ALTERNATIVE PROCESS FOR THE PREPARATION OF 4-PHENYL-5-ALKOXYCARBONYL-2-THIAZOL-2-YL-1,4-DIHYDROPYRIMIDIN-6-YL]METHYL]-3-OXO-5,6,8,8A-TETRAHYDRO-1H-IMIDAZO[1,5-A]PYRAZIN-2-YL]-CARBOXYLIC ACID

Information

  • Patent Application
  • 20220315588
  • Publication Number
    20220315588
  • Date Filed
    June 04, 2020
    4 years ago
  • Date Published
    October 06, 2022
    a year ago
Abstract
The present invention relates to an alternative process for synthesizing a compound of formula (I), R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl; R3 is —CxH2—; x is 1, 2, 3, 4, 5, 6 or 7; or pharmaceutically acceptable salt or diastereomer thereof, which is useful for prophylaxis and treatment of a viral disease in a patient relating to hepatitis B infection or a disease caused by hepatitis B infection.
Description

The present invention relates to an alternative process for the preparation of a compound of formula (Ia),




embedded image


particularly a compound of formula (I),




embedded image


wherein


R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl;


R2 is C1-6alkyl;


R3 is —CxH2x—;


x is 1, 2, 3, 4, 5, 6 or 7;


or pharmaceutically acceptable salt or diastereomer thereof, which is useful for prophylaxis and treatment of a viral disease in a patient relating to hepatitis B infection or a disease caused by hepatitis B infection.


BACKGROUND OF THE INVENTION

An approach for synthesizing compounds of formula (I) was disclosed in patent WO 2015/132276. However, the synthetic approach is not suitable for a commercial process due to a number reasons which among others include (i) an overall low yield, (ii) expensive starting materials, (iii) cumbersome stereochemical separation and purification of chiral intermediates and the final product, and (iv) lack of robustness of the Swern oxidation step.


A more efficient synthetic approach which could also be applied on a technical scale and which allows for higher product yield and stereochemical purity was disclosed in WO 2017/140750.


The present invention now discloses a further modified synthetic approach for preparing a compound of formula (Ia) and in particular a compound of formula (I) suitable on an industrial scale which has a further reduced number of steps of the overall process, substantially reduces waste generation and is therefore more favorably in terms of overall costs compared to the processes previously described.


A first aspect of the present invention relates to a novel process for the preparation of a compound of the formula (X):




embedded image


wherein R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7; or pharmaceutically acceptable salt, enantiomer or diastereomer thereof.


A second aspect of the present invention relates to a novel process for the preparation of a compound of formula (XVIII)




embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl; or pharmaceutically acceptable salt, enantiomer or diastereomer thereof.


Compound of the formulae (X) and (XIX) are key intermediates in the synthesis and manufacture of pharmaceutically active compound of formula (I) as described herein.


A third aspect of the present invention relates to a novel process for the preparation of a compound of formula a compound of formula (Ia),




embedded image


and in particular a compound of formula (I),




embedded image


wherein


R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl;


R2 is C1-6alkyl;


R3 is —CxH2x—;


x is 1, 2, 3, 4, 5, 6 or 7;


or pharmaceutically acceptable salt or diastereomer thereof.







DETAILED DESCRIPTION OF THE INVENTION
Definitions

As used herein, the term “C1-6alkyl” signifies a saturated, linear- or branched chain alkyl group containing 1 to 6, particularly 1 to 5 carbon atoms, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl and the like. Particularly, “C1-6alkyl” group is methyl or ethyl.


The term “halogen” signifies fluorine, chlorine, bromine or iodine, particularly fluorine or chlorine.


The term “diastereomer” denotes a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another.


The term “pharmaceutically acceptable salt” refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of formula I and are formed from suitable non-toxic organic or inorganic acids or organic or inorganic bases. Acid-addition salts include for example those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as p-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, and the like. Base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethyl ammonium hydroxide. The chemical modification of a pharmaceutical compound into a salt is a technique well known to pharmaceutical chemists in order to obtain improved physical and chemical stability, hygroscopicity, flowability and solubility of compounds. It is for example described in Bastin R. J., et al., Organic Process Research & Development 2000, 4, 427-435; or in Ansel, H., et al., In: Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th ed. (1995), pp. 196 and 1456-1457.


Abbreviation

ACN Acetonitrile


API active pharmaceutical ingredient


Boc tert-Butoxycarbonyl


(R)-BNP acid (R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate


CPME Cyclopentyl methyl ether


DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene


DCM dichloromethane


DIPEA N,N-Diisopropylethylamine


eq Equivalent


GABA γ-aminobutyric acid


IPA Isopropanol


IPAc Isopropyl acetate


EtOAc or EA ethyl acetate


MEK 2-Butanone


2-MeTHF 2-Methyltetrahydrofuran


MIBK Methyl isobutyl ketone


MSA Methanesulfonic acid


MTBE Methyl tert-butyl ether


NBS N-bromosuccinimide


NMM N-methylmorpholine


TEA Triethylamine


TFA Trifluoroacetic acid


THF tetrahydrofuran


TMP 2,2,6,6-Tetramethylpiperidine


v/v Volume ratio


V65 2,2′-Azobis-(2,4-dimethylvaleronitrile)


wt % Weight percentage


The present invention provides a process for preparing the compounds of formula (X) as outlined in the Scheme 1 and compounds of formulae (XVIII) and (I) as outlined in the Scheme 2.




embedded image


embedded image




embedded image


embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl; R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7; Acid (XV) is (R)-3,3′-Bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate, (S)-3,3′-Bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate, (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate, (R)-(−)-VAPOL hydrogenphosphate, (+)-CSA, or (S)-(+)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate, (R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate. Preferably, the acid of formula (XV) which functions as catalyst in step h) is (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1-binaphthyl-2,2′-diyl hydrogenphosphate.


The synthesis comprises one or more of the following steps:


step a) the formation of compound (III),




embedded image


wherein R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7;


step b) the formation of urea (V)




embedded image


via the addition reaction of compound (III) and compound (IV)




embedded image


wherein R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7;


step c) the formation of the hydantoin of formula (VI) via the cyclization reaction of urea (V),




embedded image


wherein R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7;


step d) the formation of the urea of formula (VIII) via selective reduction of the compound of formula (VI),




embedded image


wherein R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7; R is C1-6alkyl;


steps e) and f) the formation of the compound of formula (IX) via hydrolysis of the compound of formula (VIII),




embedded image


wherein R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7; R is C1-6alkyl;


step g) the formation of compound of formula (X) by de-protection of the compound of formula (IX),




embedded image


wherein R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7;


step h) the formation of compound of formula (XIV) via the reaction of compounds (XI), (XII) and (XIII) in the presence of acid (XV),




embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl;


step i) the formation of compound of formula (XVI),




embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl;


step j) the formation of compound of formula (XVII),




embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl; X is halogen, preferably chlorine;


step k) the formation of compound of formula (XVIII),




embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl;


step l) the formation of compound of formula (XIX) via the bromination reaction of compound of formula (XVIII),




embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl;


step m) the formation of compound of formula (I) via the substitution reaction of compound of formula (XIX) with compound of formula (X),




embedded image


wherein R1 is phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from halogen and C1-6alkyl; R2 is C1-6alkyl; R3 is —CxH2x—; x is 1, 2, 3, 4, 5, 6 or 7.


A detailed description of present invention of process steps is as following:


Step a) the formation of compound (III).


Compound (III) is formed in the presence of a suitable base in a suitable solvent from compound (II) and a suitable reagent, preferably 1,1′-carbonyldiimidazole (CDI). The conversion as a rule is performed under a cooling condition.


The suitable solvent is selected from 2-MeTHF, THF, IPAc, EA, DCM, DMF, toluene and anisole, particularly the suitable solvent is anisole.


The suitable base is selected from Na2CO3, NaOtPent, K2CO3, Na3PO4, K3PO4 and triethylamine (TEA). Preferably, the suitable base is TEA. The rate of the reaction is controlled at a temperature between −20° C. and 40° C., particularly between 0° C. and 5° C.


The suitable reagent is selected from CDI, phosgene, diphosgene, disuccinimidyl carbonate, and triphosgene, preferably the reagent is CDI. The amount of CDI is from 1.0 to 2.0 eq. of compound of formula (II), particularly 1.1 to 1.5 eq.


WO 2017/140750 discloses an alternative synthetic path for making compound X which uses a phosgene reagent in the formation of an isocyanate intermediate. The phosgene reagent is selected from phosgene, diphosgene and triphosgene. It is well known in the art that all those phosgene reagents are highly toxic. The synthetic process according to the present invention avoids any phosgene reagent and instead uses for instance CDI in step a).


Step b) the formation of urea (V) via the addition reaction of compounds (III) and (IV).


The urea (V) is synthesized in a suitable organic solvent. The conversion as a rule is performed under a mild heating condition.


The condensation reaction is conducted in a suitable organic solvent, which is selected from 2-MeTHF, THF, IPAc, EA, DMF, anisole, toluene and DCM. Particularly the solvent is anisole


The reaction is performed at temperature between 0° C. and 80° C., particularly between 0° C. and 60° C., more particularly between 30° C. and 50° C.


In the present synthesis,




embedded image


is used in step b) instead of




embedded image


as in the previously described synthesis (WO 2017/140750). The sodium compound is substantially cheaper than the methoxy compound used in the previously described synthesis. Because of the presence of the free NH, it is more cumbersome to make the ester from the free acid (requires several steps). Thus, the sodium salt is substantially lot cheaper.


Step c) the formation of the hydantoin of formula (VI) via the cyclization reaction of urea (V).


The compound of formula (VI) is synthesized via the cyclization of urea (V) in the presence of a suitable acid in a suitable organic solvent. The conversion as a rule is performed under a cooling condition.


The suitable solvent is selected from 2-MeTHF, IPAc, EA, toluene, DCM, anisole, and DMF. Preferably the solvent is anisole


The suitable acidic dehydrating agent is selected from boron trifluoride etherate, phosphoric acid, sulphuric acid, chlorosulphonic acid, trifluoroacetic acid, HBr, HCl, AlCl3, TiCl4, SnCl4, ZrCl4, TMSOTf, pivaloyl chloride, isobutyl chloroformate and oxalyl chloride. Preferably, the acidic dehydrating agent is oxalyl chloride. The reaction is performed at temperatures between −20° C. and 20° C., particularly between −5° C. and 5° C.


Step d) the formation of the urea of formula (VIII) via selective reduction of the compound of formula (VI).


The compound of formula (VIII) is synthesized in the presence of a suitable catalytic Lewis acid and a suitable reducing agent in a suitable solvent. The conversion is performed under a cooling condition.


The suitable solvent is selected from THF, 2-MeTHF and cyclopentyl methyl ether, particularly the solvent is THF or 2-MeTHF or anisole.


The suitable reducing agent is selected from lithium aluminum hydride, sodium dihydro-bis-(2-methoxyethoxy)aluminate, borane dimethylsulfide, phenylsilane, borane, borane dimethylsulphide complex and borane tetrahydrofuran complex, particularly the reductive reagent is borane tetrahydrofuran complex. The amount of borane tetrahydrofuran complex is 1.6-5.0 eq. of the compound of formula (VI), particularly 1.6-2.0 eq.


The catalytic Lewis acid is selected from InCl3, YCl3, ZnCl2, ZnCl2, TMSCl, TiCl4, ZrCl4, AlCl3, BF3.THF, and BF3.Et2O, particularly the Lewis acid is BF3.Et2O. The amount of BF3.Et2O is 0.05-1.1eq. of the compound of formula (VI), particularly 0.2 eq.


The reaction is performed at a reaction temperature between −40 and 40° C., particularly between 10° C. and 15° C.


Usually 4-5 eq. of borane tetrahydrofuran complex can give 100% conversion but suffer from poor selectivity of reduction over other carbonyl groups. With catalytic amounts of BF3.Et2O, not only the selectivity is improved but also the amount of borane tetrahydrofuran complex is decreased from 4-5 eq. to 1.6-2.0 eq.


Steps e) and f) the formation of the compound of formula (IX) via hydrolysis of the compound of formula (VIII).


The compound of formula (IX) is synthesized in the presence of a suitable base in a suitable solvent followed by a work-up procedure.


The suitable solvent is selected from THF, MeTHF, TBME, toluene, anisole, isopropanol, methanol and ethanol and their mixtures with water. Particularly the solvent is a mixture of water andanisole.


The suitable base for hydrolysis is selected from LiOH, LiOOH, NaOTMS, KOTMS, KOtBu, NaOH and KOH. Particularly the base is aq. NaOH.


The reaction is performed at temperature between 0° C. and 70° C., particularly between 40° C. and 60° C.


The compound of formula (IX) is isolated through a work-up procedure comprising of phase separation, acidification and isolation of the resulting free acid.


In one embodiment of the present invention, steps a) to f) will be carried out in a single reaction vessel as a so-called one-pot synthesis. This circumvents several purification procedures of the intermediates formed in relation to steps a) to f) and thereby minimizing chemical waste, saving time and simplifying other aspects of the chemical process like reducing energy consumption and use of equipment.


Step g) the formation of compound of formula (X) by deprotection of the compound of formula (IX).


Compound of formula (X) is synthesized in the presence of a suitable acid in a suitable solvent.


The suitable solvent is selected from DCM, toluene, dioxane, EtOAc, IPAc, IPA, 1-propanol, acetone, MIBK and mixed solvent of MIBK and acetone. Particularly the solvent is MIBK.


The suitable acid is selected from TFA, phosphoric acid, MSA, sulphuric acid, HBr and HCl. Particularly the acid is TFA or HCl, and more particularly the acid is HCl.


The addition rate of the acid is controlled while the reaction temperature is maintained between 0° C. and 60° C., particularly between 20° C. and 30° C. while the gas release can be controlled.


The amount of acid is 3-10 eq. of the compound of formula (IX), particularly 3-4 eq.


After an appropriate amount of time, usually 0.5-2 hours, the reaction is completed with monitoring by HPLC. The compound of formula (X) is isolated as a solid from the reaction mixture. The compound of formula (X) precipitates in the reaction mixture and is separated by filtration followed by one or more washing steps using the solvent in which the reaction had been carried out.


One aspect of the present invention relates to a synthetic process for making the compound of formula (X) comprising at least one of the steps a) to g).


Step h) the formation of compound of formula (XIV) via the reaction of compounds (XI), (XII) and (XIII) in the presence of acid (XV).


Compound of formula (XIV) is synthesized in the presence of a suitable catalyst in a suitable solvent. The conversion as a rule is performed under Dean-Stark water removal conditions (reduced pressure).


The suitable solvent is selected from methanol, ethanol, IPA, tert-BuOH, 2,2,2-trifluroethanol, benzene, xylene, anisole, chlorobenzene and toluene, particularly the solvent is toluene.


The suitable organic acid catalyst used in the enantioselective Biginelli reaction is selected from (S)-(+)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate, (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate, D-(+)-DTTA, L-DTTA, L-Tartaric acid, D-DBTA, (+)-CSA, (S)-(+)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate and (R)-(−)-1,I-Binaphthyl-2,2′-diyl hydrogen phosphate, (R)-3,3′-Bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate, (S)-3,3′-Bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate, (R)-(−)-VAPOL hydrogenphosphate particularly the organic acid is (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate.


WO 2017/140750 discloses an alternative synthetic path for making compound (XIX) wherein in the formation and recrystallization of the enantiomeric salt of the compound of formula (XVI) preferably either (S)-(+)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate or (R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate is used. In one embodiment of the present invention, either (S)-(+)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate or (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate, preferably (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate is used in the step h) wherein the compound of formula (XIV) is formed enantiospecifically. In contrast to the teaching of WO 2017/140750 wherein equimolar amounts of either (S)-(+)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate or (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogen-phosphate are necessary, the amount of the corresponding 1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate needed in the process step h) according to the present invention is just 0.01 equimolar. Therefore, a substantial reduction of process waste and costs over the processes previously described in the art is possible with the synthetic path according to the present invention.


Step i) the formation of compound of formula (XVI).


Compound of formula (XVI) is synthesized in the presence of a suitable catalyst at a suitable pH using a suitable reagent in a suitable solvent.


The suitable solvent is selected from mixtures of water with two of either methanol, ethanol, 2,2,2-trifluroethanol, toluene, ACN, DMF, EtOAc or dimethyl carbonate, particularly the solvent is a mixture of water, ethanol and ACN.


The suitable reagent used in the reaction is selected from sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, formic acid, acetic acid, particularly the catalyst is sodium hydrogencarbonate.


The suitable pH for this reaction is between 5 and 12, particularly the pH is between 7 and 10.


The suitable reagent used in the reaction is selected from mCPBA, tBuOOH, urea hydrogen peroxide complex, dibenzoyl peroxide, oxone, and an aqueous solution of hydrogen peroxide, particularly the reagent is an aqueous solution of hydrogen peroxide.


Step j) the formation of compound of formula (XVII).


Compound of formula (XVII) is synthesized using a suitable reagent in a suitable solvent.


The suitable solvent is selected from toluene, xylenes, chlorobenzene, heptane, ACN, dichloromethane, particularly the solvent is toluene.


The suitable reagent is selected from oxalyl chloride, PCl5, POCl3, SOCl2, and MsCl, particularly the reagent is POCl3.


Step k) the formation of compound of formula (XVIII).


Compound of formula (XVIII) is synthesized using a suitable catalyst and a suitable reagent in a suitable solvent and isolated as a suitable salt, preferably as the HBr salt.


The suitable catalyst is selected from complexes of either Xantphos or dppf with Palladium(II)-salts, particularly the catalyst is XantphosPdCl2.


The suitable reagent is selected from bromo(thiazol-2-yl)magnesium, thiazol-2-ylboronic acid and bromo(thiazol-2-yl)zinc, particularly the reagent is bromo(thiazol-2-yl)zinc.


The suitable solvent is selected from toluene, xylenes, chlorobenzene, THF, 2-Methyltetrahydrofurane, ACN, dichloromethane, particularly the solvent is toluene.


Step l) the formation of compound of formula (XIX) via the bromination reaction of compound of formula (XVIII).


Compound of formula (XVIII) is synthesized in the presence of a suitable bromination reagent with or without a suitable additive in a suitable organic solvent. The conversion as a rule is performed under a heating condition.


The suitable bromination reagent is selected from NBS, bromine, pyridine tribromide and 1,3-dibromo-5,5-dimethylhydantion, particularly the bromination reagent is NBS. The bromination reaction is performed at the temperature between 0° C. and 80° C., particularly between 35° C. and 40° C.


The reaction is usually performed in an organic solvent selected from carbon tetrachloride, 1,2-Dichloroethane, ACN, acetic acid, fluorobenzene, chlorobenzene and DCM, particularly the organic solvent is DCM.


Another aspect of the present invention relates to a synthetic process for making the compound of formula (XIX) comprising at least one of the steps h) to l).


WO 2017/140750 discloses an alternative synthetic path for making compound (XIX). However, the synthetic process according to the present invention is estimated to provide for (i) >50% waste reduction, (ii) >20% lower costs and (iii) a substantially shortened process of ≥3 steps shorter over the process disclosed in WO 2017/140750.


Step m) the formation of compound of formula (I) via the substitution reaction of compound of formula (XIX) with compound of formula (X).


Compound of formula (I) is synthesized in the presence of a suitable base in a suitable organic solvent.


The suitable base is selected from TMP, DIPEA, TEA, tripropylamine, N,N-dicyclohexylmethylamine, DBU, NMM, 2,6-lutidine, 1-methylimidazole, 1,2-dimethylimidazole, tetra methylpiperidine-4-ol, Na2CO3, K2CO3, NaHCO3 and tris(2-hydroxylethyl)amine; particularly the base is TMP or tris(2-hydroxylethyl)amine; and more particularly the base is tris(2-hydroxylethyl)amine.


The suitable pKa and nucleophilicity of the base are directly related to the yield and impurities formation in this step. Both TMP and tris(2-hydroxylethyl)amine could result in good yield with high selectivity, but hydrazine related impurities might be introduced to the final API when using TMP as the base.


The suitable organic solvent is selected from THF, IPAc EtOAc, MTBE, fluorobenzene, chlorobenzene and DCM, particularly the organic solvent is DCM.


The substitution reaction as a rule is performed at the temperature between 0° C. and 40° C., particularly at temperature between 10° C. and 25° C.


An efficient purification procedure through an acid-base work-up and recrystallization is needed to ensure the purity of API.


The purification procedure of compound of formula (I) includes: 1) acid-base work-up with a suitable acid and a suitable base in a suitable solvent; and 2) recrystallization which is performed with or without suitable seeding in a suitable organic solvent.


The acid used in the acid-base work-up for purification of compound of formula (I) is selected from HCl, HBr, H2SO4, H3PO4, MSA, toluene sulfonic acid and camphor sulfonic acid, particularly the acid is H3PO4. The concentration of aqueous H3PO4 is selected from 15 wt % to 60 wt %; particularly the concentration of aqueous H3PO4 is from 35 wt % to 40 wt %. The amount of H3PO4 is essential and carefully designed to get the maximum recovery of API and minimum impurities.


The base used in the acid-base work-up for purification of compound of formula (I) is selected from NaOH, KOH, K2CO3 and Na2CO3, particularly the base is NaOH.


The suitable organic solvent used for extracting impurities in the acid-base work-up for purification of compound of formula (I) is selected from MTBE, EA, IPAc, butyl acetate, toluene and DCM; particularly, the organic solvent is EA or DCM; and more particularly the solvent is DCM.


The suitable solvent for recrystallization of compound of formula (I) is selected from IPA, ethanol, EtOAc, IPAc, butyl acetate, toluene, MIBK, mixed solvent of acetone and water, mixed solvent of IPA and water, and mixed solvent of ethanol and water; particularly the solvent is mixed solvent of ethanol and water. Seeding amount is 0.1-5 wt % of compound of formula (I), particularly the seeding amount is 1 wt %.


EXAMPLES
Example 1
Preparation of C15050794-G (Example 1)



embedded image


The title compound was prepared according to following scheme:




embedded image


Production of C15050794-G was carried out in two batches. For C15050794-G17601, 1243.4 kg of C15050794-G anisole solution was obtained from 118.35 kg of C15050794-SM6 and 90.0 kg C15050794-SM5 with 92.8% purity, 12.6% assay, 96.6% e.e. in 87% yield. For C15050794-G17602, 1214.6 kg anisole solution of C15050794-G was obtained from 117.35 kg of C15050794-SM6 and 88.9 kg C15050794-SM5 with 93.3% purity, 12.2% assay, 97.5% e.e. in 83% yield. The details are summarized in table below.


Raw Materials for Preparation of C15050794-G17601





















Quantity
Rel Wt/Vol




Batch No.
Material
MW
(kg)
(1X = 118 kg)
Spec
Eq.





















C13022716-K17401
C15050794-SM6
252.24
118
1.00
Purity ≥ 98.0%
1.00



(S)-4-(tert-



e.e ≥ 98.0%



butoxycarbonyl)



Piperazine-2-



carboxylate


17081873
C15050794-SM5
181.66
90.0
0.76
Assay ≥ 78%
1.06



Ethyl-3-amino-2,2-



di-methylpropanoatehydrochloride


17032708
CDI
N/A
93.3
0.79
Assay ≥ 98%
N/A


15070656
Oxalyl chloride
N/A
109
0.92
Purity ≥ 98.0%
N/A


16031116
Methoxybenzene
N/A
962
8.2
Purity ≥ 99%
N/A



(anisole)


17051771
Et3N
N/A
48.2
0.4
Purity ≥ 99.0%
N/A







KF ≤ 0.2%


17081716/17012242
KHCO3
N/A
249.15
2.1
Assay ≥ 99.0%
N/A


170721/170803/170912
25% NaCl aq.
N/A
2002
2002
N/A
N/A


N/A
THF
N/A
893.26
7.57
Purity ≥ 99.8%
N/A







KF ≤ 0.05%


170915/PW-21074
Process water
N/A
3182
26.97
pH 6.5-8.5
N/A


170912/PW-21073









Raw Materials for Preparation of C15050794-G17602





















Quantity
Rel Wt/Vol




Batch No.
Material
MW
(kg)
(1X = 118 kg)
Spec
Eq.





















17082963/17082965/
C15050794-SM6
252.24
117
0.99
Purity ≥ 98.0%
1.00


17082964
(S)-4-(tert-



e.e ≥ 98.0%



butoxycarbonyl)Piperazine-



2-carboxylate


17081873
C15050794-SM5
181.66
88.9
0.75
Assay ≥ 78%
1.06



Ethyl-3-amino-2,2-di-



methylpropanoatehydrochloride


17032708
CDI
N/A
92.3
0.78
Assay ≥ 98%
N/A


16062306/16072761
Oxalyl chloride
N/A
102
0.86
Purity ≥ 98.0%
N/A


16032125/16031116
Methoxybenzene
N/A
946
8.02
Purity ≥ 99%
N/A



(anisole)


17051771
Et3N
N/A
47
0.40
Purity ≥ 99.0%
N/A







KF ≤ 0.2%


C15050794-G17601
12% KHCO3
N/A
1296
10.98
Assay ≥ 99.0
N/A







%


170721/170919
25% NaCl aq.
N/A
1404
11.90
N/A
N/A


N/A
THF
N/A
689
5.84
Purity ≥ 99.8%
N/A







KF ≤ 0.05%


170920/21074
Process water
N/A
804
6.81
pH 6.5-8.5
N/A









Plant Result for Preparation of C15050794-G



















Starting








Material



(corrected

Purity
Purity


Batch No.
by assay)
Product
(HPLC Area)
(w/w assay)
e.e.
Yield







C15050794-G17601
118.35 kg
1243.4 kg
92.8%
12.6%
96.6%
87%


C15050794-G17602
117.35 kg
1214.6 kg
93.3%
12.2%
97.5%
83%









Equipment for Preparation of C15050794-G17601-G17602















Equip. Name
MBR Code
Process Requirement
Equip. Code







Reactor
R1
GL/3000L
R210303



R2
GL/3000L
R210103


Pump
P1
SS
P630040


Peristaltic pump
P2
SS
P636005


Pump
P3
SS
P634004


Tank
T1
HDPE
T12074



T2
HDPE
T12046



T3
HDPE
T12102



T4
HDPE
T12101



T5
HDPE
T12103



T6
HDPE
T12105



T7
HDPE
T12040



T8
HDPE
T21063









Detailed Process Description of C15050794-G















G17601
G17602


Operation
(1× = 118)
(1× = 118)



















1.
Charge process water (15.0-22.0×)
2360
kg
N/A



into R210103





2.
Adjust R210103 to 25-35° C.
27.2°
C.
N/A


3.
Charge KHCO3 (2.0-3.0×) into
240
kg
N/A



R210103





4.
Stir R210303 at 25-35° C. for
40
min
N/A



NLT 0.5 h





5.
Load the material into tank


N/A












6.
Charge THF into R210303
323
L
323
L


7.
Heat R210303 to 60-70° C.,
64.2°
C.
61.2°
C.



distillate for 15-30 min






8.
Reflux R210303 for 15-30 min
30
min
30
min


9.
Adjust R210103 to 20-30° C.
28.8°
C.
26.1°
C.


10.
Load the material into drums






11.
Adjust R210303 to 100-110° C.
104.9°
C.
105.0°
C.


12.
Dry R210303 for 1-2 h at
1
h
2
h



100-110° C.






13.
Adjust R210303 to 20-40° C.
34.7°
C.
35.4°
C.


14.
Charge CDI (0.67-0.80×) into
93.3
kg
92.3
kg



R210303






15.
Charge anisole (6.8-9.0×) into
840
kg
837
kg



R210303






16.
Adjust R210303 to −5-5° C.
−2.3°
C.
−1.2°
C.


17.
Charge C15050794-SM5
90
kg
88.9
kg



(0.67-0.77×) into R210303






18.
Charge anisole into R210303
50
kg
41
kg


19.
Stir R210303 at −5-5° C. for 1-3 h
2
h
2
h


20.
Charge TEA (0.36-0.42×) into
48.2
kg
47
kg



R210303






21.
Stir R210303 at −5-5° C. for
20
h
20
h



10-20 h






22.
Charge C15050794-SM6
118
kg
117
kg



(0.99-1.01×) into R210303






23.
Charge anisole into R210303
50
kg
48
kg











24.
Adjust R210303 to 35-45° C. and
7 h 35 min
8
h











stir for 5-15 h




25.
IPC: Purity of F (Spec.: FIO),
F % = 65.4%,
F % = 65.8%,



SM6/F ≤1.0%
SM6/F = 0.1%
SM6/F = 0.2%












26.
Adjust R210303 to −5-5° C.
−2.7°
C.
0.7°
C.


27.
Charge oxalyl chloride
109
kg
102
kg



(0.76-1.05×) into R210303






28.
Charge anisole into R210303
22
kg
20
kg


29.
Stir R210303 for 1-3 h
1
h
1
h










30.
IPC: Purity of G (Spec.: FIO),
G % = 76.5%,
G % = 74.3%,



F/G ≤1.5%
F/G = 0.5%
F/G = 0.8%












31.
Charge 12% KHCO3 (8-12×) of
1300
kg
1296
kg



step 5 into R210303 at −5-10° C.






32.
Adjust R210303 to 15-25° C. and
1
h
1
h



stir for 30-60 min






33.
Stand for 30-60 min
1
h
1
h


34.
Transfer the aqueous layer into







tank














35.
IPC: residual of G in aqueous
 0.2%
0.01%



layer (Spec.: FIO)














36.
Charge 25% NaCl (4-5×) into
590
kg
580
kg



R210303






37.
Charge process water (6-7×) into
822
kg
804
kg



R210303






38.
Adjust R210303 to 15-25° C. and
1
h
1
h



stir for 30-60 min






39.
Stand for 30-60 min
1
h
1
h


40.
Transfer the aqueous layer into







tank






41.
Charge 25% NaCl (10-12×) into
1412
kg
1404
kg



R210303






42.
Adjust R210303 to 15-25° C. and
1
h
1
h



stir for 30-60 min






43.
Stand for 30-60 min
1
h
1
h


44.
Transfer the aqueous layer into







tank














45.
IPC: residual of G in aqueous
N.D.
0.01%



layer (Spec.: FIO)














46.
Charge THF into R210303
472
L
452
L


47.
Concentrate R210303 mixture to
27.5°
C.
25.5°
C.



1062-1534 L at ≤45° C.






48.
Adjust R210303 to 20-30° C.
27.3°
C.
25.4°
C.










49.
IPC: KF ≤0.10%
0.03%
0.03%












50.
Adjust R210303 to 10-30° C.
23.6°
C.
25.7°
C.










51.
Load the material into drum
Total weight:
Total weight:



(C15050794-G anisole solution)
1243.4 kg
1214.6 kg


52.
IPC: G % (Spec.: FIO), assay of
G % = 92.8%,
G % = 93.3%,



G % (Spec.: FIO), e.e. % of G
assay of
assay of



(Spec.: FIO)
G % = 12.6%,
G % = 12.2%,




e.e. % of
e.e. % of




G = 96.6%
G = 97.5%









C15050794-G (Example 1)

MS calcd C18 H29 N3 O6 [M+Na]+: 406.2, Found: 406.4, 1H NMR (300 MHz, CDCl3) γ ppm 4.50 (br s, 1H), 4.23-4.01 (m, 4H), 3.96 (dd, J=4.7, 11.2 Hz, 1H), 3.66 (s, 2H), 3.01 (dt, J=3.8, 12.8 Hz, 1H), 2.81-2.59 (m, 2H), 1.55-1.42 (m, 9H), 1.37-1.23 (m, 6H), 1.21 (s, 6H)


Example 2
Preparation of C15050794-K (Example 2)



embedded image


The title compound was prepared according to following scheme:




embedded image


Production of C15050794-K was carried out in two batches. For C15050794-K17601, 56.75 kg (purity: 100.0%, assay: 100.0%, e.e. %: 99.2%) and 36.70 kg (purity: 100.0%, assay: 99.5%, e.e. %: 99.1%) of C15050794-K was obtained from 1239.0 kg of C15050794-G anisole solution (assay: 12.60%) in 67% yield. For C15050794-K17602, 54.45 kg (purity: 100.0%, assay: 98.6%, e.e. %: 99.4%) and 50.05 kg (purity: 100.0%, assay: 99.6%, e.e. %: 99.4%) of C15050794-K was obtained from 1214.6 kg of C15050794-G anisole solution (assay: 12.20%) in 78% yield. The details are summarized in table below.


Raw Materials for Preparation of C15050794-K17601





















Quantity
Rel Wt/Vol




Batch No.
Material
MW
(kg)
(1X = 156.0 kg)
Spec
Eq.





















C15050794-G17601
C15050794-G
383.44
156.1
1.00
Assay = 12.60%
1.00


17091163
BF3-THF
139.91
13
0.08
Assay ≥ 45%
0.23


17092868
BF3-THF (1 M)
85.94
463
2.97
Conc. = 0.95 M~1.10 M
1.3


PC00637-125-K
C15050794-K Seed
341.4
0.25
0.00
N/A
N/A


17071961
Na2CO3
N/A
45
0.29
Assay = 98%~101%
N/A


171003/171027B
25% NaCl solution
N/A
1350
8.65
N/A
N/A


16071562
NaOH
N/A
65.7
0.42
Assay ≥ 98%
N/A


171031
MTBE
N/A
402
2.58
Purity ≥ 98.0%
N/A







KF ≤ 0.1%


171031
MeOH
N/A
400
2.56
Purity ≥ 99.5%
N/A







KF ≤ 0.10%


17091862
H3PO4
N/A
200.1
1.28
Assay ≥ 85.0%
N/A


171028/PW-21074,
Process water
N/A
4740
30.38
pH = 6.5-8.5
N/A


171029/PW-21073,


171030/PW-21079,


171101/PW-21079,


171102/PW-21079,


171104/PW-21074,


171105/PW-21074


171027/171029
THF
N/A
324
2.08
N/A
N/A









Raw Materials for Preparation of C15050794-K17602





















Quantity
Rel Wt/Vol




Batch No.
Material
MW
(kg)
(1X = 148.0 kg)
Spec
Eq.





















C15050794-G17602
C15050794-G
383.44
148.2
1.00
Assay = 12.20%
1.00


17091163
BF3-THF
139.91
12.5
0.08
Assay ≥ 45%
0.23


17092868
BF3-THF (1 M)
85.94
460.2
3.11
Conc.= 0.95 M~1.10 M
1.3


PC00637-125-K
C15050794-K
341.4
0.31
0.00
N/A
N/A



Seed


17071961/17091467
Na2CO3
N/A
45
0.30
Assay = 98%~101%
N/A


171027B/171027A
25% NaCl
N/A
1356
9.16
N/A
N/A



solution


16071562
NaOH
N/A
65
0.44
Assay ≥ 98%
N/A


171104
MTBE
N/A
402
2.72
Purity ≥ 98.0%
N/A







KF ≤ 0.1%


171104/171107
MeOH
N/A
542
3.66
Purity ≥ 99.5%
N/A







KF ≤ 0.10%


17091862/17061610
H3PO4
N/A
204.9
1.38
Assay ≥ 85.0%
N/A


171031/PW-21074,
Process water
N/A
5410
36.55
pH = 6.5-8.5
N/A


171101/PW-21074,


171103/PW-21079,


171104/PW-21079,


171105/PW-21077,


171106/PW-21039,


171107/PW-21039


171027/171029
THF
N/A
234
1.58
N/A
N/A









Plant Result for Preparation of C15050794-K



















Starting








Material



(corrected

Purity
Purity


Batch No.
by assay)
Product
(HPLC Area)
(w/w assay)
e.e
Yield







C15050794-K17601
156.11 kg
56.75 kg
100.0%
100.0% 
99.2%
67%




36.70 kg
100.0%
99.5%
99.1%


C15050794-K17602
148.18 kg
54.45 kg
100.0%
98.6%
99.4%
78%




50.05 kg
100.0%
99.6%
99.4%









Equipment for Preparation of C15050794-K17601-K17602















Equip. Name
MBR Code
Process Requirement
Equip. Code







Reactor
R1
GL/3000L
R210302



R2
GL/5000L
R210304



R3
SS316L/3000L
R210403


Tank
T1
HDPE
T631121



T2
HDPE
T631134



T3
HDPE
T631158



T4
SS
T630013



T5
SS
T630018



T6
HDPE
T631159



T7
HDPE
T631166



V1
GL
V2104C



V2
GL
V2104B



V3
GL
V2103A


Pump
P1
PP
P634008



P2
PP
P634005



P3
SS
P630056


Bag filter
Fb1
SS
Fb630002


Centrifuge
M1
TI/HL
M210302



M2
TI/HL
M210101


Mother liquor tank
MV1
GL
MV210302



MV2
GL
MV210101


Dryer
D1
SS, Tray
D211001



D2
SS, Tray
D211005









Detailed Process Description of C15050794-K















K17601
K17602


Operation
(1× = 156.0 kg)
(1× = 148.0 kg)




















53.
Charge C15050794-G
156.1
kg
148.2
kg



(1.00× ± 0.01×) anisole







solution into R210302






54.
Charge THF (5-15 kg) into
10
kg
8
kg



R210302






55.
Adjust R210302 to −10-5° C.
−5.1°
C.
−4.8°
C.


56.
Charge BH3—THF (1M)
88.0
kg
87.2
kg



(0.3-2.0×) into R210302






57.
Charge THF (5-15 kg) into
12
kg
14
kg



R210302






58.
Charge BH3—THF
13.0
kg
12.5
kg



(0.065-0.106×) into R210302






59.
Charge THF (5-15 kg) into
8
kg
6
kg



R210302






60.
Charge BH3—THF (1M)
375
kg
373
kg



(1.5-3.5×) into R210302






61.
Charge THF (5-15 kg) into
6
kg
8
kg



R210302






62.
Adjust R210302 to 5-5° C.
−1.6°
C.
−1.4°
C.


63.
Stir R210302 for 20-50 h
30
h
28
h










64.
IPC: G/H % (Spec. ≤3%),
G/H % = 1%,
G/H % = 1%,



purity of H % (Spec.: FIO)
H % = 81.4%
H % = 82.7%












65.
Adjust R210302 to −10-0° C.
−0.2°
C.
−4.6°
C.


66.
Charge Na2CO3 (0.16-0.48×)
45.0
kg
45.0
kg



into R210304






67.
Charge process water (9-13×)
1754
kg
1796
kg



into R210304






68.
Adjust R210302 to 25-35° C.,
30.8°
C.
26.8°
C.



stir NLT 0.5 h






69.
Adjust R210302 to 0-20° C.
8.1°
C.
8.1°
C.


70.
Charge C15050794-H







solution into R210304 in







portions






71.
Charge THF (20-50 kg) into
46
kg
30
kg



R210302






72.
Charge the THF solution







above into R210304






73.
Stir R210304 for 0.5-1.0 h
40
min
45
min


74.
Adjust R210304 to 20-30° C.,
21.6°
C.
23.5°
C.



stir for 0.5-1.0 h and stand







for 1-5 h






75.
Transfer R210304 aqueous







layer into T631121 and







T631134














76.
IPC: Residual of H in aqueous
Residual of
Residual of



layer (%, w/w) (Spec.: FIO)
H in aqueous
H in aqueous




layer
layer




(%, w/w) =
(%, w/w) =




0.02%
0.02%












77.
Charge 25% NaCl solution
450
kg
454
kg



(2.4-4.7×) into R210304






78.
Charge process water
450
kg
436
kg



(2.4-4.7×) into R210304






79.
Adjust R210304 to 20-30° C.,
24.8°
C.
24.5°
C.



stir for 0.5-1.5 h and stand







for 2-4 h






80.
Transfer R210304 aqueous







layer into V2103A and







T631158, label material tag






81.
Charge 25% NaCl solution
900
kg
902
kg



(4.7-8.2×) into R210304






82.
Adjust R210304 to 20-30° C.,
24.2°
C.
24.0°
C.



stir for 0.5-1.5 h and stand







for 1-3 h






83.
Transfer R210304 aqueous







layer into V2103A and







T631158, label material tag














84.
IPC: KF ≤3.0%
KF = 1.1%
KF = 1.0%


85.
IPC: Purity of H %
Purity of
Purity of



(Spec.: FIO), assay of H
H % = 85.8%,
H % = 86.0%,



(%, w/w) (Spec.: FIO)
assay of H
assay of H




(%, w/w) =
(%, w/w) =




7.9%
8.0%


86.
Transfer R210304 organic





layer into T630013 and





t630018 and label material





tag




87.
IPC: Residual of H in
Residual of
Residual of



aqueous layer (%, w/w): FIO
H in aqueous
H in aqueous




layer
layer




(%, w/w) =
(%, w/w) =




0.003%
0.001%












88.
Load the material in V2103A







into iron drums and label







material tag






89.
Transfer tank organic layer







into R210403






90.
Charge THF (5-30 kg) into
30
kg
30
kg



R210403






91.
Charge process water
14
kg
20
kg



(0.0-0.3×) into R210403






92.
Charge THF (0-4×) into
166
kg
168
kg



R210403






93.
Charge NaOH (0.35-0.59×)
65.7
kg
65.0
kg



in portions into R210403






94.
Adjust R210403 to 50-60° C.
33
h
34.5
h



and stir for 10-40 h






95.
Adjust R210403 to 30-40° C.
39.8°
C.
38.6°
C.










96.
IPC: Residual of H (%, w/w)
Residual of H
Residual of H



(Spec. ≤0.15%)
(%, w/w) =
(%, w/w) =




0.001%
0.001%












97.
Adjust R210403 to 20-30° C.
26.1°
C.
27.1°
C.


98.
Charge process water into
1202
kg
1106
kg



R210403






99.
Stir R210403 for 0.5-1.5 h
1.5
h
1.0
h


100.
Stand R210403 for 1-3 h
3
h
3
h


101.
Transfer R210403 aqueous







layer into T631159 and







T631166, label material tag






102.
Transfer R210403 organic







layer into V2104C and







V2104B, label material tag






103.
Transfer T631159 and







T631166 aqueous layer into







R210403






104.
Charge process water
590
kg
682
kg



(1.2-4.7×) into T631159 and







T631166






105.
Transfer aqueous layer in







T631159/T631166 into







R210403






106.
Charge MTBE (1.8-4.1×)
402
kg
402
kg



into R210403






107.
Adjust R210403 to 20-30° C.,
23.6°
C.
23.8°
C.



stir for 0.5-1.5 h






108.
Stand R210403 for 1-3 h
2
h
2
h


109.
Transfer R210403 aqueous







layer into T631159 and







T631166






110.
Transfer R210403 organic







layer into V2104C and







V2104B














111.
IPC: Purity of K % in
Purity of K %
Purity of K %



aqueous layer (Spec.: FIO)
in aqueous
in aqueous




layer = 99.7%
layer = 99.1%


112.
IPC: Residual of K (%, w/w)
Residual of K
Residual of K



in organic layer (Spec.: FIO)
(%, w/w) in
(%, w/w) in




organic
organic




layer = 5.3%
layer = N.D.


113.
Load the material in





V2104CA/2104B into iron





drums and label material tag













114.
Charge THF (15-50 kg) into
46
kg
MeOH: 150 kg













R210403






115.
Load the material in R210403







into iron drums and label







material tag






116.
Transfer T631159 and







T631166 aqueous layer into







R210302






117.
Charge MeOH (0.0-3.5×) into
400
kg
392
kg



R2103202






118.
Adjust R210302 to 20-40° C.
25.9°
C.
26.2°
C.


119.
Charge H3PO4 (0.77-1.28×)
160
kg
160
kg



into R210302






120.
Charge C15050794-K seed
0.250
kg
0.310
kg



(0.0001-0.0100×) into







R210302






121.
Adjust R210302 to 30-40° C.
31.1°
C.
32.3°
C.



and stir for 1-2 h






122.
Charge H3PO4 (0.19-0.32×)
40.1
kg
44.9
kg



into R210302






123.
Adjust R210302 to 15-25° C.
24.9°
C.
24.7°
C.



and stir for 1-3 h














124.
IPC: Residual of K (%, w/w)
Residual of K
Residual of K



in the filtrate supernatant
(%, w/w) =
(%, w/w) =



(Spec. ≤0.25%)
0.18%
0.16%












125.
Spread centrifuge bag in







M210302






126.
Transfer R210302 material







in portions into M210302







for centrifuge. During the







centrifuging, maintain the







reactor temperature at







15-25° C. and agitation






127.
Charge process water
34
kg
178
kg



(0.19-1.5×) to rinse the wet







cake






128.
Still centrifuge and blow,







R210302 for at least 10 min






129.
Load solid according to







instruction of step 147






130.
Charge process water
140
kg
180
kg



(0.5-1.5×) to rinse the wet







cake






131.
Still centrifuge and blow,







R210302 for at least 10 min






132.
Load solid according to







instruction of step 147






133.
Charge process water
140
kg
180
kg



(0.5-1.5×) to rinse the wet







cake






134.
Still centrifuge and blow,







R210302 for at least 10 min






135.
Load solid according to







instruction of step 147






136.
Charge process water
164
kg
832
kg



(0.5-1.5×) to rinse the wet







cake






137.
Still centrifuge and blow,







R210302 for at least 10 min






138.
Load solid according to







instruction of step 147















139.
Charge process water
162
kg
N/A



(0.5-1.5×) to rinse the wet






cake





140.
Still centrifuge and blow,


N/A



R210302 for at least 10 min





141.
Load solid according to


N/A



instruction of step 147





142.
Charge process water
230
kg
N/A











(0.5-1.5×) to rinse the wet





cake




143.
Still centrifuge and blow,

N/A



R210302 for at least 10 min




144.
Load solid according to

N/A



instruction of step 147




145.
Spread centrifuge bag in

N/A



M210101




146.
Transfer R210302 material

N/A



in portions into M210101





for centrifuging. During the





centrifuging, maintain the





reactor temperature at





15-25° C. and agitation




147.
Load solid into fiber drum
Total weight:
Total weight:



lined with PE bags and label
153.35 kg
172.65 kg



material tag




148.
IPC: Purity of the wet cake
Purity of the
Purity of the



% (Spec. ≥98.0%) e.e. % of
wet cake
wet cake



the wet cake (Spec. ≥295.0%)
(%) =
(%) =




100.0% e.e.
100.0% e.e.




% of the wet
% of the wet




cake = 99.1%
cake = 99.2%


149.
IPC: Residua of K (%, w/w)
Residua; of K
Residua; of K



(Spec.: FIO)
(%, w/w) =
(%, w/w) =




0.2%
0.2%


150.
IPC: Residua of K (%, w/w)
Residua; of K
N/A



in organic layer (Spec.: FIO)
(%, w/w) =





N.D.













151.
Dry the wet cake for two
53.64°
C.
57.73°
C.



batches. For the first batch:







put C15050794-K wet cake







into drying bag, then put the







bag into D211001, adjust







jacket temperature to







50-60° C.






152.
Dry D211001 under reduces
19
h
20
h



pressure at 50-60° C. for







10-20 h






153.
Dry D211001 under reduces
22
h
20
h



pressure at 60-70° C. for







10-20 h














154.
IPC: KF ≤1.0%
KF = 4.3%
KF = 0.1%











155.
Dry D211001 under reduces
22
h
N/A



pressure at 50-70° C. for






10-20 h













156.
IPC: KF ≤1.0%
KF = 0.2%
N/A












157.
Adjust D211001 to 20-30° C.
29.51°
C.
25.83°
C.


158.
Hold D211001 for 20-40 min
22
min
34
min










159.
IPC: Purity of K %
Purity of
Purity of



(Spec. ≥98.0%), assay of K
K % =
K % =



(%, w/w) (Spec.: FIO), e.e.
100.0%,
100.0%,



% of K (Spec. ≥95.0%)
assay of K
assay of K




(%, w/w) =
(%, w/w) =




100.0%,
98.6%,




e.e. % of
e.e. % of




K = 99.2%
K = 99.4%


160.
Calculate the net wet
Total weight:
Total weight:




56.75 kg
54.45 kg












161.
The second batch: put
55.33°
C.
56.65°
C.



C15050794-K wet cake into







drying bag, then put the bag







into D211001, adjust jacket







temperature to 50-60° C.






162.
Dry D211001 under reduces
20
h
20
h



pressure at 50-60° C. for







10-20 h






163.
Dry D211001 under reduced
20
h
20
h



pressure at 60-70° C. for







10-20 h














164.
IPC: KF ≤1.0%
KF = 0.3%
KF = 0.2%












165.
Adjust R211001 to 20-30° C.
27.28°
C.
26.09°
C.


166.
Hold D211001 for 20-40 min
25
min
37
min










167.
IPC: Purity of K %
Purity of
Purity of



(Spec. ≥98.0%), assay of K
K % =
K % =



(%, w/w) (Spec.: FIO), e.e.
100.0%,
100.0%,



% of K (Spec. ≥95.0%)
assay of K
assay of K




(%, w/w) =
(%, w/w) =




99.5%,
99.6%,




e.e. % of
e.e. % of




K = 99.1%
K = 99.4%


168.
Calculate the net wet
Total weight:
Total weight:




36.70 kg
50.05 kg









C15050794-K (Example 2)

HRMS calcd C16 H27 N3 O5 [M+H]+: 341.1951, Found: 341.1976, 1H NMR (600 MHz, CHLOROFORM-d) δ ppm 3.90-4.36 (m, 2H), 3.70-3.84 (m, 1H), 3.53-3.63 (m, 1H), 3.46-3.52 (m, 1H), 3.29-3.43 (m, 2H), 3.02 (dd,J=9.1, 4.7 Hz, 1H), 2.36-2.92 (m, 3H), 1.40-1.50 (m, 9H), 1.15-1.30 (m, 6H)


Example 3
Preparation of C15050794-SM2 (Example 3)



embedded image


The title compound was prepared according to following scheme:




embedded image


Production of C15050794-SM2 was carried out in one batch. For C15050794-SM2 17601, 157.25 kg of C15050794-SM2 was obtained from 197.20 kg of C15050794-K with 99.9% purity, 92.1% assay, 99.3% e.e. in 90% yield. The details are summarized in table below.


Raw Materials for Preparation of C15050794-SM2 17601






















Rel







Quantity
Wt/Vol


Batch No.
Material
MW
(kg)
(1X = 196 kg)
Spec
Eq.





















C15050794-
C15050794-K
341.4
197
1.01
Assay = 100.0%
1.0


K17601A/C15050794-




Assay = 99.5%


K17601B/C15050794-




Assay = 98.6%


K17602A/C15050794-




Assay = 99.6%


K17602B


PC00665-100-SM2
C15050794-SM2
277.75
0.15
0.00
Assay ≥ 78%
N/A



Seed


17093067
35% HCI
N/A
171
0.87
Assay = 32%~39%
N/A


171127
Acetone
N/A
528
2.69
Purity ≥ 99.5%
N/A







KF ≤ 0.3%


17091969
MIBK
N/A
951
4.85
Purity ≥ 99.0%
N/A







KF ≤ 0.1%









Plant Result for Preparation of C15050794-SM2 17601



















Starting








Material



(corrected

Purity
Purity


Batch No.
by assay)
Product
(HPLC Area)
(w/w assay)
e.e.
Yield







C15050794-SM2 17601
197.20 kg
157.25 kg
99.9%
92.1%
99.3%
90%









Equipment for Preparation of C15050794-SM2 17601















Equip. Name
MBR Code
Process Requirement
Equip. Code







Reactor
R1
GL/3000L
R210101


Pump
P1
PP/SS
P630058



P2
PP
P634007


Centrifuge
M1
TI/HL
M210102


Mother liquor tank
MV1
GL
MV210102


Dray
D1
GL/SS, Double cone or SS,
D120206




Single cone









Detailed Process Description of C15050794-SM2 17601














SM2 17601


Operation
(1× = 196)


















169.
Charge MIBK (4-5×) into R210101
901
kg


170.
Charge C15050794-K (0.99-1.01×) into
6.00
kg



R210101




171.
Charge MIBK (20-50 kg) into R210101
50
kg


172.
Adjust R210101 to 20-30° C.
22.9°
C.


173.
Charge 35% HCl (0.80-0.92×) into R210101
171.0
kg


174.
Stir R210101 for 8-16 h
16
h









175.
IPC: Residual of K (%, w/w) (Spec. ≤15%)
Residual of K




(%, w/w) =




0.01%










176.
Adjust R210101 to 15-20° C.
19.5°
C.


177.
Concentrate R210101 mixture at ≤60° C. to





392-784 L




178.
Adjust R210101 to 20-40° C.
31.9°
C.


179.
Charge acetone (4.0-5.0×) into R210101
971
L


180.
Concentrate R210101 mixture at ≤60° C. to





588-980 L




181.
Adjust R210101 to 45-55° C.
45.8°
C.


182.
Charge acetone (4.0-5.0×) into R210101
971
L


183.
Charge C15050794-SM2 (0.0001-0.0010×)
0.150
kg



crystal seed into R210101




184.
Charge acetone (20-50 kg) into R210101
36
kg


185.
Adjust R210101 to 50-60° C.
54.4°
C.


186.
Stir R210101 for 0.5-1 h
1
h


187.
Adjust R210101 to 20-40° C.
35.3°
C.









188.
IPC: Residual of SM2 (%, w/w)
Residual of



(Spec. ≤0.7%), KF ≤3.5%
SM2




(%, w/w) =




0.2%,




KF = 2.9%










189.
Adjust R210101 to 18-22° C. for over 3 h
20.6°
C.


190.
Stir R210101 for 1-3 h
3
h


191.
Spread centrifuge bag in M210102




192.
Transfer R210101 material in portions into





M210102 for centrifuging. During the





centrifuging, maintain the reactor temperature





at 18-22° C. and agitation




193.
Charge acetone (1.3-5.0×) to rinse the wet cake
70
kg


194.
Load solid according to instruction of step 205




195.
Charge acetone (1.3-5.0×) to rinse the wet cake
74
kg


196.
Load solid according to instruction of step 205




197.
Charge acetone (1.3-5.0×) to rinse the wet cake
78
kg


198.
Load solid according to instruction of step 205




199.
Charge acetone (1.3-5.0×) to rinse the wet cake
68
kg


200.
Load solid according to instruction of step 205




201.
Charge acetone (1.3-5.0×) to rinse the wet cake
70
kg


202.
Load solid according to instruction of step 205




203.
Charge acetone (1.3-5.0×) to rinse the wet cake
132
kg









204.
Load solid according to instruction of step 205



205.
Load solid into fiber drum lined with double
Total weight:



PE bags and label material tag
167.60 kg


206.
IPC: Purity of the wet cake % (Spec. ≥98.0%)
Purity of the




wet cake




% = 99.8%


207.
IPC: Residual of SM2 (%, w/w) (Spec.: FIO)
Residual




of SM2




(%, w/w) =




0.1%


208.
Put the wet cake into D 120206











209.
Adjust D120206 to 30-40° C.
40°
C.


210.
Dry D120206 under reduced pressure at
4
h



30-40° C. for 3-5 h




211.
Adjust D120206 to 40-50° C.
43.3°
C.


212.
Dry D120206 under reduced pressure at
12
h



40-50° C. for 7-15 h











213.
IPC: KF ≤7%
KF = 4%










214.
Adjust D120206 to 20-30° C.
29.7°
C.









215.
Hold D120206 for 1 h



216.
IPC: Assay of SM2 (%, w/w) (Spec.: FIO),
Assay of SM2



purity of SM2% (Spec. ≥98.0%), e.e. of
(%, w/w) =



SM2% (Spec. ≥95.0%)
92.1%, purity




of SM2% =




99.9%, e.e.




of SM2% =




99.3%


217.
Calculate the net wet
Total weight:




157.25 kg









C15050794-SM2 (Example 3):

1H NMR (600 MHz, DMSO-d6) δ ppm 12.10-12.59 (m, 1H), 9.32-9.78 (m, 2H), 3.85-3.95 (m, 1H), 3.75-3.76 (m, 1H), 3.68-3.76 (m, 1H), 3.41-3.47 (m, 1H), 3.23-3.27 (m, 1H), 3.15-3.18 (m, 1H), 3.13-3.30 (m, 2H), 3.13-3.17 (m, 1H), 3.00-3.06 (m, 1H), 2.69-2.79 (m, 1H), 2.66-2.75 (m, 1H), 1.08 (d, J=7.8 Hz, 6 H); HRMS calcd C11 H19 N3 03 [M+H]+: 241.1426, Found: 241.1429


Example 4
Preparation of ethyl 4-(3-fluoro-2-methyl-phenyl)-6-methyl-2-thiazol-2-yl-1,4-dihydropyrimidine-5-carboxylate (Example 4)



embedded image


The title compound was prepared according to following scheme:




embedded image


In a reactor configured for Dean-Stark water removal, a suspension was prepared from thiourea (12.73 g, 167.2 mmol, 1.05 equiv.), 3-fluoro-2-methyl-benzaldehyde (22.0 g, 159.3 mmol, 1.00 equiv.), and ethyl acetoacetate (24.87 g, 191.1 mmol, 1.20 equiv.), (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1-binaphthyl-2,2′-diyl hydrogen-phosphate (1.38 g, 1.59 mmol, 0.01 equiv.) and toluene (76.1 g). This mixture was stirred at 80° C. jacket temperature under reduced pressure in order to achieve gentle reflux and Dean-Stark removal of the water generated during the reaction over 15-18 h. Upon reaction completion, the suspension was cooled to 15° C. and stirred for at least 2 h. The crystals were filtered, washed with pre-cooled toluene (26 g) and dried under reduced pressure at 50° C. The isolated yield was 40.6 g (82%) with 95% enantiopurity. 1H NMR (600 MHz, DMSO-d6) δ ppm 10.30 (m, 1H), 9.56 (br d, J=0.8 Hz, 1H), 7.23 (m, 1H), 7.07 (m, 1H), 7.02 (dd, J=8.1, 0.9 Hz, 1H), 5.43 (d, J=3.2 Hz, 1H), 3.92 (q, J=7.1 Hz, 2H), 2.33 (d, J=1.6 Hz, 3H), 2.32 (d, J=0.5 Hz, 3H), 1.00 (t, J=7.1 Hz, 3H) HRMS calcd C15 H17 N2 O2 S [M+H]+: 308.0995, Found: 308.1002


Example 5
Preparation of ethyl (4S)-4-(3-fluoro-2-methyl-phenyl)-6-methyl-2-oxo-3,4-dihydro-1H-pyrimidine-5-carboxylate (Example 5)



embedded image


The title compound was prepared according to following scheme:




embedded image


Ethyl (4S)-4-(3-fluoro-2-methyl-phenyl)-6-methyl-2-thioxo-3,4-dihydro-1H-pyrimidine-5-carboxylate (30 g, 97.3 mmol, 1.0 equiv.), suspended in acetonitrile (59.9 g), ethanol (58.95 g), sodium bicarbonate (32.79 g, 389.1 mmol, 4 equiv.) and water (390 g) was stirred at room temperature for 30 minutes. The suspension was cooled to 5-10° C. and the hydogen peroxide (3 wt % solution in water, 75.64 g, 778 mmol, 8 equiv.) was added over 4 h. Minimal effervescence was observed with this rate of addition. The resulting suspension was stirred for 15-18 h at 5-10° C. Upon reaction completion, water (150 g) was added and the suspension was warmed to 25° C. and stirred for another 5 h. The crystals were filtered, washed with two portions of 9:1 v/v water/acetonitrile (total 120 mL) and dried under reduced pressure at 50° C. The isolated yield was 25.8 g (90.8%), with assay approx. 92%. Chiral purity observed in the starting material was preserved.


To recrystallize this material, the crude solid (25.8 g) was dissolved in MeTHF (500 mL), polish filtered, and then partially concentrated under reduced pressure (jacket temperature 30° C.) to approx. 300 mL. n-Heptane (600 mL) was added over 30 minutes and the resulting white suspension was cooled to 10-15° C. (internal temperature), filtered and dried. The overall yield was 21.4 g (75.3%), with assay approx. 100%. Chiral purity was unchanged. 1H NMR (600 MHz, DMSO-d6) δ ppm 9.20 (d, J=1.3 Hz, 1H), 7.66 (t, J=2.3 Hz, 1H), 7.20 (m, 1H), 6.98-7.06 (m, 2H), 5.42 (d, J=2.6Hz, 1H), 3.89 (m, 2H), 2.30 (d, J=1.7 Hz, 3H), 2.29 (d, J=0.6 Hz, 3H), 0.99 (t, J=7.1 Hz, 3H); HRMS calcd C15 H17 N2 O3 [M+H]+: 239.1296, Found: 293.1301


Example 6
Preparation of ethyl (4S)-2-chloro-4-(3-fluoro-2-methyl-phenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate (Example 6)



embedded image


The title compound was prepared according to following scheme:




embedded image


Ethyl (4S)-4-(3-fluoro-2-methyl-p henyl)-6-methyl-2-oxo-3, 4-di hydro-1H-pyrimidine-5-carboxylate (20 g, 68.4 mmol, 1.0 equiv., assay min 92%) was suspended in toluene (43.2 g) and phosphoryl chloride (34.47 g, 205.3 mmol, 3.0 eqiv.). Additional toluene (8.7 g) was used to rinse the addition funnel. The white suspension was heated to 100° C. (internal temperature) and a yellow solution was obtained after approx. 15 minutes, eventually becoming a red solution. The reaction was stirred for 24 h and then diluted with toluene (51.9 g) and cooled to 0° C. This solution was dosed over 60 min into second vessel containing vigorously stirring mixture of toluene (51.9 g) and K2HPO4 (5% w/w aqueous solution, 60.0 g) at 0° C. The quench vessel was maintained below 15° C. (internal temperature) and the pH maintained in the range 7.0-8.5 by variable rate co-dosing of KOH (48% w/w aqueous solution, 230.3 g). The addition rate of the KOH solution was continued beyond the reaction mixture dosing to maintain the pH range (end pH was approx. 7.8). The resulting biphasic mixture was warmed to 23° C. (jacket temperature) and stirred for 1 h. The lower aqueous layer was removed and the organic layer washed twice with K2HPO4 (5% w/w aqueous solution, 200 g total). The organic solution was polish filtered and the filter rinsed with toluene (17.3 g). The toluene solution was distilled under reduced pressure while maintaining 25° C. (jacket temperature), with replacement with fresh toluene until water-free, and to achieve a final volume of 200 mL. This 0.34 M solution of ethyl (4S)-2-chloro-4-(3-fluoro-2-methyl-phenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate in toluene was used directly (uncorrected for assay). 1H NMR (600 MHz, DMSO-d6) δ ppm 9.81-10.33 (m, 1H), 7.16-7.28 (m, 1H), 7.05 (t,J=9.0 Hz, 1H), 7.00 (d,J=7.7 Hz, 1H), 5.74 (s, 1H), 3.91 (d,J=7.1 Hz, 2H), 2.24-2.38 (m, 6H), 0.98 (t,J=7.1 Hz, 3H); HRMS calcd C15 H16 Cl F N2 O2 [M+H]+: 310.0898, Found: 310.0884


Example 7
Preparation of bromo(thiazol-2-yl)zinc solution in THF (Example 7)



embedded image


The title compound was prepared according to following scheme:




embedded image


Under inert atmosphere, a reactor containing THF (200 mL) was charged with zinc (21.9 g, 335 mmol, 1,1 equiv.) and the addition port rinsed with additional THF (50 mL). With vigorous stirring at 23° C. (internal temperature), TMSCl (1.7 g, 15.2 mmol, 0.05 equiv.) was added slowly over approximiately 25 minutes, and the addition line rinsed with THF (10 mL). Vigorous stirring was continued for 30 minutes and then 2-bromothiazole (50 g, 304.8 mmol, 1.0 equiv.) was added over 2 h, and the addition line rinsed with THF (10 mL). Stirring was continued and the reaction was monitored by GC analysis for complete consumption of the 2-bromothiazole starting material. If necessary, the reaction was heated to reflux in order to complete conversion. The solution of bromo(thiazol-2-yl)zinc in THF can be filtered at ambient temperature under inert atmosphere to remove residual zinc, or used directly without filtration. The volume was adjusted by addition of THF to achieve a final volume of 305 mL, giving a 1M stock solution that is stable at room temperature when stored under inert atmosphere.


Example 8
Preparation of ethyl (4S)-4-(3-fluoro-2-methyl-phenyl)-6-methyl-2-thiazol-2-yl-1,4-dihydropyrimidine-5-carboxylate hydrobromide (Example 8)



embedded image


The title compound was prepared according to following scheme:




embedded image


A reactor under inert atmosphere was charged with a solution of ethyl (4S)-2-chloro-4-(3-fluoro-2-methyl-phenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate (21.26 g, 68.41 mmol, 1.0 equiv.) in toluene (0.36 M solution, 200 mL total volume), and then a portion bromo(thiazol-2-yl)zinc 1M solution in THF (6.8 mL, 0.1 equiv.), and then the catalyst dichloro[9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene]palladium(II) (1.03 g, 1.4 mmol, 0.02 equiv.) was added as a solid, rinsing the addition port port with THF (8.9 g). The obtained red solution was heated to 70° C. (internal temperature). The remainder of bromo(thiazol-2-yl)zinc 1M solution in THF (130 mL, 1.9 equiv.) was added via infusion pump over 2 h, and the addition line rinsed with THF (8.9 g). The reaction was stirred for an addition 1 h, at which time the reaction was typically complete. The reaction promptly worked up by cooled to 23° C. (jacket temperature) and then washed with aqueous citric acid solution (13.14 g citric acid dissolved in 100 g water), followed two washes with water (200 mL total). The organic solution was partially concentrated under reduced pressure to a volume of 60 mL and then acetonitrile (157.2 g) was added and the reaction mixture once again concentrated to 60 mL. Acetonitrile (125.8 g) was added the resulting mixture was polish filtered. The filtered acetonitrile solution was warmed to 65° C. and then aqueous HBr (11.53 g of 48% w/w solution in water, 68.4 mmol, 1.0 equiv.) was added. Water was removed by distillation under reduced pressure (75-85° C. jacket temperature), with solvent replacement with acetonitrile. The reaction was concentrated to a minimal volume (approx. 40 mL) and then toluene (100 mL) added over 20 minutes (jacket temperature 85° C.). The resulting slurry was stirred for 1 h then cooled to 0° C. over 3 h, stirred for 1 h and the off-white to brown solid was isolated by filtration. The solid was washed with three portions of 5:1 toluene:acetonitrile (40 mL total volume), then dried at 50° C. under reduced pressure to provide 18.78 g (67.7% yield over two steps) of the title compound. (note: yield corrected for 92% assay of Ethyl (4S)-4-(3-fluoro-2-methyl-phenyl)-6-methyl-2-thioxo-3,4-dihydro-1H-pyrimidine-5-carboxylate starting material). 1H NMR (600 MHz, DMSO-d6) δ ppm 10.18-12.25 (m, 1H), 8.23 (m, 1H), 8.18 (m, 1H), 7.23-7.29 (m, 1H), 7.18-7.22 (m, 1H),7.08-7.15 (m, 1H), 5.91 (m, 1H), 3.85-4.05 (m, 2H), 2.49 (m, 3H), 2.43 (d, J=1.7 Hz, 3H), 1.04 (t, J=7.1 Hz, 3H); HRMS calcd C18 H18 F N3 O2 S [M+H]+: 360.1177, Found: 360.1181


Example 9
Preparation of 3-[(8aS)-7-[[(4S)-5-ethoxycarbonyl-4-(3-fluoro-2-methyl-phenyl)-2-thiazol-2-yl-1,4-dihydropyrimidin-6-yl]methyl]-3-oxo-5,6,8,8a-tetrahydro-1 H-imidazo[1,5-a]pyrazin-2-yl]-2,2-dimethyl-propanoic acid (Example 9)



embedded image


The title compound was prepared according to following scheme:




embedded image


Example 9
Step 1) Preparation of ethyl (4S)-6-(bromomethyl)-4-(3-fluoro-2-methyl-phenyl)-2-thiazol-2-yl-1,4-dihydropyrimidine-5-carboxylate (compound 10-b)

A 10 L flask equipped with mechanical stirrer, thermometer and nitrogen bubbler was charged with a solution of ethyl (4S)-4-(3-fluoro-2-methyl-phenyl)-6-methyl-2-thiazol-2-yl-1,4-dihydropyrimidine-5-carboxylate (706 mmol, compound 10-a) in DCM (4.0 L) from step 1). To the reaction mixture, heated to 32° C.-37° C, NBS (125.6 g, 706 mmol) was added in portions while maintaining the temperature at 35° C.-40° C. After 0.5 hour, additional batch of NBS (12.6 g, 70.6 mmol) was added to reaction mixture which was carefully monitored by HPLC until the conversion >95%. The resulting solution of compound 10-b was cooled to 10-20° C. and used directly for the next step. MS m/e=436.1/438.0 [M+H]+.


Step 2) Preparation of 3-[(8a5)-7-[[(4S)-5-ethoxycarbonyl-4-(3-fluoro-2-methyl-phenyl)-2-thiazol-2-yl-1,4-dihydropyrimidin-6-yl]methyl]-3-oxo-5,6,8,8a-tetrahydro-1H-imidazo[1,5-a]pyrazin-2-yl]-2,2-dimethyl-propanoic acid (Example 9)

A 10 L flask equipped with mechanical stirrer, thermometer and nitrogen bubbler was charged a solution of ethyl (4S)-6-(bromomethyl)-4-(3-fluoro-2-methyl-phenyl)-2-thiazol-2-yl-1,4-dihydropyrimidine-5-carboxylate in DCM from the last step. To the reaction mixture, cooled to 10-20° C., was added 3-[(8aS)-3-oxo-1,5,6,7,8,8a-hexahydroimidazo[1,5-a]pyrazin-2-yl]-2,2-dimethyl-propanoic acid hydrochloride (193 g, 635 mmol, purity: 91.6 wt %, Example 3) and followed by addition of triethanolamine (329 g, 2.33 mol) in DCM (350 mL) in portions below 25° C. The reaction mixture was stirred at 20° C.-30° C. for 16 hours. Then to the resulting reaction mixture was added water (1.25 L) and aqueous layer was adjusted to pH=3-4 using H3PO4 (85 wt %). After phase separation, the organic phase was washed with acidic water (1.25 L, H3PO4 solution with pH=2-3). After phase separation, the organic phase was extracted with aqueous H3PO4 solution (35 wt %, 1980 g) once and aqueous H3PO4 solution (35 wt %, 990 g) once. The combined aqueous layer was extracted with DCM (500 mL). To the aqueous layer, cooled to 0° C.-10° C., was added DCM (2.0 L). Then the aqueous layer was adjusted to pH=3-4 with aqueous NaOH solution (50 wt %, 770 g). After phase separation, the organic phase was washed with water (1.5 L) and filtered through celite (25 g) and then concentrated to about 500 mL in vacuo. The residue was diluted with ethanol (500 mL) and concentrated to about 500 mL in vacuo and this process was repeated one more time. Then the residue was diluted again with ethanol (1700 mL) and heated to 70-80 ° C. till all solid was dissolved. Water (2.20 L) was added to previous solution via an addition funnel while maintaining inner temperature between 60° C. and 78° C. Then the reaction mixture was cooled to 55° C. over 2 hours and maintained at 50° C. -55° C. for 1 hour, then cooled to 25° C. over 3 hours and stirred at 25° C. for another hour. The solid was collected by filtration and washed with ethanol/water (v/v=1/1, 250 g). The wet cake was dried in a vacuum oven (45° C.-55° C./Ca. 0.1Mpa with a nitrogen bleed) for 35 hours to afford the product Example 9 (260.0 g , purity: 99.1%, chiral purity: 99.8%, yield: 61.5%) as a light-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 12.35 (s, 1H), 9.60 (s, 1H), 8.01 (d, J=3.2 Hz, 2H), 7.93 (d, J=3.2 Hz, 2H), 7.15-7.19 (m, 1H), 7.01-7.05 (m, 2H), 5.89 (s, 1H),3.87-4.00 (m, 4H), 3.62-3.73(m, 2H), 3.33-3.39 (m, 1H), 3.27 (d, J=14.0Hz, 1H), 3.16 (d, J=14.0Hz, 1H), 2.93-3.00 (m, 2H), 2.77-2.82 (m, 2H), 2.45 (t, J=1.6 Hz, 3H), 2.15 (d, J=11.2 Hz, 1H), 2.02 (d, J=11.2Hz, 1H), 1.03-1.08 (m, 9H); MS m/e =599.6 [M+H] +.


Example 10
The H3PO4 Concentration and Equivalent Screening in the Acid-Base Work-Up of Step l)

The amount of H3PO4 in the acid-base work-up of step l) is essential and carefully designed to get the maximum recovery of API and minimum impurities. The concentration and equivalent of H3PO4 in step 2) of Example 9 were screened according to Table 1. The major impurity was Impurity 2 shown below.




embedded image


After the initial H3PO4 solution wash (pH=3-4 and pH=2-3), the purity in organic layer was Product/Impurity 2(Rt(impurity)=19.4min)=71.9/1.38 (peak area %), the selected examples of further extractions with various H3PO4 concentration and equivalent were tested and shown in Table 1.









TABLE 1







H3PO4 concentration and equivalent screening












Aqueous layer purity
Organic layer purity



Concentration and
(peak area %)
(peak area %)



equivalent of H3PO4
Product/Impurity 2
Product/Impurity 2







30 wt % H3PO4
95.2/0.0
14.0/4.6



20 eq.





35 wt % H3PO4
92.6/0.0
10.8/4.7



10 eq.





35 wt % H3PO4
93.7/0.1
 5.4/5.0



15 eq.





35 wt % H3PO4
93.9/0.1
 4.0/5.0



20 eq.





40 wt % H3PO4
92.3/0.5
 3.9/3.9



20 eq.





45 wt % H3PO4
90.7/1.3
 4.9/1.3



20 eq.










The above study was tested with following HPLC parameters shown in Table 2.









TABLE 2





HPLC parameters
















Instrument
Agilent 1260 HPLC system with DAD detector


Column
Waters Xbridge C8 (4.6 × 150 mm × 3.5 μm)









Oven temperature
30°
C.








Mobile phase
A: 0.12% TFA in water



B: 0.12% TFA in ACN














Time (min)
A %
B %





Gradient program
0.00
80
20



15.00
50
50



20.00
10
90



25.00
10
90



25.01
80
20



30.00
80
20









Flow rate
1.0
mL/min








Detector
UV 299 nm









Nominal concentration
0.5
mg/mL








Diluent
ACN:water = 1:1









Injection volume
10
μL


Run time
30
min









According to the results shown in Table 1, the amount of H3PO4 in the acid-base work-up of step m) is directly related to the recovery of API and amount of impurities. Therefore, the particular concentration of H3PO4 was 35 wt % to 40 wt % and 10-15 equivalent of compound of formula (XVIII).

Claims
  • 1. Process for the preparation of a compound of the formula (I),
  • 2. A process according to claim 1, wherein R1 is chlorofluorophenyl, methylchlorophenyl or fluoromethylphenyl; R2 is methyl or ethyl; R3 is dimethylethyl; or pharmaceutically acceptable salt or diastereomer thereof.
  • 3. A process according to claim 1 or 2 for the synthesis of
  • 4. Process for the preparation of a compound of the formula (X),
  • 5. A process according to claim 4, wherein R3 is dimethylethyl.
  • 6. A process according to claim 4, wherein compound (X) is in the form of a pharmaceutically acceptable salt or diastereomer thereof.
  • 7. A process according to any one of claims 1 to 6, characterized in that the formation of compound (III) in step a) is performed in the presence of a base in a solvent with a reagent, wherein the solvent is selected from 2-MeTHF, THF, IPAc, EA, DCM, DMF, toluene and anisole.
  • 8. A process according to claim 7, wherein the base is selected from Na2CO3, NaOtPent, NaHCO3, K2CO3, Na3PO4, K3PO4 and triethylamine (TEA).
  • 9. A process according to claim 7 or 8, wherein the reagent is selected from CDI, phosgene, diphosgene, disuccinimidyl carbonate, and triphosgene.
  • 10. A process according to any one of claims 1 to 9, characterized in that the formation of the hydantoin of formula (VI) in step c) is performed in the presence of an acid in an organic solvent, wherein the solvent is selected from 2-MeTHF, IPAc, EA, toluene, DCM, anisole, and DMF.
  • 11. A process according to claim 10, wherein the acid is selected from boron trifluoride etherate, phosphoric acid, sulphuric acid, chlorosulphonic acid, trifluoroacetic acid, HBr, HCl, AlCl3, TiCl4, SnCl4, ZrCl4, TMSOTf, pivaloyl chloride, isobutyl chloroformate and oxalyl chloride.
  • 12. A process according to any one of claims 1 to 11, characterized in that the formation of the urea of formula (VIII) in step d) is performed in the presence of a catalytic Lewis acid and a reducing agent, wherein the catalytic Lewis acid is selected InCl3, YCl3, ZnCl2, Zn(OAc)2, TMSCl, TiCl4, ZrCl4, AlCl3, BF3.THF, and BF3.Et2O.
  • 13. A process according to claim 12, wherein the reducing agent is selected from lithium aluminum hydride, sodium dihydro-bis-(2-methoxyethoxy)aluminate, borane dimethylsulfide, phenylsilane, borane, borane dimethylsulphide complex and borane tetrahydrofurane complex.
  • 14. A process according to any one of claims 1 to 13, characterized in that the compound of formula (IX) is synthesized in the presence of a solvent is selected from THF, MeTHF, TBME, toluene, anisole, isopropanol, methanol and ethanol and their mixtures with water.
  • 15. A process according to any one of claims 1 to 14, characterized in that the formation of the compound of formula (X) in step g) is performed in the presence of HCl in a solvent.
  • 16. A process according to claim 15, wherein the solvent is selected from DCM, toluene, dioxane, EtOAc, IPAc, IPA, 1-propanol, acetone, MIBK and mixed solvent of MIBK and acetone.
  • 17. A process according to any one of claims 1 to 16, characterized in that the acid of formula (XV) in step h) is selected from the group consisting of (R)-3,3′-Bis(2,4,6-triisopropylphenyl)-1,1-binaphthyl-2,2′-diyl hydrogenphosphate, (S)-3,3′-Bis(2,4,6-triisopropylphenyl)-1,1-binaphthyl-2,2′-diylhydrogenphosphate, (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate, (R)-(−)-VAPOL hydrogenphosphate, (+)-CSA, and (S)-(+)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate, (R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate.
  • 18. A process according to claim 17, characterized in that the acid of formula (XV) in step h) is (R)-(−)-3,3′-Bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diylhydrogenphosphate.
Priority Claims (1)
Number Date Country Kind
PCT/CN2019/090358 Jun 2019 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2020/065424 6/4/2020 WO