This application is based upon and claims benefit of priority of Japanese Patent Application No. 2004-326064 filed on Nov. 10, 2004, the content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an alternator that is directly connected to an internal combustion engine, such as an alternator for use in a motorcycle.
2. Description of Related Art
Most of alternators for use in a four-wheel automobile are driven by an engine by a driving belt connecting an alternator pulley and a driving shaft of the engine, as exemplified in JP-A-2002-58193. In this case, air for cooling the alternator can be easily taken into the alternator and exhausted from the alternator without interfering with a bracket of the engine. Accordingly, the alternator is sufficiently cooled by the cooling air. In order to further improve cooling efficiency, it has been proposed to use conductor segments, as exemplified in JP-B2-3407643.
Some other alternators, such as alternators for use in a motorcycle, are directly connected to an engine and directly driven by the engine without using a pulley and a driving belt, as exemplified in JP-A-8-331786. In this case, a hot airflow exhausted from the alternator after cooling the alternator is hindered by an engine bracket that is closely located to the alternator. Accordingly, the hot air may be taken again into the alternator, and the alternator may not be sufficiently cooled.
The present invention has been made to improve cooling efficiency in an alternator directly connected to an engine, and an object of the present invention is to provide such an alternator that is effectively cooled.
The alternator is composed of a frame, a rotor rotatably supported in the frame, a stator contained in the frame outside the rotor and associated components. A front flange of the frame is connected to an engine bracket, and a front end of the rotor shaft is directly connected to an engine shaft so that the rotor is directly driven by the engine. The frame includes cooling air inlet windows and cooling air outlet windows. Cooling air is introduced from the cooling air inlet windows into the alternator by a cooling fan driven together with the rotor, and is blown out of the cooling air outlet windows.
The cooling air inlet windows are formed in the front axial end of the frame, and the cooling air outlet windows are formed at an radial outside of the frame, so that hot cooling air once exhausted does not stay or stagnate around the cooling air inlet windows even if the engine bracket to which the alternator is connected has a fairly large surface. In this manner, cool air is always introduced into the alternator through the cooling air inlet windows, and a high cooling efficiency is realized. Further, the cooling air outlet windows are positioned directly outside of a front coil end to lead the cooling air in the radial direction to the front coil end. The front coil end formed by plural conductor segments is shaped to have air passages through which the cooling air flows to further enhance the cooling efficiency.
Preferably, a front end surface of each cooling air outlet window is positioned at a same position as a front end of the front coil end in order to minimize an amount of cooling air flowing through without passing the front coil end. A rear end surface of each cooling air outlet window is sloped toward the rear side of the alternator so that the cooling air flowing out of the outlet window is directed away from the front side, i.e., away from the engine. Further, the front end surface of the outlet window may be made perpendicular to the axial direction of the rotor shaft so that the exhausted cooling air is not directed to the engine side.
According to the present invention, the hot cooling air exhausted from the outlet windows is prevented from stagnating around the inlet windows and from being introduced again into the alternator. Most of the cooling air flowing in the radial direction hits the front coil end of the stator winding. Therefore, cooling efficiency in the alternator is considerably improved. Other objects and features of the present invention will become more readily apparent from a better understanding of the preferred embodiment described below with reference to the following drawings.
A preferred embodiment of the present invention will be described with reference to
An outer spline 20 formed at the front end of the rotor shaft 2 is coupled to an inner spline 102 formed in an engine shaft, and thereby the alternator 1 is directly driven by the engine without using a pulley and a driving belt. The rotor 3 generating a magnetic field is composed of a pair of pole cores, a front pole core 30 and a rear pole core 31 firmly connected to the rotor shaft 2, and a rotor winding 32 wound around the pole cores. Each rotor core 30, 31 has a boss portion connected to the rotor shaft 2 and plural claw-shaped poles (e.g., 6 poles). A cooling fan 35 is connected to a front surface of the front pole core 30 by welding or the like so that the cooling fan 35 rotates together with the rotor 3.
The cooling fan 35 is a fan having inclined blades for blowing air in both directions, an axial direction parallel to the rotor shaft 2 and a radial direction perpendicular to the rotor shaft 2. The cooling air flowing in the axial direction goes through spaces between the poles of the pole cores 30, 31 and an air gap between the rotor 3 and the stator 4, and thereby the rotor 3 and the stator 4 are cooled. Another cooling fan 36 is connected to a rear surface of the rear pole core 31. The cooling fan 36 is a centrifugal fan having upright blades for blowing air in the radial direction.
The stator 4 is composed of a cylindrical stator core 40 having plural slots 45 (shown in
As shown in
The stator 4 is contained in a frame composed of a front frame 5 and the rear frame 6, and the stator 4 is connected to the frame with stud bolts 50 and nuts 53. The rotor 3 is rotatably supported in the frame inside the stator 4. The front frame 5 has cooling air outlet windows 51 formed around the front coil end 47 of the stator winding 41 and cooling air inlet windows 52 formed at an axial end of the front frame 5. Cooling air is sucked into the alternator from the cooling air inlet windows 52 by the cooling fan 35, flows through the inside space of the alternator in both axial and radial directions, and flows out of the cooling air outlet windows 51. A positional relation between the front coil end 47 and the cooling air outlet windows 51 will be described later in detail.
The rectifier 7, the brush device 8 and the voltage regulator 9 are disposed outside of the axial end of the rear frame 6, and covered with a rear cover 10. The rear frame 6 has cooling air outlet windows 61 formed around the rear coil end 48 and cooling air inlet windows 62 formed at the rear axial end of the rear frame 6. The rear cover 10 also has cooling air inlet windows 11 formed in its rear end surface. Cooling air is sucked into the alternator from the cooling air inlet windows 11 by the cooling fan 36, and flows through the cooling air inlet windows 62 after cooling the components disposed outside the rear frame 6, such as the rectifier 7. The cooling air introduced into the rear frame 6 through the cooling air inlet windows 62 flows out of the cooling air outlet windows 61 through the rear coil end 48. That is, the cooling air introduced in the axial direction is blown out in the radial direction.
The front frame 5 and the rear frame 6 have respective stays 54, 64 each having a through-hole. Bolts 12 are inserted into the through-holes of the stays 54, 64 and screwed into the engine bracket 100, thereby fixedly connecting the alternator 1 to the engine. A front flange 55 having a cylindrical shape is connected to a depressed portion 104 formed on the engine bracket 100. The outer spline 20 of the rotor shaft 2 is connected to the inner spline 102 of the engine shaft to thereby drive the rotor 3 by the engine. The engine bracket 100 has a mounting surface 106 which is wider than the outer diameter of the cooling air outlet windows 51. In other words, the mounting surface 106 stretches beyond the outer periphery of the cooling air outlet windows 51.
Now, referring to
Improvement of the cooling efficiency attained in the present invention is shown in
Advantages attained in the present invention will be summarized below. Since the square gaps T are formed in the front coil end 47 by bending conductor segments with a uniform angle, the cooling air in the radial direction flows through the square gaps T thereby sufficiently cooling the front coil end 47. Since the front end 51B of the cooling air outlet window 51 is positioned at the substantially same position as the end of the front coil end 47, most of the cooling air flows through the front coil end 47 and an amount of cooling air blown out through the space between the front coil end 47 and the front end 51B is minimized. Since the rear end surface 51A of the cooling air outlet window 51 is sloped toward the rear side, the cooling air blown out of the cooling air outlet window 51 is directed toward the rear side.
Because of the above-mentioned effects, the hot cooling air blown out of the outlet windows 51 does not stagnate or stay around the cooling air inlet windows 52. Therefore, it is surely avoided that the exhausted hot air is sucked again into the alternator 1 even if the bracket 100 facing the front frame 5 has a large surface. Accordingly, the cooling efficiency is considerably improved according to the present invention.
The present invention is not limited to the embodiment described above, but it may be variously modified. For example, the front end surface 51B of the cooling air outlet window 51, which is parallel to the axial direction in the foregoing embodiment, may be modified to a surface 51B′ which is perpendicular to the axial direction, as shown in
While the present invention has been shown and described with reference to the foregoing preferred embodiment, it will be apparent to those skilled in the art that changes in form and detail may be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-326064 | Nov 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4337406 | Binder | Jun 1982 | A |
5936326 | Umeda et al. | Aug 1999 | A |
5952749 | Umeda et al. | Sep 1999 | A |
5955810 | Umeda et al. | Sep 1999 | A |
5965965 | Umeda et al. | Oct 1999 | A |
5982068 | Umeda et al. | Nov 1999 | A |
5986375 | Umeda et al. | Nov 1999 | A |
5994813 | Umeda et al. | Nov 1999 | A |
5998903 | Umeda et al. | Dec 1999 | A |
6011332 | Umeda et al. | Jan 2000 | A |
6020669 | Umeda et al. | Feb 2000 | A |
6051906 | Umeda et al. | Apr 2000 | A |
6091169 | Umeda et al. | Jul 2000 | A |
6097130 | Umeda et al. | Aug 2000 | A |
6124660 | Umeda et al. | Sep 2000 | A |
6137201 | Umeda et al. | Oct 2000 | A |
6144136 | Umeda et al. | Nov 2000 | A |
6181043 | Kusase et al. | Jan 2001 | B1 |
6181045 | Umeda et al. | Jan 2001 | B1 |
6198190 | Umeda et al. | Mar 2001 | B1 |
6291918 | Umeda et al. | Sep 2001 | B1 |
6459186 | Umeda et al. | Oct 2002 | B1 |
6876113 | Harris | Apr 2005 | B1 |
20030117033 | Even et al. | Jun 2003 | A1 |
20030151316 | Vasilescu | Aug 2003 | A1 |
20040100808 | Braun et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
08-331786 | Dec 1996 | JP |
2002-058193 | Feb 2002 | JP |
3407643 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20060097593 A1 | May 2006 | US |