This disclosure relates to a flying vehicle and more specifically to a hovering vehicle that includes a control system to automatically control the height of the vehicle relative to a surface or another object.
The control method is basically related to the distance measurement. Some flying toys handle it with ultrasonic sensor. A MCU connects to this sensor; it starts the timer while emitting a pulse train from the sensor. MCU then measures the time elapsed of reflected signal from the ground surface. As the speed of sound is known, the distance traveled can be calculated. The limitation of this application is that this sensor is comparatively large and heavy for putting into a small flying toy with size less than 250 mm in length.
Alternatively, precise pressure sensor can be used to level the absolute altitude for both indoor and outdoor flying toys but the solution cost is too high to be applied in toys market and the data is drifted from time to time.
In present disclosure, a control method is used to maintain stable altitude control of an indoor vertical flying toy such as helicopter or multi-rotor copter. With this altitude hold function, it is easy for beginners to have hover fight and it can avoid the flying toy from being crashed to the ceiling if they are not familiar with throttle control.
By being able to define and retain the distance from a ceiling below which the craft should fly or hover a significant advantage is attained with the method, system, and toy of the disclosure.
Many advantages and features of the disclosure will become readily apparent from the following detailed description of the disclosure and the embodiments thereof, and from the accompanying drawings.
The above-mentioned features and objects of the present disclosure will become more apparent with reference to the following description taken in conjunction with the accompanying drawings wherein like reference numerals denote like elements and in which:
a is a perspective view of a co-axial type helicopter.
b is a perspective view of a multi-rotor copter.
a is a perspective view of the present disclosure showing the helicopter having ceiling altitude hold control.
b is a perspective view of the present disclosure showing the helicopter having obstacle avoidance control.
a shows the circuit for driving IRED.
b shows the voltage supply across the IRED driving circuit vs time by assuming Imax=16.
The disclosure is capable of being implemented in embodiments in many different forms. There are shown in the drawings and will be described herein, in detail, some of the embodiments of the present disclosure. The present disclosure is to be considered an exemplification of the principles of the disclosure and is not intended to limit the spirit or scope of the disclosure and/or the embodiments illustrated.
The disclosure is directed to a method of controlling a flying toy such as helicopter, the system for affecting this control and the toy which is operable in this manner.
A method of remote controlling an altitude of a toy flying vehicle intended for indoor operation, the vehicle having a rotor for rotation relative to a fuselage of the vehicle, and a separate remote controller for use by a player of the toy comprises providing a selected altitude level for the vehicle.
A position control signal is transmitted from the vehicle towards a surface. A receiver in the vehicle is provided for the signal reflected from the surface.
A level of the reflected signal by the receiver is determined, and a change of the reflected signal being an indicator of a change of altitude of the vehicle relative to the selected altitude level. The rotor action is adjusted in response to a change of the altitude level thereby to retain the selected altitude level.
The selected level can be a range between an upper and a lower level. Alternatively the level is a substantially constant altitude.
Adjusting the rotor action is to a lower the speed to lower the vehicle to the selected altitude level or to increase the speed to raise the vehicle to the selected altitude level.
There is a receiver the vehicle for communication with the remote controller, the remote controller being capable of adjusting and controlling speed and direction of the vehicle.
The position control signal is directed upwardly thereby to retain the altitude relative to surface located above the vehicle. The surface from which the signal is reflected is passive indoor surface without a signal generator feature apart from the reflection of the position control signal. Thus there is no active emitter on the surface, and signal bounces off a wall or ceiling or floor which is the normal structure of an indoor environment. Thus use of the toy does not require anything other than the flying toy itself and the remote controller for the player.
The position control signal is directed downwardly thereby to retain the altitude relative to surface located below the vehicle.
Also there is a position control signal directed transversely relative to the vehicle thereby to reflective from a transversely located surface relative to the vehicle thereby to retain the distance of the vehicle relative to the transversely located surface.
There can be multiple position control signal directed transversely in multiple respective directions relative to the vehicle thereby to reflective from multiple transversely located surfaces relative to the vehicle. This permits the vehicle to retain its distance relative to the multiple transversely located surfaces, and thereby maintain the vehicle at a selected distance relative to the transverse surfaces.
The multiple position control signals are directed relatively transversely, forwardly and sideways of the vehicle.
There can be multiple position control signals directed transversely in multiple respective directions relative to the vehicle thereby to reflective from multiple transversely located surfaces relative to the vehicle. This retains the distance of the vehicle relative to the multiple transversely located surfaces. The multiple position control signals are directed relatively transversely, forwardly and sideways of the vehicle. This maintains the vehicle at a selected distance relative to the transverse surfaces. The signals are directed upwardly and downwardly from the vehicle thereby to maintain the altitude of the vehicle.
A desired selected level of reflected position control signal is defined in at least one receiver in the vehicle. The action of the rotor is dependent on variation from a designated position, as determined by a difference in the received reflected position control signal.
Respective desired selected levels of reflected position control signals can be defined in multiple respective receivers in the vehicle, the respective multiple receivers being directed in respective different directions and there being multiple respective position signals directed in mating respective directions relative the respective receivers. The action of the rotor is dependent on variation from designated positions, as determined by a difference in the received reflected position control signals.
The flying toy thereby seeks to limit the maximum height thereby to receive at least one reflected signal. Controlling rotor power can be by current speed of rotor at a time (t) determines by previous speed at a time (t−1), and a battery level in the flying toy.
The level of the reflected signal is a digital measure, whereby the receiver will level whether received or not received and not an intensity of the received the signal.
The receiver the vehicle receives throttle and direction control command from the remote controller.
In one form the method of remote controlling an altitude of a toy flying vehicle intended for indoor hovering flight, the vehicle having a rotor for rotation relative to a fuselage of the vehicle, and a separate remote controller for use by a player of the toy comprises providing a selected altitude level for the vehicle. A position control signal from the vehicle towards a surface. A receiver is provided in the vehicle for the signal reflected from the surface. A level of the reflected signal by the receiver, a change of the reflected signal being an indicator of a change of altitude of the vehicle relative to the selected altitude level.
The rotor action is adjusted in response to a change of the altitude level thereby to retain the selected altitude level; wherein the level is a substantially constant altitude.
The vehicle is also in communication with the remote controller, the remote controller being capable of adjusting and controlling speed and direction of the vehicle. The receiver in the vehicle is responsive to signals with the remote controller, and the signals from the remote controller are for changing speed and direction of the hovering toy.
There is provided a method of remote controlling an altitude of a toy flying vehicle intended for indoor hovering flight, the vehicle having a rotor for rotation relative to a fuselage of the vehicle.
There is a separate remote controller for use by a player of the toy.
The system comprises providing a selected altitude level for the vehicle. A position control signal is transmitted from the vehicle towards a surface. A receiver in the vehicle receives the signal reflected from the surface. A level of the reflected signal by the receiver is determined, and a change of the reflected signal is an indicator of a change of altitude of the vehicle relative to the selected altitude level.
The vehicle receiver communicates with the remote controller, and the remote controller can adjust and control speed and direction of the vehicle.
The receiver in the vehicle is responsive to signals with the remote controller, the signals from the remote controller being for changing speed, and also the direction of the hovering toy.
The position control signal is directed upwardly thereby to retain the altitude relative to surface located above the vehicle, wherein the surface from which the signal is reflected is passive indoor surface without a signal generator feature apart from the reflection of the position control signal. There is an additional position control signal directed relative to the vehicle thereby to reflective from an additional located surface relative to the vehicle thereby to retain the distance of the vehicle relative to the additional located surface.
While the disclosure is susceptible to embodiments in many different forms, there are shown in the drawings and will be described herein, in detail, the preferred embodiments of the present disclosure. It should be understood, however, that the present disclosure is to be considered an exemplification of the principles of the disclosure and is not intended to limit the spirit or scope of the disclosure and/or the embodiments illustrated.
A toy vehicle 100 is for indoor use and is provided with a system to control the height or distance of the vehicle away from a surface or another object. The vehicle 100 includes a rotor 110 to propel the vehicle 100 in a specified direction. There is a fuselage or body 120.
In
There is a control system and a battery power supply for the hovering toy. The control system includes the remote controller transmitter 122 and a receiver 134 in the body 120 which is in wireless communication with an IR receiving module on a circuit board 138 which is further in communication with and control of the rotor 110. The transmitter 122 and receiver 134 pair is preferably an infra-red pair, however other transmitter/receiver pairs or communication protocols may be used and may be incorporated.
There is IRED cell 135 which generates a signal to a reflective surface 136 which in turn reflects or bounces the signal back to the receiving module 134. This signal, together with any signals from the transmitter 122, is processed by the microprocessor circuit MCU. The MCU in turn is powered by the battery through a voltage regulator. The MCU controls the Gyro sensor, motor driver control, LEDs and the power control of the hovering vehicle. The motor drive control controls one or more motors to control one or more rotors respectively.
The control method of the transmitter is not limited to Infrared. It can be a radio frequency such as 27 MHz, 40 MHz, 49 MHz or 2.4 GHz, or be Bluetooth or WiFi.
The increment of light intensity I is not necessary to be increased linearly, it can square of I .i.e I=12, 22, 32, . . . , n2 or it can be in the sequence of light intensity decrement.
By putting the IRED and IR receiving module on top of flying toy and applying present IR distance measurement method, it can be used to perform an altitude hold fight with reference to ceiling of a room rather than ground surface. (
Similarly, it can be used to detect the distance between the flying toy and obstacles, objects or surfaces around it. By changing the direction of flight rather than moving upward or down as in present disclosure, it can act as obstacle avoidance control (
There can be a flying toy having plurality of rotors, infrared emitting diode (IRED) and IR receiving module. This module can be used to receive the signal from transmitter and the signal from the IRED itself. In physics, the intensity or brightness of light as a function of the distance from the light source follows an inverse square relationship. For a given reflecting ground upper or transverse surface and given sensitivity of IR receiving module, the relationship between light intensity and distance can be obtained.
Because of using light reflection method, the maximum height can be measured is limited to less than about 3 meters.
The IR signal is usually modulated to around 30˜40 kHz for transmission while IR receiving module can filter the noise out of these frequency range and demodulate the signal for MCU decoding. The intensity of IR light that an IRED produces is directly proportional to the current. By controlling different levels of voltage supply and hence current to IRED, different light intensity can be obtained.
Suppose IR intensity is denoted by I and there are Imax intensity levels from 1, 2, . . . Imax. Also, the sensitivity of IR receiving module is denoted by S, then the distance r is calculated by inverse square equation
where K is the characteristics of reflecting surface. K is large for regular reflection. i.e., when a beam pass of parallel light rays is incident on a smooth and plane surface such as marble, mirror, gloss or white surface. K is small for irregular reflection. i.e., when a beam of parallel light rays is scattered in all directions. Therefore the parallel rays incident on the surface, such as carpet, coarse or black surface, will reflect in different directions.
Assume K remains unchanged within the same reflecting surface and S is the constant for a given IR receiving module, the equation can be simplified to r=K′√{square root over (I)}
Since K′ is unknown unless measurement is carried out on corresponding reflecting surface, relative distance r′ instead of absolute distance can be calculated. Equation becomes
The table and graph below show the relationship between light intensity and relative distance r′
The altitude hold control method comprising of:
Setting the relative destination distance dest_r′ from ground to be achieved.
Initialize the light intensity I=1 and no of signals received CNT=0.
Emitting IR signal with light intensity I to the ground surface within the period of time between 0.4 ms to 500 ms.
Step increment of CNT if this IR signal is received by IR receiving module. i.e CNT=CNT+1.
Step increment of light intensity i.e. I=I+1.
Repeating steps as illustrated in
According to the inverse-square law, no of IR signals received depend on the altitude of flying toy and the signal intensity. For a given r′, those signals with higher intensity can be reflected from the ground surface to IR receiving module.
If r′=1, all IR signals can be received. i.e CNT=Imax. If r′=1.41, only IR signals with intensity at I=2 or above can be received, i.e. CNT=Imax−1. Similarly, if r′=1.73, only IR signals with intensity at I=3 or above can be received, i.e. CNT=Imax−2. In general CNT=Imax+1−I.
As CNT is known, relative distance r′ can be obtained from table.
Calculate the error E=r′−dest_r′.
If E is negative, i.e. the current altitude of the flying toy is lower than the destination altitude, at least one of the rotors will increase the power for flying upward in which the power increment is proportional to E. Repeat steps as illustrated in
If E is positive, i.e. the current altitude of the flying toy is higher than the destination altitude, at least one of the rotors will decrease the power for flying downward in which the power decrement is proportional to E. Repeat steps as illustrated in
If E is zero or approximate zero, i.e. the current altitude of the flying toy is same as destination altitude, the power of rotors remains unchanged. Repeat steps as illustrated in
To further allow user selecting desire altitude of a flying toy, throttle level can be read and set the relative destination distance accordingly.
Selectable altitude hold control method comprising of:
Reading the throttle level from transmitter.
Setting the relative destination distance dest_r′ from ground according to the throttle level.
Initialize the light intensity I=1 and no of signals received CNT=0.
Emitting IR signal with light intensity I to the ground surface within the period of time between 0.4 ms to 500 ms.
Step increment of CNT if this IR signal is received by IR receiving module. i.e CNT=CNT+1.
Step increment of light intensity i.e. I=I+1.
Repeating steps as illustrated in FIG. 8.—steps as illustrated in
According to the inverse-square law, no of IR signals received depend on the altitude of flying toy and the signal intensity. For a given r′, those signals with higher intensity can be reflected from the ground surface to IR receiving module.
If r=1, all IR signals can be received. i.e. CNT=Imax. If r′=1.41, only IR signals with intensity at I=2 or above can be received, i.e. CNT=Imax−1. Similarly, if r′=1.73, only IR signals with intensity at I=3 or above can be received, i.e. CNT=Imax−2. In general CNT=Imax+1−I.
As CNT is known, relative distance r′ can be obtained from table.
Calculate the error E=r′−dest_r′.
If E is negative, i.e. the current altitude of the flying toy is lower than the destination altitude, at least one of the rotors will increase the power for flying upward in which the power increment is proportional to E. Repeat steps as illustrated in
If E is positive, i.e. the current altitude of the flying toy is higher than the destination altitude, at least one of the rotors will decrease the power for flying downward in which the power decrement is proportional to E. Repeat steps as illustrated in
If E is zero or approximate zero, i.e. the current altitude of the flying toy is same as destination altitude; the power of rotors remains unchanged. Repeat steps as illustrated in
The apparatus and method have been described in terms of what are presently considered to be the most practical and preferred embodiments, it is to be understood that the disclosure need not be limited to the disclosed embodiments.
It is intended to cover various modifications and similar arrangements included within the spirit and scope of the claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structures. The present disclosure includes any and all embodiments of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3093807 | Crane et al. | Jun 1963 | A |
3096046 | Kendall, Jr. et al. | Jul 1963 | A |
4929949 | Yamamoto et al. | May 1990 | A |
6434085 | Nedwell | Aug 2002 | B1 |
6445333 | Tanaka | Sep 2002 | B1 |
7100866 | Rehkemper et al. | Sep 2006 | B2 |
7248208 | Hager et al. | Jul 2007 | B2 |
7440826 | Franceschini et al. | Oct 2008 | B2 |
8200375 | Stuckman et al. | Jun 2012 | B2 |
8287326 | Huang et al. | Oct 2012 | B2 |
8380368 | Stuckman et al. | Feb 2013 | B2 |
20030112705 | Nedwell | Jun 2003 | A1 |
20080076320 | Van De Rostyne | Mar 2008 | A1 |
20090069956 | Taya et al. | Mar 2009 | A1 |
20100161155 | Simeray | Jun 2010 | A1 |
20100210169 | Rohr | Aug 2010 | A1 |
20120029738 | Brunetti et al. | Feb 2012 | A1 |
20120173053 | Ohtomo et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1 354 220 | Oct 2003 | EP |
2009279368 | Dec 2009 | JP |
2009279368 | Dec 2009 | JP |
WO 03067351 | Aug 2003 | WO |