates the need for an exterior lock cylinder and key.
Driver's doors of motor vehicles typically include a door latch that selectively retains the door in a closed position. The latch may include a door lock system that includes a lock cylinder that is accessible from the exterior of the vehicle door. The door may also include a powered door lock that can be actuated utilizing an interior switch or a remote wireless fob. If the wireless remote fob malfunctions, a user can typically still gain access by inserting a key into the lock cylinder to mechanically unlock the driver's door lock. However, the use of mechanical lock cylinders, keys, and linkages tends to add to the complexity and cost of the vehicle.
One aspect of the present invention is a door latch system for doors of motor vehicles. The door latch system includes a door latch having a powered lock that is configured to be operably connected to a first electrical power supply. The powered lock defines locked and unlocked conditions. The latch is released upon movement of an exterior door handle when the powered lock is unlocked, and the latch does not release upon movement of an exterior door handle when the powered lock is locked. The door latch system further includes a first electrical power supply, and a controller operably connected to the powered lock. The controller is configured to receive an unlock command signal from a wireless cellular device. The door latch system further includes a backup device having a second electrical power supply that is configured to be operably connected to the powered lock. The system also includes a user input feature such as a keypad or the like that is configured to be mounted to a vehicle door, and to communicate with the controller and with the backup device. The keypad is operably connected to the first and second electrical power supplies. The keypad includes a plurality of discrete input features that can be utilized to input a security code. The controller is configured to unlock the powered lock utilizing electrical power from the first electrical power supply if an authorized security code is input using the keypad, or if the controller receives an unlock command signal from a wireless cellular device. The door latch system is configured to cause the backup device to unlock the powered lock utilizing electrical power from the second electrical power supply if a user inputs an authorized security code utilizing the keypad.
Another aspect of the present invention is a powered door latch including a latch having an electrically powered lock. The powered door latch further includes a controller, a user input device such as a keypad or the like, and first and second electrical power supplies. The controller is configured to actuate the electrically powered lock utilizing power from the second electrical power supply if the first electrical power supply fails and if an authorized code is entered using the keypad, or if the controller receives a wireless signal from a mobile wireless device such as a mobile phone.
Another aspect of the present invention is a door latch system for doors of motor vehicles. The keyless door latch system includes a door latch and a powered lock that selectively prevents unlatching of the door latch when the powered lock is in a locked state. The door latch system further includes a wireless receiver that is operably connected to at least a selected one of the first and second control modules. The wireless receiver is configured to receive an unlock signal from a mobile phone. The powered door latch further includes a user input device such as a keypad or other suitable device that is operably connected to the first and second control modules. The door latch system is configured to supply electrical power from the first electrical power supply to the powered lock to unlock the powered lock if the wireless receiver receives an unlock signal from a mobile wireless device such as a mobile phone. The door latch system is also configured to supply electrical power from the second electrical power supply to unlock the powered lock if an authorized combination is entered on the keypad.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
The present application is related to U.S. patent application Ser. No. 14/468,634, filed on Aug. 26, 2014, entitled “KEYLESS VEHICLE DOOR LATCH SYSTEM WITH POWERED BACKUP UNLOCK FEATURE,” the entire contents of which are incorporated herein by reference.
With reference to
The keyless latch system of the present invention includes a control module 22 that is operably connected to the latch 8 by a conductive line 24 or the like. Control Module 22 may comprise a main control module of motor vehicle 1, or it may comprise a “dedicated” door latch/lock control module. Lock 26 may comprise an electrically powered lock that is operably connected to the control module 22. The powered lock 26 is operably connected to a main vehicle power supply such as a battery 36. A mobile wireless device such as a cell phone (“smart phone”) 100 may include software (an “App”) that provides an input feature such as an icon 30 on touchscreen 31 of cell phone 100. Pushing/contacting icon 30 causes cell phone 100 to generate wireless signal 136 that is received by receiver 28 of control module 22, and the control module 22 then causes powered lock 26 to receive power from main (first) vehicle battery 36 to unlock the latch 8.
Driver's door 2 includes a backup module 38 that optionally includes a second receiver 40 that is configured to receive a second wireless signal 134 that is generated by the cell phone 100 upon actuation of an optical second input feature such as icon 32. The backup module 38 includes a controller or circuit arrangement 50 that causes electrical power from a backup (second) power supply 48 to be supplied to powered lock 26 through an electrical line 42 when second wireless signal 134 is received by second receiver 40. Alternatively, the latch system 5 may be configured such that backup module 38 does not include a receiver 40. In this case, control module 22 is configured to utilize power from backup power supply 48 to actuate/unlock lock 26 if controller 22 receives a signal 134 and if main power supply 36 has failed.
As discussed in more detail below, the system may also be configured to unlock powered lock 26 utilizing power from backup power supply 48 if an authorized code (combination) is entered using an input feature such as keypad 105. The backup (second) power supply 48 may comprise a battery, capacitor, or other suitable power supply. As discussed in more detail below, backup (second) power supply 48 provides for unlocking of powered lock 26 even if main (first) power supply 36 fails. Furthermore, the backup power supply 48 may be operably connected to control module 22 and/or main vehicle battery 36 to recharge backup power supply 48 if required.
With further reference to
With further reference to
Referring again to
With further reference to
With further reference to
Significantly, the latch system 5 eliminates the cost and complexity associated with conventional door lock cylinders and keys. Conventional door lock cylinders may take up significant space within vehicle doors, and the lock cylinder and associated linkage may need to be specifically designed for a particular vehicle door. In contrast, the backup module 38 may comprise a compact unit that can be mounted at numerous locations within the vehicle door 2. Because the backup module 38 can be operably connected to the latch 8 by an electrical line 42, specially designed mechanical linkage for a lock cylinder is not required in the latch system 5 of the present invention.
Referring again to
Mobile phone 100 may include a touchscreen 31 and software (an “App”) that permits a user to cause the mobile phone 100 to generate a wireless unlock command signal. The unlock signal may comprise a unique security code, and the control modules 22 and/or 38 may be configured to unlock the door 2 only if an authorized unlock signal is recognized. Upon receiving an unlock signal from mobile phone 100, the controller 22 or controller 38 causes the powered lock 26 to unlock utilizing power from the main vehicle battery 36 or from backup power supply 48. The latch system 5 may be configured to utilize the main vehicle battery 36 to unlock the powered lock 26 if the main battery 36 is functioning properly. In the event the main power supply 36 is not functioning properly, the latch system 5 may be configured to utilize the backup (second) power supply 48.
As shown in
In the event the mobile phone 100 is inoperable due to the batteries of the mobile phone 100 being dead and/or other malfunction of mobile phone 100, a user can use keypad 105 to actuate the powered lock 26 to unlock the latch system 5.
Operation of the keypad 105 is shown in
With further reference to
In addition to the unlock functions discussed above, the vehicle 1 may also be configured to permit operation of the vehicle 1 based on a signal received from mobile phone 100 and/or entry of an authorized code utilizing an authentication feature or device such as keypad 105. For example, vehicle 1 may be configured to include a keyless ignition whereby the vehicle can be operated if an authorized signal is received from a fob. If a user does not have a fob, or if the fob malfunctions, the user can unlock the powered lock 26 utilizing the mobile phone 100 or by using the keypad 105. Also, upon entering the vehicle 1, the user can operate the vehicle utilizing an authorized signal from the mobile phone 100 and/or by entering an authorized code utilizing the keypad 105. It will be understood that the display 106 located inside the vehicle may comprise a touch screen device that permits entry of an authorization code whereby a user can enter a code utilizing the display screen 106 to permit operation of the vehicle.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
4206491 | Ligman | Jun 1980 | A |
5497641 | Linde | Mar 1996 | A |
5547208 | Chappell | Aug 1996 | A |
5783994 | Koopman, Jr. | Jul 1998 | A |
6056076 | Bartel | May 2000 | A |
6271745 | Anzai | Aug 2001 | B1 |
6606492 | Losey | Aug 2003 | B1 |
6883839 | Belmond et al. | Apr 2005 | B2 |
6914346 | Girard | Jul 2005 | B2 |
7106171 | Burgess | Sep 2006 | B1 |
7224259 | Belmond et al. | May 2007 | B2 |
7642669 | Spurr | Jan 2010 | B2 |
8126450 | Howarter | Feb 2012 | B2 |
8534101 | Mette et al. | Sep 2013 | B2 |
20020121967 | Bowen | Sep 2002 | A1 |
20040124708 | Giehler | Jul 2004 | A1 |
20080224482 | Cumbo et al. | Sep 2008 | A1 |
20090145181 | Pecoul | Jun 2009 | A1 |
20100052337 | Arabia, Jr. | Mar 2010 | A1 |
20110203336 | Mette | Aug 2011 | A1 |
20140088825 | Lange | Mar 2014 | A1 |
20140200774 | Lange | Jul 2014 | A1 |
20140242971 | Aladenize | Aug 2014 | A1 |
20140338409 | Kraus | Nov 2014 | A1 |
20140347163 | Banter et al. | Nov 2014 | A1 |
20150001926 | Kageyama | Jan 2015 | A1 |
20160060909 | Krishnan | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
4403655 | Aug 1995 | DE |
0372791 | Jun 1990 | EP |
694664 | Jan 1996 | EP |
2402840 | Dec 2004 | GB |
2496754 | May 2013 | GB |
06167156 | Jun 1994 | JP |
06185250 | Jul 1994 | JP |
2000064685 | Feb 2000 | JP |
0123695 | Apr 2001 | WO |
Entry |
---|
JPO machine translation of JP 6-185250 (original JP document published Jul. 5, 1994). |