ALTERNATIVE SPLICING GENE VARIANTS IN CANCER

Information

  • Patent Application
  • 20110136123
  • Publication Number
    20110136123
  • Date Filed
    August 15, 2008
    16 years ago
  • Date Published
    June 09, 2011
    13 years ago
Abstract
The present invention relates to a method to identify alternatively spliced variants enriched in cancer specimens and a method for prognosis of cancer in a subject by detecting a signature of splicing events. There is also provided a method for profiling cancer in a subject by detecting a signature of splicing events.
Description
TECHNICAL FIELD

The present invention relates to a method to identify alternatively spliced variants enriched in cancer specimens.


BACKGROUND OF THE INVENTION

The transformation of a normal cell into a malignant cell results, among other things, in the uncontrolled proliferation of the progeny cells, which exhibit immature, undifferentiated morphology, exaggerated survival and proangiogenic properties and expression, overexpression or constitutive activation of oncogenes not normally expressed in this form by normal, mature cells.


Nearly all cancers are caused by abnormalities in the genetic material of the transformed cells. These abnormalities may be due to the effects of carcinogens, such as tobacco smoke, radiation, chemicals, or infectious agents. Other cancer-promoting genetic abnormalities may be randomly acquired through errors in DNA replication, or are inherited, and thus present in all cells from birth. Complex interactions between carcinogens and the host genome may explain why only some develop cancer after exposure to a known carcinogen. New aspects of the genetics of cancer pathogenesis, such as DNA methylation, and microRNAs are increasingly being recognized as important.


One example of cancer is epithelial ovarian cancer which is the second most common gynecological cancer and the deadliest amongst gynecological pelvic malignancies. Early symptoms of ovarian cancer are often mild and unspecific, making this disease difficult to detect. In most cases, at the time of diagnosis, cancer cells have already disseminated throughout the peritoneal cavity. In fact, over 70% of patients are diagnosed with late stage disease and only a minority survive over 5 years post-diagnosis. Early detection offers a 90% 5-year survival rate. The inability to detect ovarian cancer at an early stage and its propensity for peritoneal metastasis are largely responsible for these low survival rates.


Currently, there are no reliable methods for detecting early stages of epithelial ovarian cancer. Blood level of CA125 tumour antigen is employed as a predictor of clinical recurrence of ovarian cancers, and to monitor response to anticancer therapy (Yang et al., 1994, Zhonghua Fu Chan Ke Za Zhi, 29: 147-149). The CA125 serum marker combined with transvaginal ultrasonography are the current clinical tests offered for screening for early stages of ovarian cancer in high risk populations (Nikolic et al., 2006, Bosn J Basic Med Sci 6: 3-6). However, neither of these modalities individually or combined have proven reliable (Nikolic et al., 2006, Bosn J Basic Med Sci 6: 3-6), and there is an urgent need to develop new screening tests to detect epithelial ovarian cancer at an early stage.


Epithelial ovarian tumours are heterogeneous and include many different histopathological subtypes: serous, endometrioid, mucinous, clear cell, undifferentiated or mixed. The serous type is the most frequent and the second most lethal. Recent studies have focused on differences in molecular profiling of gene expression patterns to uncover diagnostic and prognostic markers as well as new therapeutic targets in a variety of cancers. Although promising results have been reported in some cancers, the genes that are differentially expressed between normal and cancer cells seem to vary between individual microarray studies, reflecting either a variability in methods and in the choice of model systems or a heterogeneity in selected tissues (Kopper & Timar, 2005, Pathol Oncol Res, 11: 197-203).


Another example of cancer is breast cancer. Breast cancer is the fifth most common cause of cancer death (after lung cancer, stomach cancer, liver cancer and colon cancer). Among women worldwide, breast cancer is the most common cause of cancer death. There are numerous ways breast cancer is classified. Like most cancers, breast cancer can be divided into groups based on the tissue of origin, e.g. epithelial (carcinoma) versus stromal (sarcoma). The vast majority of breast cancers arise from epithelial tissue, i.e. they are carcinomas.


Breast cancer is diagnosed by the examination of surgically removed breast tissue. A number of procedures can obtain tissue or cells prior to definitive treatment for histological or cytological examination. Such procedures include fine-needle aspiration, nipple aspirates, ductal lavage, core needle biopsy, and local surgical excision. These diagnostic steps, when coupled with radiographic imaging, are usually accurate in diagnosing a breast lesion as cancer. Occasionally, pre-surgical procedures such as fine needle aspirate may not yield enough tissue to make a diagnosis, or may miss the cancer entirely. Imaging tests are sometimes used to detect metastasis and include chest X-ray, bone scan, Cat scan, MRI, and PET scanning. While imaging studies are useful in determining the presence of metastatic disease, they are not in and of themselves diagnostic of cancer. Only microscopic evaluation of a biopsy specimen can yield a cancer diagnosis. Ca 15.3 (carbohydrate antigen 15.3, epithelial mucin) is a tumor marker determined in blood which can be used to follow disease activity over time after definitive treatment. Blood tumor marker testing is not routinely performed for the screening of breast cancer, and has poor performance characteristics for this purpose.


Thus, detection of many cancers still relies on detection of an abnormal mass in the organ of interest. In many cases, a tumor is often detected only after a malignancy is advanced and may have metastasized to other organs. For example, breast cancer is typically detected by obtaining a biopsy from a lump detected by a mammogram or by physical examination of the breast. Also, although measurement of prostate-specific antigen (PSA) has significantly improved the detection of prostate cancer, confirmation of prostate cancer typically requires detection of an abnormal morphology or texture of the prostate. Thus, there is a need for methods for earlier detection of cancer. Such new methods could, for example, replace or complement the existing ones, reducing the margins of uncertainty and expanding the basis for medical decision making.


It would be highly desirable to be provided with novel biomarkers for the early detection, prognosis and clinical management of cancers. Sensitive and specific tests that can diagnose different stages of cancer would greatly improve patient survival rates by facilitating early diagnosis and tailored therapies. It would also be highly desirable to be provided with new screening tests to detect cancer at an early stage.


SUMMARY OF THE INVENTION

The present invention relates to a method to identify alternatively spliced variants enriched in cancer specimens.


In another embodiment, the cancer that can be detected in these cancer specimens is selected from the group consisting of breast cancer, glioma, large intestinal cancer, lung cancer, small cell lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cutaneous or intraocular melanoma, uterine sarcoma, ovarian cancer, rectal or colorectal cancer, anal cancer, colon cancer, fallopian tube carcinoma, endometrial carcinoma, cervical cancer, vulval cancer, squamous cell carcinoma, vaginal carcinoma, Hodgkin's disease, non-Hodgkin's lymphoma, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue tumor, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney cancer, ureter cancer, renal cell carcinoma, renal pelvic carcinoma, CNS tumor, glioma, astrocytoma, glioblastoma multiforme, primary CNS lymphoma, bone marrow tumor, brain stem nerve gliomas, pituitary adenoma, uveal melanoma, testicular cancer, oral cancer, pharyngeal cancer, pediatric neoplasms, leukemia, neuroblastoma, retinoblastoma, glioma, rhabdomyoblastoma and sarcoma.


In one aspect, a method for prognosis of cancer in a subject by detecting a signature of splicing events comprising the steps of obtaining a nucleic acid sample from said subject, and determining whether the nucleic acid sample contains a signature specific to a cancer is disclosed.


There is also provided a method for profiling cancer in a subject by detecting a signature of splicing events comprising the steps of obtaining a nucleic acid sample from said subject, and determining whether the nucleic acid sample contains a signature specific to a cancer.


In a preferred embodiment, the signature comprises at least 1 splicing variant.


Further, the method disclosed herein also can comprise an initial step of designing at least two independent PCR primer pairs for each predicted exon-exon junction from a transcript map of a gene affected in a cancer.


In addition, the method disclosed herein can comprise a step of PCR amplifying the nucleic acid sample with the PCR primer pairs to obtain amplicons.


Further, the method disclosed herein can comprise the step of measuring the size and sequence of said amplicons.


Also in accordance with the present invention, there is disclosed a method for identifying a signature specific of a cancer, said signature consisting of at least one specific splicing event or a specific combination of splicing events, said method comprising the steps of designing at least two independent PCR primer pairs for each predicted exon-exon junction from a transcript map of a gene affected in cancer; reverse transcribing a template from RNA from a sample of cancer tissue and a sample from normal tissue; amplifying amplicons of said gene by PCR with the PCR primers pairs using the template reverse transcribed from the cancer tissue and the normal tissue; and determining the size and sequence of said amplicons; wherein the presence of said at least one alternative splicing event corresponds to the signature of the cancer.


Further, the method disclosed herein can comprise the step of performing a comparative analysis of amplicons obtained from the template reverse transcribed from the cancer tissue and the normal tissue.


Furthermore, the method disclosed herein can comprise the step of identifying the presence of at least one alternative splicing event in the gene.


In a preferred embodiment, the PCR primer pairs are designed to amplify amplicons ranging from 100 to 700 base pairs.


In another embodiment, the step of amplifying is carried out in a liquid handling system linked to a thermocycler.


Furthermore, the method disclosed herein can comprise the step of selecting amplicons with a difference of at least 10% of points between a mean Ψs for normal and cancer tissue and with a maximum standard deviation of the Ψs for each tissue type of at most 26%.


In accordance with the present invention, there is also provided a diagnostic kit for detecting a signature of ovarian cancer in a patient comprising PCR primer pairs for predicted exon-exon junctions of at least one splicing variant; and a set of instructions for using said primers to generate and detect a signature specific of a cancer, said signature consisting of at least one splicing variant or a specific combination of splicing variants.


In addition, the kit disclosed herein can also comprise a transcript map.


In another embodiment, the splicing variants occur in genes selected from the group consisting of AFF3, AGR3, APP, AXIN1, BMP4, BTC, C11orf17, CADM1, CCNE1, CHEK2, DNMT3B, FANCA, FANCL, FGFR1, FGFR2, FGFR4, FN1-EDA, FIN-EDB, FIN-IIICS, GATA3, GNB3, GPR137, HMGA1, HSC, IGSF4, KITLG, LGALS9, MCL1, NRG1, NUP98, PAXIP1, PLD1, POLI, POLM, PSAP, PTK2, PTPN13, RAD52, SHMT1, SLIT2, SRP19, STIM1, SYK, SYNE2 TOPBP1, TSSC4, TUBA4A and UTRN.


In another embodiment, the splicing variants occur in genes selected from the group consisting of ADAM15, BCAS1, C11ORF4, CCL4, CTNNA1, DDR1, DRF1, DSC3, ECGF1, ECT2, FN1, F3, H63, HMGA1, HMMR, INSR, LIG3, LIG4, NOTCH3, PACE4, POLB, PTPRB, RSN, RUNX2, SHC1, TLK1 and TNFRSF5.


In a preferred embodiment, the splicing events are selected from the group consisting of an alternative 3′ splicing, an alternative 5′ splicing, an alternative 3′ and 5′ splicing, a cassette exon and alternative 5′ or 3′ splicing, a multiple cassette exon splicing, a mutually exclusive exon splicing and a cassette exon splicing. Further, said splicing events are alternative cassette exon events.


In another embodiment, the splicing variant is:










(SEQ ID NO: 3061)



ggttcaccca ccagagtgat ntgtggagtt atggtgtgac tgtgtgggag ctgatgactt






ttggggccaa accttacgat gggatcccag cccgggagat ccctgacctg ctggaaaagg





gggagnnnnt gccccagccc cccatatgca ccattgatgt ctacatgatc atggtcaaat





gtgcgtggct gagctgtgct ggctgcctgg aggagggtgg gaggtcct. 









BRIEF DESCRIPTION OF THE DRAWINGS

Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, showing by way of illustration, preferred embodiments thereof, and in which:



FIG. 1 illustrates a layered and integrated system for splicing isoform annotation (LISA), wherein in (A) it is shown an overview of the LISA annotation process; in (B) a transcript map generated for the stromal interaction molecule 1 (STIM1) is shown as an example, wherein each variant transcript from AceView is shown on a separate line and named (left) as per the AceView convention, exons are shown as pale boxes, the intervening introns are shown as lines (not to scale), the relative locations of forward (green) and reverse (red) primers are shown as vertical lines, the designed PCR reactions are shown below each targeted transcript (black horizontal lines), and other relevant information, such as coding regions (dashed horizontal lines) or protein functional domains (magenta horizontal lines) are mapped onto this representation and can be accessed for subsequent data analysis; in (C) capillary electropherograms of the PCR reaction spanning AS event 1 of the STIM1 gene shown in (B) in a normal ovary and an epithelial ovarian cancer (EOC) pool wherein each reaction is compared to internal markers at 15 (M15) and 7000 (M7000) base pairs and wherein amplicon sizes and concentrations relative to the markers are measured and digitized, and wherein the fluorescence signals in arbitrary units (au) of the short and long isoforms are indicated; in (D) graphical representation of the results obtained from the PCR reactions targeting the STIM1 AS event 1 in 4 RNA sources wherein each row represents data from a single RNA source, and each column represents a single PCR reaction spanning an AS event and wherein electropherograms were analyzed for the presence of expected amplicon sizes and the most intense amplicon signal for each reaction in all sources was identified and wherein the ratio of this amplicon relative to the total expected amplicon concentration was calculated and expressed as the percentage splicing index, Ψ;



FIG. 2 illustrates an example of splicing annotations generated by LISA, such as in (A) it is shown a LISA generated displays of the cancer-associated gene SHMT1 wherein exon sizes (black rectangles) are proportional to the square root of their lengths, introns (white rectangles) are not to scale, all putative exon-exon junctions are automatically assigned (uppercase letters in the intervening introns), and wherein the alternative splicing (AS) events are identified, classified by type and listed beneath the transcript representation (labeled by roman numerals); in (B) a LISA-generated summary of RNA source specific detection of SHMT1 exon-exon junctions is shown, wherein the exon-exon junction analysis was performed for each of 2 ovarian cancer tissue pools and 2 normal tissue pools, whereas columns represent the data for each exon-exon junction defined in (A), and each row represents a different RNA source, junctions are classified as detected (green), not detected (red) or, when data is ambiguous, not determined (white), and data from all RNA sources were subjected to unsupervised clustering and displayed with a dendrogram (left) representing the similarities between the RNA sources used; in (C) RNA source-based display of AS events is exemplified, wherein the data generated in (B) was further analyzed to assess the state of each detected AS event, AS events defined in (A), (columns), are classified as yielding a long form, a short form or both for each RNA source (rows), such as the presence (green) or absence (red) of the long form is indicated in the left semicircle for each event in each RNA source, likewise for the short form's state is indicated in the right semicircle, and wherein the data from each RNA source is clustered and presented with its corresponding dendrogram (left) to emphasize RNA source similarities;



FIG. 3 illustrates four-phase pipeline for the identification of serous ovarian cancer associated alternative splicing (AS) events, wherein the discovery screen was conducted using 2 pools of RNA extracted from 4 different normal tissues and 2 pools of RNA extracted from 4 different epithelial ovarian cancer (EOC) tissues, a total of 600 ovarian associated genes were analyzed using a comprehensive set of PCR primers that span all possible splicing events, and the AS events showing different profiles in normal and tumour tissue pools were selected for the validation screen, and for this screen, 104 putative cancer-associated AS events, derived from 98 genes were analyzed in 25 normal and 21 tumour samples;



FIG. 4 illustrates a distribution of the different types of alternative splicing (AS) events in ovarian cancer associated genes, wherein in (A) the distribution of the predicted and LISA validated AS events in 182 ovarian cancer-specific genes is shown, wherein AS events are categorized into seven types: alternative 3′ or 5′ or both (Alt. 3′, Alt. 5′, Alt. 3′ & 5′), single or multiple cassette exon (Cass., Mult. cass.), cassette exon and alternative 3′ or 5′ (Cass. & alt 3′ or 5′), and mutually exclusive exons (Mut. Excl.), and wherein bar height represents total number of AceView predicted AS events of each type, and these events were either validated (black) in at least one pool sample, or not validated (grey) in any of the four ovarian tissue pools; in (B) a comparison of the distribution of the detected AS events following the discovery screen, and cancer-associated AS events identified following the validation screen is shown;



FIG. 5 illustrates novel splicing event in ERBB2 mRNA identified by the LISA, wherein two AceView rendered transcripts of ERBB2 are shown schematically (top), exon sizes (black rectangles) are proportional to the square root of their lengths, introns (white rectangles) are not to scale, and further wherein in the detailed representation of the region of interest (bottom), the exons are shown as blue rectangles with numbers indicating their sizes in nucleotides (nt), relative positions of forward (green) and reverse (red) primers are shown, and marker peaks at 15 bp (M15) and 7000 bp (M7000) are also shown;



FIG. 6 illustrates a summary of the serous ovarian cancer associated alternative splicing (AS) events, wherein the clustering of ovarian cancer associated AS variation of 45 genes (columns) analyzed in 50 ovarian tissue samples (rows) is shown, the splicing variations are presented in scaled percent splicing index (ψ) values shown in a gradation of colors representing the number of standard deviations from the mean value (Z score), the tissue hierarchical clustering is shown as a dendrogram (left), the column on left shows clustered positions of normal (green) and serous tumour tissues (red), wherein the columns are ordered according to the difference of the mean ψ values of normal and tumour samples. ψ values are high (tendency towards blue color) in normal tissue for the 24 genes on the left, and high in tumour tissue for the remaining 21 genes;



FIG. 7 illustrates a quantitative PCR for a subset of 11 validated genes in 2 ovarian normal and 2 serous tumour pools, wherein Relative quantitation (RQ), calculated using the ΔΔCt method, relative to Normal Pool 1 which was normalized to a value of 1 is shown.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In accordance with the present invention, there is provided a method to identify alternatively spliced variants enriched in cancer specimens.


The term “cancer” includes but is not limited to, breast cancer, large intestinal cancer, lung cancer, small cell lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cutaneous or intraocular melanoma, uterine sarcoma, ovarian cancer, rectal or colorectal cancer, anal cancer, colon cancer (generally considered the same entity as colorectal and large intestinal cancer), fallopian tube carcinoma, endometrial carcinoma, cervical cancer, vulval cancer, squamous cell carcinoma, vaginal carcinoma, Hodgkin's disease, non-Hodgkin's lymphoma, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue tumor, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney cancer, ureter cancer, renal cell carcinoma, renal pelvic carcinoma, CNS tumor, glioma, astrocytoma, glioblastoma multiforme, primary CNS lymphoma, bone marrow tumor, brain stem nerve gliomas, pituitary adenoma, uveal melanoma (also known as intraocular melanoma), testicular cancer, oral cancer, pharyngeal cancer or a combination thereof. In an embodiment, the cancer is a brain tumor, e.g. glioma. In another embodiment, the cancer expresses the HER-2 or the HER-3 oncoprotein. The term “cancer” also includes pediatric cancers, including pediatric neoplasms, including leukemia, neuroblastoma, retinoblastoma, glioma, rhabdomyoblastoma, sarcoma and other malignancies.


Accordingly, there is provided a method of identifying new markers characteristic of a signature for a cancer.


Alternative splicing of pre-mRNA is a post-transcriptional process that allows the production of distinct mRNAs from a single gene with the potential to expand protein structure and diversity. Alternative splicing can also introduce or remove regulatory elements to affect mRNA translation, localization or stability. More than 70% of human genes may undergo alternative splicing with many genes capable of producing dozens and even hundreds of different isoforms.


In multicellular organisms, alternative splicing is a process that is tightly regulated during development and in different tissues. Inherited and acquired changes in pre-mRNA splicing patterns have been associated with several human diseases including cancer (Venables, 2006, Bioessays, 28: 378-386). Some of these changes can arise from mutations at either the splice sites or within proximal splicing enhancer or silencer elements (Pagani & Baralle, 2004, Nat Rev Genet, 5: 389-396). In other cases, variations in the expression of trans-acting splicing factors have been observed (Brinkman, 2004, Clin Biochem, 37: 584-594). A direct effect in splice site use resulting in the production of cancer-specific splice isoforms has been observed in a few cases (Karni et al., 2007, Struct Mol Biol, 14: 185-193). Cancer-specific alterations in splice site selection can affect genes controlling cellular proliferation (e.g., FGFR2, p53, MDM2, FHIT and BRCA1), cellular invasion (e.g., CD44, Ron), angiogenesis (e.g, VEGF), apoptosis (e.g, Fas, Bcl-x and caspase-2) and multidrug resistance (e.g., MRP-1).


Following initial computational efforts designed to exploit collections of expressed sequence tag (EST) databases, there has been an increase in high-throughput experimental approaches to identify changes in splicing events under a variety of conditions. Oligonucleotide-based microarray technologies have been introduced to identify global alternative splicing events and to examine changes in the alternative splicing of a large collection of events. These approaches are useful for monitoring the expression of known splice variants. However, they are not designed to discover novel splice sites, nor do they provide information on the combinatorial patterns of exon inclusion/skipping in the same gene. Furthermore, the lack of standardized analysis and normalization can compromise the interpretation of the results.


Arrays made from alternative splice junction probes have been used to detect splicing changes in Hodgkin Lymphoma (Relogio et al., 2005, J Biol Chem, 280: 4779-4784) and breast cancer cell lines and xenografts (Li et al., 2006, Cancer Res, 66: 1990-1999). A related medium-throughput technique has been used to show that alternative splicing analysis can complement the power of gene expression analysis of prostate tumours (Li et al., 2006, Cancer Res, 66: 4079-4088; Zhang et al., 2006, BMC Bioinformatics, 7: 202). So far, 30 different genes have been shown to be alternatively spliced in a cancer-specific manner (Venables, 2004, Cancer Res, 64: 7647-7654). In ovarian tumours specifically, three genes have been reported to be regulated at the level of splicing (He et al., 2007, Oncogene, advance online publication, Feb. 19, 2007; Sigalas et al., 1996, Nat Med 2: 912-917).


Thus, in the present invention, there is disclosed a layered and integrated system for splicing isoform annotation platform (LISA). LISA relies on automated RT-PCR technology that generates tissue-specific annotation of alternative splicing events. The bioinformatics infrastructure supporting the annotation effort helps assess the potential functional impact of individual alternative splicing events and allows adaptable visualization of large sets of validated results.


The LISA is used in a preferred embodiment to identify alternatively spliced variants enriched in cancer specimens. There is reported herein a set of highly significant and biologically relevant splicing differences that make up a strong signature for cancer samples.


The signature of a cancer sample consists in the presence of alternatively spliced variants in the sample, More specifically, the signature is composed of at least one gene, which discriminates between a cancerous tissue and normal tissue with about 90% accuracy. More preferably, the signature is composed of at least 2, 3, 4 or 5 variants, or markers, disclosed for example in Table 1 herein below, more preferably at least 6, 7, 8, 9, or 10, preferably 15, 20, 25, 30, 35, 40, 45, more preferably 48 variants. Thus, the combination of more than one alternative spliced variant can also be used as a signature.


In order to identify such alternatively spliced variants, there is disclosed a method using the layered and integrated system described herein. As a first step, a map of splicing events is generated. A list of genes potentially involved in cancer such as, for example in ovarian or breast cancer, is first obtained by screening databases. Then, the exon structure of each gene is determined. All splice sites are identified, generating the splicing map. The following step consists in designing PCR primers and designing PCR reactions to cover all putative exon-exon junctions identified on the splicing map. Following, the RNA isolated from samples from “normal tissues” (without cancer) and from samples positive for a specific cancer is reverse transcribed in bulk. The DNA obtained from the reverse transcription is then used as template for the PCR reactions conceived previously, also using the PCR primers designed previously. Once PCR amplicons are obtained, the amplicons from normal tissues are compared to those obtained from cancer tissues. Splicing events are thus identified following this comparison. The method described herein allows identification of splicing events which will be part of a cancer signature and will thus allow prognosing or profiling the presence of the target cancer in a patient by identifying the presence of this signature, i.e. the presence of one or more alternative splicing events occurring in cancer samples and not occurring in normal samples.


The LISA uses RT-PCR to provide a systematic and comprehensive coverage of alternative splicing events. As illustrated in FIG. 1A, LISA includes a computational automated framework for high throughput RT-PCR analysis of splicing isoforms. Within the system, a transcript map containing publicly available mRNAs and ESTs for each gene is generated and sets of PCR primers and experiments are designed such that all putative exon-exon junctions and alternative splicing events are covered by at least two distinct PCR reactions. The data are transferred to the LISA database and analyzed to identify amplicons. Transcript information for each selected gene is uploaded into the LISA database from AceView. The system automatically designs PCR primers and PCR reactions to cover all putative exon-exon junctions. RNA is reverse transcribed in bulk, using a mixture of random hexamers and poly (T) oligonucleotides. The experiment design is sent to an automated platform that performs the PCR reactions in 384 well plates and separates and quantifies the resulting amplicons by capillary electrophoresis. Digitized experimental data is merged with the transcript input for analysis. PCR reactions are carried out, for example, using a liquid handling system linked to thermocyclers, and the amplified products are analyzed by, for example and not restricted to, an automated chip-based capillary electrophoresis.


Contrary to current approaches that identify tissue-specific variations in alternative splicing profiles relying heavily on microarray analysis to produce large quantities of data that must further be validated by RT-PCR, a preferred embodiment is directed to a method that directly inspects hundreds of genes by RT-PCR without recourse to cumbersome slab gel methods. LISA effectively fills a gap between large-scale microarray studies and individual gene investigations, providing an alternative to array-based expression profiling.


As disclosed herein below, the LISA was used to provide high quality comprehensive annotation of alternative splicing for 600 genes in 46 different tissues. The analysis required nearly 100 000 RT-PCR reactions that were carried out in less than eight weeks.


One major advantage of LISA is the associated in silico filtering modules that can combine alternative splicing data with queries on sequence or coding information, such as Pfam domains, putative RNA secondary structure, and single nucleotide polymorphisms.


Furthermore, the encompassed method herein further comprises an initial step of verifying the tissue-specific representation of expression data in such databases. Depending on the result of this assessment, the coverage of each gene could be modified accordingly. Poorly represented tissues would benefit from a complete annotation strategy, as employed here, whereas for well represented tissues, the design module could be modified to focus only on EST supported alternative splicing events. This would allow gene analysis to be performed with limited number of PCR reactions, enabling the screening of many more genes or tissue specimens with the same total number of reactions.


In one example of a screen presented here, with only 600 genes, 48 splicing events not previously detected in ovarian cancers were identified.


The majority (>80%) of the identified cancer-specific alternative splicing events are exon cassettes that extended the coding portions of genes. (see Table 1). For example, the short DNMT3B isoform is lacking part of the catalytic DNA methyltransferase domain, including the TRD loop previously shown to be important for cytosine recognition, and is therefore inactive. Another example where alternative splicing affects function concerns the growth factor KITLG. In this case, the skipped exon encodes a metalloprotease cleavage site that determines whether KITLG will be membrane-bound or secreted. The transmembrane form is more active in promoting cell-cell adhesion, cell proliferation and survival by inducing more persistent tyrosine kinase activation than the secreted isoform. The overall preferential enrichment of in-frame alternative cassette exons within functional domains of ovarian cancer-associated genes suggests that alternative splicing of these genes contributes to ovarian tumour biology.









TABLE 1







Properties of ovarian cancer-specific alternative splicing (AS) variants.

















Epithelial ovarian







cancer specific


Gene

ASE1 size,
in frame/in

(CS) or epithelial


symbol
Gene name
type in EOC2
coding region
Function
specific (ES)





AFF3
AF4/FMR2 family,
+75 nt; exon
Coding region in
Transcription
ES



member 3

frame
factor


AGR3
Anterior gradient
−136 nt; exon
Removes ATG
Breast cancer
n.d.


(BCMP11)
homolog 3

Downstream





initiation


APP
Amyloid beta (A4)
−57 nt; exon
Coding region
Transmembrane/
CS



precursor protein

in frame
secreted


AXIN1
Axin 1
−108 nt; exon
Coding region in
G protein
ES





frame
signalling


BMP4
Bone morphogenetic
+209 nt; alt 5′
5′UTR
Bone growth
CS



protein 4


factor


BTC
Betacellulin
−147 nt; exon
Coding region in
EGF family of
CS





frame
growth factors.


C11orf17
C11orf17
+81 nt; exon
Coding region in
PKA-
ES





frame
interacting






protein


CADM1
Cell adhesion molecule 1
+33 nt; exon
Coding region in
Adhesion
CS


(IGSF4)


frame


CCNE1
Cyclin E1
+135 nt; exon
Coding region in
S phase
ES





frame
progression


CHEK2
Checkpoint kinase 2
+62 nt; exon
Out of frame
cell cycle
ES





truncating
checkpoint






regulator


DNMT3B
DNA (cytosine-5-)-
+189 nt;
Coding region in
De novo
CS



methyltransferase 3 beta
(2 exons)
frame
methylation


FANCA
Fanconi anemia,
−129 nt; exon
Coding region in
Genome
ES



complementation group A

frame
stability


FANCL
Fanconi anemia,
+278 nt; (4
Out of frame
Stem cell
ES



complementation group L
exons)
truncating
maintenance





Or alternate





ATG used


FGFR1
Fibroblast growth factor
+267 nt; exon
Coding region in
Mitogenesis
CS



receptor 1

frame
and






differentiation


FGFR2
Fibroblast growth factor
+267 nt; exon
Coding region in
Mitogenesis
ES



receptor 2

frame
and






differentiation


FGFR4
Fibroblast growth factor
+194 nt; alt 3′
Longer form is
Mitogenesis
ES



receptor 4

truncated
and






differentiation


FN1-EDA
Fibronectin
−270 nt; exon
Coding region in
Cell adhesion
ES





frame
and migration


FN1-EDB

−273 nt; exon
Coding region in

ES





frame


FN1-IIICS

−93 nt; intron
Coding region in

ES


intron


frame


FN1-IIICS

−75 alt 3′
Coding region in

ES


upstream


frame


GATA3
GATA binding protein 3
+143 nt; exon
Out of frame
Transcription
ES






factor


GNB3
Guanine nucleotide
+241 nt; intron
Removes ATG
Hypertension
CS



binding protein (G

Downstream



protein), beta

initiation



polypeptide 3


GPR137
G protein-coupled
−376 nt; (2
Out of frame
Unknown
ES


(C11orf4)
receptor 137
exons)
truncating


HMGA1
High mobility group AT-
+33 nt; alt 5′
Coding region in
Transcription
ES



hook 1

frame
factor


HSCB
HscB iron-sulfur cluster
−145 nt; exon
Coding region in
Protein folding
CS


(HSC20)
co-chaperone homolog

frame
chaperone


KITLG
KIT ligand
−84 nt; exon
Coding region in
Tyrosine-
CS





frame
kinase






receptor ligand






Cell migration


LGALS9
Lectin, galactoside-
+96 nt; exon
Coding region in
Modulating
CS



binding, soluble, 9

frame
cell-cell and



(galectin 9)


cell-matrix






interactions


MCL1
Myeloid cell leukemia
+248 nt; exon
Out of frame
Apoptosis
ES



sequence 1 (BCL2-



related)


NRG1
Neuregulin 1
−24 nt; exon
Coding region in
Glycoprotein
CS





frame
Ligand of






ERBB family


NUP98
Nucleoporin 98 kDa
−222 nt; exon
Coding region in
Signal-
CS





frame
mediated






nuclear






transport


PAXIP1
PAX interacting (with
−71 nt; alt 5′
Out of frame
Genome
ES



transcription-activation

truncating
stability,



domain) protein 1


condensation






of chromatin






and mitotic






progression


PLD1
Phospholipase D1,
−114 nt; exon
Coding region in
Regulation of
ES



phosphatidylcholine-

frame
mitosis



specific


POLI
Polymerase (DNA
+106 nt; intron
Out of frame
DNA damage
CS



directed) iota

truncating
checkpoint


POLM
Polymerase (DNA
+270 nt; (2
Coding region in
DNA repair
ES



directed), mu
exons)
frame


PSAP
Prosaposin
−9 nt; exon
Coding region in
Secreted
n.d.





frame
glycoprotein






precursor


PTK2
Protein tyrosine kinase 2
+9 nt; exon
Coding region in
Focal
CS





frame
adhesion






tyrosine






kinase


PTPN13
Protein tyrosine
+57 nt; exon
Coding region in
Signalling,
ES



phosphatase, non-

frame
apoptosis



receptor type 13 (APO-



1/CD95 (Fas)-



associated



phosphatase)


RAD52
RAD52 homolog (S. cerevisiae)
+151 nt; exon
Inclusion causes
DNA double-
ES





reading frame
strand break





truncation
repair and






homologous






recombination


SHMT1
Serine
+117 nt; exon
Coding region in
Purine
ES



hydroxymethyltransferase 1

frame
synthesis


SLIT2
Slit homolog 2
−12 nt; exon
Coding region in
Migration and
CS



(Drosophila)

frame
metastasis


SRP19
Signal recognition
+112 nt; exon
Out of frame
Protein
CS



particle 19 kDa

truncating
transport to






ER


STIM1
Stromal interaction
−93 nt; exon
Coding region in
Transmembrane
ES



molecule 1

frame
protein


SYK
Spleen tyrosine kinase
−69 nt; exon
Coding region in
Lamellipodia
ES





frame
formation


SYNE2
Synaptic nuclear
−69 nt; exon
Coding region in
Nuclear
CS



envelope protein 2

frame
anchorage to






cytoskeleton


TOPBP1
Topoisomerase (DNA) II
+15 nt; alt 3′
Coding region in
Genomic
ES



binding protein 1

frame
stability


TSSC4
Tumor suppressing
−192 nt; intron
Coding region in
Tumor
CS



subtransferable

frame
supressor



candidate 4


TUBA4A
Tubulin, alpha 1a
+223 nt; exon
Out of frame
Cytoskeleton
ES


(TUBA1)


truncating


UTRN
Utrophin
−39 nt; exon
Coding region in
Dystrophin,
CS





frame
neuromuscular






junction






1ASE: alternative splicing event;




2EOC: epithelial ovarian cancer.







The present invention will be more readily understood by referring to the following examples which are given to illustrate the invention rather than to limit its scope.


Example 1
Mapping Splicing Events by Comprehensive RT-PCR Coverage

The gene list was obtained by a keyword search for “ovarian cancer” in NCBI Gene database. The search was performed in January 2006, and was limited to human genes with “known” RefSeq status (Nucleic Acids Res 2005 Jan. 1; 33(1): D501-D504). The 233 genes generated from this search were cross referenced with the AceView database and 182 genes showing evidence of alternative splicing were selected for this study. The exon structure of each gene was determined using AceView as a source for cDNAs and multi-exon ESTs (Thierry-Mieg & Thierry-Mieg, 2006, Genome Biol, 7 Suppl 1, S12, 1-14). The LISA automatically identifies all splice sites and generates a splicing map, as shown for the neogenin homolog 1 (NEO1) gene in FIG. 1B. Concurrently, the LISA applies a modified PRIMER3-based (Rozen & Skaletsky, 2000, Methods Mol Biol, 132: 365-386) algorithm for the automated design of PCR primers. Each gene's AceView transcript set was mapped into the LISA database and the LISA design module was used to generate a PCR experiment set. This module is a perl script which reads input sequences from the database and automatically designs PCR primers to characterize the exon structure of the gene. The overall strategy allowed designing primers for all exons in the transcript set, such that PCR experiments flanking all possible exon-exon junctions could be designed. In practice, a forward and reverse primer was designed for all internal exons, and single primers were designed for terminal exons. Primers were designed using a Primer-3 based algorithm (Rozen & Skaletsky, 2000, Methods Mol Biol, 132: 365-386) and synthesized in 96-well plates on a 25 nmole scale (IDT, Coralville, Iowa). PCR reactions were formulated to cover all constitutive splicing events with a single reaction and alternative splicing events were covered by at least 2 independent reactions. In addition, the design was such that predicted amplicon sizes fell within the 100-700 base pair range, where possible, to facilitate the data analysis. An average of 37 primers and 54 reactions were designed per gene (see Table 2).










TABLE 2







List of primer pairs for each identified gene and listed



in the sequence listing.














SEQ

SEQ



Gene

ID

ID


name
forward sequence
NO:
reverse sequence
NO:















AFF3
CATGGACAGCTTCGACTTAGC
2
TACAGATAGACGAGGGCTGGTT
1






AFF3
CATGGACAGCTTCGACTTAGC
2
GTGCCATCATCCTGTTGAGTT
3





AFF3
ACTTAGCCCTGCTCCAGGAAT
4
AGAATTAAACGTGCCATCATCC
5





AFF3
CAGGAATGGGACCTCGAGTC
6
GGCTCACTGAAGAGAGAGTAACTAGAA
7





AFF3
AGCTTCGACTTAGCCCTGCT
8
CCATCATCCTGTTGAGTTTCTTGA
9





AFF3
ATGGGACCTCGAGTCACTGT
10
CTTGTAGGGCTCACTGAAGAGAG
3062





AFF3
TCCCACCATGGACAGCTTCG
11
TTAAACGTGCCATCATCCTGTTGA
3063





AFF3
CTGCTCCAGGAATGGGACCT
12
GAGTAACTAGAATTAAACGTGCCATCA
3064





AFF3
GCGGCGACGCTGACACCT
13
CTTTCTCGTTCTTTCCTCCGTAATGC
3065





AFF3
CTGATCACCTGCCTTTCCAG
14
TGCATTTCTATCTGGTTCATAGACA
3066





AFF3
GTTTGAAGTCGACACCCAGAG
15
CCTCCGTAATGCATTTCTATCTG
16





AFF3
CCAGTTTGTCCCCCTTCC
17
TTCTTTCCTCCGTAATGCATTTCT
18





AFF3
GCCTTTCCAGACCGGAGAC
19
GAGAGTTCATCCCCCTTGTTAG
20





AFF3
AGAGGCCAGTTTGTCCCCCT
21
TCCGGTTGGAGAGTTCATCC
22





AFF3
AGTCGACACCCAGAGGCCAG
23
CATCATAATTGCCTAAAGTGTTCTGG
24





AFF3
AGACGGGCGGCAAGTTTGAA
25
GCCTAAAGTGTTCTGGATCCGG
26





AFF3
CGGCAAGTTTGAAGTCGACACCC
27
AAAGTGTTCTGGATCCGGTTGGAG
28





AFF3
CACCTGCCTTTCCAGACCGG
29
TCTGGATCCGGTTGGAGAGTTCA
30





APC
TCCTACAGCTACAGAGATTCAAGATG
31
TCTCTCAGTCGAGCAAGTTCC
32





APC
TGTTCAGCAGTTGGACTTAACG
33
TTGTGGCTTGGTTTCTCTGG
34





APC
CAAGATGTATGTTCAGCAGTTGG
35
CGACGTTTCTTTCGTTTCTCC
36





APC
GCAGTTGGACTTAACGTATTTCTTG
37
AAGTTCCTGCCGACGTTTCT
38





APC
GCTGTTGAAAATCCTACAGCTACAG
39
CTTCTTGGGAAACGTCATCTTC
40





APC
AAGACCATCGCAGAGGGAAG
41
GTCATCTTCTCAAGTGCAGCC
42





APC
AGGCGAATCCCCATAAGTAAG
43
TCTCAAGTGCAGCCATCTTG
44





APC
AATAAGAAGACCATCGCAGAGG
45
TTCGTTTCTCCTTCTTCAGGG
46





APC
CAGAGGGAAGGCGAATCC
47
CTGGAAATGTCATCTTCTTGGG
48





APC
TTTAAATAATAAGAAGACCATCGCAG
49
CCTGACCCCTCAGACATTCTTA
50





APC
AGGGAAGGCGAATCCCCATA
51
TGAGAGTCCTGAGTCTCTCAGTCG
52





APC
CATCGCAGAGGGAAGGCGAA
53
TCCTGCCGACGTTTCTTTCGTT
54





APC
AGAGGGAAGGCGAATCCCCATAAGTAA
55
TCGAGCAAGTTCCTGCCGAC
56





APP
GCAACCGGAACAACTTTGAC
57
GGGCATGTTCATTCTCATCC
58





APP
ATGTGACTGAAGGGAAGTGTGC
59
CGAGATACTTGTCAACGGCA
60





APP
TGACACAGAAGAGTACTGCATGG
61
TTCTGGAAATGGGCATGTTC
62





APP
GTGTGCCCCATTCTTTTACG
63
GCCTCTCTTTGGCTTTCTGG
64





APP
ACTTTGATGTGACTGAAGGGAAG
65
ATTCTCTCTCGGTGCTTGGC
66





APP
CGGAACAACTTTGACACAGAAG
67
TTGGCCTCAAGCCTCTCTTT
68





APP
TTCTTTTACGGCGGATGTGG
69
TTTGGCTTTCTGGAAATGGG
70





APP
AAGGGAAGTGTGCCCCATTC
71
ATACTTGTCAACGGCATCAGGG
72





APP
ACAACTTTGACACAGAAGAGTACTGC
73
GGAAATGGGCATGTTCATTCTC
74





APP
AGTACTGCATGGCCGTGTGT
75
CCTCAAGCCTCTTTGGCTTT
76





APP
CCCCATTCTTTTACGGCGGA
77
TCTCGGTGCTTGGCCTCAAG
78





APP
ATGTGGCGGCAACCGGAAC
79
GCATGTTCATTCTCATCCCCAGGT
80





APP
GAAGGGAAGTGTGCCCCATTCTTTTAC
81
TCTCGAGATACTTGTCAACGGCATCAG
82





APP
ATGGCCGTGTGTGGCAGC
83
CTGGGACATTCTCTCTCGGTG
84





APP
AGGTGTGCTCTGAACAAGCC
85
GGTACTGGCTGCTGTTGTAGG
86





APP
CGCTGGTACTTTGATGTGACTG
87
ATCCCCAGGTGTCTCGAGAT
88





APP
TGCCGAGCAATGATCTCC
89
GCATCAGGGGTACTGGCTG
90





APP
CTCTGAACAAGCCGAGACG
91
TTCTCATCCCCAGGTGTCTC
92





APP
AATGATCTCCCGCTGGTACTT
93
TCAACGGCATCAGGGGTACT
94





APP
CGAGCAATGATCTCCCGCTG
95
ATCAGGGGTACTGGCTGCTGTTG
96





APP
GGCCGTGCCGAGCAATGAT
97
ATTCTCATCCCCAGGTGTCTCGAGATA
98





APP
ATCTCCCGCTGGTACTTTGATGT
99
TCTGCCTCTTCCCATTCTCTC
100





APP
ACAAGCCGAGACGGGGCC
101
TGGCTGCTTCCTGTTCCAAA
102





APP
TGTGGAAGAGGTGGTTCGAG
103
GTTCTTTGCTTGACGTTCTGC
104





APP
AGAGTCTGTGGAAGAGGTGGTTC
105
GGCAAGTTCTTTGCTTGACG
106





APP
CAGAGAGAACCACCAGCATTG
107
CAGGTTTAGGCAAGTTCTTTGC
108





APP
CACCAGCATTGCCACCAC
109
TGCCTTCTTATCAGCTTTAGGC
110





APP
AAGAAGCCACAGAGAGAACCAC
111
TTCTTATCAGCTTTAGGCAAGTTCTT
112





FN1
AATCCAAGCGGAGAGAGTCA
113
AACATTGGGTGGTGTCCACT
114





FN1
TGACTATTGAAGGCTTGCAGC
115
ACTTCAGGTCAGTTGGTGCAG
116





FN1
GTGGAGTATGTGGTTAGTGTCTATGC
117
CTTGTGGGTGTGACCTGAGTG
118





FN1
AGAGTCAGCCTCTGGTTCAGAC
119
TCCAGTGAGCTGAACATTGG
120





FN1
CTCAGAATCCAAGCGGAGAG
121
AGCTGAACATTGGGTGGTGT
122





FN1
CAGAAATGACTATTGAAGGCTTGC
123
AGGTCAGTTGGTGCAGGAATAG
124





FN1
CTGGTTCAGACTGCAGTAACCA
125
GTCACCCGCACTCGATATCC
126





FN1
AGCCCACAGTGGAGTATGTGG
127
TGTGACCTGAGTGAACTTCAGG
128





FN1
ATGTGGTTAGTGTCTATGCTCAGAATC
129
CTCAGGCTTGTGGGTGTGAC
130





FN1
AGCGGAGAGAGTCAGCCTCT
131
TCGATATCCAGTGAGCTGAACA
132





FN1
GAAGGCTTGCAGCCCACAGT
133
CTGAGTGAACTTCAGGTCAGTTGG
134





FN1
TGTCTATGCTCAGAATCCAAGCG
135
GTGTCCACTGGGCGCTCA
136





FN1
TCAGCCTCTGGTTCAGACTGCAGTA
137
GATATCCAGTGAGCTGAACATTGGGTG
138





FN1
GCCCACAGTGGAGTATGTGGTTAGTGT
139
TTGTGGGTGTGACCTGAGTGAACTTCA
140





FN1
CTATGCTCAGAATCCAAGCGGAGAGAG
141
GGGTGGTGTCCACTGGGCG
142





FN1
GCTTGCAGCCCACAGTGGAGTA
143
GGGCGCTCAGGCTTGTGG
144





FN1
GGATGACAAGGAAAGTGTCCC
145
GAGGTGTGCTCTCATGTTGTTC
146





FN1
GGATGACAAGGAAAGTGTCCC
145
GTTGGTTAAATCAATGGATGGG
147





FN1
GCCTGGAGTACAATGTCAGTGTT
148
TGGTGTCTGGACCAATGTTG
149





FN1
TGCACTTTTGATAACCTGAGTCC
150
AGGTCAGTGGGAGGAGGAAC
151





FN1
GGAAAGTGTCCCTATCTCTGATACC
152
CAGGAAGTTGGTTAAATCAATGG
153





FN1
CACTGTCAAGGATGACAAGGAA
154
GTGGAGCCCAGGTGACAC
155





FN1
ATCTCTGATACCATCATCCCAG
156
GTGAGTAACGCACCAGGAAGTT
157





FN1
AGTGTTTACACTGTCAAGGATGACA
158
AGGTGACACGCATGGTGTCT
159





FN1
ATAACCTGAGTCCCGGCCT
160
CAATGTTGGTGAATCGCAGG
161





FN1
TGACAAGGAAAGTGTCCCTATCTC
162
CGCACCAGGAAGTTGGTTAA
163





FN1
TTGGAAGAAGTGGTCCATGC
164
AATCGCAGGTCAGTGGGAG
165





FN1
TGTCCCTATCTCTGATACCATCATCC
166
CACAGGTGAGTAACGCACCA
167





FN1
TGATCAGAGCTCCTGCACTTT
168
TTGGTGAATCGCAGGTCAGT
169





FN1
CTGTCAAGGATGACAAGGAAAGTGTCC
170
AATCAATGGATGGGGGTGGAG
171





FN1
AGCTCCTGCACTTTTGATAACC
172
TGGACCAATGTTGGTGAATC
173





FN1
TCCATGCTGATCAGAGCTCC
174
ACACGCATGGTGTCTGGACC
175





FN1
GAAGAAGTGGTCCATGCTGATCA
176
AGCCCAGGTGACACGCATG
177





FN1
CAAACGGCCAGCAGGGAAAT
178
ATGGTGTCTGGACCAATGTTGGTGAAT
179





FN1
ATTCTTTGGAAGAAGTGGTCCATGCTG
180
GATGGGGGTGGAGCCCAGGT
181





FN1
CCATAAGGCATAGGCCAAGA
182
TCAGTGCCTCCACTATGACG
183





FN1
CTCTCAGACAACCATCTCATGG
184
TCAGTGCCTCCACTATGACG
183





FN1
TCATCCTGTTGGCACTGATG
185
AACAACCTCTTCCCGAACCT
186





FN1
GGCACTGATGAAGAACCCTTAC
187
GAACCTTATGCCTCTGCTGG
188





FN1
TCATTTCATGTCATCCTGTTGG
189
TGCTGGTCTTTCAGTGCCTC
190





FN1
CCCATTCCAGGACACTTCTG
191
TCCACTATGACGTTGTAGGTGG
192





FN1
CAAGAAGCTCTCTCTCAGACAACC
193
TTGCCCACGGTAACAACCTC
194





FN1
CCTGTTGGCACTGATGAAGAAC
195
CTTATGCCTCTGCTGGTCTTTC
196





FN1
GGACACTTCTGAGTACATCATTTCA
197
TCTTCCCGAACCTTATGCCT
198





FN1
CTGAGTACATCATTTCATGTCATCC
199
GGTCTTTCAGTGCCTCCACTAT
200





FN1
CATTCCAGGACACTTCTGAGTACA
201
CACGGTAACAACCTCTTCCC
202





FN1
AAGCTCTCTCTCAGACAACCATCTCAT
203
CAGAGTTGCCCACGGTAACA
204





FN1
TTCATGTCATCCTGTTGGCACTGA
205
TAACAACCTCTTCCCGAACCTTATGCC
206





FN1
ATCTCATGGGCCCCATTC
207
AGTGCCTCCACTATGACGTTGTAG
208





FN1
ACAACCATCTCATGGGCCCC
209
TGGCACCTCTGGTGAGGC
210





FN1
ATGGGCCCCATTCCAGGAC
211
ATGACGTTGTAGGTGGCACCTC
212





FN1
CCATAAGGCATAGGCCAAGA
182
TGGCACTGGTAGAAGTTCCAG
214





FN1
GAGGAACATGGTTTTAGGCG
215
TGTCAGAGTGGCACTGGTAGAA
216





FN1
CAAATGATCTTTGAGGAACATGG
217
CTGGTGAGGCCTGTCAGAGT
218





FN1
ATAGGCCAAGACCATACCCG
219
GTAGGTGGCACCTCTGGTGA
220





FN1
ACCATACCCGCCGAATGTAG
221
AGGCCTGTCAGAGTGGCAC
222





FN1
GATCTTTGAGGAACATGGTTTTAGG
223
CACCTCTGGTGAGGCCTGTC
224





FN1
ACCACACCGCCCACAACG
225
AGAGTTGCCCACGGTAACAACCTCTTC
226





FN1
TAAGGCATAGGCCAAGACCATAC
227
TAGGTTGGTTCAAGCCTTCG
228





FN1
CACCCCCATAAGGCATAGG
229
TCATCCGTAGGTTGGTTCAAG
230





FN1
AACGGCCACCCCCATAAG
231
AAGCACGAGTCATCCGTAGG
232





FN1
CCAAGACCATACCCGCCGAA
233
CACGAGTCATCCGTAGGTTGGTT
234





FN1
TTTAGGCGGACCACACCG
235
GGGTCAAAGCACGAGTCATC
236





FN1
ACATGGTTTTAGGCGGACCA
237
AACTGTGTAGGGGTCAAAGCAC
238





FN1
ACCGCCCACAACGGCCAC
239
GTCAAAGCACGAGTCATCCGTAGGTTG
240





FN1
GGGCAACAAATGATCTTTGAGG
241
GTGTAGGGGTCAAAGCACGAGTCA
242





FN1
GGACTCAATCCAAATGCCTC
243
GTTCCCACTCATCTCCAACG
244





FN1
ATGCCTCTACAGGACAAGAAGC
245
TTCAGACATTCGTTCCCACTC
246





FN1
AGACTATCACCTGTACCCACACG
247
CATCTCCAACGGCATAATGG
248





FN1
ACAGGACAAGAAGCTCTCTCTCAG
249
CTGGCACAACAGTTTAAAGCC
250





FN1
CCAGGGAAGATGTAGACTATCACC
251
CGGCATAATGGGAAACTGTG
252





FN1
CAATCCAAATGCCTCTACAGG
253
ACATTCGTTCCCACTCATCTCC
254





FN1
GAAATCCAAATTGGTCACATCC
255
AATGGGAAACTGTGTAGGGGTC
256





FN1
GTCCGGGACTCAATCCAAAT
257
CCTAAGCACTGGCACAACAGT
258





FN1
ACACGGTCCGGGACTCAATC
259
CTCCAACGGCATAATGGGAAACT
260





FN1
ACCTGTACCCACACGGTCCG
261
CCCACTCATCTCCAACGGCATAA
262





FN1
AAGATGTAGACTATCACCTGTACCCAC
263
GCCTGATTCAGACATTCGTTC
264





FN1
TGGTCACATCCCCAGGGAAGAT
265
CAACGGCATAATGGGAAACTGTGTAGG
266





FN1
TACCCACACGGTCCGGGACT
267
CTAAGCACTGGCACAACAGTTTAAAGC
268





FN1
ACATCCCCAGGGAAGATGTAGAC
269
TTTAAAGCCTGATTCAGACATTCG
270





FN1
AGGTGAGGAAATCCAAATTGG
271
TTCCAAAGCCTAAGCACTGG
272





FN1
GCCGAATGTAGGTGAGGAAA
273
GACCACTTCCAAAGCCTAAGC
274





FN1
CCGAATGTAGGTGAGGAAATCCAAAT
275
CCAAAGCCTAAGCACTGGCACAAC
276





FN1
AATAATCAGAAGAGCGAGCCC
277
ACTGGGTTGCTGACCAGAAG
278





FN1
CCCCTGATTGGAAGGAAAA
279
CTCAAAGATCATTTGTTGCCC
280





FN1
AGAAGAGCGAGCCCCTGATT
281
TCCGCCTAAAACCATGTTCC
282





FN1
CCTGATTGGAAGGAAAAAGACAG
283
GGTATGGTCTTGGCCTATGC
284





FN1
AGCGAGCCCCTGATTGGAAG
285
ATTTGTTGCCCAACACTGGG
286





FN1
ATAATCAGAAGAGCGAGCCCCTGATTG
287
CGTTGTGGGCGGTGTGGTC
288





FN1
CAATTTATGTCATTGCCCTGAAG
289
GGAAGCTGAATACCATTTCCAG
290





FN1
CCGGGAACCGAATATACAATT
291
ACCATTTCCAGTGTCATACCCA
292





FN1
GCCCTGAAGAATAATCAGAAGAGC
293
TGACCAGAAGTGCCAGGAAG
294





FN1
TGTCATTGCCCTGAAGAATAATC
295
GAAGTGCCAGGAAGCTGAATAC
296





FN1
TGGAACCGGGAACCGAATAT
297
CTTGGCCTATGCCTTATGGG
298





FN1
AACCGAATATACAATTTATGTCATTGC
299
CCATGTTCCTCAAAGATCATTTG
300





FN1
CCTGGAACCGGGAACCGAATATACAAT
301
GGTATGGTCTTGGCCTATGCCTTATGG
302





FN1
CATCAAGTATGAGAAGCCTGGG
303
AGGGTGGGTGACGAAAGG
304





FN1
CAGGATTACCGGCTACATCATC
305
GTGACGAAAGGGGTCTTTTG
306





FN1
CCTGGTGTCACAGAGGCTACTAT
307
CTACATTCGGCGGGTATGGT
308





FN1
CACACCCAATTCCTTGCTG
309
GCTGAATACCATTTCCAGTGTCAT
310





FN1
TTCCTTGCTGGTATCATGGC
311
CCAACACTGGGTTGCTGAC
312





FN1
TCTCCTCCCAGAGAAGTGGTC
313
GCCTAAAACCATGTTCCTCAAAG
314





FN1
CCGGCTACATCATCAAGTATGAG
315
CAGTGTCATACCCAGGGTGG
316





FN1
TATGAGAAGCCTGGGTCTCCT
317
GGTGTGGTCCGCCTAAAAC
318





FN1
CCCAATTCCTTGCTGGTATC
319
GTTGCTGACCAGAAGTGCCA
320





FN1
CCACGTGCCAGGATTACC
321
AAGATCATTTGTTGCCCAACACT
322





FN1
GCTACATCATCAAGTATGAGAAGCCTG
323
TCATACCCAGGGTGGGTGAC
324





FN1
CAGAGAAGTGGTCCCTCGG
325
CTATGCCTTATGGGGGTGG
326





FN1
AAGCCTGGGTCTCCTCCCAG
327
GTGTGGTCCGCCTAAAACCATGTT
328





FN1
TGCACCATCCAACCTGCGTT
329
AGTGCCAGGAAGCTGAATACCATTTCC
330





FN1
GCGTTTCCTGGCCACCACAC
331
ATACCCAGGGTGGGTGACGAAAGG
332





FN1
CCTGGGTCTCCTCCCAGAGAAGT
333
TTATGGGGGTGGCCGTTGTG
334





FN1
CCCGCCCTGGTGTCACAGAG
335
TTCGGCGGGTATGGTCTTGG
336





FN1
CTGGTATCATGGCAGCCG
337
TTTCCTCACCTACATTCGGC
338





AXIN1
CATGCAGTGGATCATTGAGG
339
ACCTTCCTCTGCGATCTTGTC
340





AXIN1
CTCCCACCTCTTCATCCAAG
341
ACCTTCCTCTGCGATCTTGTC
340





AXIN1
TCCAGACCCTTGTCCCTTGA
342
CAGAAGTAGTACGCCACAACGA
343





AXIN1
CCATGAGAACTCCAGACCCTT
344
CCACAACGATGCTGTCACAC
345





AXIN1
TTCATCCAAGACCCCACCAT
346
TCAGCAGCTCCTTGAACTGG
347





AXIN1
ACGTCTGGAGGAGGAAGAAA
348
TAGCTGCCCTTTTTGGTCAG
349





AXIN1
GGACGAGGAAGCCACAGC
350
AGTACGCCACAACGATGCTG
351





AXIN1
ACCTCTTCATCCAAGACCCC
352
TTTGGTCAGCAGCTCCTTGA
353





AXIN1
CAGCCCTCCCACCTCTTCAT
354
CCGCCCACCTTCCTCTGC
355





AXIN1
AGCTCCCAACCCCCTAACC
356
GATGCTGTCACACGGCTG
357





AXIN1
CGAGCACCCTCCAAGCAGAG
358
TCCTTGAACTGGCCCAGGGT
359





AXIN1
AAAGAGAGCCAGCCGAGCAC
360
CCTCACCAGGGTGCGGTAG
361





AXIN1
ACCCTTGTCCCTTGAGCACC
362
CACACGGCTGGGCACTCC
363





AXIN1
ACCTCCGTGCAGCCCTCC
364
GAAGTAGTACGCCACAACGATGCTGTC
365





AXIN1
TAACCCAGCTGGAGGAGGC
366
AGGGTGCGGTAGGGGATG
367





AXIN1
TGAGAACTCCAGACCCTTGTCCCT
368
ACTCCCGCCGCCCACCTT
369





AXIN1
AAGACCCCACCATGCCAC
370
CCCTTTTTGGTCAGCAGGTC
371





AXIN1
AGCCACAGCCCCATGAGAAC
372
ATGGGTTCCCCGCAGAAGTA
373





AXIN1
TTCGGGGACGAGGAAGCCAC
374
GCTGTCACACGGCTGGGCAC
375





AXIN1
CGCCGACGTCTGGAGGAG
376
GAACTGGCCCAGGGTGACAG
377





AXIN1
ACCATGCCACCCCACCCAG
378
CTTTTTGGTCAGCAGCTCCTTGAACTG
379





AXIN1
CTCAGCTCCGGACCTCCGTG
380
GTAGGGGATGGGTTCCCCGC
381





AXIN1
GGAAGAAAAGAGAGCCAGCCGAGC
382
CGGCCCCTCACCAGGGTG
383





AXIN1
CAACCCCCTAACCCAGCT
384
ACAGTCAAACTCGTCGCTCAC
385





AXIN1
CCCACCCAGCTCCCAACC
386
GTCAAACTCGTCGCTCACTTTCTT
387





AXIN1
CCAGCCGAGCACCCTCCAAG
388
GACGGCCTCGTCCTCTCGAA
389





AXIN1
CCCCCTAACCCAGCTGGAGG
390
AACTCGTCGCTCACTTTCTTGAAGTAG
391





AXIN1
CTTGAGCACCCCTGGGCC
392
CCACCCCACAGTCAAACTCG
393





BCMP11
AAGAGCACTGGCCAAGTCAG
394
CCTCCAGGTGATGAATAACCA
395





BCMP11
AGAAACATCCAGAATACATTTCCAAC
396
TTTTGAGCATAAAAGAGACCTTCTTC
397





BCMP11
TTTCCAACAAGAGCACTGGC
398
TTGACAATCCTCCAGGTGATG
399





BCMP11
TCCAACAAGAGCACTGGCCAAGTC
400
TGACAATCCTCCAGGTGATGAATAACC
401





BCMP11
AATACATTTCCAACAAGAGCACTGGCC
402
CTCCAGGTGATGAATAACCATTAATGG
403





BMP4
CGAGAAGGCAGAGGAGGAG
404
CAAACTTGCTGGAAAGGCTC
405





BMP4
GAAAGAGGAGGAAGGAAGATGC
406
GCCAATCTTGAACAAACTTGC
407





BMP4
AAGAAAGAAAGCGAGGGAGG
408
GAAAGGCTCAGGGAAGCTG
409





BMP4
GAAGGAAGATGCGAGAAGGC
410
CAGTCCATGATTCTTGACAGCC
411





BMP4
AAGATGCGAGAAGGCAGAGG
412
ACAAGGCATATAATAACAGTCCATGA
413





BMP4
AAAGCGAGGGAGGGAAAGAG
414
TTGACAGCCAATCTTGAACAAA
415





BMP4
GAGGAGGAAGGAAGATGCGAGAAG
416
TTGCTGGAAAGGCTCAGGGAA
417





BMP4
AGCCCGGCCCGGAAGCTAG
418
ATGGCTCGCGCCTCCTAGC
419





BMP4
GGAAGGAGCGCGGAGCCC
420
CTAGCATGGCTCGCGCCTCC
421





BTC
ACCACCACACAATCAAAGCG
422
TTACGACGTTTCCGAAGAGG
423





BTC
CCCAAGCAATACAAGCATTACTG
424
CCCAGAGTTTCCATTTCTTCTTC
425





BTC
ACTGCATCAAAGGGAGATGC
426
GGAGTTATATCTTTACCCAGAGTTTCC
427





BTC
ACAAGCATTACTGCATCAAAGG
428
TCTTTACCCAGAGTTTCCATTTCT
429





BTC
AAAGCGGAAAGGCCACTTCT
430
TGTCTCTTCAATATCTTCATTGATAGG
431





BTC
CAAAGGGAGATGCCGCTT
432
CATTGATAGGAGTTATATCTTTACCCA
433





BTC
GCCACTTCTCTAGGTGCCCCAAG
434
TCTTCTTTCTTTTACGACGTTTCCGA
435





BTC
AGCAGACGCCCTCCTGTGT
436
TTCCTGAGACACATTCTGTCCA
437





BTC
GATGCCGCTTCGTGGTGG
438
CAAATGAGCAAGGCACTTTGC
439





BTC
AAGCAATACAAGCATTACTGCATCAAA
440
CACCAACCTGGAGGTAACTTCA
441





BTC
TTCGTGGTGGCCGAGCAGAC
442
GGCACTTTGCAGCTTGCCAC
443





BTC
AAGCATTACTGCATCAAAGGGAGATGC
444
TTGCAGCTTGCCACCAACCT
445





BTC
AGGGAGATGCCGCTTCGTGG
446
GAGCAAGGCACTTTGCAGCTTG
447





BTC
ACAATCAAAGCGGAAAGGCCACTT
448
GCTTGCCACCAACCTGGAGG
449





BTC
AAAGCGGAAAGGCCACTTCTCTAGGTG
450
GTCCATTTTCAAATGAGCAAGGCACT
451





BTC
AGACCCTGAGGAAAACTGTGC
452
CCTGGAGGTAACTTCATAGCCT
453





BTC
TCCTCTGTGGAGACCCTGAG
454
AGCTGTTTTCCTGAGACACATTC
455





BTC
TGTGGAGACCCTGAGGAAAA
456
GTCTACTAGCTGTTTTCCTGAGACAC
457





C11
AGCCATGGACAACTGTTTGG
458
CATGCTCTGATATTTGATAGCTGC
459





C11
AGCCATGGACAACTGTTTGG
458
GACTCGCCTCTGTGATAACGAT
461





C11
TCTAGAAGTGCTGGAGAGGGC
462
AACGATAGACATGGGTTGCC
463





C11
CAAGGCTGGCTCTAGAAGTGC
464
GACCATTCCCTATGTCCAAGC
465





C11
CCCACCTAGAGAAACAGCCG
466
ATGTCCAAGCACATGTGCAG
467





C11
GTTCAGCAAGGCTGGCTCTA
468
CTTCCTCTGGCACAGATGAAT
469





C11
CCTGCAGCGTTCAGCAAG
470
TCCCTATGTCCAAGCACATG
471





C11
CTGGAGAGGGCCAAGAGGAG
472
ACATGTGCAGCTTCGACTCG
473





C11
TGAATGGGGTGGACCGAC
474
CTCTGTGATAACGATAGACATGGG
475





C11
ACCGACGTTCCCTGCAGC
476
GTTGCCCCTCCTTCCTCTG
477





C11
AAGAGGAGGGCGGTGGACTG
478
CAAGCACATGTGCAGCTTCG
479





C11
GTCCCAAAGGCTGCATGG
480
TAGACATGGGTTGCCCCTCC
481





C11
ACGTTCCCTGCAGCGTTCAG
482
CCCTCCTTCCTCTGGCACA
483





C11
GACTGGCATGCCCTGGAG
484
TCCTCTGGCACAGATGAATAATATTT
485





C11
ATGCCCTGGAGCGTCCCAAAG
486
ACCATTCCCTATGTCCAAGCACATGTG
487





C11
GCAGCGTTCAGCAAGGCTGG
488
GATAACGATAGACATGGGTTGCCCCTC
489





C11
CTAGAGAAACAGCCGGCAGC
490
CATGCTCTGATATTTGATAGCTGC
459





C11
GGAGCGTCCCAAAGGCTGC
492
TGCCTCCAGGACCAAGGGAT
493





C11
AGGCGCCCCACCTAGAGAAA
494
CCAGGACCAAGGGATGTCTTT
495





C11
AGGGCGGTGGACTGGCATG
496
TGGGATGCCTCTGGAGCATG
497





C11
GAAGTGCTGGAGAGGGCCAAGAG
498
TCTGATATTTGATAGCTGCCTCCAGG
499





C11
CTGCATGGGGGTCCTTGC
500
GCCTCTGGAGCATGCTCTGATAT
501





C11
AAAGGCTGCATGGGGGTC
502
ATAGCTGCCTCCAGGACCAA
503





C11
GGTGGACCGACGTTCCCT
504
TCTGGAGCATGCTCTGATATTTGATAG
505





C11
AGCGCTGAATGGGGTGGAC
506
GTAGAGGTCCTTAGAGATGTTCTCAGC
507





C11
TGTTCAAGGCCAAGGTGAAG
508
TCAAAGAAGTAGGACCGAGAGG
509





C11
TGTTCAAGGCCAAGGTGAAG
508
CAGTAGCTCCCACACGAAGAG
510





C11
GCCAAGGTGAAGCGTCGG
511
AGGGTGGTGGGCAGTAGCTC
512





C11
GGAGATGAGCCGAGGCTT
513
GGAAGAAGCCCACCAGCAG
514





C11
AAGCGTCGGCCGGAGATGAG
515
CCCACCAGCAGGGTGGTGG
516





C11
TCACCTTGACGCTTATGAACC
517
AGGTAGCCTTTGTTCCCCAG
518





C11
TGCAGTTCTTCACCTTGACG
519
TTGTTCCCCAGGTCATTCAC
520





C11
CGCTTATGAACCTCTACTTTGCC
521
GCCAAATACCAGGTAGCCTTTG
522





C11
CGTCTGCCTGCAGTTCTTCA
523
CCAGGTCATTCACCAGGTCC
524





C11
CACCTTGACGCTTATGAACCTCTACTT
525
GTAGCCTTTGTTCCCCAGGTCATT
526





C11
ACTCCCTGTTCGTCATCTGC
527
TTGTTCCCCAGGTCATTCAC
520





C11
CGCGCTGTCTCTTGCTGC
529
GCCAAATACCAGGTAGCCTTTG
522





C11
GCGCCCTCCACTAGCATCTA
531
GGAAGAAGCCCACCAGCAG
514





C11
TGAGCGACTCCCTGTTCGTC
533
CCAGGTCATTCACCAGGTCC
524





C11
TCTTGCTGCCTGCCTCTG
535
CAGTAGCTCCCACACGAAGAG
510





C11
GTTCGTCATCTGCGCGCT
537
AGGTAGCCTTTGTTCCCCAG
518





C11
CTCTGCCTCGTCGCCAGG
539
AGGGTGGTGGGCAGTAGCTC
512





C11
GTCATCTGCGCGCTGTCTCTT
541
GTAGCCTTTGTTCCCCAGGTCATT
526





C11
GCCCTCCACTAGCATCTACCTGGA
543
CCCACCAGCAGGGTGGTGG
516





C11
CTGTCTCTTGCTGCCTGCCT
545
GGATGAGGCCAAATACCAGG
546





C11
GCCTGCCTCTGCCTCGTC
547
CTCCCACACGAAGAGGATGAG
548





C11
GCATCTACCTGGAGGCCAAG
549
GTGCACCCGGAAGAAGCC
550





C11
GTCCTGGTGAGCGACTCCCT
551
CGAAGAGGATGAGGCCAAAT
552





C11
CTGCTGCTTGTCCGCGTC
553
AATACCAGGTAGCCTTTGTTCCCC
554





C11
TGGGCCCTGCTGCTTGTC
555
GTGGGCAGTAGCTCCCACAC
556





C11
TGTGCTGTGCTCTCCCATC
557
CAGTAGCTCCCACACGAAGAG
510





C11
CTTGTCCGCGTCCTGGTGAG
559
GTCCTGTGGGGGCCGGTG
560





C11
CTTGCTGCCTGCCTCTGCCT
561
CACCCGGAAGAAGCCCACCA
562





C11
GTGCTGTGTGCTGTGCTCTC
563
ATTGAGGATGTGGCTGGTGC
564





C11
TCTTTCTGCTGGTGAACGTG
565
CTGCCCATTGAGGATGTGG
566





C11
ACAGCCCTGGGCCCTGCT
567
AGGCAAAGACCTGCCCATTG
568





C11
GTGCTCTCCCATCGGCGC
569
CAAAGACCTGCCCATTGAGGATG
570





C11
AGTTCTTCACCTTGACGCTTATG
571
CTCCCACACGAAGAGGATGAG
548





C11
GGCTTCTCTACTGCTGCCC
573
GGATGAGGCCAAATACCAGG
546





C11
CCTTGCCCTTCTGGCTTCTCTA
575
AATACCAGGTAGCCTTTGTTCCCC
554





C11
CCTTCTGGCTTCTCTACTGCTG
577
CGAAGAGGATGAGGCCAAAT
552





C11
TCTACTGCTGCCCCGTCTG
579
GTGGGCAGTAGCTCCCACAC
556





C11
AGATACTCCCCGCGCCAAC
581
GTGCACCCGGAAGAAGCC
550





C11
CTGCCCCGTCTGCCTGCA
583
CACCCGGAAGAAGCCCACCA
562





C11
TGGGGCCCTTGCCCTTCTG
585
GTCCTGTGGGGGCCGGTG
560





CCNE1
CACAGGGAGACCTTTTACTTGG
587
TCAAGGCAGTCAACATCCAG
588





CCNE1
ATCCTCCAAAGTTGCACCAG
589
TCAAGGCAGTCAACATCCAG
588





CCNE1
GCACCAGTTTGCGTATGTGA
590
ATGATACAAGGCCGAAGCAG
591





CCNE1
GACAGATGGAGCTTGTTCAGG
592
GATGACGAGAAATGATACAAGGC
593





CCNE1
TTGCGTATGTGACAGATGGAG
594
GCCGAAGCAGCAAGTATACC
595





CCNE1
GGAGCTTGTTCAGGAGATGAAA
596
TGCATCAATTCAGATGACGAG
597





CCNE1
CCAAAGTTGCACCAGTTTGC
598
ACCATAAGGAAATTCAAGGCAG
599





CCNE1
GAAATCTATCCTCCAAAGTTGCAC
600
GTCAACATCCAGGACACAGAGA
601





CCNE1
GGAGATGAAATTCTCACCATGG
602
TGAAACCTTTTGCATCAATTCA
603





CCNE1
GTATGTGACAGATGGAGCTTGTTC
604
TCAATTCAGATGACGAGAAATGAT
605





CCNE1
ACCAGTTTGCGTATGTGACAGATG
606
TACAAGGCCGAAGCAGCAAGTA
607





CCNE1
AAAGTTGCACCAGTTTGCGTATGT
608
AGGAAATTCAAGGCAGTCAACA
609





CCNE1
TGTTCAGGAGATGAAATTCTCACC
610
ACCTTTTGCATCAATTCAGATGAC
611





CCNE1
CTATCCTCCAAAGTTGCACCAGTTTGC
612
CGAGAAATGATACAAGGCCGAAGC
613





CCNE1
AGATGAAATTCTCACCATGGAATTAAT
614
CGAAGCAGCAAGTATACCATAAGG
615





CCNE1
CACAGGGAGACCTTTTACTTGG
587
CCAGGACACAGAGATCCAACA
617





CCNE1
GGGAGACCTTTTACTTGGCACAAG
618
AAGGCAGTCAACATCCAGGACACA
619





CCNE1
TTATTTATTGCAGCCAAACTTGAG
620
ACACAGTTCTCTATGTCGCACC
621





CCNE1
ACAGCTTATTGGGATTTCATCTTT
622
CCACTTGACACAGTTCTCTATGTCG
623





CCNE1
ACTCTTTTACAGCTTATTGGGATTTC
624
TGGAACCATCCACTTGACAC
625





CCNE1
GGCGACACAAGAAAATGTTGT
626
TAACCATGGCAAATGGAACC
627





CCNE1
TTCTTTGACCGGTATATGGCG
628
ACAGTTCTCTATGTCGCACCACTGATA
629





CCNE1
CGGTATATGGCGACACAAGA
630
CCCTTATAACCATGGCAAATGG
631





CCNE1
TTTGACCGGTATATGGCGACACAA
632
AATGGAACCATCCACTTGACACAGTTC
633





CCNE1
GGTATATGGCGACACAAGAAAATGTT
634
CTTATAACCATGGCAAATGGAACCATC
635





CCNE1
TCTGCAGCCAAAAATGCGAG
636
GAAATTCAAGGCAGTCAACATCCAGGA
637





CHEK2
CAGCTCTCAATGTTGAAACAGAA
638
TCTGGCTTTAAGTCACGGTGT
639





CHEK2
CAGCTCTCAATGTTGAAACAGAA
638
ACAGCCAAGAGCATCTGGTAA
641





CHEK2
GGAAGTTTGCTATTGGTTCAGC
642
GCTTCTTTCAGGCGTTTATTCC
643





CHEK2
GAAAGTAGCCATAAAGATCATCAGC
644
CACTTTGTCAAACAGCTCTCCC
645





CHEK2
CCTGTGGAGAGGTAAAGCTGG
646
CAGGTAGCTTCTTTCAGGCG
647





CHEK2
CATCAGCAAAAGGAAGTTTGC
648
GCGTTTATTCCCCACCACTT
649





CHEK2
TAAAGCTGGCTTTCGAGAGG
650
CCCACCACTTTGTCAAACAG
651





CHEK2
GCAAAAGGAAGTTTGCTATTGG
652
TTATTCCCCACCACTTTGTCAA
653





CHEK2
CCATAAAGATCATCAGCAAAAGG
654
AACAGCTCTCCCCCTTCCAT
655





CHEK2
CTATTGGTTCAGCAAGAGAGGC
656
TGGTAAAAATAGAGCTTGCAGGTAGC
657





CHEK2
GCTGGCTTTCGAGAGGAAAACA
658
GCAGGTAGCTTCTTTCAGGCGTTTATT
659





CHEK2
TGGAGAGGTAAAGCTGGCTTTCG
660
TTTCAGGCGTTTATTCCCCACCAC
661





CHEK2
TGGCTTTCGAGAGGAAAACATGTAAGA
662
TTGTCAAACAGCTCTCCCCCTTCC
663





CHEK2
TGGTGCCTGTGGAGAGGTAA
664
TCTGGCTTTAAGTCACGGTGT
639





CHEK2
CATGTAAGAAAGTAGCCATAAAGATCA
666
GACAGTCCTCTTCTTGAGATGACA
667





CHEK2
AAGTTTGCTATTGGTTCAGCAAGAGAG
668
CACGGTGTATAATACCGTTTTCATG
669





CHEK2
GCACTGTCACTAAGCAGAAATAAAG
670
CTTGGAGTGCCCAAAATCAG
671





CHEK2
TGATCAGTCAGTTTATCCTAAGGC
672
CTTGGAGTGCCCAAAATCAG
671





CHEK2
TGAAATTGCACTGTCACTAAGCA
673
AATCTTGGAGTGCCCAAAATCAGTAAT
674





DNMT3B
CAAGAGGGACATCTCACGGT
675
AGTGCACAGGAAAGCCAAAG
676





DNMT3B
GCCATCAAAGTTTCTGCTGC
677
AGTGCACAGGAAAGCCAAAG
676





DNMT3B
AATCCAGTGATGATTGATGCC
678
TTGGACACGTCTGTGTAGTGC
679





DNMT3B
AGTTTCTGCTGCTCACAGGG
680
AAGAGGTGTCGGATGACAGG
681





DNMT3B
CGATACTTCTGGGGCAACCTA
682
TGGCTGGAACTATTCACATGC
683





DNMT3B
TCACAGGGCCCGATACTTCT
684
CATGCAAAGTAGTCCTTCAGAGG
685





DNMT3B
CATCAAAGTTTCTGCTGCTCACAG
686
TCAGGAATCACACCTCCTGG
687





DNMT3B
AACCTACCCGGGATGAACAG
688
TATGACCCACACAGCTGAGG
689





DNMT3B
GTGATGATTGATGCCATCAAAG
690
CGTCTGTGTAGTGCACAGGAAA
691





DNMT3B
ATTGATGCCATCAAAGTTTCTGC
692
AATCACACCTCCTGGGTCCT
693





DNMT3B
GCTGCTCACAGGGCCCGATA
694
GGCTGGAACTATTCACATGCAAAGTAG
695





DNMT3B
TCTGGGGCAACCTACCCGG
696
TTCAGAGGGGCGAAGAGGTG
697





DNMT3B
GGGCCCGATACTTCTGGGGC
698
CCTGGGGATGCCTTCAGGAAT
699





DNMT3B
CAAGAGGGACATCTCACGGT
675
ATGACAGGCACGCTCCAG
701





DNMT3B
CCGTTCTTCTGGATGTTTGAG
702
CCATGTTGGACACGTCTGTG
703





DNMT3B
TGAATTACTCACGCCCCAAG
704
AGGACCTTCCCAGCAGCTTC
705





DNMT3B
GTTGTAGCCATGAAGGTTGGC
706
GGGCGAAGAGGTGTCGGAT
707





DNMT3B
GGATGTTTGAGAATGTTGTAGCC
708
TAGTCCTTCAGAGGGGCGAA
709





DNMT3B
ACATCTCACGGTTCCTGGAG
710
CTATTCACATGCAAAGTAGTCCTTCA
711





DNMT3B
CACCTGCTGAATTACTCACGC
712
ACGGCCCATGTTGGACAC
713





DNMT3B
ATGAAGGTTGGCGACAAGAG
714
GGGCCTGGCTGGAACTATTC
715





DNMT3B
TGAGAATGTTGTAGCCATGAAGG
716
CACGCTCCAGGACCTTCC
717





DNMT3B
CGTTCTTCTGGATGTTTGAGAATGTTG
718
AGCTTCTGGCGGGCACCAC
719





DNMT3B
GGTTGGCGACAAGAGGGACAT
720
GTCGGATGACAGGCACGCTC
721





DNMT3B
GCCCCAAGGAGGGTGATGAC
722
GTGTAGTGCACAGGAAAGCCAAAGATC
723





DNMT3B
GTAGCCATGAAGGTTGGCGACAAG
724
ACAGGCACGCTCCAGGACCT
725





DNMT3B
AGAGGGACATCTCACGGTTCCTGG
726
GCTCTGCCACACACCCCAGT
727





DNMT3B
GGCCGGCTCTTCTTCGAATT
728
GCACCACGGCCCATGTTG
729





DNMT3B
AGGGTGATGACCGGCCGTT
730
GCTCCAGGACCTTCCCAGCA
731





DNMT3B
ACCGGCCGTTCTTCTGGAT
732
AAAGTAGTCCTTCAGAGGGGCGAAGAG
733





DNMT3B
TACTCACGCCCCAAGGAGGG
734
GTCCTGGCTCTGCCACACAC
735





DNMT3B
CATCAAAGTTTCTGCTGCTCAC
736
TCAGGAATCACACCTCCTGG
687





DNMT3B
TTCTTCGAATTTTACCACCTGC
738
AGTGCACAGGAAAGCCAAAG
676





DNMT3B
TTTTACCACCTGCTGAATTACTCA
740
TCCTGGGTCCTGGCTCTG
741





DNMT3B
CGGCTCTTCTTCGAATTTTACCAC
742
ACACCCCAGTGGGCTTGG
743





DNMT3B
CTTCGAATTTTACCACCTGCTGAATTA
744
CAGTGGGCTTGGGGCCTG
745





DNMT3B
TACAGGCCGGCTCTTCTTCGAATTTTA
746
GCTTGGGGCCTGGCTGGA
747





DNMT3B
TTTCTGCTGCTCACAGGGC
748
AAGAGGTGTCGGATGACAGG
681





DNMT3B
CTTCGAATTTTACCACCTGCTGAATTA
744
GCTTGGGGCCTGGCTGGA
747





DNMT3B
AATCCAGTGATGATTGATGCC
678
GTTTGATCGAGTTCGACTTGG
753





DNMT3B
AGTTTCTGCTGCTCACAGGG
680
CTTCTTTGCCATTCATGACAAC
755





DNMT3B
GCCATCAAAGTTTCTGCTGC
677
ACCACAAAACATCTTCTTTGCC
757





DNMT3B
TCACAGGGCCCGATACTTCT
684
CCATTCATGACAACAGGGAAA
759





DNMT3B
AACCTACCCGGGATGAACAG
688
TTTCGAGCTCAGTGCACCAC
761





DNMT3B
CGATACTTCTGGGGCAACCTA
682
AAACATCTTCTTTGCCATTCATG
763





DNMT3B
GTGATGATTGATGCCATCAAAG
690
TGGTTTTTCCCCTGTTTGATC
765





DNMT3B
CATCAAAGTTTCTGCTGCTCACAG
686
CATGACAACAGGGAAAAGTTGG
767





DNMT3B
ATTGATGCCATCAAAGTTTCTGC
692
CTCAGTGCACCACAAAACATCT
769





DNMT3B
GCTGCTCACAGGGCCCGATA
694
GACAACAGGGAAAAGTTGGTTTTTCC
771





DNMT3B
GGGCCCGATACTTCTGGGGC
698
AGGGAAAAGTTGGTTTTTCCCCTGTTT
773





DNMT3B
CCGTTCTTCTGGATGTTTGAG
702
TCGACTTGGTGGTTATTGTCTG
775





DNMT3B
GTTGTAGCCATGAAGGTTGGC
706
TCCCCTGTTTGATCGAGTTC
777





DNMT3B
GGATGTTTGAGAATGTTGTAGCC
708
TCGAGTTCGACTTGGTGGTT
779





DNMT3B
CACCTGCTGAATTACTCACGC
712
GACTTGGTGGTTATTGTCTGTACTTTC
781





DNMT3B
GGCCGGCTCTTCTTCGAATT
728
ATCGAGTTCGACTTGGTGGTTATTGTC
783





DNMT3B
GTAGCCATGAAGGTTGGCGACAAG
724
TTTCCCCTGTTTGATCGAGTTCGACTT
785





DNMT3B
ACATCTCACGGTTCCTGGAG
710
AAGAGGTGTCGGATGACAGG
681





DNMT3B
ACCGGCCGTTCTTCTGGAT
732
CCATGTTGGACACGTCTGTG
703





DNMT3B
AGAGGGACATCTCACGGTTCCTGG
726
GCACCACGGCCCATGTTG
729





DNMT3B
TTTTACCACCTGCTGAATTACTCA
740
TTGGACACGTCTGTGTAGTGC
679





DNMT3B
CGGCTCTTCTTCGAATTTTACCAC
742
ACGGCCCATGTTGGACAC
713





DNMT3B
TACTCACGCCCCAAGGAGGG
734
GACACGTCTGTGTAGTGCACAGGA
797





DNMT3B
CTTCGAATTTTACCACCTGCTGAATTA
744
ACAGGCACGCTCCAGGACCT
725





DNMT3B
GTTGTAGCCATGAAGGTTGGCG
800
ACAGGCACGCTCCAGGACCT
799





DNMT3B
TACTCACGCCCCAAGGAGGG
734
GGGCGAAGAGGTGTCGGAT
707





DNMT3B
CCGTGATAGCATCAAAGAATGA
804
TGGCTGGAACTATTCACATGC
683





DNMT3B
ATAAACTCGAGCTGCAGGACTG
806
AAGAGGTGTCGGATGACAGG
681





DNMT3B
GGACTGCTTGGAATACAATAGGA
808
TCAGGAATCACACCTCCTGG
687





DNMT3B
CATCAAAGAATGATAAACTCGAGC
810
CATGCAAAGTAGTCCTTCAGAGG
685





DNMT3B
CTTGGAATACAATAGGATAGCCAAG
812
TATGACCCACACAGCTGAGG
689





DNMT3B
AGCTGCAGGACTGCTTGGAATA
814
TTCAGAGGGGCGAAGAGGTG
697





DNMT3B
GTGATAGCATCAAAGAATGATAAACTC
816
AATCACACCTCCTGGGTCCT
693





DNMT3B
AGAATGATAAACTCGAGCTGCAGG
818
TCCTGGGTCCTGGCTCTG
741





DNMT3B
AGTTTCTGCTGCTCACAGGG
680
CTATTCACATGCAAAGTAGTCCTTCA
711





DNMT3B
AACCTACCCGGGATGAACAG
688
CCATGTTGGACACGTCTGTG
703





DNMT3B
CGATACTTCTGGGGCAACCTA
682
GGGCCTGGCTGGAACTATTC
715





DNMT3B
CATCAAAGTTTCTGCTGCTCACAG
686
ACGGCCCATGTTGGACAC
713





DNMT3B
TCACAGGGCCCGATACTTCT
684
AGGACCTTCCCAGCAGCTTC
705





DNMT3B
ATTGATGCCATCAAAGTTTCTGC
692
ATGACAGGCACGCTCCAG
701





DNMT3B
TCTGGGGCAACCTACCCGG
696
GGGCGAAGAGGTGTCGGAT
707





DNMT3B
GCGACAAGAGGGACATCTCACG
834
AGCTTCTGGCGGGCACCAC
719





DNMT3B
ACATCTCACGGTTCCTGGAG
710
CTGGCTCTGCCACACACC
837





DNMT3B
CAAGAGGGACATCTCACGGTTCCT
838
AAAGTAGTCCTTCAGAGGGGCGAAGAG
733





DNMT3B
ATGAAGGTTGGCGACAAGAG
714
ACACACCCCAGTGGGCTT
841





FANCA
AACCTGAAGCTGATGCTCTTTC
842
TATCCTCATTTCCTGTGCGG
843





FANCA
TTACCAAGACTGGTTACACCTGG
844
TATCCTCATTTCCTGTGCGG
843





FANCA
AACCTGAAGCTGATGCTCTTTC
842
CTGCAATCTGGAAATAATATCCTCA
846





FANCA
CTGGAGCTGGAAATTCAACC
847
GAAATAATATCCTCATTTCCTGTGC
848





FANCA
AAGACTGGTTACACCTGGAGCTGG
849
CATTTCCTGTGCGGCCACC
850





FANCA
GTTACACCTGGAGCTGGAAATTC
851
GCCACCAAAGACCAAATCAG
852





FANCA
ACCTGGAGCTGGAAATTCAACCTGAAG
853
TCCTGTGCGGCCACCAAAGAC
854





FANCA
ACCCTTGCACCTTCCTTCTG
855
TCTGAGTGGTCATAACTCCTTGAG
856





FANCA
CGAGAGGTGTTGAAAGAGGAAG
857
CCAAATCAGAATTTTCTGAGTGG
858





FANCA
CTCTTTCTGAGGAGGACGTAGC
859
AGAATTTTCTGAGTGGTCATAACTCC
860





FANCA
TGATGCTCTTTCAGATACTGAACG
861
GAGAGGCACTATGAGGTCTTGC
862





FANCA
TGAAGCTGATGCTCTTTCAGATAC
863
CAAAGAGGAAGTGCTCCTGG
864





FANCA
GACACACAGAACCTTCCGAGA
865
AGCTCCAGGTCAGCTACCATC
866





FANCA
CCCTCTCTCTCTGGACACACA
867
TATGAGGTCTTGCTGCAGCTC
868





FANCA
AGGTGTTGAAAGAGGAAGATGTTC
869
AAATCTCAAAGAGGAAGTGCTCC
870





FANCA
AGAACCTTCCGAGAGGTGTTG
871
GTGTGGCCGAGAGGCACTAT
872





FANCA
CTCTCTGGACACACAGAACCTTC
873
GTCTTGCTGCAGCTCCAGGT
874





FANCA
ACCTTCCGAGAGGTGTTGAAAGAG
875
AAGGGGTGTGGCCGAGAG
876





FANCA
CAGACTGGCAGAGAGCTGC
877
CTCCTGGGAAGGGGTGTG
878





FANCA
GAGCTGCCCTCTCTCTCTGG
879
AAGTGCTCCTGGGAAGGG
880





FANCA
ACTGGCAGAGAGCTGCCCTCTC
881
GTGGCCGAGAGGCACTATGAGGTC
882





FANCA
CTTCTGCAGACTGGCAGAGAG
883
TGCGGAAAATCTCAAAGAGG
884





FANCA
TGGAGACCCTTGCACCTTC
885
CCGTCTGCGGAAAATCTCAA
886





FANCA
TTTCCTGGAGACCCTTGCAC
887
CTGGAGCCGTCTGCGGAAA
888





FANCL
CTGTGTTTCTCCGGACTTCG
889
ATGGTACTGAAGCAGGTATCCG
890





FANCL
CCGTGTATGAGGGATTCATCTC
891
TTTGCCTTCAACTTGAGAGTGA
892





FANCL
GGTCGAAAACCGTGTATGAGG
893
CAACTTGAGAGTGATTAAATGCTCTC
894





FANCL
AGAGCTTTTCTGTGTTTCTCCG
895
TTAACTTGATGGTACTGAAGCAGG
896





FANCL
ATGTGCAGGACCCAGCAG
897
TGCTCTCTACCAGAAGCATCTTC
898





FANCL
ACCCAGCAGGTCTAGAGCTTT
899
GCAGGTATCCGCATACACAAG
900





FANCL
GTGACGGAAGCGAGCCTGTT
901
GCATCTTCTGCTTTTAACTTGATGG
902





FANCL
CCTGCTTCTGCCCCAGAAC
903
GAGAGTGATTAAATGCTCTCTACCAGA
904





FANCL
GAGCCTGTTGCGCCAGTG
905
TTCTGCTTTTAACTTGATGGTACTGAA
906





FANCL
GCAGGTCTAGAGCTTTTCTGTGTT
907
CTACCAGAAGCATCTTCTGCTTT
908





FANCL
CCGGACTTCGAGCCATGG
909
ACTGAAGCAGGTATCCGCATACA
910





FANCL
AGGGATTCATCTCGGCTCAG
911
GAGGCACAAAATGGAACAGG
912





FANCL
AGAACCGGTCGAAAACCGT
913
AAATAATCTGGTGATTCTGCAGG
914





FANCL
GCAGGACCCAGCAGGTCTAG
915
TGGAACAGGAAAATCCACAAA
916





FANCL
CATGGCGGTGACGGAAGC
917
GAGGTGTCCAGGAGGCACAA
918





FANCL
CGAAAACCGTGTATGAGGGATTCA
919
GGCACAAAATGGAACAGGAAAATC
920





FANCL
GTGTATGAGGGATTCATCTCGGCTCAG
921
TGTCCAGGAGGCACAAAATGGA
922





FANCL
CAGTGCCCCCTGCTTCTG
923
CAGGAAAATCCACAAAATAATCTGG
924





FANCL
TCTGCCCCAGAACCGGTC
925
ATCCACAAAATAATCTGGTGATTCTG
926





FANCL
TTTCTCCGGACTTCGAGCCA
927
GCTGCCAAAAACTGACTATAAATGC
928





FANCL
GCCCCAGAACCGGTCGAAAA
929
GCGTGCTGTTGCACTCCGTG
930





FANCL
GAAGCGAGCCTGTTGCGCC
931
CTGTTGCACTCCGTGGAGGTTT
932





FANCL
GTTGCGCCAGTGCCCCCT
933
GCACTCCGTGGAGGTTTTTCTGG
934





FANCL
CTTCGAGCCATGGCGGTGAC
935
CGTGGAGGTTTTTCTGGCTCAAG
936





FANCL
CAGCGGACTGCGCATGTG
937
ATGCCTTTAGTGATTCTATTGCTGC
938





FANCL
TCTGCCCCAGAACCGGTC
925
CAGGAAAATCCACAAAATAATCTGG
924





FANCL
CAGTGCCCCCTGCTTCTG
923
ATCCACAAAATAATCTGGTGATTCTG
926





FANCL
CTGTGTTTCTCCGGACTTCG
889
CAGCTCTTGTCTATTCTTTAAGGCA
944





FANCL
AGGGATTCATCTCGGCTCAG
911
ATGGTACTGAAGCAGGTATCCG
890





FANCL
AGAACCGGTCGAAAACCGT
913
GCATCTTCTGCTTTTAACTTGATGG
902





FANCL
CGAAAACCGTGTATGAGGGATTCA
919
GAGGTGTCCAGGAGGCACAA
918





FANCL
GCCCCAGAACCGGTCGAAAA
929
GGAGGCACAAAATGGAACAGGA
952





FANCL
GTGACGGAAGCGAGCCTGTT
901
AAAATAATCTGGTGATTCTGCAGGATA
954





FANCL
CATGGCGGTGACGGAAGC
917
GCACAAAATGGAACAGGAAAATCC
956





FANCL
CATGGCGGTGACGGAAGC
917
GGGGAGGAGGAGGTAGTGCATA
958





FANCL
TTTCTCCGGACTTCGAGCCA
927
AATGGAACAGGAAAATCCACAAAA
960





FANCL
GCAGGACCCAGCAGGTCTAG
915
CAATAAGGCTTGAGTAGAACTGGG
962





FANCL
GAAGCGAGCCTGTTGCGCC
931
GGAGGAGGAGGTAGTGCATACAGCTCT
964





FANCL
CAGCGGACTGCGCATGTG
937
GGCTTGAGTAGAACTGGGGAGGAG
966





FANCL
GTGACGGAAGCGAGCCTGTT
901
GGAGGAGGAGGTAGTGCATACAGCTCT
964





FANCL
GGTCGAAAACCGTGTATGAGG
969
TCCCAACCAAGAGTTCCTATCTC
970





FANCL
AGAGCTTTTCTGTGTTTCTCCG
895
AGTTCCTATCTCTTCAATAAGGCTTG
972





FANCL
CCGTGTATGAGGGATTCATCTC
891
CAACCAAGAGTTCCTATCTCTTCAATA
974





FANCL
AGAACCGGTCGAAAACCGT
913
ATCTCTTCAATAAGGCTTGAGTAGAAC
976





FANCL
ACCCAGCAGGTCTAGAGCTTT
899
GGTAGTGCATACAGCTCTTGTCTATTC
978





FANCL
GCAGGTCTAGAGCTTTTCTGTGTT
907
GCAGGTATCCGCATACACAAG
900





FANCL
CAGTGCCCCCTGCTTCTG
923
TTTGCCTTCAACTTGAGAGTGA
892





FANCL
TTTCTCCGGACTTCGAGCCA
927
ACTGAAGCAGGTATCCGCATACA
910





FANCL
TCTGCCCCAGAACCGGTC
925
AGTGATTAAATGCTCTCTACCAGAAGC
986





FANCL
CGAAAACCGTGTATGAGGGATTCA
919
AAATGCTCTCTACCAGAAGCATCTTCT
988





FANCL
CATGTGCAGGACCCAGCAG
989
TTTAACTTGATGGTACTGAAGCAGGTA
990





FANCL
TCGAGCCATGGCGGTGAC
991
TGCCTTCAACTTGAGAGTGATTAAATG
992





FANCL
GCCCCAGAACCGGTCGAAAA
929
GAGGTGTCCAGGAGGCACAA
918





FANCL
GAAGCGAGCCTGTTGCGCC
931
GGAGGCACAAAATGGAACAGGA
952





FANCL
AGTTGCCTTAAAGAATAGACAAGAGC
997
TTTGCCTTCAACTTGAGAGTGA
892





FANCL
TGTATGAGGGATTCATCTCGG
999
AAATAATCTGGTGATTCTGCAGG
914





FANCL
GTGACGGAAGCGAGCCTGTT
901
ATCCACAAAATAATCTGGTGATTTCTG
926





FANCL
CTGTGTTTCTCCGGACTTCG
889
GAGGCACAAAATGGAACAGG
912





FANCL
GTGGATACCATCGAATAGTACAACAG
1005
GAGGCACAAAATGGAACAGG
912





FANCL
CATGGCGGTGACGGAAGC
917
GGCACAAAATGGAACAGGAAAATC
920





FANCL
TGGCAGCTGAGAACAATACTTAGTG
1008
GGCACAAAATGGAACAGGAAAATC
920





FANCL
GAAGCGAGCCTGTTGCGCC
931
TGTCCAGGAGGCACAAAATGGA
922





FANCL
ATGTAGTTGGCAGCTGAGAACA
1011
ATGGAACAGGAAAATCCACAAA
1012





FANCL
GAACAATACTTAGTGGATACCATCGA
1013
GCTGCCAAAAACTGACTATAAATGC
928





FANCL
GCTTTATGATGGAGTTGAAGATGC
1015
ATGCCTTTAGTGATTCTATTGCTGC
938





FANCL
TTGCCTGAAGATTTACAACTGAAG
1017
ATGCCTTTAGTGATTCTATTGCTGC
938





FANCL
CCTGATCTAATGAGCTTTATGATGG
1018
GATTCTATTGCTGCCAAAAACTG
1019





FANCL
GGATAGTGTTGCCTGAAGATTTACA
1020
TCTATTGCTGCCAAAAACTGAC
1021





FANCL
TCCACCTTAGGATAGTGTTGCC
1022
CCCAGAATGCCTTTAGTGATTC
1023





FANCL
CTAATGAGCTTTATGATGGAGTTGAA
1024
CCATAACATCCCAGAATGCC
1025





FANCL
GAATGCAGCACTCTCCTGATC
1026
TCGATTTCATCCATAACATCCC
1027





FANCL
CACCTTAGGATAGTGTTGCCTGAAGAT
1028
TAACATCCCAGAATGCCTTTAGTG
1029





FANCL
AGCACTCTCCTGATCTAATGAGC
1030
GGTCTTCTCATCGATTTCATCC
1031





FANCL
GAAGAGACTTCCACCTTAGGATAGTG
1032
TTTCATCCATAACATCCCAGAATG
1033





FANCL
ATTATTATGTAGTTGGCAGCTGAGAA
1034
TACAGCTCTTGTCTATTCTTTAAGGC
1035





FANCL
GTGGATACCATCCAATAGTACAACAG
1005
TTTGCCTTCAACTTGAGAGTGA
892





FANCL
TGGCAGCTGAGAACAATACTTAGTG
1008
ATGGTACTGAAGCAGGTATCCG
890





FANCL
GAACAATACTTAGTGGATACCATCGA
1040
TGCTCTCTACCAGAAGCATCTTC
898





FANCL
ATGTAGTTGGCAGCTGAGAACAATACT
1042
TTAACTTGATGGTACTGAAGCAGG
896





FANCL
TCCACCTTAGGATAGTGTTGCC
1044
CAACTTGAGAGTGATTAAATGCTCTC
894





FANCL
TTGCCTGAAGATTTACAACTGAAG
1017
GCAGGTATCCGCATACACAAG
900





FANCL
GGATAGTGTTGCCTGAAGATTTACA
1020
AGTGATTAAATGCTCTCTACCAGAAGC
986





FANCL
TGAAGATTTACAACTGAAGAATGCAAG
1050
ACTGAAGCAGGTATCCGCATACA
910





FANCL
GGTCGAAAACCGTGTATGAGG
969
CTACCAGAAGCATCTTCTGCTTT
908





FANCL
AGAACCGGTCGAAAACCGT
913
CAGGAAAATCCACAAAATAATCTGG
924





FANCL
CCTGCTTCTGCCCCAGAAC
1056
ATCCACAAAATAATCTGGTGATTCTG
926





FANCL
TCTGCCCCAGAACCGGTC
925
GGCACAAAATGGAACAGGAAAATC
920





FANCL
CAGTGCCCCCTGCTTCTG
923
ATGGAACAGGAAAATCCACAAA
1012





FANCL
GCCCCAGAACCGGTCGAAAA
929
TGTCCAGGAGGCACAAAATGGA
922





FANCL
CTGTGTTTCTCCGGACTTCG
889
TCCCAACCAAGAGTTCCTATCTC
970





FANCL
GCAGGTCTAGAGCTTTTCTGTGTT
907
ATCTCTTCAATAAGGCTTGAGTAGAAC
976





FANCL
GAGCCTGTTGCGCCAGTG
905
CAACCAAGAGTTCCTATCTCTTCAATA
974





FANCL
GCAGGACCCAGCAGGTCTAG
1070
ATCCACAAAATAATCTGGTGATTCTG
926





FANCL
TTTCTCCGGACTTCGAGCCA
927
TTTACCTGAGGTGTCCAGGAGG
1073





FANCL
GAGCCTGTTGCGCCAGTG
905
GCATCTTCTGCTTTAACTTGATGG
902





FANCL
GTGACGGAAGCGAGCCTGTT
901
TTCTGCTTTTAACTTGATGGTACTGAA
906





FANCL
AGAACCGGTCGAAAACCGT
913
CTACCAGAAGCATCTTCTGCTTT
908





FANCL
GCCCCAGAACCGGTCGAAAA
929
GGCACAAAATGGAACAGGAAAATC
920





FGFR1
AGAACTGGGATGTGGAGCTG
1082
TGTTTCTTTCTCCTCTGAAGAGG
1083





FGFR1
CTCTATGCTTGCGTAACCAGC
1084
TGTTTCTTTCTCCTCTGAAGAGG
1083





FGFR1
ATGTGCAGAGCATCAACTGG
1085
TTTGGTGTTATCTGTTTCTTTCTCC
1086





FGFR1
AGGTGGAGGTGCAGGACTC
1087
GGTTTGGTTTGGTGTTATCTGTTT
1088





FGFR1
GGTGACCTGCTGCAGCTTC
1089
CATCATCATCATCATCCTCCG
1090





FGFR1
AGCTGGCGGAAAGCAACC
1091
TCTGAAGAGGAGTCATCATCATCA
1092





FGFR1
GGACGATGTGCAGAGCATC
1093
CCGAGGAGGGGAGAGCAT
1094





FGFR1
AGAGCATCAACTGGCTGCG
1095
CATCATCATCCTCCGAGGAG
1096





FGFR1
TGACACCACCTACTTCTCCGTC
1097
GAACTTCACTGTCTTGGCAGC
1098





FGFR1
CCTACTTCTCCGTCAATGTTTCAG
1099
CACTGGAAGGGCATTTGAAC
1100





FGFR1
ATCACAGGGGAGGAGGTGG
1101
GGATGTCCAATATGGAGCTACG
1102





FGFR1
GGGCAGTGACACCACCTACT
1103
TCTTTTCCATCTTTTCTGGGG
1104





FGFR1
TTGCGTAACCAGCAGCCC
1105
GCATTTGAACTTCACTGTCTTGG
1106





FGFR1
CCGGCCTCTATGCTTGCGTA
1107
TCCATCTTTTCTGGGGATGTCC
1108





FGFR1
AGGTGCAGGACTCCGTGC
1109
GCATGCAATTCTTTTCCATC
1110





FGFR1
ACCGCACCCGCATCACAG
1111
CGGCACTGCATGCAATTCT
1112





FGFR1
TAACCAGCAGCCCCTCGG
1113
TTTCAACCAGCGCAGTGTG
1114





FGFR1
CCCTCGGGCAGTGACACCAC
1115
ACTGGAAGGGCATTTGAACTTCACTG
1116





FGFR1
GAAAGCAACCGCACCCGCAT
1117
CTTTTCTGGGGATGTCCAATATGGAGC
1118





FGFR1
CCCGCAGACTCCGGCCTCTA
1119
GGGTCCCACTGGAAGGGCAT
1120





FGFR1
AGCAGCCCCTCGGGCAGT
1121
GCAGTGTGGGGTTTGGGGTC
1122





FGFR1
ACCCGCATCACAGGGGAG
1123
TCTTGGCAGCCGGCACTG
1124





FGFR1
CAGGACTCCGTGCCCGCAG
1125
GGGTTTGGGGTCCCACTGG
1126





FGFR1
GGTGCAGCTGGCGGAAAG
1127
ACCAGCGCAGTGTGGGGTTT
1128





FGFR1
CCGACCTTGCCTGAACAAG
1129
CATCATCATCATCATCCTCCG
1090





FGFR1
AGAACTGGGATGTGGAGCTG
1082
CCGAGGAGGGGAGAGCAT
1094





FGFR1
GTCACAGCCACACTCTGCAC
1133
CATCATCATCCTCCGAGGAG
1096





FGFR1
ACACTCTGCACCGCTAGGC
1135
TCTGAAGAGGAGTCATCATCATCA
1092





FGFR1
CTGTGCTGGTCACAGCCAC
1137
TGTTTCTTTCTCCTCTGAAGAGG
1083





FGFR1
GAAGTGCCTCCTCTTCTGGG
1139
GGTTTGGTTTGGTGTTATCTGTTT
1088





FGFR1
GCCTCCTCTTCTGGGCTGTG
1141
GCATACGGTTTGGTTTGGTG
1142





FGFR1
TAGGCCGTCCCCGACCTTG
1143
TTTCTGGGGATGTCCAATATGG
1144





FGFR1
CGTCCCCGACCTTGCCTGAA
1145
CTGGGGATGTCCAATATGGAGCTACG
1146





FGFR1
GTCACAGCCACACTCTGCAC
1133
ACCAAGTCCAAATGGCAAGG
1148





FGFR1
AGAACTGGGATGTGGAGCTG
1082
ACTTAGCCTCCTGGAGATCTGG
1150





FGFR1
GAAGTGCCTCCTCTTCTGGG
1139
AAATGGCAAGGGAGTGATGG
1152





FGFR1
ACACTCTGCACCGCTAGGC
1135
CCGAGTACCAAGTCCAAATGG
1154





FGFR1
CCGACCTTGCCTGAACAAG
1129
CAGGGATACCACCACCTGTT
1156





FGFR1
CTGTGCTGGTCACAGCCAC
1137
CACTAAGCCGAGTACCAAGTCC
1158





FGFR1
GCCTCCTCTTCTGGGCTGTG
1141
CAAGGGAGTGATGGAGTGGAAG
1160





FGFR1
CTAACTGCAGAACTGGGATGTG
1161
GAGCACCACTTAGCCTCCTG
1162





FGFR1
ATGTGGAGCTGGAAGTGCCT
1163
GAGTGGAAGCTGGCCGAG
1164





FGFR1
TCTTCTGGGCTGTGCTGGTC
1165
GTGATGGAGTGGAAGCTGGC
1166





FGFR1
TTGTCACCAACCTCTAACTGCA
1167
TCCTGGAGATCTGGGCAAG
1168





FGFR1
AGCTGGAAGTGCCTCCTCTT
1169
CTGGCCGAGCACCACTTAG
1170





FGFR1
CGTCCCCGACCTTGCCTGAA
1145
CCACCACCTGTTCAGGGCCTCTA
1172





FGFR1
TAGGCCGTCCCCGACCTTG
1143
CCTCTCCAGCAGAGCAGGGATA
1174





FGFR1
ACAGCCACACTCTGCACCGCTAG
1175
GAGTACCAAGTCCAAATGGCAAGGGAG
1176





FGFR1
GTGCTGGTCACAGCCACACTCTG
1177
CACCTGTTCAGGGCCTCTAATCACTA
1178





FGFR1
CTGCACCGCTAGGCCGTCC
1179
CAGGGCCTCTAATCACTAAGCCGA
1180





FGFR1
TCACCAACCTCTAACTGCAGAACTGG
1181
GGAAGCTGGCCGAGCACCAC
1182





FGFR1
AGATGTGGAGCCTTGTCACC
1183
CTCTAATCACTAAGCCGAGTACCAA
1184





FGFR1
AGATGTGGAGCCTTGTCACC
1183
TTTGGTGTTATCTGTTTCTTTCTCC
1086





FGFR1
ATGTGGAGCTGGAAGTGCCT
1163
TCTGAAGAGGAGTCATCATCATCA
1092





FGFR1
CTAACTGCAGAACTGGGATGTG
1161
CATCATCATCCTCCGAGGAG
1096





FGFR1
GTCACAGCCACACTCTGCAC
1133
CACTGGAAGGGCATTTGAAC
1100





FGFR1
CCGACCTTGCCTGAACAAG
1129
GGATGTCCAATATGGAGCTACG
1102





FGFR1
ACACTCTGCACCGCTAGGC
1135
GAACTTCACTGTCTTGGCAGC
1098





FGFR1
GCCTCCTCTTCTGGGCTGTG
1141
CGGCACTGCATGCAATTTCT
1112





FGFR1
GTGCTGGTCACAGCCACACTCTG
1177
ACTGGAAGGGCATTTGAACTTCACTG
1116





FGFR1
ACAGCCACACTCTGCACCGCTAG
1175
GGGTCCCACTGGAAGGGCAT
1120





FGFR1
CTGCACCGCTAGGCCGTCC
1179
GCAGTGTGGGGTTTGGGGTC
1204





FGFR1
GAGCCTTGTCACCAACCTCT
1205
TCTTTTCCATCTTTTCTGGGG
1104





FGFR1
TCACCAACCTCTAACTGCAGAACTGG
1181
TCCATCTTTTCTGGGGATGTCC
1108





FGFR1
CGTCCCCGACCTTGCCTGAA
1145
TCTTGGCAGCCGGCACTG
1124





FGFR1
TAGGCCGTCCCCGACCTTG
1143
ACCAGCGCAGTGTGGGGTTT
1128





FGFR1
CATGGAGATGTGGAGCCTTG
1213
TTTCTGGGGATGTCCAATATGG
1144





FGFR1
AGTATCCATGGAGATGTGGAGC
1215
GCATTTGAACTTCACTGTCTTGG
1106





FGFR1
AGGATCGAGCTCACTGTGGA
1217
CTGCATGCAATTTCTTTTCCA
1218





FGFR1
GTGGAGCCTTGTCACCAACCTCTAACT
1219
TTGCCATTTTTCAACCAGCG
1220





FGFR1
TCGAGCTCACTGTGGAGTATCC
1221
GCATACGGTTTGGTTTGGTG
1142





FGFR1
CCGACCTTGCCTGAACAAG
1129
TTTGGTGTTATCTGTTTCTTTCTCC
1086





FGFR1
CTGTGCTGGTCACAGCCAC
1137
TCTGAAGAGGAGTCATCATCATCA
1092





FGFR1
CTAACTGCAGAACTGGGATGTG
1161
GGATGTCCAATATGGAGCTACG
1102





FGFR1
AGATGTGGAGCCTTGTCACC
1183
GCATACGGTTTGGTTTGGTG
1142





FGFR1
AGAACTGGGATGTGGAGCTG
1082
TGCTGGTTACGCAAGCATAG
1232





FGFR1
TTGTCACCAACCTCTAACTGCA
1167
TTGATGCTCTGCACATCGTC
1234





FGFR1
GTCACAGCCACACTCTGCAC
1133
ACATTGACGGAGAAGTAGGTGG
1236





FGFR1
ATGTGGAGCTGGAAGTGCCT
1163
AAGCATAGAGGCCGGAGTCT
1238





FGFR1
AGATGTGGAGCCTTGTCACC
1183
GCAGCCAGTTGATGCTCTG
1240





FGFR1
GAGCCTTGTCACCAACCTCT
1205
AGTCCTGCACCTCCACCTC
1242





FGFR1
CCGACCTTGCCTGAACAAG
1129
AGAAGTAGGTGGTGTCACTGCC
1244





FGFR1
AGGATCGAGCTCACTGTGGA
1217
GACCAGGAAGGACTCCACTTC
1246





FGFR1
CTAACTGCAGAACTGGGATGTG
1161
TACGCAAGCATAGAGGCCG
1248





FGFR1
AGTATCCATGGAGATGTGGAGC
1215
GTTGCTTTCCGCCAGCTG
1250





FGFR1
GAAGTGCCTCCTCTTCTGGG
1139
TCCACCTCCTCCCCTGTGAT
1252





FGFR1
TCTTCTGGGCTGTGCTGGTC
1165
CGAGGGGCTGCTGGTTAC
1254





FGFR1
TCGAGCTCACTGTGGAGTATCC
1221
AAGCTGCAGCAGGTCACC
1256





FGFR1
ACACTCTGCACCGCTAGGC
1135
GCACCTCCACCTCCTCCC
1258





FGFR1
AGCTGGAAGTGCCTCCTCTT
1169
ACAGCGAAGCTGCAGCAG
1260





FGFR1
GCCTCCTCTTCTGGGCTGTG
1141
CGGGTGCGGTTGCTTTCC
1262





FGFR1
TCACCAACCTCTAACTGCACAACTGG
1181
GGAAGGACTCCACTTCCACAGG
1264





FGFR1
ACAGCCACACTCTGCACCGCTAG
1175
TCTGCACATCGTCCCGCAG
1266





FGFR1
CTGTGCTGGTCACAGCCAC
1137
TGGTGTCACTGCCCGAGG
1268





FGFR1
GTGCTGGTCACAGCCACACTCTG
1177
AGCCAGTTGATGCTCTGCACATC
1270





FGFR1
GTGGAGCCTTGTCACCAACCTCTAACT
1219
CGTCCCGCAGCCAGTTGAT
1272





FGFR1
CGTCCCCGACCTTGCCTGAA
1145
TCCTCCCCTGTGATGCGGGT
1274





FGFR1
CTGCACCGCTAGGCCGTCC
1179
GAGTCTGCGGGCACGGAGTC
1276





FGFR1
CAGTTTGAAAAGGAGGATCGAG
1277
GGGTGGACCAGGAAGGACTC
1278





FGFR1
TAGGCCGTCCCCGACCTTG
1143
CTTTCCGCCAGCTGCACCC
1280





FGFR1
AAAAGGAGGATCGAGCTCACTG
1281
CAGCCGACAGCGAAGCTG
1282





FGFR1
CTGTGGAGTATCCATGGAGATG
1283
CACGGAGTCCTGCACCTC
1284





FGFR1
CCATGGAGATGTGGAGCCTTGTC
1285
ATCGTCCCGCAGCCGACAG
1286





FGFR1
AGGAGGATCGAGCTCACTGTGGAGTAT
1287
AGGTCACCGGGGTGGACCAG
1288





FGFR1
GAGCTCACTGTGGAGTATCCATGGAGA
1289
CCAGCTGCACCCCGTCCC
1290





FGFR1
CCAGGACCCGAACAGAGC
1291
CTCCACTTCCACAGGGGCTC
1292





FGFR1
AGGCGGAACCTCCACGCC
1293
TGCAGCAGGTCACCGGGGT
1294





FGFR1
ACACGCCCGCTCGCACAA
1295
CTTCCACAGGGGCTCCCCAG
1296





FGFR1
GGACTCTCCCGAGGCGGAAC
1297
AGGGGCTCCCCAGGGCTG
1298





FGFR1
AACCTCCACGCCGAGCGAG
1299
TAGAGGCCGGAGTCTGCGGG
1300





FGFR1
CTGCACCGCTAGGCCGTCC
1179
CCATCTTTTCTGGGGATGTCCAA
1302





FGFR2
TGCAGATGGGATTAACGTCC
1303
GTGTCATCCTCATCATCTCCG
1304





FGFR2
TTTCATCTGCCTGGTCGTG
1305
GTGTCATCCTCATCATCTCCG
1304





FGFR2
TCACCATGGCAACCTTGTC
1307
ACAAAATCTTCCGCACCATC
1308





FGFR2
GGCCCTCCTTCAGTTTAGTTG
1309
TCTTGTTGTTACTGTTCTCACTGACA
1310





FGFR2
TGCAGATGGGATTAACGTCC
1303
ATCTCCGGATGAGATGGCAT
1312





FGFR2
GGGTCGTTTCATCTGCCTG
1313
ACCATCGGTGTCATCCTCAT
1314





FGFR2
GATTGGTACCGTAACCATGGTC
1315
CTCATCATCTCCGGATGAGATG
1316





FGFR2
TGGTCGTGGTCACCATGG
1317
CTCACTGACAAAATCTTCCGC
1318





FGFR2
ATCTGCCTGGTCGTGGTCAC
1319
ATCTTCCGCACCATCGGTGT
1320





FGFR2
ATGGCAACCTTGTCCCTGG
1321
TTACTGTTCTCACTGACAAAATCTTCC
1322





FGFR2
TGAGGATACCACATTAGAGCCAG
1323
TTTCTGTGTTGGTCCAGTATGG
1324





FGFR2
CCTTCAGTGTAGTTGAGGATACCAC
1325
GTTGGTCCAGTATGGTGCTC
1326





FGFR2
GTTTAGTTGAGGATACCACATTAGAGC
1327
CCGCTTTTCCATCTTTTCTG
1328





FGFR2
TCGTGGTCACCATGGCAACC
1329
TCCATCTTTTCTGTGTTGGTCCAGTAT
1330





FGFR2
ACCTTGTCCCTGGCCCGG
1331
CATGGAGCCGCTTTTCCATC
1332





FGFR4
GAAGCACATCGTCATCAACG
1333
AAGTGGGAGACTTGGTTCTGC
1334





FGFR4
ATCAATAGCTCAGAGGTGGAGG
1335
AAGTGGGAGACTTGGTTCTGC
1334





FGFR4
CTGTACCTGCGGAACGTGTC
1336
GAGAACTGCAAAGTGGGAGACT
1337





FGFR4
GAGGTGGAGGTCCTGTACCTG
1338
AGGCTGTCACATGTGAGGTG
1339





FGFR4
AATTCCATCGGCCTCTCCTA
1340
TCCAGGGAGAACTGCAAAGT
1341





FGFR4
AGGCGAGTACACCTGCCTC
1342
AGACTTGGTTCTGCCTGCTG
1343





FGFR4
ACTGCAGACATCAATAGCTCAGAG
1344
TGGAGTCAGGCTGTCACATG
1345





FGFR4
GCTCAGAGGTGGAGGTCCTG
1346
ACTGCAAAGTGGGAGACTTGGTTC
1347





FGFR4
AGGTCCTGTACCTGCGGAAC
1348
ACATGTGAGGTGGGGGATG
1349





FGFR4
GAACGTGTCAGCCGAGGAC
1350
GTTCTGCCTGCTGGAGTCAG
1351





FGFR4
AATAGCTCAGAGGTGGAGGTCCTGTAC
1352
CCTGCTGGAGTCAGGCTGTC
1353





FGFR4
CTGCGGAACGTGTCAGCCG
1354
GTGGGGGATGCGCCCAGTAC
1355





GATA3
CTTCGGATGCAAGTCCAGG
1356
AAGTCCTCCAGTGAGTCATGC
1357





GATA3
CTTCGGATGCAAGTCCAGG
1356
TTGTGAAGCTTGTAGTAGAGCCC
1358





GATA3
AGCATGAAGCTGGAGTCGTC
1359
TGTGGTGGTCTGACAGTTCG
1360





GATA3
CTACGTGCCCGAGTACAGCT
1361
TCCAGAGTGTGGTTGTGGTG
1362





GATA3
ATCACCACCTACCCGCCCTA
1363
ATTGGCATTCCTCCTCCAGA
1364





GATA3
AGTACAGCTCCGGACTCTTCC
1365
GTGTGGTTGTGGTGGTCTGA
1366





GATA3
ACCACCCCATCACCACCTAC
1367
TAGTAGAGCCCACAGGCATTG
1368





GATA3
AAGCTGGAGTCGTCCCACTC
1369
TCTGACAGTTCGCACAGGAC
1370





GATA3
CTCCTCGTCGACCCACCAC
1371
CACAGGCATTGCAGACAGG
1372





GATA3
CTCCCGTGGCAGCATGAC
1373
ATTCCTCCTCCAGAGTGTGGTT
1374





GATA3
AAAGAGTGCCTCAAGTACCAGG
1375
TGCTCTCCTGGCTGCAGA
1376





GATA3
ACCTACCCGCCCTACGTGC
1377
GACGTCCCTGCTCTCCTGG
1378





GATA3
CCGACAGCATGAAGCTGGAG
1379
AGTTCGCACAGGACGTCCCT
1380





GATA3
GATGCAAGTCCAGGCCCAAG
1381
AGCTTGTAGTAGAGCCCACAGGC
1382





GATA3
GACCCACCACCCCATCAC
1383
GTCCCCATTGGCATTCCTC
1384





GATA3
ACCGGCTTCGGATGCAAGTC
1385
TGCAGACAGGGTCCCCATTG
1386





GATA3
GCCCGAGTACAGCTCCGGAC
1387
AGTGTGGTTGTGGTGGTCTGACAGTTC
1388





GATA3
TGGAGCCTCCTCGTCGAC
1389
CACAGGACGTCCCTGCTCTC
1390





GATA3
CCGCCCTACGTGCCCGAGTA
1391
GGCATTGCAGACAGGGTCCC
1392





GATA3
AGCATGACCGCCCTGGGT
1393
ACAGGGTCCCCATTGGCATT
1394





GATA3
AAGGCCCGGTCCAGCACAG
1395
GGCCGGGTTAAACGAGCTGTT
1396





GATA3
CCTGGGTGGAGCCTCCTC
1397
TGCCTTCCTTCTTTCATAGTCAGG
1398





GATA3
CCCCCACCGGCTTCGGAT
1399
CGGGTTAAACGAGCTGTTCTTGGG
1400





GATA3
AGTCGTCCCACTCCCGTGG
1401
TCCTTCTTCATAGTCAGGGGTCTG
1402





GATA3
AAAGAGTGCCTCAAGTACCAGG
1375
CTTCGCTTGGGCTTAATGAG
1404





GATA3
AGCATGAAGCTGGAGTCGTC
1359
AGGCGTTGCACAGGTAGTGT
1406





GATA3
ATCACCACCTACCCGCCCTA
1363
CACAGTTCACACACTCCCTGC
1408





GATA3
CTTCGGATGCAAGTCCAGG
1356
CCGGTTCTGTCCGTTCATTT
1410





GATA3
AGTACAGCTCCGGACTCTTCC
1365
CCGTTCATTTTGTGATAGAGGC
1412





GATA3
ACCACCCCATCACCACCTAC
1367
TAGTGTCCCGTGCCATCTC
1414





GATA3
AAGCTGGAGTCGTCCCACTC
1369
TTGCACAGGTAGTGTCCCGT
1416





GATA3
CTACGTGCCCGAGTACAGCT
1361
GAGGTTGCCCCACAGTTCAC
1418





GATA3
CTCCTCGTCGACCCACCAC
1371
TGCCCCACAGTTCACACACT
1420





GATA3
CCGACAGCATGAAGCTGGAG
1379
CTTAATGAGGGGCCGGTTCT
1422





GATA3
ACCTACCCGCCCTACGTGC
1377
CATCTCGCCGCCACAGTG
1424





GATA3
TGGAGCCTCCTCGTCGAC
1389
TTTGTGATAGAGCCCGCAG
1426





GATA3
GACCCACCACCCCATCAC
1383
GTTCTGTCCGTTCATTTTGTGAT
1428





GATA3
CTCCCGTGGCAGCATGAC
1373
ACAGTGGGGTCGAGGTTGC
1430





GATA3
ACCGGCTTCGGATGCAAGTC
1385
CTTGGGCTTAATGAGGGGCC
1432





GATA3
GCCCGAGTACAGCTCCGGAC
1387
GGGTCGAGGTTGCCCCACAG
1434





GATA3
AGTCGTCCCACTCCCGTGG
1401
CACAGGTAGTGTCCCGTGCCATC
1436





GATA3
GATGCAAGTCCAGGCCCAAG
1381
GATAGAGCCCGCAGGCGTTG
1438





GATA3
CCGCCCTACGTGCCCGAGTA
1391
AGGGGCCGGTTCTGTCCGTT
1440





GATA3
AGCATGACCGCCCTGGGT
1393
CCCGCAGGCGTTGCACAG
1442





GATA3
CCCGGCAGGACGAGAAAGAG
1443
CCGCCACAGTGGGGTCGAG
1444





GATA3
CCTGGGTGGAGCCTCCTC
1397
TCCAGAGTGTGGTTGTGGTG
1362





GATA3
AAGGCCCGGTCCAGCACAG
1395
ACAGGGTCCCCATTGGCATT
1394





GATA3
GACGAGAAAGAGTGCCTCAAGT
1449
TGCTCTCCTGGCTGCAGA
1376





GATA3
CCTCAAGTACCAGGTGCCC
1451
CACAGGACGTCCCTGCTCTC
1390





GATA3
CCCCCACCGGCTTCGGAT
1399
GAGCCCACAGGCATTGCAGA
1454





GATA3
CCTGCCCGACAGCATGAAG
1455
CTGACAGTTCGCACAGGACG
1456





GATA3
GTGGCAGCATGACCGCCCT
1457
GACGTCCCTGCTCTCCTGGC
1458





GATA3
GACCGCCCTGGGTGGAGC
1459
CCCCATTGGCATTCCTCCTC
1460





GATA3
GTGCCCCTGCCCGACAGC
1461
CAGTTCGCACAGGACGTCCCTG
1462





GATA3
GGACCCATCGCTGTCCAC
1463
TGTGGTGGTCTGACAGTTCG
1360





GATA3
TGTCCACCCCAGGCTCGG
1465
GGTGGTCTGACAGTTCGCACAGG
1466





GATA3
ATCGCTGTCCACCCCAGG
1467
GTGTGGTTGTGGTGGTCTGA
1366





GNB3
AGGTCCAGCCAGAGCCCAA
1469
ACTCGTCCCACCACCTCTAG
1470





GNB3
AGAGTGACCCCTCGACCTGT
1471
TGCCAGAGTAACGTCAGCAC
1472





GNB3
GAGCCAGAGTGACCCCTCG
1473
AGAGTAACGTCAGCACAGGCTT
1474





GNB3
CCCTCGACCTGTCAGCCATG
1475
TAACGTCAGCACAGGCTTTCCTGG
1476





GNB3
AGATGGAGCAACTGCGTCAG
1477
ACTCGTCCCACCACCTCTAG
1470





GNB3
CAGCTCAAGAAGCAGATTGC
1479
GTGCATGGCGTAAATCTTGG
1480





GNB3
TCAGGAAGCGGAGCAGCT
1481
TAAATCTTGGCCAGGTGTCC
1482





GNB3
CAACTGCGTCAGGAAGCG
1483
CAGGTGTCCCCTTAACGTCC
1484





GNB3
ATGGGGGAGATGGAGCAACT
1485
GTCCGCATCTGGACTCGTC
1486





GNB3
AAGCGGAGCAGCTCAAGAAG
1487
TAGAATCAGTGGCCCAGTGC
1488





GNB3
TCAGCCATGGGGGAGATG
1489
ACCACCTCTAGGCCAGACACC
1490





GNB3
GCGGAGCAGCTCAAGAAGCAGATT
1491
GGCCCAGTGCATGGCGTAAAT
1492





GNB3
CTGCGTCAGGAAGCGGAGCA
1493
TCTTGGCCAGGTGTCCCCTTAA
1494





GNB3
ACCTGTCAGCCATGGGGGAG
1495
GCATCTGGACTCGTCCCACC
1496





GNB3
AGGTCCAGCCAGAGCCCAA
1469
ATCTGGACTCGTCCCACCACCTCT
1498





GNB3
ACCGGAGCTGGAAACCCG
1499
CTTAACGTCCGCCGCGTCC
1500





GNB3
CAGGAACCGGAGCTGGAAAC
1501
TGGCGTAAATCTTGGCCAGG
1502





HMGA1
CCCAGCCATCACTCTTCC
1503
GAGATGCCCTCCTCTTCCTC
1504





HMGA1
CCCAGCCATCACTCTTCC
1503
TTTGCTTCCCTTTGGTCG
1505





HMGA1
AAGGGAAGATGAGTGAGTCGAG
1506
CTCTTAGGTGTTGGCACTTCG
1507





HMGA1
TCTTCCACCTGCTCCTTAGAGA
1508
ACCCTTGTTTTTGCTTCCCT
1509





HMGA1
CCATCACTCTTCCACCTGCT
1510
CCCGAGGTCTCTTAGGTGTTG
1511





HMGA1
AGTGAGTCGAGCTCGAAGTCC
1512
CTTGTTTTTGCTTCCCTTTGGTC
1513





HMGA1
AAGATGAGTGAGTCGAGCTCGAA
1514
GTGTTGGCACTTCGCTGGG
1515





HMGA1
CACCTGCTCCTTAGAGAAGGGAA
1516
GTCGGCCCCGAGGTCTCTTA
1517





HMGA1
CTCGAAGTCCAGCCAGCCCTT
1518
CCGAGGTCTCTTAGGTGTTGGCACTTC
1519





HMGA1
ATCCCAGCCATCACTCTTCCACCT
1520
CTTTGGTCGGCCCCGAGGT
1521





HMGA1
TGGCCTCCAAGCAGGAAA
1522
GAGATGCCCTCCTCTTCCTC
1504





HMGA1
TCCTTAGAGAAGGGAAGATGAGTG
1524
TGTCCAGTCCCAGAAGGAAG
1525





HMGA1
AAAGGACGGCACTGAGAAGC
1526
GAGGACTCCTGCGAGATGC
1527





HMGA1
TCCAAGCAGGAAAAGGACG
1528
GAGCGGAGCAAAGCTGTC
1529





HMGA1
CAGCCCTTGGCCTCCAAG
1530
ATGGGTCACTGCTCCTCCTC
1531





HMGA1
CAGGAAAAGGACGGCACTGA
1532
GTCCCAGAAGGAAGCTGCTC
1533





HMGA1
TCCAGCCAGCCCTTGGCCT
1534
TCCTGCGAGATGCCCTCCTC
1535





HMGA1
GGCACTGAGAAGCGGGGC
1536
AGTGAGGAGCAGGCGGCAC
1537





HMGA1
CTGGCGCGGCTCCAAGAAG
1538
CCTCCGAGGACTCCTGCGAG
1539





HMGA1
TCTAATTGGGACTCCGAGCC
1540
TCTTGGCAGCACCCTTGTTT
1541





HMGA1
GCTATTTCTGGCGCTGGC
1542
GCAGCACCCTTGTTTTTGCT
1543





HMGA1
CCGGGGCTATTTCTGGCGCT
1544
CCGGGTCTTGGCAGCACC
1545





HMGA1
GTCCTCAGCGCCCAGCAC
1546
TCACTGCTCCTCCTCCGAGG
1547





HMGA1
ATCCGCATTTGCTACCAGC
1548
CTCCTCCTCCGAGGACTCCT
1549





HMGA1
AGCCAGGCCGGTCCTCAG
1550
CACGCATGGGTCACTGCTC
1551





HMGA1
CATTTGCTACCAGCGGCGG
1552
GAGCAGGCGGCACGCATG
1553





HMGA1
GCTCCTCTAATTGGGACTCC
1554
TCCTGGAGTTGTGGTGGTTT
1555





HMGA1
ACTCCGAGCCGGGGCTATTT
1556
TCTGCCCCTTGGTTTCCTTC
1557





HMGA1
TTTTAAGCTCCCCTGAGCC
1558
TTTCCTTCCTGGAGTTGTGG
1559





HMGA1
CTCCCCTGAGCCGGTGCTG
1560
GTTTCCTTCCTGGAGTTGTGGTGGTTT
1561





HMGA1
GTGCTGCGCTCCTCTAATTG
1562
CCTTGGTTTCCTTCCTGGAG
1563





HMGA1
AGCCGGTGCTGCGCTCCT
1564
TTTGGGTCTGCCCCTTGGTT
1565





HMGA1
TGGGTCGCTCTTTTTAAGCTC
1566
TCCTCCAGTGAGGAGCAGG
1567





HMGA1
GCTCTTTTTAAGCTCCCCTG
1568
AGCTGCTCCTCCAGTGAGG
1569





HMGA1
GCCCCTGGGTCGCTCTTTT
1570
CAGAAGGAAGCTGCTCCTCCAG
1571





HMGA1
TCCAGCCAGCCCTTGGCCT
1534
CTTCCCTTTGGTCGGCCCC
1573





HMGA1
TCGAGCTCGAAGTCCAGCCA
1574
CACGCATGGGTCACTGCTC
1551





HMGA1
AGCCCTTGGCCTCCAAGCAG
1576
TCCTGCGAGATGCCCTCCTC
1535





HMGA1
CTGGCGCGGCTCCAAGAAG
1538
TGCTCCTCCTCCGAGGACTC
1579





HMGA1
GTGCTGCGCTCCTCTAATTG
1562
GCAGCACCCTTGTTTTTGCT
1543





HMGA1
AGCCAGGCCGGTCCTCAG
1550
GGTCACTGCTCCTCCTCCG
1583





HMGA1
ACTCCGAGCCGGGGCTATTT
1556
CCGGGTCTTGGCAGCACC
1585





HMGA1
GTCCTCAGCGCCCAGCAC
1546
CAGAAGGAAGCTGCTCCTCCAG
1571





HMGA1
GCCGGGGCTATTTCTGGC
1588
TCCTCCAGTGAGGAGCAGG
1567





HMGA1
TGGGTCGCTCTTTTTAAGCTC
1566
CCTTGGTTTCCTTCCTGGAG
1563





HMGA1
GCCCCTGGGTCGCTCTTTT
1570
TCTGCCCCTTGGTTTCCTTC
1557





HMGA1
GCTCTTTTTAAGCTCCCCTG
1568
AAGCTGCTCCTCCAGTGAGG
1595





HMGA1
CCATCACTCTTCCACCTGCT
1510
ATGGGTCACTGCTCCTCCTC
1531





HMGA1
TCTTCCACCTGCTCCTTAGAGA
1508
AAGCTGCTCCTCCAGTGAGG
1595





HMGA1
AAGGGAAGATGAGTGAGTCGAG
1506
TCCTCCAGTGAGGAGCAGG
1567





HMGA1
CCCAGCCATCACTCTTCC
1503
CTCCTCCTCCGAGGACTCCT
1549





HMGA1
ATCCCAGCCATCACTCTTCCACCT
1520
TCACTGCTCCTCCTCCGAGG
1547





HMGA1
CACCTGCTCCTTAGAGAAGGGAA
1516
CAGAAGGAAGCTGCTCCTCCAG
1571





HMGA1
AGTGAGTCGAGCTCGAAGTCC
1512
CACGCATGGGTCACTGCTC
1551





HMGA1
AGCCCTTGGCCTCCAAGCAG
1576
GAGCAGGCGGCACGCATG
1553





HMGA1
AAGATGAGTGAGTCGAGCTCGAA
1514
AGCAAAGCTGTCCAGTCCC
1613





HMGA1
AGCGCTGGTAGGGAGTCAG
1614
CTGGTGTGCTGTGTAGTGTGG
1615





HMGA1
AAGCAGCCTCCGGTGAGTC
1616
TGTGTAGTGTGGTGGTGAGGG
1617





HMGA1
TCGAAGTCCAGCCAGCCCTT
1618
CAAAGCTGTCCAGTCCCAGAAGG
1619





HMGA1
CTCCGGTGAGTCCCGGGA
1620
GTGTGCTGTGTAGTGTGGTGGTGA
1621





HMGA1
GGGACAGCGCTGGTAGGGAG
1622
GTGAGGGCACAGGTGGAAGAT
1623





HMGA1
CGAAGTGCCAACACCTAAGAG
1624
TGTCCAGTCCCAGAAGGAAG
1525





HMGA1
CCAACACCTAAGAGACCTCGG
1626
AAGCTGCTCCTCCAGTGAGG
1595





HMGA1
CGACCAAAGGGAAGCAAA
1268
GAGCGGAGCAAAGCTGTC
1629





HMGA1
AAGGGAAGCAAAAACAAGGG
1630
AGCAAAGCTGTCCAGTCCC
1613





HMGA1
CCCAGCGAAGTGCCAACAC
1632
CAAAGCTGTCCAGTCCCAGAAGG
1619





HMGA1
CCTAAGAGACCTCGGGGCCG
1634
AGTGAGGAGCAGGCGGCAC
1537





HMGA1
GGGGCCGACCAAAGGGAAG
1636
CAGAAGGAAGCTGCTCCTCCAG
1571





HMGA1
TCGAAGTCCAGCCAGCCCTT
1618
CCTCCGAGGACTCCTGCGAG
1539





HMGA1
AGCCAGGCCGGTCCTCAG
1550
GGTGGGAGCGGAGCAAAGCT
1641





HMGA1
GTCCTCAGCGCCCAGCAC
1546
ATGGTGGGCCTGGGGAAG
1643





HMGA1
TTTGCTACCAGCGGCGGC
1644
CTGGGGAAGGGGTGGGGG
1645





HMGA1
CGAGCTCGAAGTCCAGCCAG
1646
GGTGGGAGCGGAGCAAAGCT
1641





HMGA1
AGCCAGGCCGGTCCTCAG
1550
CTGGGGAAGGGGTGGGGG
1645





HMGA1
AGCCCTTGGCCTCCAAGCAG
1576
CCGAGGTCTCTTAGGTGTTGGCACTTC
1519





HMGA1
TGGCCTCCAAGCAGGAAAAG
1652
AAGCTGCTCCTCCAGTGAGG
1595





HMGA1
AGCCAGGCCGGTCCTCAG
1550
CTGCGAGATGCCCTCCTCTT
1655





HMGA1
CTGGCGCGGCTCCAAGAAG
1538
TTTGGGTCTGCCCCTTGGTT
1565





HMGA1
CTCCCCTGAGCCGGTGCTG
1560
GGTCACTGCTCCTCCTCCGA
1659





HMGA1
AGCCGGTGCTGCGCTCCT
1564
TCACTGCTCCTCCTCCGAGGACTC
1661





HMGA1
CGGTGCTGCGCTCCTCTAATT
1662
CGGCACGCATGGGTCACT
1663





HMGA1
TGCTGCGCTCCTCTAATTGGGACT
1664
GTTTCCTTCCTGGAGTTGTGGTGGTTT
1561





HMGA1
GCTCTTTTTAAGCTCCCCTG
1568
CCTTGGTTTCCTTCCTGGAG
1563





HMGA1
GGTTTCAGATCCGCATTTGC
1668
CAGAAGGAAGCTGCTCCTCCAG
1571





HMGA1
TCTCTCCCGGTTTCAGATCC
1670
AGCAAAGCTGTCCAGTCCC
1613





HMGA1
TTTCAGATCCGCATTTGCTACCAG
1672
CAAAGCTGTCCAGTCCCAGAAGG
1619





HMGA1
TCCTTAGAGAAGGGAAGATGAGTG
1524
CACTTCGCTGGGCTCCTT
1675





HMGA1
CGAGCTCGAAGTCCAGCCAG
1646
GGTCACTGCTCCTCCTCCGA
1659





HMGA1
CTGGCGCGGCTCCAAGAAG
1538
CCTGCGAGATGCCCTCCTCTT
1679





HMGA1
GCCGGGGCTATTTCTGGC
1588
AGATGCCCTCCTCTTCCTCC
1681





HMGA1
TTTGCTACCAGCGGCGGC
1644
GAGCAGGCGGCACGCATG
1553





HMGA1
GCTCCTCTAATTGGGACTCC
1554
GCAGCACCCTTGTTTTTGCT
1543





HMGA1
TGGGTCGCTCTTTTTAAGCTC
1566
TCCTGGAGTTGTGGTGGTTT
1555





HMGA1
ATCCGCATTTGCTACCAGC
1548
CCTTGGTTTCCTTCCTGGAG
1563





HMGA1
GTGCTGCGCTCCTCTAATTG
1562
TCTGCCCCTTGGTTTCCTTC
1557





HMGA1
GCTCTTTTTAAGCTCCCCTG
1568
TCCTCCAGTGAGGAGCAGG
1567





HMGA1
GCCCCTGGGTCGCTCTTTT
1570
AGCTGTCCAGTCCCAGAAGG
1695





HMGA1
GTCCTCAGCGCCCAGCAC
1546
AGATGCCCTCCTCTTCCTCC
1681





HMGA1
CTGGCGCGGCTCCAAGAAG
1538
TCACTGCTCCTCCTCCGAGGACTC
1661





HMGA1
GCCGGGGCTATTTCTGGC
1588
TCTGCCCCTTGGTTTCCTTC
1557





HMGA1
TTTCAGATCCGCATTTGCTAC
1702
GAAGGAAGCTGCTCCTCCAG
1703





HMGA1
ATCCCAGCCATCACTCTTCCACCT
1520
CCTCCGAGGACTCCTGCGAG
1539





HMGA1
GTCCTCAGCGCCCAGCAC
1546
CTGGGGAAGGGGTGGGGG
1645





HMGA1
ATCCGCATTTGCTACCAGC
1548
TCCTCCAGTGAGGAGCAGG
1567





HMGA1
GCTCTTTTTAAGCTCCCCTG
1568
AGCAAAGCTGTCAGTCCC
1613





HMGA1
GGGTTTAGCCCTAGCCGCTA
1712
CAAAGCTGTCCAGTCCCAGAAGG
1619





HMGA1
GCCTCGGGGGTTTAGCCCTA
1714
GGTGGGAGCGGAGCAAAGCT
1641





HMGA1
CTGGAGCCTGATGCCTCG
1716
ATGGTGGGCCTGGGGAAG
1643





HMGA1
CCTGATGCCTCGGGGGTTTA
1718
CTGGGGAAGGGGTGGGGG
1645





HMGA1
CGGGTCTGGAGCCTGATG
1720
GGTGGTGATGGTGGGCCT
1721





HMGA1
ATCACTCTTCCACCTGCTCC
1722
TGTGTAGTGTGGTGGTGAGGG
1617





HSC20
TCAGAGAAGCATTCGACCCT
1724
TTGTCATCCACCCACCTCA
1725





HSC20
TCAGAGAAGCATTCGACCCT
1724
CTTGTTCAAAAGCACTGCTCAC
1727





HSC20
AAGCATTCGACCCTGGTGAA
1728
AAAGCACTGCTCACATTGTCAG
1729





HSC20
TTCGACCCTGGTGAATGATG
1730
CACTGCTCACATTGTCAGTAAATTC
1731





HSC20
CCTGAGCAGAGGACTGTACCTT
1732
TTGTCATCCACCCACCTCA
1725





HSC20
GCCTATAAGACCCTCCTGGC
1734
AAATTTCCTTGGCTTCTTCAAAG
1735





HSC20
GAATGATGCCTATAAGACCCTCC
1736
GTGCCCAGCAAGAACTTTATTT
1737





HSC20
ATACAGCGAAGCTCCAGCAC
1738
CATCTTTGTCAAAATTTCCTTGG
1739





HSC20
TCCTTCAGAGTTGATACAGCGA
1740
TTGTCAAAATTTCCTTGGCTTCTT
1741





HSC20
CAACCGTTCCTTCAGAGTTGA
1742
ATTTGAAAAGTATCTCATCTTTGTCAA
1743





HSC20
CCCACTCGAGACTACTTCAGC
1744
TCCACAATTAAAGGGGAATCTTC
1745





HSC20
TTCTTCAGCCAGAGGTCTCAG
1746
TCCACAATTAAAGGGGAATCTTC
1745





HSC20
ACCTGACCCCACTCGAGACT
1747
AACTTTAAACTATCCACAATTAAAGGG
1748





HSC20
CCAGATTTCTTCAGCCAGAGG
1749
CTTTAAACTATCCACAATTAAAGGGG
1750





HSC20
GACCCTGGTGAATGATGCCTATA
1751
CTCACATTGTCAGTAAATTCTTTCTGT
1750





HSC20
CCTGAGCAGAGGACTGTACCTT
1732
TCCACAATTAAAGGGGAATCTTC
1745





HSC20
CTATAAGACCCTCCTGGCCC
1755
CATCTTTGTCAAAATTTCCTTGG
1739





HSC20
TCCTTCAGAGTTGATACAGCGA
1740
AAATTTCCTTGGCTTCTTCAAAG
1735





HSC20
ATACAGCGAAGCTCCAGCAC
1738
TTGTCAAAATTTCCTTGGCTTCTT
1741





HSC20
AGAGTTGATACAGCGAAGCTCC
1761
CTTTAAACTATCCACAATTAAAGGGG
1750





HSC20
TTCTTCAGCCAGAGGTCTCAG
1746
CTTTAAACTATCCACAATTAAAGGGG
1750





HSC20
CGTCTTGTCCACCCAGATTT
1764
GGGAATCTTCTTTAACTTGATCTTTTC
1765





HSC20
TCAGAGAAGCATTCGACCCT
1724
CCTGTCCATTTCATAATCTGTCC
1767





HSC20
GCCTATAAGACCCTCCTGGC
1734
CAGCTTCACTTTCAGCTTCTGC
1769





HSC20
TTCGACCCTGGTGAATGATG
1730
TTCTATGAGGAATTGCCTGTCC
1771





HSC20
CCTGAGCAGAGGACTGTACCTT
1732
TTCAATCTCTTTCATGGCAGC
1773





HSC20
GAATGATGCCTATAAGACCCTCC
1736
CACTTTCAGCTTCTGCGAGTTT
1775





HSC20
AAGCATTCGACCCTGGTGAA
1728
GGAATTGCCTGTCCATTTCA
1777





HSC20
GACCCTGGTGAATGATGCCTATA
1751
CCATTATTTCTATGAGGAATTGCC
1779





HSC20
AGAGTTGATACAGCGAAGCTCC
1761
TGTCCTTTCAGGAATCTCTATTCC
1781





HSC20
CAACCGTTCCTTCAGAGTTGA
1742
CTTTCATGGCAGCTTCACTTTC
1783





HSC20
TCCTTCAGAGTTGATACAGCGA
1740
CAGGAATCTCTATTCCATGGAGC
1785





HSC20
ATACAGCGAAGCTCCAGCAC
1786
TTTGACAATGGATTCAATCTCTTTC
1787





HSC20
AGTTGATACAGCGAAGCTCCAGCACAG
1788
CAATGGATTCAATCTCTTTCATGGCAG
1789





HSC20
CGTCTTGTCCACCCAGATTT
1764
CCATTTCATAATCTGTCCTTTCAGG
1791





HSC20
CCAGATTTCTTCAGCCAGAGG
1749
TGCGAGTTTTTCATTGATTTCC
1793





HSC20
AGCAACTGCAGCGTCTTGTC
1794
CATAATCTGTCCTTTCAGGAATCTCT
1795





HSC20
AAGCTCCAGCACAGGTACCA
1796
AGCTTCTGCGAGTTTTTCATTG
1797





HSC20
GGGAGACTGGAAGACTTGAATG
1798
CACTGCTCACATTGTCAGTAAATTC
1731





HSC20
GACTGGAAGACTTGAATGAATAGG
1800
CTCACATTGTCAGTAAATTCTTTCTGT
1750





HSC20
GGCCTGGGAGACTGGAAGAC
1802
AAATTTCCTTGGCTTCTTCAAAG
1735





HSC20
GTACTTGAGGGGCAGGGC
1804
CATCTTTGTCAAAATTTCCTTGG
1739





HSC20
GGCAGGGCCTGGGAGACTG
1806
CTTTGTCAAAATTTCCTTGGCTTCTTC
1807





HSC20
AGCAACTGCAGCGTCTTGTC
1794
ATTTGAAAAGTATCTCATCTTTGTCAA
1809





IGSF4
CACCACCATCCTTACCATCATC
1810
AGAATGATGAGCAAGCACAGC
1811





IGSF4
CGACGACAGAACCAGCAGTT
1812
AGAATGATGAGCAAGCACAGC
1811





IGSF4
ACACAACGGCGACGACAGAA
1813
AAGCACAGCATGGCGAACAC
1814





IGSF4
CACCACCATCCTTACCATCATC
1810
CAAAATAGCGCCCCAGAATG
1816





IGSF4
ACAACTATCCCTCCTCCCACA
1817
ATCGAGCCTTCTTCACCTGC
1818





IGSF4
ATCCCTCCTCCCACAACAAC
1819
CATGATCCACTGCCCTGATC
1820





IGSF4
ACCACCACCACCATCCTTAC
1821
TTATGTCTGGCAAAATAGCGC
1822





IGSF4
CCCCCACAACTATCCCTCCT
1823
TTCTTCACCTGCTCGGGAAT
1824





IGSF4
CCTCCCACAACAACCACCAC
1825
ATGAGCAAGCACAGCATGGC
1826





IGSF4
CCCAACCTGTTCATCAATAACC
1827
CCCTGATCGAGCCTTCTTC
1828





IGSF4
ATGGTAACTTGGGTGAGAGTCG
1829
CACCGATCACGGCATGAT
1830





IGSF4
ATGGTACATACCGCTGTGAAGC
1831
GCCCCAGAATGATGAGCAAG
1832





IGSF4
ATGAAATGCCTCAACACGCC
1833
CACTGCCCTGATCGAGCCTT
1834





IGSF4
TGGGGAAAGCTCACTCGGATTA
1835
AATAGCGCCCCAGAATGATGAGC
1836





IGSF4
CTTCAAACATAGTGGGGAAAGC
1837
GCTCCTTTGGCTTCATGAGT
1838





IGSF4
GCTCACTCGGATTATATGCTGTATG
1839
TTATAGCTGTGTCTGCGTCTGC
1840





IGSF4
AACATAGTGGGGAAAGCTCACTC
1841
GTCATCGGCTCCTTTGGCTT
1842





IGSF4
TGTGAAGCTTCAAACATAGTGGG
1843
TGCGTCTGCTGCGTCATC
1844





IGSF4
ATACCGCTGTGAAGCTTCAAACATAGT
1845
GCTGCGTCATCGGCTCCTTT
1846





IGSF4
CAGATAATGGTACATACCGCTGTG
1847
CCTCCTTCTGCATTGATTATAGC
1848





IGSF4
AACAAAACAGATAATGGTACATACCG
1849
CATTGATTATAGCTGTGTCTGCG
1850





IGSF4
TCTGGGCCCAACCTGTTCAT
1851
GTGTCTGCGTCTGCTGCGTC
1852





IGSF4
GTACTGTCTGGGCCCAACCT
1853
CCTTCTGCATTGATTATAGCTGTGTCT
1854





IGSF4
CCTCCCACAACAACCACCAC
1825
AAGCACAGCATGGCGAACAC
1814





IGSF4
CTTCAAACATAGTGGGGAAAGC
1857
ATCACGGCATGATCCACTG
1858





IGSF4
ATGGTACATACCGCTGTGAAGC
1831
ATGGCGAACACCACCACC
1860





IGSF4
TGGGGAAAGCTCACTCGGATTA
1835
CACGACGCCACCGATCAC
1862





IGSF4
AACAAAACAGATAATGGTACATACCG
1849
CCTTTGGCTTCATGAGTGAAG
1864





IGSF4
GTACATACCGCTGTGAAGCTTCAAAC
1865
GCTGCGTCATCGGCTCCTTT
1846





IGSF4
TCAACACGCCGTACTGTCTG
1867
TTGGCTTCATGAGTGAAGTATGTAC
1868





IGSF4
ATGCCTCAACACGCCGTACT
1869
CGGCTCCTTTGGCTTCATGA
1870





IGSF4
GAGTCGATGATGAAATGCCTC
1871
TTCGGAGTCGTTCTGTCCTC
1872





IGSF4
ACGCCGTACTGTCTGGGCCC
1873
TCTTCGGAGTTGTTCTGTCCTCCTTCT
1874





IGSF4
AACAAAACAGATAATGGTACATACCG
1849
GCTCCTTTGGCTTCATGAGT
1838





KITLG
TGATGCCTTCAAGGACTTTGT
1877
CTGCCCTTGTAAGACTTGGC
1878





KITLG
CCAGGCTCTTTACTCCTGAAGA
1879
TCCAGTATAAGGCTCCAAAAGC
1880





KITLG
TCATTCAAGAGCCCAGAACC
1881
CTCCAAAAGCAAAGCCAATT
1882





KITLG
GTGTGGTTTCTTCAACATTAAGTCC
1883
TAAGGCTCCAAAAGCAAAGC
1884





KITLG
CAAGGACTTTGTAGTGGCATCTG
1885
GAAAACAATGCTGGCAATGC
1886





KITLG
GCATCTGAAACTAGTGATTGTGTGG
1887
ATAAGAGAAAACAATGCTGGCAA
1888





KITLG
GATCCATTGATGCCTTCAAGG
1889
CCAAAAGCAAAGCCAATTATAAGAG
1890





KITLG
CCAGAACCCAGGCTCTTTACT
1891
GCCCAGTGTAGGCTGGAGTC
1892





KITLG
GGCTCTTTACTCCTGAAGAATTCTTT
1893
CCATGGCTGCCCAGTGTAG
1894





KITLG
AAGAGCCCAGAACCCAGGCT
1895
AGGGGGATTTTTGGCCTTC
1896





KITLG
GGACTTTGTAGTGGCATCTGAAACTAG
1897
AATGCTGGCAATGCCATGG
1898





KITLG
TGCCTTCAAGGACTTTGTAGTGGC
1899
CAATGCCATGGCTGCCCAGT
1900





KITLG
AAAATCATTCAAGAGCCCAGAACCCAG
1901
GTATAAGGCTCCAAAAGCAAAGCCAAT
1902





KITLG
GTGATTGTGTGGTTTCTTCAACA
1903
CTGCCCTTGTAAGACTTGGC
1878





KITLG
GAAACTAGTGATTGTGTGGTTTCTTC
1905
CCTTGTAAGACTTGGCTGTCTCTT
1906





KITLG
TTCTTCAACATTAAGTCCTGAGAAAG
1907
TTTGTATATTTTCAACTGCCCTTG
1908





KITLG
GTGGAGTGCGTGAAAGAAAACTCATC
1909
CAACTGCCCTTGTAAGACTTGGCTGTC
1910





KITLG
TCCCCGGGATGGATGTTTTG
1911
GTCTCCAGGGGGATTTTTGGCCTT
1912





LGALS9
GTGATGGTGAACGGGATCCT
1913
GTTGGCAGGCCACACGCC
1914





LGALS9
ACGGGATCCTCTTCGTGCAGTA
1915
GTTGGCAGGCCACACGCC
1914





LGALS9
GGATCCTCTTCGTGCAGTACTTCCAC
1916
AATGGGAGCCGGGTTGGC
1917





LGALS9
GTGATGGTGAACGGGATCCT
1913
GCTCTGCACTGTGTGGATGA
1919





LGALS9
GACACCATCTCCGTCAATGG
1920
AGAGAACATCTGTCCAGGGG
1921





LGALS9
AGTACTTCCACCGCGTGC
1922
TGTGTGGATGACTGTCTGGG
1923





LGALS9
GGTGAACGGGATCCTCTTCG
1924
CTGCACTGTGTGGATGACTGTCT
1925





LGALS9
TTCCACCGTGTGGACACCAT
1926
ATCTGTCCAGGGGCGCTCTG
1927





LGALS9
CCGTGTGGACACCATCTCCG
1928
AGGGGCGCTCTGCACTGTGT
1929





LGALS9
AATGGCTCTGTGCAGCTGTC
1930
GGGTACATCATAGGTGGGATGG
1931





LGALS9
GCTGTCCTACATCAGCTTCCA
1932
GGGGTGGGGGTACATCATAG
1933





LGALS9
TCTCCGTCAATGGCTCTGTG
1934
ATAGGTGGGATGGCGGGAGT
1935





LGALS9
GGCTCTGTGCAGCTGTCCTACAT
1936
ATAGGCGGGGTGGGGGTACAT
1937





LGALS9
GTGCCCTTCCACCGTGTG
1938
GGTACAGCCCTCCCAGAATG
1939





LGALS9
TGTGCAGCTGTCCTACATCAGCTT
1940
GGTGGTGATGAAAGGCATCG
1941





LGALS9
CTTCCACCGCGTGCCCTTC
1942
CCCTCCCAGAATGGTGGTGAT
1943





LGALS9
CTGGTGCAGAGCTCAGATTTC
1944
CAGAATGGTGGTGATGAAAGG
1945





LGALS9
CTTTGACCTCTGCTTCCTGG
1946
TGGACTTGGATGGGTACAGC
1947





LGALS9
GCTTCCTGGTGCAGAGCTC
1948
AGGAGGATGGACTTGGATGG
1949





LGALS9
ACCTCTGCTTCCTGGTGCAG
1950
TTGGATGGGTACAGCCCTCC
1951





LGALS9
ATGCCCTTTGACCTCTGCTT
1952
CTGACAGGAGGATGGACTTG
1953





LGALS9
ACACATGCCTTTCCAGAAGG
1954
AGGACAGTGCCTGACAGGAG
1955





LGALS9
TTTCCAGAAGGGGATGCC
1956
AGTGCCTGACAGGAGGATGG
1957





LGALS9
AGGAGAGGAAGACACACATGC
1958
CACTGGGCAGGACAGTGC
1959





LGALS9
AGGGGATGCCCTTTGACCTC
1960
TGGGCAGGACAGTGCCTGAC
1961





LGALS9
GGAAGACACACATGCCTTTCC
1962
CTGAGCACTGGGCAGGACAG
1963





MCL1
CCAAGGACACAAAGCCAATG
1964
TGGAAGAACTCCACAAACCC
1965





MCL1
TGGAGACCTTACGACGGGTT
1966
TACTCCAGCAACACCTGCAA
1967





MCL1
GAAGGCGCTGGAGACCTTAC
1968
CACATTCCTGATGCCACCTT
1969





MCL1
GCAGCGCAACCACGAGAC
1970
CAAACCAGCTCCTACTCCAGC
1971





MCL1
GACACAAAGCCAATGGGCAG
1972
AGGTCCTCTACATGGAAGAACTCC
1973





MCL1
ACGAGACGGCCTTCCAAG
1974
TTAGATATGCCAAACCAGCTCC
1975





MCL1
CTTACGACGGGTTGGGGATG
1976
ACACCTGCAAAAGCCAGCAG
1977





MCL1
AAAGCCAATGGGCAGGTCTG
1978
TTCCTGATGCCACCTTCTAGGT
1979





MCL1
TTATCTCTCGGTACCTTCGGG
1980
TCTACATGGAAGAACTCCACAAAC
1981





MCL1
CAACCACGAGACGGCCTT
1982
ATATGCCAAACCAGCTCCTACTCC
1983





MCL1
GTCTGGGGCCACCAGCAG
1984
AAGCCAGCAGCACATTCCTG
1985





MCL1
AGCAGGAAGGCGCTGGAGAC
1986
CAGCAACACCTGCAAAAGCC
1987





MCL1
GTACCTTCGGGAGCAGGC
1988
CCTTCTAGGTCCTCTACATGGAAG
1989





MCL1
GGGCCACCAGCAGGAAGG
1990
TGATGCCACCTTCTAGGTCCTCTA
1991





MCL1
ATGGGCAGGTCTGGGGCC
1992
CAGCAGCACATTCCTGATGCCA
1993





MCL1
CGGCGCCAAGGACACAAAG
1994
TGCAAAAGCCAGCAGCACAT
1995





MCL1
GTACCGGCAGTCGCTGGAGATTA
1996
CAGCACATTCCTGATGCCACCTTCTAG
1997





NRG1
GTTTACTGGTGATCGCTGCC
1998
TGGGCTGTGGAAGTATAGTGAC
1999





NRG1
GTTTACTGGTGATCGCTGCC
1998
ACCACACACATGATGCCGAC
2000





NRG1
GTGCCCAAATGAGTTTACTGG
2001
ACATGATGCCGACCACAAG
2002





NRG1
GATCGCTGCCAAAACTACGT
2003
TAGGCCACCACACACATGAT
2004





NRG1
CCAAATGAGTTTACTGGTGATCG
2005
TTGGTTTTGCAGTAGGCCAC
2006





NRG1
CTGCCAAAACTACGTAATGGC
2007
TTTGCAGTAGGCCACCACAC
2008





NRG1
AATGAGTTTACTGGTGATCGCTGCCAA
2009
CACAAGGAGGGCGATGCAGAT
2010





NRG1
ACTGGTGATCGCTGCCAAAACTAC
2011
GATGCCGACCACAAGGAGGG
2012





NRG1
GTGATCGCTGCCAAAACTACGTAATGG
2013
GGCGATGCAGATGCCGGTTAT
2014





NRG1
CTGGGACAAGCCATCTTGTAA
2015
TATGGTCAGCACTCTCTTCTGG
2016





NRG1
GAGTGCTTCATGGTGAAAGACC
2017
TCTCTTCTGGTACAGCTCCTCC
2018





NRG1
AACTTTCTGTGTGAATGGAGGG
2019
AGATGCCGGTTATGGTCAGC
2020





NRG1
TACATCTACATCCACCACTGGG
2021
TCAGCACTCTCTTCTGGTACAGC
2022





NRG1
AACCCCTCGAGATACTTGTGC
2023
CCGGTTATGGTCAGCACTCT
2024





NRG1
ATCTACATCCACCACTGGGACAAGCC
2025
AGATGCCGGTTATGGTCAGCACTCTCT
2026





NRG1
ACGTAATGGCCAGCTTCTACA
2027
GGTGGGTTAGGATGGTGAGG
2028





NRG1
AAAACTACGTAATGGCCAGCTTC
2029
TGTTTCGTTCAGACCGAAGG
2030





NRG1
GTGCGGAGAAGGAGAAAACTT
2031
GAAGACGGTCATGCAGCTTT
2032





NRG1
AAGACCTTTCAAACCCCTCG
2033
CCCATTGGCAATGTTCATC
2034





NRG1
CTTGTAAAATGTGCGGAGAAGG
2035
GCAATGTTCATCATATTGTTTCG
2036





NRG1
GTGAATGGAGGGGAGTGCTT
2037
TTAGGATGGTGAGGCCCATT
2038





NRG1
CAAGCCATCTTGTAAAATGTGC
2039
TCATCATATTGTTTCGTTCAGACC
2040





NRG1
CCTTTCAAACCCCTCGAGATAC
2041
GCAGCTTTTTCCGCTGTTTC
2042





NRG1
CATGGTGAAAGACCTTTCAAACC
2043
AAGGCTCTGCCGAAGACG
2044





NRG1
GAGGGGAGTGCTTCATGGT
2045
TCACCAGCTGGACATTCTCG
2046





NRG1
TAAAATGTGCGGAGAAGGAGAAAA
2047
CGTTCAGACCGAAGGCTCTG
2048





NRG1
TTCTGTGTGAATGGAGGGGAGTGC
2049
TGAGGCCCATTGGCAATGTT
2050





NRG1
AGGAGAAAACTTTCTGTGTGAATGGAG
2051
GACCGAAGGCTCTGCCGAAG
2052





NRG1
CTCCCATTAGAATATCAGTATCCACAG
2053
GTCATGCAGCTTTTTCCGCT
2054





NRG1
ATGCCAGCCTCAACTGAAGG
2055
ATATTGTTTCGTTCAGACCGAAGGCTC
2056





NRG1
TCCACAGAAGGAGCAAATACTTC
2057
CTGGAGATGACGTTTTTAGATACG
2058





NUP98
TCGTATCTGGAGGGTTCTGG
2059
TCAGATTCCATGTGTGCTCG
2060





NUP98
TCGTATCTGGAGGGTTCTGG
2059
TCTCGAACAGCCTTCTCACG
2062





NUP98
CGAGATGTCTGCTTTCACCTTC
2063
TCAGATTCCATGTGTGCTCG
2060





NUP98
ACTCACAGACACCACTTCGAGA
2065
TCTCTTTAGCCCAAGATTCAGG
2066





NUP98
TGTGATAGCGGAGGAGCAAA
2067
TCTGGGTAAGGAAAGTCTCTTTAGC
2068





NUP98
CCCACTTCCTTCGTATCTGG
2069
GGGTAAGCAGCTCTCGAACA
2070





NUP98
GAGGGTTCTGGCTGTGTGATA
2071
CAAGATTCAGGGGTCTCCAA
2072





NUP98
ACACCACTTCGAGATGTCTGC
2073
ATCCATTTGGCAGGTACACG
2074





NUP98
AGGAGCAAAACTCACAGACACC
2075
GTACACGGAGCTTCTGGGTAAG
2076





NUP98
CTGGCTGTGTGATAGCGGAG
2077
AGGAAAGTCTCTTTAGCCCAAGA
2078





NUP98
TGACAGTGACAGATATGCCTGC
2079
AGCAGCTCTCGAACAGCCTT
2080





NUP98
CTTCCTTCGTATCTGGAGGGTT
2081
GTCTCCAACAGCTGGCAGTG
2082





NUP98
ATAGCGGAGGAGCAAAACTCAC
2083
GGAGCTTCTGGGTAAGGAAAGT
2084





NUP98
CTGCTTTCACCTTCTAAAACTCTACAG
2085
GCCTCGTGGATCCATTTG
2086





NUP98
CCACTTCGAGATGTCTGCTTTCAC
2087
TCGTGGATCCATTTGGCAGG
2088





NUP98
TATCTGGAGGGTTCTGGCTGTGT
2089
AGTGCCGGGTAAGCAGCTCT
2090





NUP98
ATATGCCTGCTCCCCACTTC
2091
TTCAGGGGTCTCCAACAGCT
2092





NUP98
CCTGCTCCCCACTTCCTTCGTA
2093
AGCTCTCGAACAGCCTTCTCACGTATG
2094





NUP98
GAGCAAAACTCACAGACACCACTTCGA
2095
CATTTGGCAGGTACACGGAGCTT
2096





NUP98
CTGTGTGATAGCGGAGGAGCAAAACTC
2097
AGCTGGCAGTGCCGGGTAAG
2098





NUP98
GACAGATATGCCTGCTCCCC
2099
TTAGCCCAAGATTCAGGGGTCTC
2100





NUP98
AATACCTCTGACAGTGACAGATATGC
2101
GCTTTGGCCTCGTGGATC
2102





NUP98
ACTTGTGGGAAGTGCTGAGG
2103
TCAGATTCCATGTGTGCTCG
2060





NUP98
TCGAAGCATAACAGCAGATCC
2105
TCTCTTTAGCCCAAGATTCAGG
2066





NUP98
TAACTACACCCATCTCTCAGCG
2107
ATCCATTTGGCAGGTACACG
2074





NUP98
ATCCTTTGGACTACCGCCTAA
2109
GGAGCTTCTGGGTAAGGAAAGT
2084





NUP98
CATTATGATCTCAACCAGCTGC
2110
TCTCGAACAGCCTTCTCACG
2062





NUP98
TAAGCTGGCACTTGTGGGAA
2113
TCTGGGTAAGGAAAGTCTCTTTAGC
2068





NUP98
ACAGCAGATCCTTTGGACTACC
2115
GGGTAAGCAGCTCTCGAACA
2070





NUP98
AGTGCTGAGGGCTCTTAACTACAC
2117
GTACACGGAGCTTCTGGGTAAG
2076





NUP98
GGCTCTTAACTACACCCATCTCTC
2119
AGGAAAGTCTCTTTAGCCCAAGA
2078





NUP98
ATCTCTCAGCGCAGTGTGAAG
2121
GCCTCGTGGATCCATTTG
2086





NUP98
ACTACCGCCTAAGCTGGCAC
2123
CAAGATTCAGGGGTCTCCAA
2072





NUP98
GAGCCTCGAAGCATAACAGC
2125
GTCTCCAACAGCTGGCAGTG
2082





NUP98
AGCATAACAGCAGATCCTTTGGA
2127
AGTGCCGGGTAAGCAGCTCT
2090





NUP98
TGGGAAGTGCTGAGGGCTCT
2129
CATTTGGCAGGTACACGGAGCTT
2096





NUP98
ACACCCATCTCTCAGCGCAGTGT
2131
TCGTGGATCCATTTGGCAGG
2088





NUP98
TGCTGGAGCCTCGAAGCATA
2133
AGCAGCTCTCGAACAGCCTT
2080





NUP98
CTTTGGACTACCGCCTAAGCTGGC
2135
AGCTGGCAGTGCCGGGTAAG
2098





NUP98
ACTTGTGGGAAGTGCTGAGGGCTCTTA
2137
TGAGCTTGTGGCAGCGGTTC
2138





NUP98
CGAGATGTCTGCTTTCACCTTC
2063
GCTTTGGCCTCGTGGATC
2102





NUP98
CTGCTTTCACCTTCTAAAACTCTACAG
2085
ATGTGTGCTCGCACAGCTTT
2142





NUP98
ACACCACTTCGAGATGTCTGC
2143
GCACAGCTTTGGCCTCGT
2144





NUP98
CCTGCTCCCCACTTCCTTCGTAT
2145
AGCTCTCGAACAGCCTTCTCACGTATG
2094





NUP98
ACTCACAGACACCACTTCGAGA
2147
AGTGCTTGTCAGATTCCATGTG
2148





NUP98
AGGAGCAAAACTCACAGACACC
2075
GGCCTCTAAGTGCTTGTCAGAT
2150





NUP98
GAGCAAAACTCACAGACACCACTTCGA
2095
GGTAAGCAGCTCTCGAACAGCCTTCTC
2152





NUP98
CCACTTCGAGATGTCTGCTTTCAC
2087
AGCCTTAAATAAGCAAAGGGCC
2154





NUP98
TGTGATAGCGGAGGAGCAAA
2067
TAAGCAAAGGGCCTCTAAGTGC
2156





NUP98
CTGTGTGATAGCGGAGGAGCAAAACTC
2157
AGCTTTGGCCTCGTGGATCCATTT
2158





NUP98
ATAGCGGAGGAGCAAAACTCACAGACA
2159
TGCTCGCACAGCTTTGGCCT
2160





NUP98
TTCTGGCTGTGTGATAGCGG
2161
CCTTAAATAAGCAAAGGGCCTCTAAGT
2162





NUP98
TCCCCACTTCCTTCGTATCTGGAG
2163
GATTCCATGTGTGCTCGCACAGC
2164





NUP98
GACAGATATGCCTGCTCCCC
2099
TCTCTTTAGCCCAAGATTCAGG
2066





NUP98
GACAGTGACAGATATGCCTGCTC
2167
TCTGGGTAAGGAAAGTCTCTTTAGC
2068





NUP98
GGAGGGTTCTGGCTGTGTGATAGC
2169
TCGTGGATCCATTTGGCAGG
2088





NUP98
AGTGACAGATATGCCTGCTCCCCACTT
2171
TGCTCGCACAGCTTTGGCCT
2160





NUP98
ATTTGCTTCCACCAACAGCC
2173
CAAGATTCAGGGGTCTCCAA
2072





NUP98
CGCTCAGCATGTATGAAGAAGC
2175
AGGAAAGTCTCTTTAGCCCAAGA
2078





NUP98
CAGCATGTATGAAGAAGCATTTCAG
2177
TTAGCCCAAGATTCAGGGGTCTC
2100





NUP98
CTTCCACCAACAGCCTCCATTT
2179
AGCTGGCAGTGCCGGGTAAG
2098





NUP98
GGAAACGCTCCCTGGCTATC
2181
GTAAGCAGCTCTCGAACAGCCTTC
2182





NUP98
ACAGCCTCCATTTCTAGGGC
2183
GGCCTCTAAGTGCTTGTCAGAT
2150





NUP98
CCTCCATTTCTAGGGCGCTCAG
2185
GATTCCATGTGTGCTCGCACAGC
2164





NUP98
CATTTCTAGGGCGCTCAGCATGTA
2187
AGCAAAGGGCCTCTAAGTGCTTGTCAG
2188





PAXIP1
GGCACACGTTTCTCCACTCT
2189
GATAACACCTTTCCTCCTGCAC
2190





PAXIP1
TGAGCAGAACTACATTCTCCGA
2191
CATAGTGGAAAGACTTGGGCAG
2192





PAXIP1
CTCTTTCAGCTTGGAAGAATCC
2193
GCACACTCTACGATTGCCTTC
2194





PAXIP1
TACATTCTCCGAGATGCTGAGG
2195
CGATTGCCTTCATAGTGGAAAG
2196





PAXIP1
ATCCTTAAAACGGGCACACG
2197
TGCTTGGATAACACCTTTCCTC
2198





PAXIP1
CAGAACTACATTCTCCGAGATGCT
2199
TTTCCTCCTGCACACTCTACG
2200





PAXIP1
TGGAAGAATCCTTAAAACGGG
2201
TTCTGCTTGTGCTCCATGAG
2202





PAXIP1
AAACGGGCACACGTTTCTC
2203
GGAAAGATGGCTGCTTGGAT
2204





PAXIP1
GGCAGAAGTACTTTTCTCTTTCAGC
2205
ACTCTACGATTGCCTTCATAGTGG
2206





PAXIP1
TCAGCTTGGAAGAATCCTTAAAAC
2207
ATGAGCTTCCGGAAAGATGG
2208





PAXIP1
ACTTTTCTCTTTCAGCTTGGAAGA
2209
CTTGTGCTCCATGAGCTTCC
2210





PAXIP1
CTTAAAACGGGCACACGTTTCTCCAC
2211
GCTTCCGGAAAGATGGCTGCTT
2212





PAXIP1
CGATTTCTGTCGTGAAGCAC
2213
GCAGATTCCAGGTGTGATGTAA
2214





PAXIP1
ACATTCTTGGTGGAGAGGTTGC
2215
AAAGACTTGGGCAGATTCCAG
2216





PAXIP1
AGCAAAGTGACTCGCACCGT
2217
GCTCCATGAGCTTCCGGAAA
2218





PAXIP1
TGGTGGAGAGGTTGCGGAGT
2219
ACTTGGGCAGATTCCAGGTGTGA
2220





PAXIP1
TGCACACACCTCATTGCCAG
2221
AAGATGGCTGCTTGGATAACACCTTTC
2222





PAXIP1
ACACACCTCATTGCCAGCAAAGT
2223
CCTCCTGCACACTCTACGATTGCC
2224





PAXIP1
TGACGCCAGAGTGGCTGGAA
2225
GAGTTCTGCTTGTGCTCCATGAGCTTC
2226





PAXIP1
TGCTTCAGGTGTCAGAAGTTCA
2227
TCTCGGCATAAATGAAGGTCA
2228





PAXIP1
TGGAAGAATGCTTCAGGTGTC
2229
TCTGGCAAAATATTCTCGGC
2230





PAXIP1
CACATAGTGACGCCAGAGTGG
2231
AAATGAAGGTCATTTTCACAGGA
2232





PAXIP1
AGTGGCTGGAAGAATGCTTCAGG
2233
CGGCATAAATGAAGGTCATTTTCA
2234





PAXIP1
TTTCTGTCGTGAAGCACATAGTG
2235
GAAGGTCATTTTCACAGGATATTAAAA
2236





PAXIP1
GGAAGAATGCTTCAGGTGTCAGAAGTT
2237
CTGGCAAAATATTCTCGGCATAAATG
2238





PAXIP1
TGACGGCGATTTCTGTCGT
2239
CTATGCCTCTGGCAAAATATTCTC
2240





PAXIP1
AAGTTCCTGACGGCGATTTC
2241
CGAACTCTGCATTGTGAACAT
2242





PAXIP1
CCGTGAAGTTCCTGACGG
2243
TCAGAACGAACTCTGCATTGTG
2244





PLD1
ACGACGCAGATAGCATCAGC
2245
TTGCAGTAGTCCTTTCCATGC
2246





PAXIP1
CCGCAATGGAGTCTATGGAA
2247
CTCTCCCACACCTGTCTGTAAAC
2248





PAXIP1
CTGAAAGGAATAGGAAAGCCAAG
2249
TCTGTAAACTACGGATGGACCC
2250





PAXIP1
TCCAGAAGAGTATTGATGATGTGG
2251
CAAGTTGAACCCAGTCTTTGAAG
2252





PAXIP1
CCTGTTCAAAACCTACCCATCC
2253
AGTCCTTTCCATGCCAGAATC
2254





PAXIP1
CTCTACAAGCAGCTCCACAGG
2255
TGAAGACGAAATTGCAGTAGTCC
2256





PAXIP1
ATCAGCAGCATTGACAGCAC
2257
AAAGGTTTATCAAGTTGAACCCAG
2258





PAXIP1
AAAGCCAAGAAAGTTCTCCAAA
2259
AGAATCTGGTTTCCCCATGC
2260





PAXIP1
CAGATAGCATCAGCAGCATTG
2261
CCCAGTCTTTGAAGACGAAATTG
2262





PAXIP1
ACCTACCCATCCAGAAGAGTATTG
2263
GTTTCCCCATGCAGCTCTC
2264





PAXIP1
TCCAAATTTAGTCTCTACAAGCAGC
2265
CCATGCCAGAATCTGGTTTC
2266





PAXIP1
GGAATAGGAAAGCCAAGAAAGTTC
2267
ACTACGGATGGACCCGGTAT
2268





PAXIP1
TTGATGATGTGGATTCAAAACTG
2269
CACCTGTCTGTAAACTACGGATGG
2270





PAXIP1
TGGAGTCTATGGAATCCTTAAGACTC
2271
ATGCAGCTCTCCCACACCT
2272





PAXIP1
AATGAGCCTGTTCAAAACCTACC
2273
ACGAAATTGCAGTAGTCCTTTCCA
2274





PAXIP1
CACCACCTGCACGACGCAGATA
2275
GTCCTTTCCATGCCAGAATCTGGTTTC
2276





PAXIP1
GCCAAGAAAGTTCTCCAAATTTAGTC
2277
ACTGCAGAGGCAATGTCATG
2278





PAXIP1
AGCATTGAGAGCACCTCCA
2279
CGCTGGATGAAGTGACGTG
2280





PAXIP1
AAGAGTATTGATGATGTGGATTCAAA
2281
GGCGTGGAGTACCTGTCAAT
2282





PAXIP1
ATTTAGTCTCTACAAGCAGCTCCACAG
2283
AATGTCATGCCAGGGCATC
2284





PAXIP1
TGGATTCAAAACTGAAAGGAATAGG
2285
ATCCGGGGCGTGGAGTAC
2286





PAXIP1
CACAGGCACCACCTGCAC
2287
ACGTGCCACATCACGAGC
2288





PAXIP1
AAAGTTCTCCAAATTTAGTCTCTACAA
2289
TTCCCGTGGACTGCAGAG
2290





PAXIP1
TTCAAAACCTACCCATCCAGAAGA
2291
AGAGGCAATGTCATGCCAGG
2292





PAXIP1
AGATAAAAATGAGCCTGTTCAAAACC
2293
CATCACGAGCCGCCTTCC
2294





POLI
AATGGCTCAAACTAAGGACAAGAG
2295
TCACGACCATAGTGCTTCTCAG
2296





POLI
AATGGCTCAAACTAAGGACAAGAG
2295
AAAAGACTAGCAAGTAGTTCTTCAATC
2297





POLI
TGAGTACAATAGCTTGCAGATAAAA
2298
AGCTTCAACTTCAGATGAACATTT
2299





POLI
GAGTCGCCATCTACCTGGTC
2300
TCCTCACACACTCCATGCTC
2301





POLI
CCCAGCTCTGCTGGACATAA
2302
TCCTCACACACTCCATGCTC
2301





POLI
GCTGGACATAAGCTGGTTAACAG
2303
CTCTGAGCGCCGAACTCTCT
2304





POLI
GGACATAAGCTGGTTAACAGAGAGCCT
2305
AGCGCCGAACTCTCTCCACC
2306





POLI
CAGGATGGCAGCTGCTCC
2307
TCCACCTCCTCACACACTCC
2308





POLI
AGGAGCGCAGGATGGCAG
2309
ACTCCATGCTCCAGCAGCTC
2310





POLI
AGCTGCTCCCCCGGGTTG
2311
TCACACACTCCATGCTCCAGCAG
2312





POLI
AGAGAGCCTGGGAGCTGG
2313
CTTCATGGTCTGGTACCTCTCTG
2314





POLI
TGTACCTGTGGAGTGCCG
2315
GTCCTGGTGGTGCTGGAG
2316





POLI
GTTAACAGAGAGCCTGGGAGC
2317
TCTGGTACCTCTCTGAGCGC
2318





POLI
CAGCCTGTACCTGTGGAGTG
2319
AGGGCATCTACATCGGACC
2320





POLI
GGAGCTGGGCAGCCTGTAC
2321
TACCTCTCTGAGCGCCGAAC
2322





POLI
CTGGGCAGCCTGTACCTGT
2323
CTACATCGGACCGCAGGACT
2324





POLI
AGAGGAGGCCGTCAGCTG
2325
GGTGCTCAGGTCCTGGTG
2326





POLI
GCCGTCAGCTGGCAGGAG
2327
GCTCAGGTCCTGGTGGTGCT
2328





PTK2
TGACAGCTACAACGAGGGTG
2329
GATGACAGCTTTCACCAGGC
2330





PTK2
TGACAGCTACAACGAGGGTG
2329
GATGACAGCTTTCACCAGGC
2330





PTK2
AGCTCCACCAAAGAAACCG
2332
CCGTCACATTCTCGTACACCT
2333





PTK2
GTCATCTGGGAAGCCTTGC
2334
CTCGTACACCTTATCATTCGACC
2335





PTK2
CCTGCTGACAGCTACAACGA
2336
TAGGGACATACTCCTCTGGTGG
2337





PTK2
ACCAAAGAAACCGCCTCG
2338
TACTGGACATCTCGATGACAGC
2339





PTK2
ATCCTGCAGCTCCACCAAAG
2340
CTTCACCATAGGGACATACTCCTC
2341





PTK2
GCTACAACGAGGGTGTCAAG
2342
GCTGGCTGGATTTTACTGGA
2343





PTK2
AAGCCTTGCCAGCCTCAG
2344
TCACATTCTCGTACACCTTATCATTC
2345





PTK2
GAGCTCCCGGTCATCTGG
2346
GCTGGATTTTACTGGACATCTCG
2347





PTK2
AAGAAACCGCCTCGCCCTG
2348
GGACATCTCGATGACAGCTTTCAC
2349





PTK2
CTCCCGGTCATCTGGGAAGC
2350
TACTCCTCTGGTGGGGCTGG
2351





PTK2
TTGCCAGCCTCAGCAGCCCT
2352
TTTCACCAGGCCCGTCACATT
2353





PTK2
CTGGGAAGCCTTGCCAGCCT
2354
CAGGCCCGTCACATTCTCGT
2355





PTK2
CCTCGCCCTGGAGCTCCC
2356
ACCTTATCATTCGACCGGTCCA
2357





PTK2
GCAGCCCTGCTGACAGCTAC
2358
GTGGGGCTGGCTGGATTTTA
2359





PTK2
TTGGAAACCAACATATATATCAGCC
2360
GTCCAGGTTGGCAGTAGGAG
2361





PTK2
TATCAGCCTGTGGGTAAACCAG
2362
CTGATTTCCTGGGGCTGAAG
2363





PTK2
AACCAACATATATATCAGCCTGTGGGT
2364
ATTCGACCGGTCCAGGTTGG
2365





PTK2
GAGGGATTGGGCAAGTGTTG
2366
GGGGGCTGATTTCCTGGG
2367





PTK2
GCTGACAGCTACAACGAGGGTGTCAAG
2368
CGTGCTCCTAGGGGAGGCTC
2369





PTK2
ATGGAAGTCTTCAGGGTCCG
2370
AGTTCAATAGCTTCTGTGCCATC
2371





PTK2
GAAATGGAAGAAGATCAGCGC
2372
AATAATGTCCTCAGGGCCAAG
2373





PTK2
GTATTGACAGGGAGGATGGAAG
2374
GGTCAGAGTTCAATAGCTTCTGTG
2375





PTK2
GCTGGCTGGAAAAAGAGGAA
2376
TGGCCAATAATGTCCTCAGG
2377





PTK2
AGGGAGGATGGAAGTCTTCAG
2378
AGCTCACCCAGGTCAGAGTTC
2379





PTK2
AAGATCAGCGCTGGCTGGAA
2380
CTCAGGGCCAAGCCGACTTC
2381





PTK2
TCTCTCGAGGCAGTATTGACAG
2382
CACCCAGGTCAGAGTTCAATAGC
2383





PTK2
CAACAGGAAATGGAAGAAGATCA
2384
CACAGTGGCCAATAATGTCC
2385





PTK2
AGGCAGTATTGACAGGGAGG
2386
TCATCTTGTTGATGAGCTCACC
2387





PTK2
CGACAGCAACAGGAAATGG
2388
GGAATGGTCTCATCCACAGTG
2389





PTK2
TGAGACTCTCTCGAGGCAGTATT
2390
TTGATGAGCTCACCCAGGTC
2391





PTK2
CGTCTAATCCGACAGCAACA
2392
TCATCCACAGTGGCCAATAA
2393





PTK2
ATCAGCGCTGGCTGGAAAAAGAG
2394
ATCCACAGTGGCCAATAATGTCCTCAG
2395





PTK2
ATGGAAGAAGATCAGCGCTGGCTG
2396
ATGGTCTCATCCACAGTGGCCAAT
2397





PTK2
CTAATCCGACAGCAACAGGAAAT
2398
AGGAGGGGAATGGTCTCATC
2399





PTK2
ACCTGATGTGAGACTCTCTCGAG
2400
GCTGGTAGGAGGGGAATGGT
2401





PTK2
GCTGACAGCTACAACGAGGGTGTCAAG
2368
TTTCACCAGGCCCGTCACATT
2353





PTPN13
GACTCCTCATCCATTGAAGACC
2404
CCAAGCCATACTTTGCATCTTT
2405





PTPN13
CTGTTGCGAGTTTAAATAGAAGTCC
2406
CCCTTTCTGGTGAAGATACTATGC
2407





PTPN13
AGTCCTGAAAGGAGGAAACATG
2408
CAGGTTCACTAAGGTGATCTCCC
2409





PTPN13
TTCAAAGTCTGTTGCGAGTTTAAA
2410
GTGATCTCCCTTTCTGGTGAAG
2411





PTPN13
GGAGGAAACATGAATCAGACTCC
2412
TCACTAAGGTGATCTCCCTTTCTG
2413





PTPN13
TAAATAGAAGTCCTGAAAGGAGGAAAC
2414
GAAGATACTATGCTCCATCTTTTGTGT
2415





PTPN13
CCTGGGCAAGCATATGTTCTAG
2416
AAGCATCCATCCAAGTCAGC
2417





PTPN13
CATGAATCAGACTCCTCATCCA
2418
TCCAGTCTTCCCATCTTCTCC
2419





PTPN13
ATTGAAGACCCTGGGCAAG
2420
GGGCAACTGAACTGATAAATATGC
2421





PTPN13
CATCCATTGAAGACCCTGGG
2422
CCATCTTCTCCCCACCAATA
2423





PTPN13
AAGACCCTGGGCAAGCATAT
2424
CTGGCTTCAAGCATCCATCC
2425





PTPN13
TGAATCAGACTCCTCATCCATTGAAGA
2426
ATCCATCCAAGTCAGCTGGTCC
2427





PTPN13
ACAAACCGTTGCAGAGTTGG
2428
AATATGCCTAGGTCCAGTCTTCC
2429





PTPN13
CCTTCTCACCAGATGTCAAGATC
2430
TGAACTGATAAATATGCCTAGGTCC
2431





PTPN13
GATGCAGAATCTTTGGCAGG
2432
AAGTCAGCTGGTCCTCCAGG
2433





PTPN13
CCTCTCTCTATCCACATCGGAA
2434
TCCCCACCAATAATTTCAAATC
2435





PTPN13
AGATCTGATGCAGAATCTTTGGC
2436
CCTAGGTCCAGTCTTCCCATCTT
2437





PTPN13
GCAGAGTTGGTGGGAAAACC
2438
TCCAGGGGCAACTGAACTGA
2439





PTPN13
TGTCATTGTTAACATGGAACCC
2440
ATCTTCTCCCCACCAATAATTTGA
2441





PTPN13
TCACCAGATGTCAAGATCTGATGC
2442
CTGGTCCTCCAGGGGCAACT
2443





PTPN13
TGCAGAATCTTTGGCAGGAGTGAC
2444
GGCTTCAAGCATCCATCCAAGTCA
2445





PTPN13
CAGAGTTGGTGGGAAAACCTTCTCAC
2446
CCTCCAGGGGCAACTGAACTGATAAAT
2447





PTPN13
TGGCAGGAGTGACAAAACTTAA
2448
CACACTATTCACAGATATCAAACGG
2449





PTPN13
GATGTCAAGATCTGATGCAGAATC
2450
CCCTCCAGACTCACACTATTCAC
2451





PTPN13
GGAAAACCTTCTCACCAGATGTC
2452
TCCAGACTCACACTATTCACAGATATC
2453





PTPN13
GAATCTTTGGCAGGAGTGACAAAACTT
2454
ATTGCAGCATGGTGGCTGAC
2455





PTPN13
CCACCACAAACCGTTGCAGA
2456
TGGCTGACTCCCTCCAGACT
2457





PTPN13
CCGTTGCAGAGTTGGTGGGA
2458
AGCATGGTGGCTGACTCCCT
2459





PTPN13
GAACCCCCACCACAAACC
2460
CTGACTCCCTCCAGACTCACACT
2461





RAD52
GCCTCAAGTCCAAGGCTTTAT
2462
CAGTTTCCAAGTGCATTCCC
2463





RAD52
GTTGGTTATGGTGTTAGTGAGGG
2464
CAGTTTCCAAGTGCATTCCC
2463





RAD52
GCCTCAAGTCCAAGGCTTTAT
2462
GCGTGGAAGCTTATTTAGTGATC
2466





RAD52
TGGTTCATATCATGAAGATGTTGG
2467
TGATCTCAGGTAGTCTTTGTCCAG
2468





RAD52
GTGTTAGTGAGGGCCTCAAGTC
2469
GTCCAGAATACAGTTTCCAAGTGC
2470





RAD52
TCATGAAGATGTTGGTTATGGTG
2471
TCAGGTAGTCTTTGTCCAGAATACAG
2472





RAD52
TGAGGGCCTCAAGTCCAAGG
2473
AGTCTTTGTCCAGAATACAGTTTCCAA
2474





RAD52
GGTTATGGTGTTAGTGAGGGCCTCAAG
2475
AATACAGTTTCCAAGTGCATTCCCAAA
2476





RAD52
CAAGGCTTTATCTTTGGAGAAGG
2477
GGCAGCTGTTGTATCTTGCC
2478





RAD52
AGAAGGCAAGGAAGGAGGC
2479
TCCACAGACGGTTCAAGATCT
2480





RAD52
GTGACAGACGGGCTGAAGC
2481
TGTATCTTGCCTCCTCCACAG
2482





RAD52
CAAGTCCAAGGCTTTATCTTTGG
2483
AGCTGTTGTATCTTGCCTCCTCC
2484





RAD52
AAGGAAGGAGGCGGTGACAG
2485
ATGTTCGGTCGGCAGCTGTT
2486





RAD52
GCTGAAGCGAGCCCTCAG
2487
CGGTATCACAGCATGGCTG
2488





RAD52
AGACGGGCTGAAGCGAGCC
2489
TGGGTCTGGAAGGGGAGGTC
2490





RAD52
AGGCGGTGACAGACGGGCT
2491
AGCATGGCTGGGTCTGGAAG
2492





RAD52
ATTTGTGAGGGTCCAGCTGA
2493
GTTAAATCCACTTCAAGAGGCAA
2494





RAD52
GAGTCTGTGCATTTGTGAGGG
2495
CTTGTCTCTTCGCTTTAGTTAAATCC
2496





RAD52
ACGTGGGAGTCTGTGCATTT
2497
TCGCTTTAGTTAAATCCACTTCAAG
2498





RAD52
AGTTCTACGTGGGAGTCTGTGC
2499
GGTTCAAGATCTTGTCTCTTCGC
2500





RAD52
CTGTGCATTTGTGAGGGTCCAGC
2501
TGCCTCCTCCACAGACGGTT
2502





RAD52
AATGGCAAGTTCTACGTGGG
2503
TCAAGATCTTGTCTCTTCGCTTTAGTT
2504





RAD52
GATCAGTGGGTGGTAGGAGAAG
2505
AGCTGTGGGTGTCCCAGG
2506





RAD52
CGGAAGGATCAGTGGGTGGTA
2507
AGGGCCATGTTCGGTCGG
2508





RAD52
ATGGAGTAGACCTGCTGCCC
2509
GTGTCCCAGGGCCATGTTC
2510





RAD52
CTGCCCGGAAGGATCAGT
2511
GCTGCAGCTGTGGGTGTC
2512





RAD52
CAAGTCCAAGGCTTTATCTTTGG
2483
TGATCTCAGGTAGTCTTTGTCCAG
2468





RAD52
CAAGGCTTTATCTTTGGAGAAGG
2477
TCAGGTAGTCTTTGTCCAGAATACAG
2472





RAD52
GTGACAGACGGGCTGAAGC
2481
GTTAAATCCACTTCAAGAGGCAA
2494





RAD52
GCTGAAGCGAGCCCTCAG
2487
TCGCTTTAGTTAAATCCACTTCAAG
2498





RAD52
AGGAGGCGGTGACAGACG
2521
TGTCTCTTCGCTTTAGTTAAATCCA
2522





RAD52
GACGGGCTGAAGCGAGCC
2523
ACGGTTCAAGATCTTGTCTCTTCG
2524





SHMT1
GAACACTGCCATGTGGTGAC
2525
CATAGCTTGCTTCAGTGCCA
2526





SHMT1
AGATTGCAGATGAGAACGGG
2527
CATAGCTTGCTTCAGTGCCA
2526





SHMT1
GAACACTGCCATGTGGTGAC
2525
TATTTTGTAGCCCAGCTCCG
2530





SHMT1
ACTCCCGAAACCTGGAATATG
2531
CTTCAGTGCCACAGCAACC
2532





SHMT1
TGACCACCACCACTCACAAG
2533
TCAGACAGAGCCCTGCAGTT
2534





SHMT1
GTATCTCATGGCGGACATGG
2535
TTTAAATTCCAGAGTCATAGCTTGC
2536





SHMT1
GCTACGGAAGATTGCAGATGAG
2537
CCTGGTGTTGATAAACTTTAAATTCC
2538





SHMT1
CCCATTTGAACACTGCCATG
2539
TGTGACTATTTTGTAGCCCAGC
2540





SHMT1
ATGAGAACGGGGCGTATCTC
2541
CCAGAGTCATAGCTTGCTTCAGT
2542





SHMT1
TGGCATGATCTTCTACAGGAAAG
2543
GTAGCCCAGCTCCGTCAGG
2544





SHMT1
GACATGGCTCACATCAGCG
2545
GTCAGGGCCTCAGACAGAGC
2546





SHMT1
CACCACTCACAAGACCCTGC
2547
CAGTTGGCCACCACCTGGT
2548





SHMT1
AATATGCCCGGCTACGGAAG
2549
CCACCACCTGGTGTTGATAAAC
2550





SHMT1
TGCCCTCCCCATTTGAACAC
2551
GACTATTTTGTAGCCCAGCTCCGTCAG
2552





SHMT1
CTGCTACTCCCGAAACCTGG
2553
AGCCCTGCAGTTGGCCAC
2554





SHMT1
AACGGGGCGTATCTCATGGC
2555
AGCTTGCTTCAGTGCCACAGCAA
2556





SHMT1
TGCCGAGCTGGCATGATCTT
2557
GCTCCGTCAGGGCCTCAGAC
2558





SHMT1
ATGGCGGACATGGCTCACAT
2559
GAGTCATAGCTTGCTTCAGTGCCACAG
2560





SHMT1
TTGCAGATGAGAACGGGGCGTAT
2561
AGTTGGCCACCACCTGGTGTTGAT
2562





SHMT1
CAAGACCCTGCGAGGCTG
2563
GGATCAAATGGTTGTCAGAACC
2564





SHMT1
CCGAGCTGGCATGATCTTCTACAG
2565
CCATCTGTGCCTTTGGAACG
2566





SHMT1
GCCATGTGGTGACCACCA
2567
ACAGGCTTCTAGCACCTTCTCA
2568





SHMT1
CACTCACAAGACCCTGCGAGGCT
2569
TCTGTGCCTTTGGAACGGAGATC
2570





SHMT1
ACATCAGCGGGCTGGTGG
2571
TGGAACGGAGATCCACAAGG
2572





SHMT1
GAGGCTGCCGAGCTGGCAT
2573
GAACGGAGATCCACAAGGATCAAA
2574





SHMT1
CGTGGTGCCCTCCCCATTT
2575
GAGATCCACAAGGATCAAATGGTTGT
2576





SHMT1
GCTGGCGTGGTGCCCTCC
2577
GGCTTCTAGCACCTTCTCAGCCCTTC
2578





SHMT1
GGCTCACATCAGCGGGCTG
2579
CCTTCTCAGCCCTTCCACCAT
2580





SHMT1
AAACCTGGAATATGCCCGG
2581
CTTCCACCATCTGTGCCTTT
2582





SHMT1
GCCCGGCTACGGAAGATTGC
2583
TCAGCCCTTCCACCATCTGTGC
2584





SLIT2
GGCAAGTTTCAACCATATGCC
2585
GGAGCCATAAATGACTGGTGAC
2586





SLIT2
AAACAACCTGTATTGTGACTGCC
2587
GGAGCCATAAATGACTGGTGAC
2586





SLIT2
CCTCGGGTTGGTCTGTACAC
2588
TGGTCTCTGGAAGATTTGTGG
2589





SLIT2
TCGACTGCATTCAAACAACC
2590
TGAGACCTTTCCCACGACAG
2591





SLIT2
CCACCTGAGAGGCCATAATG
2592
CCCACGACAGTCTACGATATTG
2593





SLIT2
GCCATAATGTAGCCGAGGTTC
2594
TTTCTGTGATGGTCTCTGGAAG
2595





SLIT2
GACTGGCTTCGCCAAAGG
2596
CGATATTGTTGCTACAGGTACAGG
2597





SLIT2
AAACGAGAATTTGTCTGCAGTG
2598
AAGATTTGTGGGGATCTCAGTG
2599





SLIT2
GGGTTGGTCTGTACACTCAGTG
2600
TGCAAAACACTACAAGAAGGAGC
2601





SLIT2
CTGCATTCAAACAACCTGTATTG
2602
CAAGAAGGAGCCATAAATGACTG
2603





SLIT2
TGTATTGTGACTGCCACCTGG
2604
GGGATCTCAGTGAGACCTTTCC
2605





SLIT2
TGAGAGGCCATAATGTAGCCG
2606
ACCTTTCCCACGACAGTCTACG
2607





SLIT2
TGTACACTCAGTGTATGGGCCC
2608
CTACAGGTACAGGCGGCAGG
2609





SLIT2
AGCCGAGGTTCAAAAACGAG
2610
CTCTGGAAGATTTGTGGGGATCT
2611





SLIT2
GGCTCTCCGACTGGCTTC
2612
ACAGTCTACGATATTGTTGCTACAGG
2613





SLIT2
AAAGGCCTCGGGTTGGTCT
2614
AGGGCAGTGCAAAACACTACA
2615





SLIT2
TCTCCGACTGGCTTCGCCAA
2616
TCTGTGATGGTCTCTGGAAGATTTGTG
2617





SLIT2
GCTTCGCCAAAGGCCTCG
2618
GTACAGGCGGCAGGGCAGTG
2619





SLIT2
CCCTCCCACCTGAGAGGC
2620
TCTCAGTGAGACCTTTCCCACGAC
2621





SLIT2
CCGAGGTTCAAAAACGAGAATTTG
2622
TTTGTGGGGATCTCAGTGAGACCT
2623





SLIT2
CACCTGGCCTGGCTCTCC
2624
AACACTACAAGAAGGAGCCATAAATG
2625





SLIT2
TAATGTAGCCGAGGTTCAAAAAC
2626
TGATTGTGTTCTGTTCCAAACG
2627





SLIT2
GGCCTGGCTCTCCGACTG
2628
AGGGATGACTTTGATTGTGTTCTG
2629





SLIT2
AGTGTATGGGCCCCTCCCAC
2630
ATGACTTTGATTGTGTTCTGTTCCAAA
2631





SLIT2
GTTGGTCTGTACACTCAGTGTATGGGC
2632
TGAGAAAGCTCCAGGAGGGAT
2633





SLIT2
GGTTCAAAAACGAGAATTTGTCTGCAG
2634
GAAAGCTCCAGGAGGGATGACTTT
2635





SLIT2
CTCCCACCTGAGAGGCCATAATGTAGC
2636
CTCCAGGAGGGATGACTTTGATTGTG
2637





SLIT2
TGACTGCCACCTGGCCTGG
2638
TTGGAAAGCATCTGGTGCAAG
2639





SLIT2
ATGGGCCCCTCCCACCTGAG
2640
GGAAAGCATCTGGTGCAAGTTCAGAG
2641





SLIT2
GGCAAGTTTCAACCATATGCC
2585
TTATATGGTGAGAAAGCTCCAGG
2643





SLIT2
TCAACCATATGCCTAAACTTAGGAC
2644
TCTAAGGTTTTTATATGGTGAGAAAGC
2645





SLIT2
TTTCTGTGGCAAGTTTCAACC
2646
GAGATCTGATTATTGCTCAGGTCA
2647





SLIT2
ACTAGACTTTCTGTGGCAAGTTTCA
2648
TCTGGTGCAAGTTCAGAGATCTGA
2649





SLIT2
CAACATTACTAGACTTTCTGTGGCA
2650
GTAGTCCTTGGAAAGCATCTGG
2651





STIM1
ATCGAGATCCTCTGTGGCTTC
2652
GAACACTGCTCTGCAGGCTAG
2653





STIM1
TGTGGCTTCCAGATTGTCAAC
2654
ATGCTGTGGCTCCGTCAG
2655





STIM1
CAACCCTGCTCACTTCATCA
2656
CTCTGAGATCCCAGGCCAT
2657





STIM1
AGATTGTCAACAACCCTGGC
2658
GCTGCCGAACACTGCTCT
2659





STIM1
ATCCACTCACTGGTGGCTGC
2660
AGATCCCAGGCCATGCTGTG
2661





STIM1
AAGCACTGAGCGAGGTGACA
2662
AGGCCATGCTGTGGCTCC
2663





STIM1
GCTTCCAGATTGTCAACAACCCT
2664
CAGGCGCTGCCGAACACT
2665





STIM1
ACCGCTGGCAACAGATCGAG
2666
GTGGCTCCGTCAGGCGCT
2667





STIM1
GACGTGGATGACATGGATGA
2668
AATCGGAATGGGTCAAATCC
2669





STIM1
TTGTGTCTCCCTTGTCCATG
2670
AGCGCCAGTAATGCTTCTT
2671





STIM1
ACATGGATGAGGAGATTGTGTCT
2672
AAGTCATGGCATTGAGAGCC
2673





STIM1
TTCATCATGACTGACGACGTG
2674
GCAGTTTCTCCACCAGAGACC
2675





STIM1
AGCTGGATGGGCAGTACACG
2676
GTCACTCATGTGGAGGGAGG
2677





STIM1
GAGGAGATTGTGTCTCCCTTGT
2678
AGTAATGCCTTCTTGGCCAG
2679





STIM1
CCTCAACATAGACCCCAGCT
2680
ATTGAGAGCCTCGTCTGCAG
2681





STIM1
GCTCACTTCATCATGACTGACG
2682
GAGGACTCCGAATCGGAATG
2683





STIM1
ATGACTGACGACGTGGATGAC
2684
GCTCATCTGAGGAGGTTTGG
2685





STIM1
TGGATGACATGGATGAGGAGAT
2686
CTGCCATTGGAAGTCATGG
2687





STIM1
AACCCTGGCATCCACTCACT
2688
GCTGGCGGTCACTCATGT
2689





STIM1
AGTACACGCCCCAACCCT
2690
CATTGGAAGTCATGGCATTG
2691





STIM1
GCTGCCCTCAACATAGACCC
2692
AGCACGGCTCATCTGAGGAG
2693





STIM1
ACATAGACCCCAGCTGGATG
2694
ATGGCATTGAGAGCCTCGTC
2695





STIM1
TCAACAACCCTGGCATCCAC
2696
CTCCGAATCGGAATGGGTCA
2697





STIM1
ATCCTCTGTGGCTTCCAGATT
2698
GGAGGGAGGACTCCGAATC
2699





STIM1
ACTGACGACGTGGATGACATGGAT
2700
CACCAGAGACCCTGGGTGGAC
2701





STIM1
ACTGGTGGCTGCCCTCAACATA
2702
GTCTGCAGCACGGCTCATCT
2703





STIM1
GAGATTGTGTCTCCCTTGTCCATGCAG
2704
CTCGATCAGCCGGTGGCTG
2705





STIM1
GCAACAGATCGAGATCCTCTGTGG
2706
CACACGCTGGCGGTCACTC
2707





STIM1
CAACCCTGCTCACTTCATCATGACTGA
2708
CGGTGGCTGCCATTGGAAGT
2709





STIM1
ATGGGCAGTACACGCCCCAA
2710
GAGCCTCGTCTGCAGCACGG
2711





STIM1
ACGCCCCAACCCTGCTCACT
2712
ATCAGCCGGTGGCTGCCATT
2713





STIM1
ACCCCAGCTGGATGGGCAGT
2714
AGGAGGTTTGGGGGCCACAC
2715





SYK
CACAACTTCCAGGTTCCCAT
2716
CCCAGTTCTTTGTCTTCCAGC
2717





SYK
CACAACTTCCAGGTTCCCAT
2716
CTTTGTCTGCAGCCCAGG
2718





SYK
GAAATGTTAATTTTGGAGGCCG
2719
CCAGGGTGCAAGTTCTGG
2720





SYK
AATTTTGGAGGCCGTCCACAAC
2721
CTGCAGCCCAGGGTGCAAGT
2722





SYK
CCGTCCACAACTTCCAGGTT
2723
TTCTGGCTCATACGGATTGAA
2724





SYK
CTTCCAGGTTCCCATCCTGC
2725
AGGGTGCAAGTTCTGGCTCATA
2726





SYK
CGAGCATTATTCTTATAAAGCAGATG
2727
ATGACACAGTACTCTCTTGCCG
2728





SYK
GAGTTCTTACTGTCCCATGTCAAA
2729
GCTCATACGGATTGAATGACAC
2730





SYK
GGTTTGTTAAGAGTTCTTACTGTCCC
2731
TACTCTCTTGCCGGTTCCCTT
2732





SYK
GACAACAACGGCTCCTACGC
2733
TGCAAGTTCTGGCTCATACGGATT
2734





SYK
TGCACGAAGGGAAGGTGCTG
2735
GACACAGTACTCTCTTGCCGGTTCCCT
2736





SYK
CCAGAGACAACAACGGCTCC
2737
TTCCCTTGGGCAGGGGAG
2738





SYK
TCCTACGCCCTGTGCCTGCT
2739
GCCGGTTCCCTTGGGCAG
2740





SYK
AGCAGATGGTTTGTTAAGAGTTCTTAC
2741
CCCAGTTCTTTGTCTTCCAGC
2717





SYK
CGAGGGAAAGAAGTTCGACA
2743
TCGTACACCTCTGTGTCCATG
2744





SYK
CACTATCGATCGACAAAGACA
2745
ATGGGTAGGGCTTCTCTCTGG
2746





SYK
CAAAGACAAGACAGGGAAGCTC
2747
GTAGGGGCTCTCGTACACCTC
2748





SYK
AGAAGTTCGACACGCTCTGG
2749
AGGTAAACCTCCTTGGGCCT
2750





SYK
AAGACAGGGAAGCTCTCCATC
2751
CTCTGTGTCCATGGGTAGGG
2752





SYK
GCATCGACAAAGACAAGACAGG
2753
TGTCCATGGGTAGGGCTTCT
2754





SYK
AGGGAAAGAAGTTCGACACGCTCT
2755
TCCTTGGGCCTGATCTCCTC
2756





SYK
GAAGCTCTCCATCCCCGAG
2757
GGGCTCTCGTACACCTCTGTGTC
2758





SYK
ATCCCCGAGGGAAAGAAGTT
2759
TCGGTCCAGGTAAACCTCCT
2760





SYK
CTGTGCCTGCTGCACGAAGG
2761
CTGTGTCCATGGGTAGGGCTTCTCTCT
2762





SYK
TCTCCATCCCCGAGGGAAAG
2763
TAAACCTCCTTGGGCCTGATCTC
2764





SYK
TGCTGCACTATCGCATCGAC
2765
GGTCCGCGTAGGGGCTCTC
2766





SYK
AAGGGAAGGTGCTGCACTATC
2767
CTGATCTCCTCGGGGTCC
2768





SYK
CCTGCTGCACGAAGGGAAGG
2769
TCCTCGGGGTCCGCGTAGG
2770





SYNE2
CTCACGAAGAGGACGAGGAG
2771
TTGCTTGTAGTGATGCTCGG
2772





SYNE2
GAACCGTCATCTCCTCAGTCC
2773
TCCTGTCACCTTCATTTGC
2774





SYNE2
TCCTCAGTCCCTGTGTCATCTA
2775
CACCTTCCATTTGCTTGTAGTG
2776





SYNE2
GGCCTCTGAGAATGAAACAGAC
2777
GCCATCCGAAATGGATTTAC
2778





SYNE2
CTGATTCTTGGCGTAAACGG
2779
GAACAGGTGGAACATTCCTGTC
2780





SYNE2
GAATGAAACAGACATGGAAGACC
2781
GTAGTGATGCTCGGGACAGG
2782





SYNE2
CCTGTGTCATCTAGTGGCCC
2783
TGGTTTATAAGGGGTGCTGG
2784





SYNE2
AAGACCCCAGAGAAATCCAGAC
2785
GAACATTCCTGTCACCTTCCA
2786





SYNE2
GCTTGGAAGATGAAAAGGAGG
2787
AAGGGCTGTCGGGAACAT
2788





SYNE2
GAAATCCAGACTGATTCTTGGC
2789
TTCCATTTGCTTGTAGTGATGCTC
2790





SYNE2
AGAGAGCGAGGAACCGTCAT
2791
ATAGGGTGGTTTATAAGGGGTGC
2792





SYNE2
GTCATCTCCTCAGTCCCTGTGT
2793
GGGAACATGCCACGAGTG
2794





SYNE2
GTAAACGGGGAGAGAGCGAG
2795
CTGTCGGGAACATGCCAC
2796





SYNE2
TGTCAGCGTGGACTCCATC
2797
CGGGACAGGAAGGGCTGT
2798





SYNE2
CCCAGAGAAATCCAGACTGATTC
2799
GAGTGGCCATCCGAAATG
2800





SYNE2
GACCACACAGGCGACGTG
2801
ATGCTCGGGACAGGAAGGG
2802





SYNE2
GGCCCATACTACAGCGCACT
2803
AGGGGGAACAGGTGGAACAT
2804





SYNE2
GGGCTCCTCCTCTCACGAAG
2805
ATTCCTGTCACCTTCCATTTGCTTGTA
2806





SYNE2
CTTGGCGTAAACGGGGAGAG
2807
ACAGGAAGGGCTGTCGGGAA
2808





SYNE2
AGGACGAGGAGGGCCCATACTA
2809
TATAAGGGGTGCTGGACGCAG
2810





SYNE2
GCGAGGAACCGTCATCTCCT
2811
CTGGACGCAGGGGGAACAG
2812





SYNE2
ATCCAGACTGATTCTTGGCGTAAACG
2813
ATTTGCTTGTAGTGATGCTCGGGACAG
2814





SYNE2
CTCCTCTCACGAAGAGGACG
2815
CGTGCCTGGAGGTAATAGTAGC
2816





SYNE2
CTGCGAGACCCCTGTCAG
2817
CTTCTTTGCCACCATCCGT
2818





SYNE2
CTGGAGTGGGACCACACAG
2819
GTGGGTTGCCATTCAGGACT
2820





SYNE2
AGACCCCTGTCAGCGTGGAC
2821
GTCTTCCTGCTGTGGGTTGC
2822





SYNE2
ACTCCATCCCCCTGGAGTG
2823
CTGCTGCTCTGTGATACCGG
2824





SYNE2
CACGAGCGGTCTGGCTGC
2825
ACCATCCGTGCCTGGAGGTAAT
2826





SYNE2
AGTGGGACCACACAGGCGAC
2827
CGGGCCTTCTTTGCCACCAT
2828





SYNE2
GAGGAGGGCCCATACTACAGCGC
2829
TTTGCCACCATCCGTGCCTG
2830





SYNE2
AGCGTGGACTCCATCCCCCT
2831
ATTCAGGACTCGCGGGCCTT
2832





SYNE2
GGTCTGGCTGCGAGACCC
2833
CTGCTGTGGGTTGCCATTC
2834





SYNE2
ATCCCCCTGGAGTGGGACC
2835
GCTCTGTGATACCGGCCAGT
2836





SYNE2
CAGGGCACGAGCGGTCTG
2837
TTGCCATTCAGGACTCGCGG
2838





SYNE2
GTCATCTAGTGGCCCCAGGG
2839
ACTCGCGGGCCTTCTTTG
2840





SYNE2
TAGTGGCCCCAGGGCACGAG
2841
GCCAGTCCCCCGTCTTCCTG
2842





SYNE2
CGGGGAGAGAGCGAGGAACC
2843
TCCCCCGTCTTCCTGCTGTG
2844





TOPBP1
TGCCCAATTCTTCAACTCCT
2845
TGTAGGCTCCAGTTTGCTGTT
2846





TOPBP1
GTATGAGTGTGCCAAGAGATGG
2847
AATCTTCAGGTGCTTGAAATGC
2848





TOPBP1
TTCAACTCCTACCAGCCAGATC
2849
CTTGAAATGCACTGACATCCAG
2850





TOPBP1
CAAGACAGAACCTAGACCAGAAGC
2851
TTGATTCACTTACGCAACTTGC
2852





TOPBP1
CCAGCCAGATCAACACAATTG
2853
CCGACAACCATCTAATAAATCTTCAG
2854





TOPBP1
TGCCAAGAGATGGAATGTACAC
2855
CCAGTTTGCTGTTAAGTGAATTACA
2856





TOPBP1
GACCAGAAGCAAAGACTATGCC
2857
CAGGTGCTTGAAATGCACTGAC
2858





TOPBP1
TGGAATGTACACTGTGTGACCAC
2859
CGCAACTTGCATTTATGTTGG
2860





TOPBP1
CCAATTCTTCAACTCCTACCAGC
2861
TGCACTGACATCCAGATTTTCTAG
2862





TOPBP1
AGACTATGCCCAATTCTTCAACTC
2863
TTTCAAGTGTAGGCTCCAGTTTG
2864





TOPBP1
GTCAGAAGTATGAGTGTGCCAAG
2865
TTGCATTTATGTTGGAAATATTGC
2866





TOPBP1
TGTCAGGATGAATCCATATACAAGAC
2867
CCATCTAATAAATCTTCAGGTGCTTG
2868





TOPBP1
TGAGAAAGGTTTTTGTCAGGATG
2869
TTCTAGATTTTCAAGTGTAGGCTCC
2870





TOPBP1
CAAGAGATGGAATGTACACTGTGTGA
2871
CACTTACGCAACTTGCATTTATG
2872





TOPBP1
AGAACCTAGACCAGAAGCAAAGAC
2873
TGCTGTTAAGTGAATTACATATTGATT
2874





TOPBP1
ATGAGTGTGCCAAGAGATGGAATGTAC
2875
GTAGGCTCCAGTTTGCTGTTAAGTGAA
2876





TOPBP1
GTGTGACCACACAGTGGTTTT
2877
TTATGTTGGAAATATTGCTGACAT
2878





TOPBP1
CTCCTACCAGCCAGATCAACACA
2879
AAACGAACTCCACCTCCACTG
2880





TOPBP1
TTTGACAGTATTGAGAAAGGTTTTTG
2881
CATGAGTTACATCTTCATTTAGCTGG
2882





TOPBP1
GGTTTTTGTCAGGATGAATCCA
2883
CCACCTCCACTGTTAATAAGTCTTC
2884





TOPBP1
ACACCTCATTGTGCAAGAACC
2885
CTGCCACTAAAACCGCAAAG
2886





TOPBP1
TGAATGTACACACCTCATTGTGC
2887
GCTTTCTGCCACTAAAACCG
2888





TOPBP1
AGCATGGAGGTCAATACATGG
2889
TCCACTGTTAATAAGTCTTCTCAGTTT
2890





TOPBP1
CATGGAGGTCAATACATGGGACAATT
2891
GCTTTCTGCCACTAAAACCGCAAAGAT
2892





TOPBP1
TCAATACATGGGACAATTGAAAAT
2893
CGAACTCCACCTCCACTGTTAATA
2894





TSSC4
TTGGCTGTCCAATCACACTC
2895
ATGCCTCTCAGATGGAATGG
2896





TSSC4
ATGGCTGAGGCAGGAACAG
2897
CTCCGTTGTCACTCATGCTG
2898





TSSC4
GACGCATGGCTGAGGCAG
2899
ACAGAGGATGGAGCCCGTCT
2900





TSSC4
CTGGGGACGCATGGCTGAG
2901
GGCCTGAGGGCGCTAGGG
2902





TSSC4
CAATCACACTCCAGTGTCAACC
2903
CTCCAGGCAGTCAAAGATGTC
2904





TSSC4
ATCAGGGCTCCGTCCACTTG
2905
GTCAAAGATGTCACGGCTGC
2906





TSSC4
CGCTGAGGACCTTCATCAGG
2907
AGCTCATGCCTCTCAGATGG
2908





TSSC4
CAGTGTCAACCACTGGCACC
2909
TGGGAGAAGGTGGAGCTCAT
2910





TSSC4
AGGCCTGAGACGACCACG
2911
TCAGATGGAATGGCTGCAC
2912





TSSC4
GCTGTCCAATCACACTCCAGTGT
2913
AAGGTGGAGCTCATGCCTCT
2914





TSSC4
AGGACCTTCATCAGGGCTCC
2915
CACCGTGGCTGGGAGGAG
2916





TSSC4
CACCCAGCAGCCAAGAGAG
2917
GGGCCACAGAGGATGGAG
2918





TSSC4
CACTTGGCCCGCTTGGCTGT
2919
ATGGAATGGCTGCACCGTGG
2920





TSSC4
AACCACTGGCACCCAGCAGC
2921
CAGGCAGTCAAAGATGTCACGGCT
2922





TSSC4
CTGTGCCGCTGAGGACCTTC
2923
TGCGCTGGGAGAAGGTGGAG
2924





TSSC4
GCCCGCTTGGCTGTCCAATC
2925
AGAAGGTGGAGCTCATGCCTCTCAGAT
2926





TSSC4
ACCTTCATCAGGGCTCCGTCCAC
2927
AGATGTCACGGCTGCGCTGG
2928





TSSC4
ACACTCCAGTGTCAACCACTGGC
2929
ACGGCTGCGCTGGGAGAAG
2930





TSSC4
CCGTCCACTTGGCCCGCTT
2931
GCCCCCTCCAGGCAGTCAAA
2932





TSSC4
CACGCCTGTGCCGCTGAG
2933
ATGGAGCCCGTCTGGCCG
2934





TSSC4
AGACGACCACGCCTGTGC
2935
TGGTGTGGGCCACAGAGGAT
2936





TSSC4
ACTCCGAGGCCTGAGACGAC
2937
TCATGCTGGTGTGGGCCAC
2938





TUBA1
GACTCAACGTGAGACGCACC
2939
CTCTTTCCCAGTGATGAGCTG
2940





TUBA1
GACTCAACGTGAGACGCACC
2939
CCTTGCCAATGGTATAGTGACC
2941





TUBA1
ACTGCAGCTAGCGCAGTTCT
2942
CTCTTTCCCAGTGATGAGCTG
2940





TUBA1
ACCTGTCACCCCGACTCAAC
2943
GGTCAATGATCTCCTTGCCA
2944





TUBA1
CTAGCGCAGTTCTCACTGAGAC
2945
GTTGTTGGCAGCATCCTCTT
2946





TUBA1
TCTCACTGAGACCTGTCACCC
2947
TGACCACGGGCATAGTTGTT
2948





TUBA1
ACCCCGACTCAACGTGAGAC
2949
GGCATAGTTGTTGGCAGCAT
2950





TUBA1
GTGCGGCACTGCAGCTAG
2951
CAGCATCCTCTTTCCCAGTG
2952





TUBA1
ATAAGGGCGGTGCGGCACT
2953
TGGGTGGAAGAGCTGTCGGTAT
2954





TUBA1
ACCGCCCGGACTCACCATG
2955
CCGATCCAGCACTGGGTCAAT
2956





TUBA1
ACTGAGACCTGTCACCCCGACTC
2957
CAATGGTATAGTGACCACGGGC
2958





TUBA1
AGACGCACCGCCCGGACT
2959
TCCAGCACTGGGTCAATGATCTC
2960





UTRN
CAAACACCCTCGACTTGGTT
2961
TGGCAATACTGCTGGATGAG
2962





UTRN
CAAACACCCTCGACTTGGTT
2961
TGTGGCATATTGTTCTATTCTTGAA
2963





UTRN
TGGGGAAGATGTACGAGACTTC
2964
ACAGTTGAGGAGATTGTGAGGG
2965





UTRN
CAGGTCGAAGAAGTACTTTGCC
2966
TTCTTGAATGGGTGTCATCATG
2967





UTRN
CAACATCTGGGGAAGATGTACG
2968
TTGTTCTATTCTTGAATGGGTGTC
2969





UTRN
AAGAACAAGTTCAGGTCGAAGAAG
2970
ATCATGAAACAGTTGAGGAGATTG
2971





UTRN
GGTACTTAAGAACAAGTTCAGGTCG
2972
GAATGGGTGTCATCATGAAACAG
2973





UTRN
TACTTTGCCAAACACCCTCG
2974
GACCCATTAGTCCTTTCCATCTG
2975





UTRN
GACTTGGTTACCTGCCTGTCC
2976
ACACTTCCTGTGGTGGAGCT
2977





UTRN
TCCAGACAGTTCTTGAAGGTGAC
2978
CAGTGAGAAAAGACCCATTAGTCC
2979





UTRN
CGAAGAAGTACTTTGCCAAACAC
2980
TGGTGGAGCTGCTATCAGTG
2981





UTRN
ACCCTCGACTTGGTTACCTGC
2982
AGTCCTTTCCATCTGGGCCA
2983





UTRN
CGAGACTTCACAAAGGTACTTAAGAA
2984
GCTGCTATCAGTGAGAAAAGACC
2985





UTRN
CTTTGCCAAACACCCTCGACTTGG
2986
TGGTGGAGCTGCTATCAGTGAGAAAAG
2987





UTRN
AGAAGTACTTTGCCAAACACCCTCGAC
2988
ACTTCCTGTGGTGGAGCTGCTATCAGT
2989





UTRN
TCACAAAGGTACTTAAGAACAAGTTCA
2990
TGGCAATACTGCTGGATGAG
2962





UTRN
ACAAGTTCAGGTCGAAGAAGTACTTTG
2992
TCCGAGTGTTTGGCAATACTG
2993





UTRN
CACAAATTACATTACCCAATGGTG
2994
GACTGTCCTCCGAGTGTTTGG
2995





UTRN
CCCAATGGTGGAATATTGTATACC
2996
ATACTGCTGGATGAGGGCGT
2997





UTRN
GAGTTGTTTCTTTTCGGGTCG
2998
GAGGGCGTGCTCGTCTTC
2999





UTRN
GCAAAAGGTCACAAATTACATTACC
3000
AGTGTTTGGCAATACTGCTGGAT
3001





UTRN
TTTTCGGGTCGAACAGCAAAAG
3002
CTGGATGAGGGCGTGCTCGT
3003





UTRN
ACATTACCCAATGGTGGAATATTG
3004
ACTGGGGACTCTCCTCCGAG
3005





UTRN
TCGAACAGCAAAAGGTCACA
3006
CTGGCTCACTGGGGACTCTC
3007





UTRN
TCGAACAGCAAAAGGTCACAAATTACA
3008
ACTCTCCTCCGAGTGTTTGGCAATACT
3009





UTRN
TGTTTCTTTTCGGGTCGAACAGC
3010
TCTGCGGCTGGCTCACTG
3011





UTRN
CTGCCAGAGTTGTTTCTTTTCG
3012
CAGGATCTGAGCTGGGCTCT
3013





UTRN
TGATGTCTGCCAGAGTTGTTTC
3014
TGACTTCAGGATCTGAGCTGG
3015









Generally, one forward and one reverse primer are designed for each predicted exon-exon junction, as shown in FIG. 1B. To eliminate artefacts, the design algorithm generates at least two independent primer pairs for each AceView predicted event. In this way each alternative splicing event is validated by two independent PCR reactions. For the gene set analyzed in this study, an average of 37 primers was designed per gene. The primer sets are designed to amplify fragments ranging between 100-400 base pairs. It was found that this size range provides optimal accuracy during capillary electrophoresis separation of the amplicons and hence facilitates the automatic identification and assignment of amplicons (FIGS. 10 and 10).


Example 2
Data Collection and Analysis

Normal and serous epithelial ovarian cancer tissue samples were obtained as frozen specimens from the Cancer Research Network of the FRSQ. Histopathology, grade and stage were assigned according to the International Federation of Gynecology and Osbtetrics (FIGO) criteria. Only chemotherapy naïve tumor samples were used in the study. RNA Extraction from 50 mg tissue samples was done using TRIZOL® Reagent according to the manufacturer's protocol, using a PowerMax™ homogenizing system equipped with a 10 mm saw tooth blade (VWR International). To retain maximum yield of RNA, DNase treatment was not performed. Extracted RNA was isopropanol precipitated, then resuspended in pure water and stored at −80° C. RNA concentration was quantified on an Agilent 2100 BioAnalyzer (Agilent technologies). Typical total RNA yields of 1 to 66 μg per 50 mg specimen were obtained.


Ovarian tissues were classified as normal or cancerous according to the relative expression profile of the genes KRT18, KRT7, VIM, CDH1, TERT relative to GAPDH as measured by QPCR using PCR primers flanking dual fluorescent probes (see Table 3). Eight normal and eight tumour RNA samples showing expression data closest to the median for each gene's expression level for the normal or tumour tissue type were selected and combined in equal amounts to formulate 2 normal and 2 tumour pools of 4 samples each. Tissue quality control was established using real-time PCR amplification of known genes with known cancer or tissues type specific expression profile including the epithelial cell markers KRT7, KRT18 and CDH1, the stromal marker vimentin, and the tumour cell content indicator hTERT (Table 3). KRT7, KRT18 and CDH1 were shown to the upregulated in high grade serous ovarian cancer (Chu & Weiss, 2002, Mod Pathol, 15: 6-10; Ouellet et al., 2005, Oncogene, 24: 4672-4687; Sun et al., 2007, Eur J Obstet Gynecol Reprod Biol, 130: 249-257).









TABLE 3







Primer and dual labelled fluorescent probes used for quantitative PCR.










GENE
Forward
Probe1
Reverse





CDH-1
AATTCACCCAGGAGGTCTTTA
CTCCATCACAGAGGTTCCTGGAA
TTGGCTGAGGATGGTGTAA



(SEQ ID N0: 3016)
GA (SEQ ID NO: 3017)
(SEQ ID NO: 3018)





KRT18
TTCGCAAATACTGTGGACAA
CCAGCTCTGTCTCATACTTGACT
CCCATGGATGTCGTTCTC



(SEQ ID NO: 3019)
CTAAAGTCA 
(SEQ ID NO: 3021)




(SEQ ID NO: 3020)






KRT7
GCTGCTGAGAATGAGTTT
TAGGCAGCATCCACATCCTTCTT
GGTCCTGAGGAAGTTGATCTC



GTG(SEQ ID NO: 3022)
CA (SEQ ID NO: 3023)
(SEQ ID NO: 3024)





TERT
TGTGCACCAACATCTACAAGA
CGTGAAACCTGTACGCCTGCAG
AGGCCGTGTCAGAGATGA



(SEQ ID NO: 3025)
(SEQ ID N0: 3026)
(SEQ ID NO: 3027)





VIM
TCTTGACCTTGAACGCAAA
CCTGGATTTCCTCTTCGTGGAGT
CATGCTGTTCCTGAATCTGA



(SEQ ID NO: 3028)
TT (SEQ ID NO: 3029)
(SEQ ID NO: 3030)






1Dual labelled fluorescent probe, with 5′-FAM, 3′-TAMRA.







Tissues that fail the quality control were considered to have low tumour tissue content or reflect different or aberrant tumour subset, and were not considered further in the study. For the quality control, tissues (normal and cancerous) are first classified based on histopathological assessment. Moreover, since the portion of tissue used for subsequent analysis may be from a different region of the tumor that been examined by pathologists, one must assess the quality of the tissue that will be used following classification by pathologists by comparing expression levels of the 5 genes with the median expression levels for all tissues of a given type (normal or tumour) as called by histopathological assessment. Normal versus tumour tissues have different expression patterns for these 5 genes.


Reverse transcription was performed on 2 μg total RNA samples in the presence of RNAse inhibitor according to the manufacturers' protocols. Reactions were primed with both (dT)21 and random hexamers at final concentrations of 1 μM and 0.9 μM respectively. The integrity of the cDNA was assessed by SYBR® Green based quantitative PCR, performed on three housekeeping genes: MRPL19, PUM1 and GAPDH using primers illustrated in Table 4.









TABLE 4







Primer used for SYBR Green based quantitative.













SEQ

SEQ




ID

ID


GENE
Forward
NO:
Reverse
NO:














BMP4
TCCACAGCACTGGTCTTGAG
3031
GATCACCTCGTTCTCAGGGA
3032





CHEK2
GCGCCTGAAGTTCTTGTTTC
3033
GCCTTTGGATCCACTACCAA
3034





DNMT3B
CCATGCAACGATCTCTCAAA
3035
CAGCAGAAACTTTGATGGCA
3036





FN1
ACCTGGAGGAGACCACATGA
3037
TACCATCATCCAGCCTTGGT
3038





HMGA1
GCGAAGTGCCAACACCTAAG
3039
GAGATGCCCTCCTCTTCCTC
3040





HSC20
ATACAGCGAAGCTCCAGCAC
3041
AGGGTCGAATGCTTCTCTGA
3042





UTRN
CTCATCCAGCAGTATTGCCA
3043
CTGGTCCTTCAGCTGCTCAT
3044





SYNE2
TCACCCAGTCCTTACAACTCC
3045
CATCAACGTCACCCTTCCTC
3046





SHMT1
CAATGACGATGCCAGTCAAC
3047
AACCCTCTGCCGGTTACTCT
3048





PTK2
TCCGGAGGGTCTGATGAA
3049
GTGAACCAGGGTAGCCAGAA
3050





KITLG
CATTGCCAGCATTGTTTTCT
3051
TGTATATTTTCAACTGCCCTTGT
3052





GAPDH
GTGAAGGTCGGA
3053
TGCCATGGGTGG
3054



GTCAACGGATTT

AATCATATTGGA






PUM1*
TGAGGTGTGCACCATGAAC
3055
CAGAATGTGCTTGCCATAGG
3056





MRPL19*
GGGATTTGCAT
3057
GGAAGGGCA
3058



TCAGAGATCAG

TCTCGTAAG





*sequences reported in Szabo et al. (2004, Genome Biol, 5: R59)






Ct (quantitative PCR cycle threshold) values for these genes, typically in the range of 14-25, depending on the gene, were used to verify the integrity of each cDNA sample. These Ct values are determined using standard SYBR green QPCR methods on an Eppendorf Mastercycler thermocycler. Following QPCR, the samples were analyzed by capillary electrophoresis to ensure that only one amplicon of the expected size was obtained.


PCR reactions were performed on 20 ng cDNA in 10 μl final volume containing 0.2 mM each dNTP, 1.5 mM MgCl2, 0.6 μM each primer and 0.2 units of Taq DNA polymerase. An initial incubation of 2 minutes at 95° C. was followed by 35 cycles at 94° C. 30 s, 55° C. 30 s, and 72° C. 60 s. The amplification was completed by a 2 minute incubation at 72° C.


RNA quantification and integrity analysis was performed on an Agilent bioanalyzer (Agilent, Santa Clara, Calif.), using the manufacturer's software. Analysis of the DNA amplification reactions was performed on Caliper LabChip® 90 instruments (Caliper LifeSciences, Hopkinton, Mass.), and amplicon sizing and relative quantification was performed by the manufacturer's software, prior to being uploaded to the LISA database.


The LISA was built around the LAMP solution stack of software programs (Linux operating system, Apache web server, Mysql database management server and Perl and Python programming languages). In addition, several peripheral Perl and Python modules for experimental design, analysis, and display of results interact with the LISA. Statistical t-tests and unsupervised clustering were performed using the R package.


The capillary electrophoresis instrument software (Caliper LifeSciences, Hopkinton, Mass.) provides size and concentration data for the detected peaks of each PCR reaction. These data are uploaded to the LISA database and compared with expected amplicon sizes for that experiment. Using the experimentally determined amplicon sizing data, a signal detection protocol assigns detected amplicons to expected sizes. Gene sequence, primer sequence, single nucleotide polymorphism sites and protein coding data are associated to each element of experimental data stored in the database.


For each PCR reaction covering an AS event, the concentration data from all RNA sources under consideration were used to determine the most prevalent assigned amplicon. For each RNA source, the ratio of the concentration of this amplicon to the total assigned amplicon concentrations measured is calculated and is expressed as a percentage, termed the percent splicing index, (PSI or Ψ). Ψ values for each reaction are used to compare alternative splicing profiles between RNA sources. Percent splicing index, Ψ values for different RNA sources are used in statistical t-tests, and resulting p-values are used in the screening process to determine cancer specificity. Reaction sets with Bonferroni-corrected p-values of less than 0.0002 were considered statistically significant hits.


The designed sets of PCR experiments are passed to the automated platform together with associated experimental conditions such as the RNA source, and PCR reaction conditions. Once the PCR amplification and capillary electrophoresis are completed, an electropherogram is generated that reflects the amplification pattern, as shown in FIG. 1D. The electropherogram is analyzed by the LISA and the detected amplicons are compared with the expected amplicon sizes and assigned correspondingly. If the detected peaks do not match some or all of the predicted amplicons, these peaks are labelled as “unassigned” and are stored in the database for subsequent novel splicing event analysis. In the present study, 4% of the primers failed to amplify a product. Failure of specific primers was easily offset by built-in redundancy in the PCR reaction design. On completion of the RT-PCR based gene annotation, the results obtained from different RNA sources are compared to identify sample-specific patterns of splicing. As shown in FIG. 1D, the alternative splicing event tested in Stim1, displayed a variable splicing pattern in these RNA sources. These results demonstrate that LISA can detect sample-specific differences in splicing patterns.


Example 3
Annotation and Display of Validated Splicing Events

In addition to the tissue specific representation shown in FIG. 1E, two additional representations of the annotation of splicing events have been developed within the LISA. As shown for the ovarian cancer associated gene SHMT1 (FIG. 2A), each intron is uniquely labelled, while transcript names are retained from AceView. By comparing different AceView transcripts, the LISA generates all potential alternative splicing events and each event is assigned a unique number. After the RT-PCR analysis of the gene as illustrated in FIGS. 1A to 1D, the expression of exon-exon junctions are displayed as “detected”, “not detected” or “not determined” with a confidence level ranging from low to high (FIG. 2B). In the case of SHMT1, 2 predicted exon junctions out of 28 were “not detected” in pools of RNA obtained from normal and ovarian serous tissues of 16 individuals with a very high degree of confidence (all primer sets in agreement). On the other hand, 3 exon-exon junctions were found to be tissue type-dependent with medium confidence rating (FIG. 2B, columns A, K and AB). Three exon-exon junctions were not determined in one RNA source (OVN Pool 3 in I, L and M) and one junction was not detected with high level confidence in any RNA source tested (FIG. 2B, column X). To monitor the relative expression of each splicing isoform, a schematic representation of each predicted splicing isoform is also generated by LISA. In this display (FIG. 2C), the long form generated by each alternative splicing event of SHMT1 is shown in green and the short form in red. Four splicing events were RNA source-specific and one short and one long form were not detected in one RNA source. Sequencing of selected source-specific amplicons identified by LISA confirmed the detection accuracy. This demonstrates the capacity of LISA to produce exon-exon or splice events specific annotation and that SHMT1 is spliced in a tissue-specific manner.


Example 4
Comparative Profiling of Splicing Events in Normal and Serous Ovarian Tumour Tissues

To identify cancer associated splicing events, a LISA based screening pipeline was constructed for genes associated with ovarian cancer (FIG. 3). Candidate ovarian cancer-associated genes were identified by a keyword search in public databases, yielding a list of 600 genes. All genes were entered into LISA for the identification of alternative splicing events and experimental design. A total of 4709 alternative splicing events were identified and 19 800 PCR reactions were designed. The screen was divided in two stages: the first termed the discovery screen and the second, the validation screen.


The discovery screen was carried out using two pools of RNA extracted from high-grade (grades 2 and 3; grades are standard clinical classification of tumor that take into account the size and invasive status of the tumor) serous epithelial ovarian cancer specimens and two pools of RNA extracted from unmatched normal ovaries (same age group and no prior chemotherapy). Each pool contained an equivalent mix of four independent tissues. Normal ovarian tissues were selected from women undergoing oophorectomy for reasons other than ovarian cancer, and the normality of the ovaries was confirmed by standard pathology tissue examination. Ovaries with benign tumours or cysts were excluded. Most of the donors were postmenopausal women of the age group when most serous tumours develop. Screening of the two cancers and two normal pools identified 104 cancer associated splicing events in 98 different genes. Alternative splicing events identified in the discovery screen were re-examined on individual RNA samples extracted from 25 serous epithelial ovarian cancers (grades 2 and 3) and 21 normal ovary samples. Overlapping PCR reactions using RNA from each tissue were carried out as in the discovery screen confirming the association of 48 alternative splicing events in 45 genes with ovarian cancer tissues. The other 56 events identified in the discovery phase were found to be associated only with a subclass of cancer tissues and thus may represent either differences between individuals or cancer subtypes. Table 5 gives the gene name and the percent of cancer tissue samples lying outside the range of the normal samples (defined as the percent of identification in Table 5). For example, 50% means half of the cancer tissue samples did not overlap with any of the normal tissue samples. The second column gives the p-values that characterize statistical separation between the cancer and normal populations.









TABLE 5







Gene name and the percent of cancer tissue samples lying outside the


range of the normal samples (percent of identification).









Gene
Percent of Identification
MannWhitney_pvalue












BCMP11
60
5.09E−007


C11orf17
75
1.55E−007


CHEK2
0
3.93E−004


DNMT3B
90
3.25E−009


BMP4
30
4.14E−005


GNB3
55
2.19E−005


GATA3
0
5.51E−005


KITLG
80
1.58E−005


PAXIP1
85
2.84E−011


PLD1
70
6.06E−008


STIM1
100
5.51E−009


NRG1
94.12
1.50E−006


RAD52
40
7.72E−003


SYNE2
95
1.23E−008


TOPBP1
55
3.34E−008


UTRN
80
3.16E−007


SLIT2
50
3.74E−005


FN1EDB
0
2.74E−006


FN1EDA
40
2.80E−004


FN1IICSUP
75
3.30E−007


FN1IICSDOWN
85
2.34E−008


APC
90
7.47E−008


APP
95
1.71E−009


AXIN1
70
3.38E−006


BTC
40
4.96E−003


CCNE1
40
5.25E−005


FANCA
35
1.11E−003


FANCL
10
3.98E−009


FGFR1
40
1.62E−002


FGFR2
40
1.05E−003


FGFR4
0
1.05E−005


IGSF4
75
2.24E−008


LGALS9
30
5.20E−006


MCL1
40
5.19E−006


NUP98
45
1.60E−006


POLI
0
2.94E−004


PTPN13
60
2.29E−007


SYK
65
7.63E−006


TSSC4
45
3.96E−005


TUBA1
0
1.72E−004


C11ORF4
75
1.05E−007


POLM
30
2.60E−007


PSAP
75
2.08E−008


HMGA1
0
1.80E−004


PTK2
95
1.80E−008


AFF3
55
2.11E−007


SHMT1
20
4.50E−004


HSC20
85
2.11E−007









This indicates that of the 600 genes associated with ovarian cancer, breast cancer and/or DNA damage/repair tested, 45 (7.5%) harboured at least one ovarian cancer-specific splicing event.


Following the discovery screen, candidate reactions covering AS events were selected for the validation screen using the Ψ values for the 4 pools. Reactions showing a difference of at least 10 percentage points between the mean Ψs for normal and tumour pools and a maximum standard deviation of the Ψs for each tissue type not exceeding 26% were selected. Following the validation screen, Ψ values were used in a t-test for significant differences between normal and tumour tissue samples. Reaction sets using Bonferroni corrected p-values<0.0002 were selected (see Table 5).


Graphical displays were generated with Perl-based analysis modules. The modules analyze the transcript map and capillary electrophoresis data obtained for each experiment data, and apply RNA source based unsupervised clustering of the results prior to generating the displays.


The entire discovery screen annotation dataset was queried to identify unassigned amplicons which were present in more than one pool sample, and which satisfy one of the following conditions: i) amplicon detected in normal pools only, ii) amplicon detected in tumour pools only, iii) amplicon detected in normal and tumour pools, but at least double the concentration one pool type relative to the other. Candidate amplicons identified by this in silico database query were purified by agarose gel electrophoresis and sequenced.


Example 5
Alternative Splicing of Cassette Exons is Enriched in Serous Ovarian Cancer

LISA-based analysis of alternative splicing automatically detects all types of alternative splicing with the exception of alternative intron inclusion, which requires special attention (FIGS. 4A and 4B). PCR amplicons generated from intron inclusion events are difficult to distinguish from those generated from genomic DNA contamination. Therefore, amplicons representing putative intron inclusion events were removed from the analysis pipeline for separate characterization. All other types of splicing events were divided into 7 groups based on the categories indicated at the bottom of FIG. 4B. Cassette exons were the most frequent alternative splicing event in the 182 gene subset considered, followed by alternative 3′, and then alternative 5′ splice events. The least frequent event was mutually exclusive alternative exons. Overall, about half of all EST-predicted alternative splicing events were validated. The general distribution of detected alternative events was slightly different than that of the predicted set. The main difference was an overrepresentation of alternative 3′ and alternative 5′ splice sites in the validated set (compare relative contribution of detected (black) and not detected (grey) events in FIG. 4A). The difference is likely due to the fact that the EST prediction is based on a large number of tissues while the data presented here are obtained only from ovarian tissues. Inspection of all validated cancer associated alternative events reveals the presence of one intron inclusion event and a large enrichment in alternative cassette exons (FIG. 4B). Indeed, 80% of the alternative splicing events associated with ovarian tumour involved alternative cassette exons. No alternative 3′ splice site events or mutually exclusive exons were part of the ovarian cancer signature. These data demonstrate that specific alterations in splicing control are occurring in serous ovarian cancers.


Example 6
Identification of a Novel Ovarian Cancer-Specific Alternative Splicing Event

When unpredicted amplification products were obtained, they were automatically classified as “unassigned” and stored for subsequent analysis. Sequencing of eight such products appearing in RNA samples from at least two different ovarian tissues revealed that only one represented a truly novel splicing event. Others were derived from the amplification of unrelated sequence or the amplification of unspliced DNA fragments. As shown in FIG. 5, the novel cancer-specific splice junction was found in ERBB2, wherein the sequence consist of:










(SEQ ID NO: 3061)



ggttcaccca ccagagtgat ntgtggagtt atggtgtgac tgtgtgggag ctgatgactt






ttggggccaa accttacgat gggatcccag cccgggagat ccctgacctg ctggaaaagg





gggagnnnnt gccccagccc cccatatgca ccattgatgt ctacatgatc atggtcaaat





gtgcgtggct gagctgtgct ggctgcctgg aggagggtgg gaggtcct.






A new splice site was found in the middle of a previously unspliced exon leading to the generation of two alternative splicing isoforms.


Example 7
Use of Alternative Splicing to Diagnose Ovarian Cancer

To evaluate the potential of the alternative splicing events identified by LISA as diagnostic markers for ovarian cancer, their individual and collective capacity to accurately differentiate between normal and cancer tissues was evaluated. The variance in the splicing pattern of each of the identified 48 ovarian cancer associated splicing events (Table 1) was calculated as percent splicing index (PSI, ψ) and was used to classify the 46 individual and 4 pools of normal and tumour tissues based on splicing similarity (FIG. 6). Strikingly, all tumour tissues clustered together. Visual examination of the splicing patterns present at opposing ends of the tissue cluster revealed that tissues could be classified as accurately by splicing events producing either the short or the long isoform (FIGS. 1 & 6). For example, in the case of DNMT3B, the short form is predominant in normal tissues while the long form (potential gain of a protein domain) is more abundant in cancer tissues. In contrast, SYNE2 displays a gain in protein sequence specifically in the normal tissue. The expression levels of the 45 genes listed in Table 1 were determined by quantitative PCR. As shown in FIG. 7, expression levels varied up to 5-fold between the 2 normal pools, and up to 3-fold between the 2 tumour pools. The overall expression level was consistently higher in both normal pools than in the cancer pool for 5 genes and was similar for 4 genes, while lower for 1 gene. The maximum expression level difference between normal and tumour was observed for KITLG, which showed a 9-fold higher expression in normal pool 1 compared to tumour pool 1. A correlation between shifts in alternative splicing and expression levels was not detected, and thus, for this data, expression and cancer specific-alternative splicing are distinctly regulated, as suggested previously by comparing tissue-specific expression and splicing profiles (Pan et al., 2004, Mol Cell, 16: 929-941). Consequently, the alternative splicing patterns is an efficient classifier that distinguishes serous epithelial ovarian cancer from normal ovarian tissues.


Example 8
Identification of Alternative Splicing Event Specific to Breast Cancer

Similarly to the methodology that is described hereinabove, the LISA based screening was used to identify a signature of diagnostic markers for breast cancer. The approach used differed in that only putative alternative splicing events, as opposed to all exon-exon junctions, were targeted by PCR primer pairs. This reduced the average number of PCR reactions per gene from 54 used for the ovarian tissue screen to 5 for the breast tissue screen of 600 genes.









TABLE 6







Properties of breast cancer-specific alternative splicing (AS) variants.











GENE
STRAND
ASE size, type (+ long in


GENE NAME
SYMBOL
DIRECTION
cancer, − short in cancer)













ADAM metallopeptidase domain 15
ADAM15
1
+75 nt exon, +72 nt exon


(metargidin)


breast carcinoma amplified sequence 1
BCAS1
−1
+66 nt exon


G protein-coupled receptor 137
C11ORF4
1
−150 nt exon


chemokine (C-C motif) ligand 4
CCL4
1
+113 nt exon


catenin (cadherin-associated protein),
CTNNA1
1
−71 nt exon


alpha 1, 102 kDa


discoidin domain receptor family,
DDR1
1
+111 nt exon


member 1


DBF4 homolog B (S. cerevisiae).
DRF1
1
+65 nt alt 3′


desmocollin 3
DSC3
−1
−43 nt exon


epithelial cell transforming sequence 2
ECT2
1
−93 nt exon


oncogene


endothelial cell growth factor 1 (platelet-
ECGF1
−1
+274 nt intron


derived)


coagulation factor III (thromboplastin,
F3
−1
+160 nt exon


tissue factor)


fibronectin 1
FN1
−1
+267 nt exon


cancer susceptibility candidate 4
H63
1
−168 nt exon


high mobility group AT-hook 1
HMGA1
1
+51 nt exon


hyaluronan-mediated motility receptor
HMMR
1
−48 nt exon


(RHAMM)


insulin receptor
INSR
−1
−36 nt exon


ligase III, DNA, ATP-dependent
LIG3
1
−230 nt alt 3′


ligase IV, DNA, ATP-dependent.
LIG4
−1
+73 nt exon


encoding Notch homolog 3 (Drosophila)
NOTCH3
−1
−156 nt exon


proprotein convertase subtilisin/kexin
PACE4
−1
+144 nt exon


type 6


polymerase (DNA directed), beta
POLB
1
−58 nt exon


protein tyrosine phosphatase, receptor
PTPRB
−1
+264 nt exon


type, B


CAP-GLY domain containing linker
RSN
−1
+228 nt alt 3′, +117 nt exon


protein 1


CAP-GLY domain containing linker
RSN
−1
−33 nt exon


protein 1


runt-related transcription factor 2
RUNX2
1
−66 nt exon


SHC (Src homology 2 domain containing)
SHC1
−1
+54 nt exon


transforming protein 1


tousled-like kinase 1
TLK1
−1
−69 nt exon


CD40 molecule, TNF receptor
TNFRSF5
1
−96 nt alt 3′


superfamily member 5









Consequently, the LISA methodology was efficient to identify specific signatures for two unrelated types of cancer (ovarian cancer and breast cancer).


While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

Claims
  • 1. A method for diagnosis or prognosis of a cancer in a subject by detecting a signature of splicing events comprising the steps of: a) obtaining a nucleic acid sample from said subject, andb) determining whether the nucleic acid sample from step a) contains a signature specific to cancer.
  • 2. The method of claim 1, wherein said cancer is selected from the group consisting of breast, glioma, large intestinal cancer, lung cancer, small cell lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cutaneous or intraocular melanoma, uterine sarcoma, ovarian cancer, rectal or colorectal cancer, anal cancer, colon cancer, fallopian tube carcinoma, endometrial carcinoma, cervical cancer, vulval cancer, squamous cell carcinoma, vaginal carcinoma, Hodgkin's disease, non-Hodgkin's lymphoma, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue tumor, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney cancer, ureter cancer, renal cell carcinoma, renal pelvic carcinoma, CNS tumor, glioma, astrocytoma, glioblastoma multiforme, primary CNS lymphoma, bone marrow tumor, brain stem nerve gliomas, pituitary adenoma, uveal melanoma, testicular cancer, oral cancer, pharyngeal cancer, pediatric neoplasms, leukemia, neuroblastoma, retinoblastoma, glioma, rhabdomyoblastoma and sarcoma.
  • 3. The method of claim 1, wherein said signature comprises at least 1 splicing variant.
  • 4. The method of any one of claim 1, further comprising an initial step of designing at least two independent PCR primer pairs for each predicted exon-exon junction from a transcript map of a gene affected in cancer.
  • 5. The method of claim 4, further comprising a step of PCR amplifying the nucleic acid sample with the PCR primer pairs to obtain amplicons.
  • 6. The method of claim 4, further comprising the step of measuring the size and sequence of said amplicons.
  • 7. The method of any one of claim 1, wherein said splicing variants occur in genes selected from the group consisting of AFF3, AGR3, APP, AXIN1, BMP4, BTC, C11orf17, CADM1, CCNE1, CHEK2, DNMT3B, FANCA, FANCL, FGFR1, FGFR2, FGFR4, FN1-EDA, FIN-EDB, FIN-IIICS, GATA3, GNB3, GPR137, HMGA1, HSC, KITLG, LGALS9, MCL1, NRG1, NUP98, PAXIP1, PLD1, POLI, POLM, PSAP, PTK2, PTPN13, RAD52, SHMT1, SLIT2, SRP19, STIM1, SYK, SYNE2 TOPBP1, TSSC4, TUBA4A UTRN, ADAM15, BCAS1, C11ORF4, CCL4, CTNNA1, DDR1, DRF1, DSC3, ECGF1, ECT2, FN1, F3, H63, HMGA1, HMMR, INSR, LIG3, LIG4, NOTCH3, PACE4, POLB, PTPRB, RSN, RUNX2, SHC1, TLK1 and TNFRSF5.
  • 8. (canceled)
  • 9. The method of any one of claim 3, wherein said splicing events are selected from the group consisting of an alternative 3′ splicing, an alternative 5′ splicing, an alternative 3′ and 5′ splicing, a cassette exon and alternative 5′ or 3′ splicing, a multiple cassette exons splicing, a mutually exclusive exons splicing, a cassette exon splicing, and alternative cassette exons splicing.
  • 10. (canceled)
  • 11. The method of claim 3, wherein said at least one splicing variant is SEQ ID NO:3061.
  • 12. A method for identifying a signature specific of a cancer, said signature consisting of at least one specific splicing event or a specific combination of splicing events, said method comprising the steps of: a) designing at least two independent PCR primer pairs for each predicted exon-exon junction from a transcript map of a gene affected in cancer;b) reverse transcribing a template from RNA from a sample of cancer tissue and a sample from normal tissue;c) amplifying amplicons of said gene by PCR with the PCR primer pairs using the template reverse transcribed from the cancer tissue and the normal tissue;d) determining the size and sequence of said amplicons;e) performing a comparative analysis of amplicons obtained from the template reverse transcribed from the cancer tissue and the normal tissue; andf) identifying the presence of at least one alternative splicing event in the gene;wherein the presence of said at least one alternative splicing event corresponds to the signature of the cancer.
  • 13.-15. (canceled)
  • 16. The method of any one of claim 12, wherein said PCR primer pairs are designed to amplify amplicons ranging from 100 to 700 base pairs.
  • 17. (canceled)
  • 18. The method of any one of claim 12, wherein said splicing event is selected from the group consisting of an alternative 3′ splicing, an alternative 5′ splicing, an alternative 3′ and 5′ splicing, a cassette exon and alternative 5′ or 3′ splicing, a multiple cassette exons splicing, a mutually exclusive exons splicing and a cassette exon splicing.
  • 19. The method of claim 18, further comprising a step g) of selecting amplicons with a difference of at least 10% of points between a mean Ψs for normal and cancer tissue and with a maximum standard deviation of the Ψs for each tissue type of at most 26%.
  • 20. The method of any one of claim 12, wherein said gene is selected from the group consisting of AFF3, AGR3, APP, AXIN1, BMP4, BTC, C11orf17, CADM1, CCNE1, CHEK2, DNMT3B, FANCA, FANCL, FGFR1, FGFR2, FGFR4, FN1-EDA, FIN-EDB, FIN-IIICS, GATA3, GNB3, GPR137, HMGA1, HSC, KITLG, LGALS9, MCL1, NRG1, NUP98, PAXIP1, PLD1, POLI, POLM, PSAP, PTK2, PTPN13, RAD52, SHMT1, SLIT2, SRP19, STIM1, SYK, SYNE2 TOPBP1, TSSC4, TUBA4A, UTRN, ADAM15, BCAS1, C11ORF4, CCL4, CTNNA1, DDR1, DRF1, DSC3, ECGF1, ECT2, FN1, F3, H63, HMGA1, HMMR, INSR, LIG3, LIG4, NOTCH3, PACE4, POLB, PTPRB, RSN, RUNX2, SHC1, TLK1 and TNFRSF5.
  • 21. (canceled)
  • 22. The method of any one of claim 12, wherein said splicing event involves alternative cassette exons.
  • 23. A diagnostic kit for detecting a signature of a cancer in a patient comprising: a) PCR primer pairs for predicted exon-exon junctions of at least one splicing variant; andb) a set of instructions for using said primers to generate and detect a signature specific of ovarian cancer, said signature consisting of the at least one splicing variant or a specific combination of splicing variants.
  • 24.-25. (canceled)
  • 26. The kit of any of claim 23, wherein said at least one splicing variant occurs in a gene selected from the group consisting of AFF3, AGR3, APP, AXIN1, BMP4, BTC, C11orf17, CADM1, CCNE1, CHEK2, DNMT3B, FANCA, FANCL, FGFR1, FGFR2, FGFR4, FN1-EDA, FIN-EDB, FIN-IIICS, GATA3, GNB3, GPR137, HMGA1, HSC, KITLG, LGALS9, MCL1, NRG1, NUP98, PAXIP1, PLD1, POLI, POLM, PSAP, PTK2, PTPN13, RAD52, SHMT1, SLIT2, SRP19, STIM1, SYK, SYNE2 TOPBP1, TSSC4, TUBA4A, UTRN, ADAM15, BCAS1, C11ORF4, CCL4, CTNNA1, DDR1, DRF1, DSC3, ECGF1, ECT2, FN1, F3, H63, HMGA1, HMMR, INSR, LIG3, LIG4, NOTCH3, PACE4, POLB, PTPRB, RSN, RUNX2, SHC1, TLK1 and TNFRSF5.
  • 27. (canceled)
  • 28. A method for profiling cancer in a subject by detecting a signature of splicing events comprising the steps of: a) obtaining a nucleic acid sample from said subject, andb) determining whether the nucleic acid sample from step a) contains a signature specific to a cancer.
  • 29. (canceled)
  • 30. The method of claim 28, wherein said signature comprises at least 1 splicing variant.
  • 31. The method of any one of claim 28, further comprising an initial step of designing at least two independent PCR primer pairs for each predicted exon-exon junction from a transcript map of a gene affected in ovarian cancer.
  • 32. The method of any one of claim 28, further comprising a step of PCR amplifying the nucleic acid sample with the PCR primer pairs to obtain amplicons.
  • 33. The method of any one of claim 28, further comprising the step of measuring the size and sequence of said amplicons.
  • 34. The method of any one of claim 28, wherein said splicing variants occurs in genes selected from the group consisting of AFF3, AGR3, APP, AXIN1, BMP4, BTC, C11orf17, CADM1, CCNE1, CHEK2, DNMT3B, FANCA, FANCL, FGFR1, FGFR2, FGFR4, FN1-EDA, FIN-EDB, FIN-IIICS, GATA3, GNB3, GPR137, HMGA1, HSC, KITLG, LGALS9, MCL1, NRG1, NUP98, PAXIP1, PLD1, POLI, POLM, PSAP, PTK2, PTPN13, RAD52, SHMT1, SLIT2, SRP19, STIM1, SYK, SYNE2 TOPBP1, TSSC4, TUBA4A, UTRN, ADAM15, BCAS1, C11ORF4, CCL4, CTNNA1, DDR1, DRF1, DSC3, ECGF1, ECT2, FN1, F3, H63, HMGA1, HMMR, INSR, LIG3, LIG4, NOTCH3, PACE4, POLB, PTPRB, RSN, RUNX2, SHC1, TLK1 and TNFRSF5.
  • 35. (canceled)
  • 36. The method of any one of claim 28, wherein said splicing events are selected from the group consisting of an alternative 3′ splicing, an alternative 5′ splicing, an alternative 3′ and 5′ splicing, a cassette exon and alternative 5′ or 3′ splicing, a multiple cassette exons splicing, a mutually exclusive exons splicing and a cassette exon splicing.
  • 37. (canceled)
  • 38. The method of claim 30, wherein said at least one splicing variant is SEQ ID NO:3061.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/CA08/01477 8/15/2008 WO 00 2/12/2010
Provisional Applications (2)
Number Date Country
60935489 Aug 2007 US
60988213 Nov 2007 US