The present disclosure relates to a seal coating and, more particularly, to an alumina abrasive seal coating with an interlayer and a graded transition.
A gas turbine engine typically includes a fan section, a compressor section, a combustor section, and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas flow expands through the turbine section to drive the compressor and the fan section. The compressor and turbine sections typically include stages that include rotating airfoils interspersed between fixed vanes of a stator assembly.
In gas turbine engines, it is generally desirable for efficient operation to maintain minimum rotor tip clearances, with a substantially constant clearance. This is typical for cantilevered stators in an axial compressor. This may be difficult to achieve due to various asymmetric effects either from build or during operation.
Typically, an abrasive coating is used to coat a rotor adjacent to cantilevered stators to wear away the vane tips to accommodate the various asymmetric effects and thereby provide a close, constant clearance. Although effective, the abrasive coatings may show increased levels of premature spallation over prolonged operations.
An abrasive coating for a substrate according to one disclosed non-limiting embodiment of the present disclosure includes an intermediate layer between a metallic based bond coat layer and a top layer.
A further aspect of the present disclosure includes that the substrate is a nickel based metallic based alloy.
A further aspect of the present disclosure includes that the metallic based bond coat is one of a nickel based, copper based, and cobalt based alloy.
A further aspect of the present disclosure includes that a graded transition between the metallic based bond coat layer and the top layer forms the intermediate layer.
A further aspect of the present disclosure includes a graded transition between the intermediate layer and the top layer.
A further aspect of the present disclosure includes that the metallic based bond coat layer is 3-12 mils (76-305 microns) thick and has a porosity of less than 20 volume percent.
A further aspect of the present disclosure includes that the top layer is 5.5-22 mils (140-559 microns) thick and has a porosity of 1-20 volume percent.
A further aspect of the present disclosure includes that the intermediate layer is a zirconia based layer.
A further aspect of the present disclosure includes that the intermediate layer is a partially stabilized zirconia.
A further aspect of the present disclosure includes that the intermediate layer is 1-3 mils (25-76 microns) thick.
A further aspect of the present disclosure includes that the intermediate layer includes 7 weight percent yttria stabilized zirconia.
An abrasive coating for application to a substrate according to one disclosed non-limiting embodiment of the present disclosure includes a metallic based bond coat layer; an intermediate layer graded into the metallic based bond coat layer to form a graded transition between the metallic based bond coat layer and the intermediate layer; and a top layer graded into the intermediate layer to form a graded transition between the intermediate layer and the top layer.
A further aspect of the present disclosure includes that the substrate is a metallic based alloy.
A further aspect of the present disclosure includes that the graded transition is 1 to 4 mils (25-102 microns) thick.
A further aspect of the present disclosure includes that the graded transitions forms a 0-0.3 fraction of the total thickness of the abrasive coating.
A method of applying an abrasive coating according to one disclosed non-limiting embodiment of the present disclosure includes applying a metallic based bond coat layer onto a substrate; grading an intermediate layer into the metallic based bond coat layer to form a graded transition between the metallic based bond coat layer and the intermediate layer; and grading a top layer into the intermediate layer to form a graded transition between the intermediate layer and the top layer.
A further aspect of the present disclosure includes that grading the intermediate layer into the metallic based bond coat layer includes spraying a material to form the intermediate layer from a first spray system while spraying a material to form the metallic based bond coat layer from a second spray system.
A further aspect of the present disclosure includes that the second system reduces deposition of materials for the metallic based bond coat layer while the first system increases deposition of materials for the intermediate layer until a full 100 percent of materials for the intermediate layer is being sprayed by the first system and 0 percent of materials for the metallic based bond coat layer are being sprayed to form the graded transition between the metallic based bond coat layer and the intermediate layer, then the intermediate layer.
A further aspect of the present disclosure includes spraying the top layer materials from a first spray system while spraying the intermediate layer materials from a second spray system.
A further aspect of the present disclosure includes that the second spray system reduces deposition of materials for the intermediate layer while the first spray system increases deposition of top layer materials until a full 100 percent of materials for the top layer is being sprayed by the first system and 0 percent of materials for the intermediate layer are being sprayed to form the graded transition between the intermediate layer and the top layer, then the top layer.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation of the invention will become more apparent in light of the following description and the accompanying drawings. It should be appreciated, however, the following description and drawings are intended to be exemplary in nature and non-limiting.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The engine 20 generally includes a low spool 30 and a high spool 32 mounted for rotation around an engine central longitudinal axis A relative to an engine static structure 36 via several bearing compartments 38. The low spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 (“LPC”) and a low pressure turbine 46 (“LPT”). The inner shaft 40 drives the fan 42 directly or through a geared architecture 48 to drive the fan 42 at a lower speed than the low spool 30. An exemplary reduction transmission is an epicyclic transmission, namely a planetary or star gear system. The high spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 (“HPC”) and high pressure turbine 54 (“HPT”). A combustor 56 is arranged between the HPC 52 and the HPT 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate around the engine central longitudinal axis A which is collinear with their longitudinal axes. The main engine shafts 40, 50 are supported at a plurality of points by the bearing compartments 38. Core airflow is compressed by the LPC 44 then the HPC 52, mixed with fuel and burned in the combustor 56, then expanded over the HPT 54 and the LPT 46. The turbines 54, 46 rotationally drive the respective low spool 30 and high spool 32 in response to the expansion.
With reference to
With reference to
With reference to
The metallic based bond coat layer 84, in a graded example, may be 2.5-10 mils (64-254 microns) thick and have a porosity of 5 volume percent (
The bond coat layer 84 is typically formed from a metallic oxidation-resistant material that protects the underlying substrate and enables the intermediate layer 86 to more effectively adhere. Suitable materials for the bond coat layer 84 include MCrAlY alloy powders, where M represents a metal such as iron, nickel, platinum or cobalt, in particular, various metal aluminides such as nickel aluminide and platinum aluminide.
The bond coat layer 84 can be applied, deposited or otherwise formed on the substrate by any of a variety of conventional techniques, such as physical vapor deposition (PVD), including electron beam physical vapor deposition (EBPVD), plasma spray, including air plasma spray (APS) and vacuum plasma spray (VPS), or other thermal spray deposition methods such as high velocity oxy-fuel (HVOF) spray, detonation, or wire spray, chemical vapor deposition (CVD), or combinations of such techniques, such as, for example, a combination of plasma spray and CVD techniques. Usually, the deposited bond coat layer 84 has a thickness in the range of from 1 to 19.5 mils (from 25 to 495 microns). For bond coat layers 84 deposited by PVD techniques such as EBPVD, the thickness is more typically in the range of from 1 to 3 mils (25 to 76 microns). For bond coat layers deposited by plasma spray techniques such as APS, the thickness is more typically in the range of from 3 to 15 mils (from 76 to 381 microns).
The intermediate layer 86 is a zirconia based layer which, in one graded example, is on the order of 1-4 mils thick (25-102 microns) and has a porosity of 4 volume percent (
In this example, the intermediate layer 86 includes, but is not limited to, partially stabilized zirconia, for example, 7 weight percent yttria stabilized zirconia (YSZ), and cubic zirconia base ceramics, for example, gadolinia stabilized zirconia. All amounts, parts, ratios and percentages used herein are by weight unless otherwise specified. Optimization can include a combination of base material properties, coating architecture, and coating porosity levels. Alternatively, other suitable materials include various zirconias, in particular chemically stabilized zirconias (i.e., various metal oxides such as yttrium oxides blended with zirconia), such as yttria-stabilized zirconias, ceria-stabilized zirconias, calcia-stabilized zirconias, scandia-stabilized zirconias, magnesia-stabilized zirconias, india-stabilized zirconias, ytterbia-stabilized zirconias as well as mixtures of such stabilized zirconias. Other suitable yttria-stabilized zirconias can include from 1 to 20 percent yttria (based on the combined weight of yttria and zirconia), and more typically from 3 to 10 percent yttria. These chemically stabilized zirconias can further include one or more of a second metal (e.g., a lanthanide or actinide) oxide such as dysprosia, erbia, europia, gadolinia, neodymia, praseodymia, urania, and hafnia to further reduce thermal conductivity.
The top layer 88 includes an aluminum oxide layer that, in one graded example, may be 4.5-18 mils (114-457 microns) thick and have a porosity of less than 20 volume percent. In another example which is not graded, the top layer 88 may be 5.5-22 mils (140-559 microns) thick. The top layer 88 may form 0.2-0.6 fraction of the total thickness of the abrasive coating 82 (
As used herein, the terms “alumina” and “aluminum oxide” refer interchangeably to those compounds and compositions comprising Al2O3, including unhydrated and hydrated forms.
In one embodiment, a graded transition 90 between the bond coat layer 84 and the intermediate layer 86, and a graded transition 92 between the intermediate layer 86 and the top layer 88 may be provided. The graded transitions 90, 92 may be 1 to 4 mils (25-102 microns) thick between where the adjacent layers are at 100 percent and provide a blended transition between the adjacent layers. The graded transitions 90, 92 may form a 0-0.3 fraction of the total thickness of the abrasive coating 82 (
The graded transitions 90, 92 minimize the local stresses which negatively impact the durability of the abrasive coating 82. Less distinction between layers minimizes formation of a delamination type of crack that is generally parallel to the surface of the substrate. Root causes of the premature spallation are a lack of strain tolerance due to mismatch and high mechanical strains causing spallation at the high stress locations. This may cause a loss in efficiency and operability.
The graded transition 90, 92 minimizes the abrupt change in properties as well as stress concentrations related thereto. The absolute properties of the coating layer itself reduce the crack combination stresses and the properties of that layer improve tolerance to strain and resistance to delamination.
With reference to
Initially, the metallic based bond coat layer 84 is applied to the substrate 79 (step 302). The metallic based bond coat layer 84, in one embodiment, is then graded into the intermediate layer 86 to form the graded transition 90 therebetween (step 304) to form the graded transition 92.
Once the intermediate layer 86 is applied, the top layer 88 is then graded into the intermediate layer 86 which forms the transition 92 (step 306).
Applications of the layers may include use of a plasma spray torch anode which has a nozzle pointed in the direction of the deposit-surface that is being coated. The plasma spray torch is often controlled automatically, e.g., by a robotic mechanism, which is capable of moving the gun in various patterns across the surface. The plasma plume extends in an axial direction between the exit of the plasma gun anode and the substrate surface. A powder injection system is disposed at a predetermined, desired axial location between the anode and the substrate surface. The powder particles, entrained in a carrier gas, are propelled through the injector and into the plasma plume. The particles are then heated in the plasma and propelled toward the substrate. The particles melt, impact on the substrate, and quickly cool to form the abrasive coating.
In forming the abrasive coating 82, grading can be achieved by blending, mixing or otherwise combining the materials together (e.g., powder particles) to provide a substantially homogeneous mixture at particular ratios of powders that is then deposited. That is, a single torch with multiple powder feeders deliver multiple powders to the single spray system. Alternatively, two separate spray systems 400A, 400B (
The relatively thin intermediate layer 86, particularly when sprayed with fine particles and parameters that promote strong interparticle bonding, resists propagation of cracks that would have caused delamination in the baseline alumina coating. This facilitates survival of the abrasive coating 82 to protect compressor efficiency and operability.
Although the different non-limiting embodiments have specific illustrated components, the embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
It should be appreciated that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.
It should be appreciated that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be appreciated that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
Although particular step sequences are shown, described, and claimed, it should be appreciated that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.
The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be appreciated that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.
Number | Name | Date | Kind |
---|---|---|---|
5683825 | Bruce et al. | Nov 1997 | A |
7008674 | Nagaraj et al. | Mar 2006 | B2 |
9316110 | Cottom | Apr 2016 | B2 |
20090053554 | Strock | Feb 2009 | A1 |
20100311562 | Xie | Dec 2010 | A1 |
20110086163 | Ma | Apr 2011 | A1 |
20120034471 | Peterson | Feb 2012 | A1 |
20120189434 | Strock | Jul 2012 | A1 |
20130108421 | Sinatra | May 2013 | A1 |
20130115479 | Stamm | May 2013 | A1 |
20150044035 | Cottom | Feb 2015 | A1 |
20160177971 | Bagnall | Jun 2016 | A1 |
20160311726 | Kirby | Oct 2016 | A1 |
20160348250 | Ahmad | Dec 2016 | A1 |
20170167279 | Kirby et al. | Jun 2017 | A1 |
20180222807 | Shim | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2905426 | Aug 2015 | EP |
3178799 | Jun 2017 | EP |
2011100311 | Aug 2011 | WO |
2015130362 | Sep 2015 | WO |
Entry |
---|
European Search Report dated Oct. 19, 2018 issued in corresponding European Patent Application No. 18179881.0. |
Number | Date | Country | |
---|---|---|---|
20180371599 A1 | Dec 2018 | US |