The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 8, 2013, is named LT00346CON_SL.txt and is 812 bytes in size.
The present teachings relate to nucleic acid sequencing, and more particularly, to the correction of errors that can arise in sequencing-by-synthesis techniques.
Several next-generation DNA sequencing approaches, often referred to as “sequencing-by-synthesis” approaches, use repeated cycles of primer extension with a DNA polymerase to generate a sequence of signals containing nucleotide sequence information of populations of template molecules. See, e.g., Hert et al, E
In various embodiments, the present teachings apply to sequencing-by-synthesis techniques to sequence a template polynucleotide strand. To addresses the problem of incomplete extension (IE) and/or carry forward (CF) errors that can occur in sequencing-by-synthesis reactions, an alternative flow ordering of the nucleotides may be used. In various embodiments, alternative flow ordering may reduce and/or correct the loss of phasic synchrony in the population of template polynucleotide strands that result from IE and/or CF errors.
In one embodiment, the present teachings provide a method of sequencing a polynucleotide strand, comprising: (a) providing the polynucleotide strand with a primer annealed thereto and a polymerase operably bound to the polynucleotide strand; and (b) successively exposing the polynucleotide strand to the flow of four different dNTPs according to a predetermined ordering, wherein the predetermined ordering comprises an alternate ordering which is not a continuous repeat of an ordering of the four different dNTPs.
In another embodiment, the present teachings provide an apparatus for sequencing a polynucleotide strand, comprising: (a) a flow chamber for receiving flows of different dNTP reagents; (b) multiple reservoirs that each contain a different dNTP reagent; (c) flow paths from each of the reservoirs to the flow chamber; and (d) a fluidics controller that controls the flow from the reservoirs to the flow chamber, wherein the fluidics controller is programmed to successively provide flow from the multiple reservoirs to the flow chamber according to a predetermined ordering, wherein the predetermined ordering comprises an alternate ordering which is not a continuous repeat of an ordering of the four different dNTP reagent flows.
In another embodiment, the present teachings provide a method of performing template-based extension of a primer, comprising: providing at least one template polynucleotide strand having a primer and polymerase operably bound thereto; and successively exposing the template polynucleotide strand to a plurality of each kind of flow such that (a) a flow of one kind is always followed by a flow of a different kind; and (b) at least one flow of each kind is followed by a flow of the same kind after a single intervening flow of a different kind.
In another embodiment, the present teachings provide a method of determining the sequence of a template polynucleotide strand by template-based extension of a primer, comprising: (a) delivering a known nucleoside triphosphate precursor to a template-based primer extension reaction of a polynucleotide strand, the known nucleoside triphosphate precursor being delivered according to a predetermined ordering of dNTP flows; (b) detecting incorporation of the known nucleoside triphosphate whenever its complement is present in the template polynucleotide strand adjacent to the primer; and (c) repeating steps (a) and (b) until the sequence of the template polynucleotide strand is determined; wherein the predetermined ordering of dNTP flows is defined by (i) a flow of one kind is always followed by a flow of a different kind; and (ii) at least one flow of each kind is followed by a flow of the same kind after a single intervening flow of a different kind.
In another embodiment, the present teachings provide a method for sequencing a template polynucleotide strand comprising: (a) disposing a plurality of template polynucleotide strands into a plurality of reaction chambers, each reaction chamber comprising a template polynucleotide strand having a sequencing primer hybridized thereto and a polymerase operably bound thereto; (b) introducing a known nucleoside triphosphates into each reaction chamber according to a predetermined ordering of dNTP flows; (c) detecting sequential incorporation at the 3′ end of the sequencing primer of one or more nucleoside triphosphates if the known nucleoside triphosphate is complementary to corresponding nucleotides in the template nucleic acid; (d) washing away unincorporated nucleoside triphosphates from the reaction chamber; and (e) repeating steps (b) through (d) until the polynucleotide strand is sequenced; wherein the predetermined ordering of dNTP flows is defined by (i) a flow of one kind is always followed by a flow of a different kind; and (iii) at least one flow of each kind is followed by a flow of the same kind after a single intervening flow of a different kind.
In another embodiment, the present teachings provide a method of sequencing a polynucleotide strand, comprising: providing the polynucleotide strand with a primer annealed thereto and a polymerase operably bound to the polynucleotide strand; successively exposing the polynucleotide strand to the flow of four different dNTPs according to a first predetermined ordering; and successively exposing the polynucleotide strand to the flow of four different dNTPs according to a second predetermined ordering, wherein the second predetermined ordering is different from the first predetermined ordering.
The practice of the present teachings may employ, unless otherwise indicated, conventional techniques and descriptions of organic chemistry, molecular biology (including recombinant techniques), cell biology, and biochemistry. Such conventional techniques include, but are not limited to, preparation of synthetic polynucleotides, polymerization techniques, chemical and physical analysis of polymer particles, nucleic acid sequencing and analysis, and the like. Specific illustrations of suitable techniques are given in the examples below. However, other equivalent conventional procedures can also be used. Such conventional techniques and descriptions can be found in standard laboratory manuals such as G
The present teachings apply sequencing-by-synthesis techniques to sequence a template polynucleotide strand. In general, sequencing-by-synthesis (SBS) may refer to methods for determining the nucleotide sequence of a target polynucleotide by a polymerase extension reaction. In various embodiments, the process sequences one or more template polynucleotide strands, which may be provided in any suitable manner. In some embodiments, the template strands may be coupled to or associated with a support, such as a microparticle, bead, or the like, and are loaded into reaction chambers. In other embodiments, the template polynucleotide strands may be associated with a substrate surface or present in a liquid phase with or without being coupled to a support. For example, templates may be prepared as described in U.S. Pat. No. 7,323,305, which is incorporated by reference.
During a typical sequencing reaction, a primer is annealed to the template polynucleotide strand to form a primer-template duplex, and a polymerase is operably bound to the primer-template duplex so that it is capable of incorporating a nucleotide onto the 3′ end of the primer. As used herein, “operably bound” may refer to the primer being annealed to a template strand so that the primer's 3′ end may be extended by a polymerase and that a polymerase is bound to the primer-template duplex, or in close proximity thereof, so that extension can take place when dNTPs are flowed. The primer-template-polymerase complex is subjected to repeated exposures of different nucleotides. If a nucleotide(s) is incorporated, then the signal resulting from the incorporation reaction is detected. A wash step may be performed to remove unincorporated nucleotides prior to the next nucleotide exposure. After repeated cycles of nucleotide addition, primer extension, and signal acquisition, the nucleotide sequence of the template strand may be determined.
The present teachings may use any of a variety of sequencing techniques and is particularly suitable for sequencing-by-synthesis techniques. Examples of such techniques are described in the literature, including the following, which are incorporated by reference: Rothberg et al, U.S. Patent Publication 2009/0026082; Anderson et al, S
In an exemplary conventional SBS method, the four nucleotides are sequentially and repeatedly delivered (flowed) in the same order. For example, the first nucleotide delivered may be dATP, then dCTP, then dGTP, then dTTP (or a permutation thereof), after which this sequence is repeated. Such deliveries of nucleotides to a reaction vessel or chamber may be referred to as “flows” of nucleotide triphosphates (or dNTPs). For convenience, a flow of dATP will sometimes be referred to as “a flow of A” or “an A flow,” and a sequence of flows may be represented as a sequence of letters, such as “ATGT” indicating “a flow of dATP, followed by a flow of dTTP, followed by a flow of dGTP, followed by a flow of dTTP.” In each flow step of the cycle, the polymerase may generally extend the primer by incorporating the flowed dNTP where the next base in the template strand is the complement of the flowed dNTP. Thus, if there is one complementary base, then one base or dNTP incorporation is expected; if two complementary bases, then two incorporations are expected; if three complementary bases, then three incorporations are expected, and so on.
The present teachings may use any of various techniques for detecting the nucleotide incorporation(s). For example, some sequencing-by-synthesis techniques provide for the detection of pyrophosphate (PPi) released by the incorporation reaction (see, e.g., U.S. Pat. Nos. 6,210,891; 6,258,568; and 6,828,100). In another example, some sequencing-by-synthesis techniques may detect labels associated with the nucleotides, such as mass tags, fluorescent, and/or chemiluminescent labels. Where detectable labels are used, an inactivation step may be included in the workflow (e.g., by chemical cleavage or photobleaching) prior to the next cycle of synthesis and detection.
In certain embodiments, the present teachings may use a pH-based method of detecting nucleotide incorporation(s). Such an approach may detect hydrogen ions released from the polymerase-catalyzed extension reactions in the absence of a specific label or tag. The hydrogen ions released by a population of template strands undergoing the base incorporation(s) will change the local pH of the reaction chamber, which can be detected. Thus, in pH-based methods for DNA sequencing, base incorporations are determined by measuring these hydrogen ions that are generated. Additional details of pH-based sequence detection systems and methods may be found in commonly-assigned U.S. Patent Application Publication No. 2009/0127589 and No. 2009/0026082, which are incorporated by reference. While the examples below are discussed in connection with pH-based sequence detection, it will be appreciated that the present teachings may be readily adapted to other sequencing approaches such as the exemplary technologies mentioned above including gyro-sequencing. Such approaches can likewise benefit from the phase correction, signal enhancement, improved accuracy and noise reduction features of the alternative nucleotide flows approaches described herein and are understood to be within the scope of the present teachings.
It will be appreciated that in connection with pH-based detection methods, the production of hydrogen ions may be monotonically related to the number of contiguous complementary bases in the template strands (as well as the total number of template molecules with primer and polymerase that participate in an extension reaction). Thus, when there is a number of contiguous identical complementary bases in the template (i.e., a homopolymer region), the number of hydrogen ions generated, and therefore the magnitude of the local pH change, is generally proportional to the number of contiguous identical complementary bases. (The corresponding output signals may sometimes be referred to as “1-mer”, “2-mer”, “3-mer” output signals, and so on, based on the expected number of repetitive bases). Where the next base in the template is not complementary to the flowed dNTP, generally no incorporation occurs and there is no substantial release of hydrogen ions (in which case, the output signal is sometimes referred to as a “0-mer” output signal).
In each wash step of the cycle, a wash solution (typically having a predetermined pH) is used to remove residual dNTP of the previous step in order to prevent misincorporations in later cycles. Usually, the four different kinds of dNTP are flowed sequentially to the reaction chambers, so that each reaction is exposed to one of the four different dNTPs for a given flow, such as in the following sequence: dATP, dCTP, dGTP, dTTP, dATP, dCTP, dGTP, dTTP, and so on, with the exposure, incorporation, and detection steps followed by a wash step. An example of this process is illustrated in
The top DNA duplex (labeled “in-phase”) represents members of the population that are in the correct phase, i.e., in-phase. The middle DNA duplex (labeled “IE”) represents a portion of the population that has experienced an exemplary omission at the C nucleotide, i.e., an incomplete extension error causing dephasing of the population. The bottom DNA duplex (labeled “CF”) represents a portion of the population that has experienced an exemplary erroneous incorporation at the G nucleotide, i.e., a carry forward error causing dephasing of the population.
The present teachings address the problem of incomplete extension (IE) and/or carry forward (CF) occurrences in sequencing reactions by using an alternative (non-sequential) ordering for delivering nucleotides. This alternative ordering may reduce and/or correct the loss of phasic synchrony in the population of template polynucleotide strands that result from IE and/or CF occurrences. As used herein, an “alternative ordering” of dNTP flows means that the ordering is not a continuous repeat of an ordering of the four different dNTPs. In other words, in an alternate flow ordering, the dNTPs are flowed in an order that is not a contiguous, sequential repetition of the same 4-member units, each 4-member unit being a sequence of the four different dNTPs. This alternate flow ordering represents at least some portion of the sequencing run.
The alternate flow ordering may be reflected in the overall predetermined flow ordering in any of various ways. In some embodiments, the alternate flow ordering constitutes one or more parts of the overall predetermined ordering, with one or more other parts of the overall predetermined ordering using a conventional flow ordering (i.e., not an alternate flow ordering). For example, the alternate flow ordering may be used intermittently with a conventional flow ordering. In some embodiments, the overall predetermined ordering consists of only the alternate flow ordering throughout the sequencing run. In some embodiments, the method may be implemented with real-time detection of CF and/or IE errors and applying the alternate flow ordering in response to the error detection. For example, the alternate flow ordering may be used when the CF and/or IE errors reach a certain threshold level. In some embodiments, the alternate flow orderings may be used according to the position in the sequence read. For example, the alternate flow ordering may be used after a certain read length of the sequence or used more frequently at later stages of the sequence read. This may be useful in instances where the CF and/or IE errors increase at later stages of the read or in longer reads.
In some cases, the overall predetermined ordering comprises a first predetermined ordering for the flow of four different dNTPs and a second predetermined ordering for the flow of the four different dNTPs, with the second predetermined ordering being different from the first predetermined ordering. For example, the first predetermined ordering may be a conventional flow ordering and the second predetermined ordering may be an alternate flow order.
In certain embodiments, the present teachings may be directed to any sequencing method (including SBS methods) where delivery of dNTPs to a reaction is not a continuous repetition of the same initial ordering of flows of the four dNTPs, such as: ACGT-ACGT-ACGT- . . . and so on. Such an initial ordering of dNTP flows may be any permutation of ACGT, such as ACTG, TGCA, and so on. The alternate flow ordering may be implemented in a variety of different ways. In certain embodiments of the present teachings, the dNTPs are delivered in a predetermined ordering that comprises an alternate ordering where (a) a flow of one kind is always followed by a flow of a different kind; and (b) at least one flow of each kind is followed by a flow of the same kind after a single intervening flow of a different kind. In some cases, the number of flows of each kind in the alternative ordering is the same.
If “N” is used to represent the flow of any one of dATP, dCTP, dGTP, or dTTP, then in one example, the predetermined ordering of dNTP flows can include the following subsequence: N-W-N for each dNTP N, where W is any dNTP not N. In another example, the ordering of dNTP flows can include an alternate ordering with the following subsequence: N-W-N-Z for each dNTP N, where W is any dNTP not N, and Z is any dNTP that is neither N nor W. Flow orderings of the present teachings may have a variety of lengths, which are the total number of flows making up a predetermined ordering. In some cases, the lengths of the flow orderings may be provided in subsets comprising a multiple of defined base flows. For example, the length of the flow orderings in the present teachings may be any multiple of four, eight, or other multiples. An exemplary 8-flow ordering of the present teachings is AT-AC-GC-GT, where the “GC-G” subsequence (representing a N-W-N sequence) is present. Note also that there is a “T-AT” subsequence (representing a N-W-N sequence) when the 8-flow ordering is contiguously repeated. In certain embodiments, alternate flow orderings of the present teachings have a length selected from the group consisting of 8, 12, 16, 20, 24, 28 and 32. However, it will be appreciated that other flow ordering lengths may be used. Exemplary alternate flow orderings of 12 flows are TCT-AGA-CTC-GAG and ACA-CGC-GTG-TAT. An exemplary alternate flow ordering of 20 flows is TACAT-ACGCA-CGTGC-GTATG, which may be repeated one or more times (in part or whole) to sequence a desired template length.
In another embodiment, the alternate flow ordering includes a first dNTP flow, a second dNTP flow, a third dNTP flow, and a fourth dNTP flow, with each flow being a different dNTP; wherein the fourth dNTP flow does not occur until at least one of the first, second, or third dNTP flows are repeated at least once. For example, for the exemplary 8-flow ordering of AT-AC-GC-GT given above, the G nucleotide is not flowed until each of A, T, and C are flowed, with A being flowed twice. Likewise, for the exemplary 12-flow ordering of ACA-CGC-GTG-TAT, the T nucleotide is not flowed until each of A, C, and G are flowed (with A being flowed twice, C being flowed three times, and G being flowed twice). In some cases, the number of flows for each of the four different dNTPs in the alternate flow ordering is the same. For example, for the exemplary 8-flow ordering of AT-AC-GC-GT given above, each of the four nucleotides are flowed twice. Likewise, for the exemplary 12-flow ordering of TCT-AGA-CTC-GAG and ACA-CGC-GTG-TAT given above, each of the four nucleotides are flowed three times.
In various embodiments, the inclusion or removal of any flow of a selected nucleotide from a series of flows of a sequencing run may be used to impart an alternative flow ordering according to the present teachings. The number and/or type of flow may, for example, be as few as a single added base flow over the course of the sequencing run (or removal of a selected base flow). As described above, imparting a non-sequential four base flow ordering (e.g., not strictly GATC, GATC, . . . over the entire sequencing run) may provide for improved sequencing quality and/or signal detection by reducing IE and/or CF effects.
The flow of dNTPs can be provided in any suitable manner, including delivery by pipettes, or through tubes or passages connected to a flow chamber. The duration, concentration, and/or other flow parameters may be the same or different for each dNTP flow. Likewise, the duration, composition, and/or concentration for each wash flow may be the same or different.
In this example, both templates A and B are represented as having already undergone n cycles of a representative conventional, repeated ATGC flow ordering pattern, i.e., ATGC-ATGC-ATGC- . . . .
In this example, both templates X and Y have already undergone n cycles of a conventional, repeated ATGC flow ordering pattern, i.e., ATGC-ATGC-ATGC- . . . .
It will be appreciated that achieving or improving phasic synchrony desirably enhances the ability to identify nucleotide incorporations and correctly ascertain the sequence of templates undergoing analysis. In many sequencing applications, dephasing issues may be relatively small early in the sequencing run; however, their effects may accumulate as the sequencing progresses and result in degraded sequencing quality when longer templates are used. From a practical perspective, it will be appreciated that the corrective effect of the alternate flow ordering will desirably enhance the base calling abilities of a sequencing instrument by reducing or eliminating spurious signals associated with out-of-phase templates.
In various embodiments, alternate nucleotide flows can be included within or in connection with a series of sequencing flows as a mechanism by which to counteract the accumulated dephasing of templates. Such alternate flows may therefore be used in some embodiments not to completely remove or alleviate dephasing, but rather as a mechanism to balance or reduce accumulated dephasing effects while at the same time maintaining an efficient or desirable number of flows to achieve a selected/expected throughout (e.g., the flows used to sequence a respective template length). Use of the present teachings for sequencing may result in a reduction or correction of CF and/or IE effects, improvement in phasic synchrony, increased signal-to-noise ratio, and/or improved base calling accuracy.
Instruments for delivering reagents for multistep sequencing processes are known, and typically comprise reservoirs for reagents, one or more reaction chambers or areas, and fluidics under computer control for selecting and delivering the various reagents including dNTPs to the one or more reaction chambers or areas. Exemplary instrument systems for carrying out massively parallel SBS reactions with electronic detection are disclosed in Rothberg et al, U.S. Patent Publication No. 2009/0127589 and No. 2009/0026082; and Rothberg et al, U.K. Patent Application GB2461127. Likewise, conventional fluorescence-based SBS sequencing instrumentation are disclosed in Rothberg et al, U.S. Pat. No. 7,211,390; U.S. Pat. No. 7,244,559; and U.S. Pat. No. 7,264,929. In fluorescence-based SBS sequencing instrumentation, the release of inorganic pyrophosphate from an incorporation reaction initiates an enzyme cascade that results in light emission, which is then detected by the instrument. The alternate flow orderings of the present teachings can be used with these and other sequencing methods and systems.
The present teachings also provide an apparatus for sequencing template polynucleotide strands according to the method of the present teachings. A particular example of an apparatus of the present teachings is shown in
The apparatus also includes a fluidics controller 118, which may programmed to control the flow from the multiple reagent reservoirs to the flow chamber according to a predetermined ordering that comprises an alternate flow ordering, as described above. For this purpose, fluidics controller 118 may be programmed to cause the flow of reagents 114 from the reagents reservoir and operate the valves 112 and 116. The fluidics controller may use any conventional instrument control software, such as LabView (National Instruments, Austin, Tex.). The reagents may be driven through the fluid pathways 130, valves, and flow cell by any conventional mechanism such as pumps or gas pressure.
The apparatus also has a valve 112 for controlling the flow of wash solution into passage 109. When valve 112 is closed, the flow of wash solution is stopped, but there is still uninterrupted fluid and electrical communication between reference electrode 108, passage 109, and sensor array 100. Some of the reagent flowing through passage 109 may diffuse into passage 111, but the distance between reference electrode 108 and the junction between passages 109 and 111 is selected so that little or no amount of the reagents flowing in common passage 109 reach reference electrode 108. This configuration has the advantage of ensuring that reference electrode 108 is in contact with only a single fluid or reagent throughout an entire multi-step reaction process. Reference electrode 108 may be constructed in any suitable fashion. In this particular embodiment, reference electrode 108 is a tube made of a conductive material which forms part of passage 111. Although
As shown in
In another embodiment of the present teaching, a fluidics controller (e.g., fluidics controller 118 in
Unless otherwise specifically designated herein, terms and symbols of nucleic acid chemistry, biochemistry, genetics, and molecular biology used herein follow those of standard treatises and texts in the field. See, for example, Kornberg and Baker, DNA R
“Microwell,” which is used interchangeably with “reaction chamber,” may refer to a special case of a “reaction confinement region” or “reaction area,” that is, a physical or chemical attribute of a substrate that permit the localization of a reaction of interest. Reaction confinement regions may be a discrete region of a surface of a substrate that specifically binds an analyte of interest, such as a discrete region with oligonucleotides or antibodies covalently linked to such surface. Reaction confinement regions may be configured or associated with structural attributes such as hollows or wells having defined shapes and volumes which are manufactured into a substrate. These latter types of reaction confinement regions may be microwells or reaction chambers, and may be fabricated using conventional microfabrication techniques, such as those described in the following references: Doering and Nishi (eds.), H
An array is a planar arrangement of elements such as sensors or wells. A one dimensional array is an array having one column (or row) of elements in the first dimension and a plurality of columns (or rows) in the second dimension. The number of columns (or rows) in the first and second dimensions may or may not be the same. Preferably, the array used in the present teachings comprises at least 100,000 chambers. Preferably, each reaction chamber has a horizontal width and a vertical depth that has an aspect ratio of about 1:1 or less. Preferably, the pitch between the reaction chambers is no more than about 10 microns. Briefly, in one embodiment microwell arrays may be fabricated as follows. After the semiconductor structures of a sensor array are formed, the microwell structure is applied to such structure on the semiconductor die. That is, the microwell structure can be formed right on the die or it may be formed separately and then mounted onto the die, either approach being acceptable. To form the microwell structure on the die, various processes may be used. For example, the entire die may be spin-coated with a negative photoresist such as Microchem's SU-82015 or a positive resist/polyimide such as HD Microsystems HD8820, to the desired height of the microwells. The desired height of the wells (e.g., about 3-12 μm in the example of one pixel per well, though not so limited as a general matter) in the photoresist layer(s) can be achieved by spinning the appropriate resist at predetermined rates (which can be found by reference to the literature and manufacturer specifications, or empirically), in one or more layers. Well height typically may be selected in correspondence with the lateral dimension of the sensor pixel. For example, the wells may have a nominal 1:1 to 1.5:1 aspect ratio, height:width or diameter. Alternatively, multiple layers of different photoresists may be applied or another form of dielectric material may be deposited. Various types of chemical vapor deposition may also be used to build up a layer of materials suitable for microwell formation therein. In one embodiment, microwells are formed in a layer of tetra-methyl-ortho-silicate (TEOS).
The present teachings encompass an apparatus comprising at least one two-dimensional array of reaction chambers, wherein each reaction chamber is coupled to a chemically-sensitive field effect transistor (“chemFET”) and each reaction chamber is no greater than 10 μm3 (i.e., 1 pL) in volume. Preferably, each reaction chamber is no greater than 0.34 pL, and more preferably no greater than 0.096 pL or even 0.012 pL in volume. A reaction chamber can optionally be 22, 32, 42, 52, 62, 72, 82, 92, or 102 square microns in cross-sectional area at the top. Preferably, the array has at least 102, 103, 104, 105, 106, 107, 108, 109, or more reaction chambers. The reaction chambers may be capacitively coupled to the chemFETs.
“Polynucleotide” or “oligonucleotide” are used interchangeably and refer to a linear polymer of nucleotide monomers. Monomers making up polynucleotides and oligonucleotides are capable of specifically binding to a natural polynucleotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, base stacking, Hoogsteen or reverse Hoogsteen types of base pairing, or the like. Such monomers and their internucleosidic linkages may be naturally occurring or may be analogs thereof, e.g., naturally occurring or non-naturally occurring analogs. Non-naturally occurring analogs may include PNAs, phosphorothioate internucleosidic linkages, bases containing linking groups permitting the attachment of labels, such as fluorophores, or haptens, and the like. Whenever the use of an oligonucleotide or polynucleotide requires enzymatic processing, such as extension by a polymerase, ligation by a ligase, or the like, one of ordinary skill would understand that oligonucleotides or polynucleotides in those instances would not contain certain analogs of internucleosidic linkages, sugar moieties, or bases at any or some positions.
Polynucleotides typically range in size from a few monomeric units, e.g. 5-40, when they are usually referred to as “oligonucleotides,” to several thousand monomeric units. Whenever a polynucleotide or oligonucleotide is represented by a sequence of letters (upper or lower case), such as “ATGCCTG,” it will be understood that the nucleotides are in 5′→3′ order from left to right and that “A” denotes deoxyadenosine, “C” denotes deoxycytidine, “G” denotes deoxyguanosine, and “T” denotes thymidine, “I” denotes deoxyinosine, “U” denotes uridine, unless otherwise indicated or obvious from context. Unless otherwise noted the terminology and atom numbering conventions will follow those disclosed in Strachan and Read, H
Usually polynucleotides comprise the four natural nucleosides (e.g. deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine for DNA or their ribose counterparts for RNA) linked by phosphodiester linkages; however, they may also comprise non-natural nucleotide analogs, e.g. including modified bases, sugars, or internucleosidic linkages. It is clear to those skilled in the art that where an enzyme has specific oligonucleotide or polynucleotide substrate requirements for activity, e.g. single stranded DNA, RNA/DNA duplex, or the like, then selection of an appropriate composition for the oligonucleotide or polynucleotide substrates is well within the knowledge of one of ordinary skill, especially with guidance from treatises such as Sambrook et al, M
“Primer” refers to an oligonucleotide, either natural or synthetic that is capable, upon forming a duplex with a polynucleotide template, of acting as a point of initiation of polynucleic acid synthesis and being extended from its 3′ end along the template so that an extended duplex is formed. Extension of a primer may be carried out with a nucleic acid polymerase, such as a DNA or RNA polymerase. The sequence of nucleotides added in the extension process is determined by the sequence of the template polynucleotide. Primers may be extended by a DNA polymerase. Primers may have a length in the range of from 14 to 40 nucleotides, or in the range of from 18 to 36 nucleotides. Primers are employed in a variety of amplification reactions, for example, linear amplification reactions using a single primer, or polymerase chain reactions, employing two or more primers. Guidance for selecting the lengths and sequences of primers for particular applications is well known to those of ordinary skill in the art, as evidenced by the following references that are incorporated by reference: Dieffenbach (ed.), PCR P
While the present teachings has been described with reference to several particular example embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present teachings. The present teachings are applicable to a variety of sensor implementations and other subject matter, in addition to those discussed above.
This application is a continuation of U.S. Nonprovisional application Ser. No. 13/157,865, filed on 10 Jun. 2011, which claims the benefit of U.S. Provisional Application Ser. No. 61/354,173 filed on 11 Jun. 2010, which are all incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4683195 | Mullis et al. | Jul 1987 | A |
4683202 | Mullis | Jul 1987 | A |
4800159 | Mullis et al. | Jan 1989 | A |
4965188 | Mullis et al. | Oct 1990 | A |
5210015 | Gelfand et al. | May 1993 | A |
5399491 | Kacian et al. | Mar 1995 | A |
5750341 | Macevicz | May 1998 | A |
5854033 | Lizardi | Dec 1998 | A |
6174670 | Wittwer et al. | Jan 2001 | B1 |
6210891 | Nyren et al. | Apr 2001 | B1 |
6258568 | Nyren | Jul 2001 | B1 |
6274320 | Rothberg et al. | Aug 2001 | B1 |
6404907 | Gilchrist et al. | Jun 2002 | B1 |
6780591 | Williams et al. | Aug 2004 | B2 |
6828100 | Ronaghi | Dec 2004 | B1 |
6833246 | Balasubramanian | Dec 2004 | B2 |
6911327 | McMillan et al. | Jun 2005 | B2 |
7037687 | Williams et al. | May 2006 | B2 |
7049645 | Sawada et al. | May 2006 | B2 |
7133782 | Odedra | Nov 2006 | B2 |
7211390 | Rothberg et al. | May 2007 | B2 |
7244559 | Rothberg et al. | Jul 2007 | B2 |
7264929 | Rothberg et al. | Sep 2007 | B2 |
7323305 | Leamon et al. | Jan 2008 | B2 |
7335762 | Rothberg et al. | Feb 2008 | B2 |
7348181 | Walt et al. | Mar 2008 | B2 |
7424371 | Kamentsky | Sep 2008 | B2 |
7535232 | Barbaro et al. | May 2009 | B2 |
7575865 | Leamon et al. | Aug 2009 | B2 |
7645596 | Williams et al. | Jan 2010 | B2 |
7782237 | Ronaghi et al. | Aug 2010 | B2 |
7785862 | Kim et al. | Aug 2010 | B2 |
7835871 | Kain et al. | Nov 2010 | B2 |
7875440 | Williams et al. | Jan 2011 | B2 |
7948015 | Rothberg et al. | May 2011 | B2 |
8666678 | Davey et al. | Mar 2014 | B2 |
20030219797 | Zhao et al. | Nov 2003 | A1 |
20040018506 | Koehler et al. | Jan 2004 | A1 |
20040106138 | Raskind et al. | Jun 2004 | A1 |
20040142330 | Nyren et al. | Jul 2004 | A1 |
20040197793 | Hassibi et al. | Oct 2004 | A1 |
20040197845 | Hassibi et al. | Oct 2004 | A1 |
20050084851 | Ronaghi et al. | Apr 2005 | A1 |
20060040297 | Leamon et al. | Feb 2006 | A1 |
20060147935 | Linnarsson | Jul 2006 | A1 |
20060147983 | O'uchi et al. | Jul 2006 | A1 |
20070059733 | Sundararajan et al. | Mar 2007 | A1 |
20070059741 | Kamahori et al. | Mar 2007 | A1 |
20070092872 | Rothberg et al. | Apr 2007 | A1 |
20070207471 | Osaka et al. | Sep 2007 | A1 |
20070219367 | Shchepinov et al. | Sep 2007 | A1 |
20070281300 | Russell et al. | Dec 2007 | A1 |
20080161195 | Turner et al. | Jul 2008 | A1 |
20080166727 | Esfandyarpour et al. | Jul 2008 | A1 |
20080182757 | Heiner et al. | Jul 2008 | A1 |
20080268454 | DeNise et al. | Oct 2008 | A1 |
20080286762 | Miyahara et al. | Nov 2008 | A1 |
20080286767 | Miyahara et al. | Nov 2008 | A1 |
20090024331 | Tomaney et al. | Jan 2009 | A1 |
20090026082 | Rothberg et al. | Jan 2009 | A1 |
20090053724 | Roth et al. | Feb 2009 | A1 |
20090105959 | Braverman et al. | Apr 2009 | A1 |
20090127589 | Rothberg et al. | May 2009 | A1 |
20090137404 | Drmanac et al. | May 2009 | A1 |
20090176200 | Wakita et al. | Jul 2009 | A1 |
20090312188 | Duer et al. | Dec 2009 | A1 |
20100035252 | Rothberg et al. | Feb 2010 | A1 |
20100035253 | Gordon et al. | Feb 2010 | A1 |
20100088255 | Mann | Apr 2010 | A1 |
20100105052 | Drmanac et al. | Apr 2010 | A1 |
20100137143 | Rothberg et al. | Jun 2010 | A1 |
20100160172 | Erlich et al. | Jun 2010 | A1 |
20100173303 | Ronaghi et al. | Jul 2010 | A1 |
20100188073 | Rothberg et al. | Jul 2010 | A1 |
20100192032 | Chen et al. | Jul 2010 | A1 |
20100197507 | Rothberg et al. | Aug 2010 | A1 |
20100199155 | Kermani et al. | Aug 2010 | A1 |
20100209922 | Williams et al. | Aug 2010 | A1 |
20100267043 | Braverman et al. | Oct 2010 | A1 |
20100282617 | Rothberg et al. | Nov 2010 | A1 |
20100300559 | Schultz et al. | Dec 2010 | A1 |
20100300895 | Nobile et al. | Dec 2010 | A1 |
20100301398 | Rothberg et al. | Dec 2010 | A1 |
20100304447 | Harris | Dec 2010 | A1 |
20100323348 | Hamady et al. | Dec 2010 | A1 |
20100323350 | Gordon et al. | Dec 2010 | A1 |
20110213563 | Chen et al. | Sep 2011 | A1 |
20110230358 | Rava | Sep 2011 | A1 |
20110246084 | Ronaghi et al. | Oct 2011 | A1 |
20110257889 | Klammer et al. | Oct 2011 | A1 |
20110263463 | Rothberg et al. | Oct 2011 | A1 |
20110275522 | Rothberg et al. | Nov 2011 | A1 |
20110281264 | Abitbol et al. | Nov 2011 | A1 |
20110281737 | Rothberg et al. | Nov 2011 | A1 |
20110281741 | Rothberg et al. | Nov 2011 | A1 |
20110294115 | Williams et al. | Dec 2011 | A1 |
20120035062 | Schultz et al. | Feb 2012 | A1 |
20120037961 | Rothberg et al. | Feb 2012 | A1 |
20120040844 | Rothberg et al. | Feb 2012 | A1 |
20120109598 | Davey et al. | May 2012 | A1 |
20120172241 | Rearick et al. | Jul 2012 | A1 |
20120173158 | Hubbell | Jul 2012 | A1 |
20120173159 | Davey et al. | Jul 2012 | A1 |
20120264621 | Hubbell et al. | Oct 2012 | A1 |
20130172201 | Schultz et al. | Jul 2013 | A1 |
20130280702 | Schultz et al. | Oct 2013 | A1 |
20130288904 | Hubbell et al. | Oct 2013 | A1 |
20140031238 | Schultz et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2461127 | Dec 2009 | GB |
WO-9957321 | Nov 1999 | WO |
WO-0101015 | Jan 2001 | WO |
WO-0220837 | Mar 2002 | WO |
02062825 | Aug 2002 | WO |
WO-03020895 | Mar 2003 | WO |
04001015 | Dec 2003 | WO |
WO 2004035741 | Apr 2004 | WO |
WO-2005040425 | May 2005 | WO |
WO-2007098049 | Aug 2007 | WO |
WO-2008076406 | Jun 2008 | WO |
WO-2008092150 | Jul 2008 | WO |
WO-2008092155 | Jul 2008 | WO |
WO-2009158006 | Dec 2009 | WO |
WO-2010047804 | Apr 2010 | WO |
2010075188 | Jul 2010 | WO |
WO-2010077859 | Jul 2010 | WO |
WO-2010117804 | Oct 2010 | WO |
WO-2010138182 | Dec 2010 | WO |
2011064319 | Jun 2011 | WO |
WO-2011120964 | Oct 2011 | WO |
WO-2011156707 | Dec 2011 | WO |
WO-2012058459 | May 2012 | WO |
2012138921 | Oct 2012 | WO |
Entry |
---|
Garcia et al. (2000) Mutation detection by pyrosequencing: sequencing of exons 5-8 of the p53 tumor suppressor gene. Gene, 253:249-257. |
Extended European search report in EP Appl. No. 11793237 (PCT/US11/39973), dated Jan. 9, 2014 (7 pages). |
Office Action in U.S. Appl. No. 13/859,667, mailed Mar. 26, 2014 (18 pages). |
Final Office Action in U.S. Appl. No. 13/859,673, mailed Mar. 21, 2014 (16 pages). |
Ahmadian et al., Single-Nucleotide Polymorphism Analysis by Pyrosequencing, Analytical Chemistry, 280 :103-110 (2000). |
International Search Report and Written Opinion in PCT/US12/32418, mailed on Jul. 25, 2012. |
International Search Report and Written Opinion in PCT/US11/39973, mailed on Feb. 3, 2012. |
Examiner's first report in Australian Appl. No. 2011226792 based on PCT/US11/39973, dated Nov. 25, 2011. |
Non-final Office Action in U.S. Appl. No. 13/157,865, mailed Jul. 30, 2012. |
Ahmadian et al., “Pyrosequencing: History, biochemistry and future,” Clin. Chim. Acta, 363:83-94 (2006). |
Aksyonov et al., “Multiplexed DNA sequencing-by-synthesis,” Anal. Biochem., 348:127-138 (2006). |
Anderson et al., “A System for Multiplexed Direct Electrical Detection of DNA Synthesis,” Sens. Actuat. B-Chem., 129(1):79-86 (2008). |
Balzer et al., “Characteristics of 454 pyrosequencing data—enabling realistic simulation with flowsim,” Bioinformatics, 26:i420-i425 (2010). |
Berger et al., “Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities,” Nat. Biotechnol., 24(11):1429-1435 (2006). |
Berstel et al., “The origins of combinatorics on words,” Eur. J. Combin., 28(3):996-1022 (2007). |
Brockman et al., “Quality scores and SNP detection in sequencing-by-synthesis systems,” Genome Res., 18:763-770 (2008). |
Chapter 2, “Machine-Learning Foundations: The Probabilistic Framework,” in Baldi, P. & Brunak, S., “Bioinformatics: The Machine Learning Approach,” 2nd Ed., The MIT Press, 47-65 (2001). |
De Bruijn, N.G., “Ackowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2n zeros and ones that show each n-letter word exactly once,” T.H.-Report 75-WSK-06, Technological University Eindhoven (1975). |
Droege et al., “The Genome Sequencer FLXTM System—longer reads, more applications, straight forward bioinformatics and more complete data sets,” J. Biotechnol., 136:3-10 (2008). |
Elahi et al., “Pyrosequencing: A Tool for DNA Sequencing Analysis,” in Zhao, S. & Stodolsky, M., Eds., Methods in Molecular Biology, vol. 255, Humana Press Inc., pp. 211-219. |
Fakhrai-Rad et al., “Pyrosequencing™; An Accuracte Detection Platform for Single Nucleotide Polymorphisms,” Hum. Mutat., 19:479-485 (2002). |
Eltoukhy et al., “Modeling and Base-Calling for DNA Sequencing-By-Synthesis,” 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, II:1032-1035 (2006). |
Finotello et al., “Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data,” Briefings in Bioinformatics Advance Access, 1-12 (Oct. 21, 2011). |
Fuller et al., “The challenges of sequencing by synthesis”, Nat. Biotechnol., 27(11):1013-23 (2009). |
Guarizadeh, B., “Method Development and Applications of Pyrosequencing Technology,” Doctoral Dissertation, Royal Institute of Technology, Stockholm, Sweden (2003). |
Hert et al., “Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods,” Electrophoresis, 29(23):4618-26 (2008). |
Huse et al., “Accuracy and quality of massively parallel DNA pyrosequencing,” Genome Biol., 8(7):R143.1-R143.9 (2007). |
Ji et al., “BM-BC: A Bayesian method of base calling for Solexa sequence data,” Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, U.S.A. (http://odin.mdacc.tmc.edu/˜ylji/BMBC/bmbc-ie2.pdf), 1-27, 2010. |
Langaee et al., “Genetic variation analyses by Pyrosequencing,” Mutat. Res., 573:96-102 (2005). |
Leamon et al., “Cramming More Sequencing Reactions onto Microreactor Chips,” Chem. Rev., 107:3367-3376 (2007). |
Ledergerber et al., “Base-calling for next-generation sequencing platforms,” Briefings in Bioinformatics Advance Access, 12(5):489-497 (Jan. 18, 2011). |
Margulies et al., Supplementary Methods for the article “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, 437:376-380 (2005), pp. 1-34. |
Margulies et al., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, 437:376-380 (2005). |
Massingham et al., “All Your Base: a fast and accurate probabilistic approach to base calling,” European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK (http://www.ebi.ac.uk/goldman-srv/AYB/references/ayb—revised.pdf), Oct. 26, 2011, 1-26. |
Metzker, “Emerging technologies in DNA sequencing,” Genome Res., 15:1767-1776 (2005). |
Metzker, “Sequencing Technologies—the Next Generation,” Nat. Rev. Genet., 11:31-46, 2010. |
Pourmand et al., “Direct electrical detection of DNA synthesis,” P. Natl. Adac. Sci. USA. 103(17):6466-6470 (2006). |
Pourmand et al., “Multiplex Pyrosequencing,” Nucleic Acids Res., 30(7)(e31):1-5 (2002). |
Ronachi, M. “Pyrosequencing Sheds Light on DNA Sequencing”, Genome Res., 11:3-11 (2001). |
Ronachi et al., “A Sequencing Method Based on Real-Time Pyrophosphate,” Science, 281(5375):363-365 (1998). |
Ronaghi et al., “Discovery of single nucleotide polymorphisms and mutations by Pyrosequencing,” Comp. Funct. Genom., 3:51-56 (2002). |
Van Aardenne-Ehrenfest et al., “Circuits and Trees in Oriented Linear Graphs,” Simon Stevin, 28:203-217 (1951). |
Office Action in U.S. Appl. No. 13/859,673, dated Sep. 11, 2013 (18 pages). |
Office Action in U.S. Appl. No. 13/859,360, dated Dec. 24, 2013 (10 pages). |
Garcia et al., “Mutation detection by pyrosequencing: sequencing of exons 5-8 of the p53 tumor suppressor gene,” Gene, 253:249-257 (2000) (see whole document, including Fig. 4). |
Svantesson et al., “A mathematical model of the Pyrosequencing reaction system,” Biophysical Chemistry, 100:129-145 (2004). |
Specification & Drawings of U.S. Appl. No. 61/198,222, filed Nov. 4, 2008. |
Appendix to the Specification of U.S. Appl. No. 61/198,222, filed Nov. 4, 2008. |
International Preliminary Report on Patentability, International Appl. No. PCT/US2012/032418, dated Oct. 8, 2013. |
U.S. Appl. No. 13/440,849, Final Office Action mailed Dec. 16, 2014, 5 pages. |
U.S. Appl. No. 13/859,673, Non-Final Office Action mailed Nov. 4, 2014, 21 pages. |
CN 201280027883.4, Office Action mailed Sep. 22, 2014 and English translation, 12 pages. |
U.S. Appl. No. 13/859,667, Non-Final Office Action mailed Mar. 5, 2015, 38 pages. |
U.S. Appl. No. 13/859,360, Non-Final Office Action mailed Jan. 16, 2015, 11 pages. |
U.S. Appl. No. 13/859,667, Final Office Action mailed Oct. 10, 2014, 25 pages. |
Rosenfeld, “Enumerating De Bruijn Sequences,” Commun. Math. Comput. Chem, (MATCH), 43:41-48 (2001). |
Rosenfeld, “Enumerating Kautz Sequences,” Kragujevac J. Math., 24:19-41 (2002). |
Non Final Office Action for U.S. Appl. No. 13/440,849, dated Aug. 15, 2015. |
U.S. Appl. No. 13/859,360, Final Office Action mailed Jul. 28, 2015, 15 pages. |
U.S. Appl. No. 13/440,849, Final Office Action mailed Dec. 16, 2014, 7 pp. |
U.S. Appl. No. 13/859,673, Final Office Action mailed Jun. 4, 2015, 22 pp. |
U.S. Appl. No. 13/859,673, Advisory Action mailed Sep. 24, 2015. 4 pp. |
15178097.0-1403, European Search Report mailed Sep. 17, 2015, 5pp. |
Number | Date | Country | |
---|---|---|---|
20130172201 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61354173 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13157865 | Jun 2011 | US |
Child | 13689252 | US |