The present invention relates to an aluminium composite structure having a channel therein, which can be suitably used as a structural part for forming a chamber wall, a sample placing stage, a section of receiving ion beams or charged particles such as electrons, a Faraday cup, and the like in semiconductor manufacturing equipment, and a section where constant temperature or high temperature is required, low temperature target section, and additionally section where generally strength and homoeothermal property are both required, and a method of manufacturing the same.
At present, in various industrial fields, aluminium composite structures in which an aluminium material composed of aluminium or aluminium alloy is used as a matrix and ceramics is used as a preform are used, and particularly in recent years, have been frequently used as structural parts of semiconductor manufacturing equipment. For example, they are used for sidewalls of chambers (chamber walls) in dry etching equipment as described in JP 11-61,448 A, and used as a structural part of a substrate placing stage of substrate processing equipment where the substrates (samples) such as semiconductor substrates are processed as described in JP 11-121,598 A.
In structural parts in the above chamber wall and substrate placing stage and the like of the semiconductor manufacturing equipment, when in use, temperature control is required. Thus, inside the aluminium material which forms these structural parts, a heater for controlling the temperature of the structural part per se and a pipe and the like for running a heating medium are embedded.
Also, JP 2001-329,350 A proposes a structure including a channel structure therein in place of the heater or the pipe. This structure is, as shown in
However, in the above structural parts and the structure composed of the joint of the composite materials, there are problems as described below. First, when the heater or the pipe is embedded inside the structural part, most sheath materials of the embedded heater are made of stainless, and for materials of the pipe, stainless and copper alloys are used. Thus, understandably, these materials and the aluminium material which forms the structural part are largely different in thermal expansion coefficient. Also when the heater or the pipe is embedded in the structural part, in order to avoid crushing and breaking by contact with fused aluminium at high temperature and pressure, the thick sheath and pipe must be used. This means that rigidity of the embedded one is high, and thus, it becomes a factor to produce large thermal stress between the aluminium material and the embedded one. Due to this thermal stress, peeling occurs at an interface of the heater or the pipe and the aluminium material, sometimes gaps are formed at the interface and the structural part is deformed by the thermal stress.
Meanwhile, to form the structure as described in JP 2001-329,350 A, it is necessary to conduct groove processing on the composite material, and in addition, it is necessary to perform outer shape processing, hole processing and the like. At that time, it is substantially impossible to perform a cutting process by a cutting tool such as end mill to the composite material in which hard ceramics as the reinforcing material and soft aluminium as the matrix are mixed. Therefore, it is necessary to perform a grinding process and the like using a grinding whetstone, but in the grinding process using the grinding whetstone, the aluminium material which is the matrix causes clogging of the grinding whetstone. Thus, it is necessary to process under a much gentler process condition compared to usual ceramics processing, and the whetstone must be frequently changed. Therefore, a processing cost required for the groove processing becomes extremely high.
When a joint face of the above composite material is microscopically observed, the aluminium material and the ceramics are joined in a mixed state. To make this joint face a joint face excellent in sealability, wettability for both the aluminium material and the ceramics must be obtained at temperature equal to or less than a melting point of the aluminium material, but it is technically difficult to obtain the wettability sufficiently for the ceramics in the joint at low temperature equal to or less than the melting point of the aluminium material, and it is substantially difficult to obtain the highly reliable structure excellent in airtight property. Even when they are joined at first glance, in fact, only sections of the aluminium material which is the matrix are joined, and in most cases, the wettability is not obtained in the ceramics sections, which are only in contact therewith. This problem becomes increasingly noticeable as a content of the ceramics in the composite material is increased to enhance the strength of the structure and consequently a percentage of the aluminium material present at a joint interface is reduced. Accordingly, it results in reduction of the airtight property at the joint interface.
Furthermore, the following problem may arise. In the light of surface protection and the like of the structure composed of the above composite material, it is effective to perform anodic oxide treatment, ceramics thermal spraying and the like. However, the surface of the composite material is a face where the alminium material and the ceramics are mixed when observed microscopically. Thus, when the anodic oxide treatment is given to such a face, an oxide film cannot sufficiently grow in micro-border sections between the aluminium material and the ceramics, and consequently, there is a possibility that micro-defects occur. This micro-defect becomes causes of reduction of insulation resistance as the structure and reduction of partial anti-corrosion.
When ceramics thermal spraying is given to the surface of the composite material, an adhesion between a thermal spray film and the ceramics is smaller than an adhesion between the thermal spray film and the aluminium material. Thus, the higher the content of the ceramics in the composite material is, the lower the adhesion of the thermal spray film to the surface of the composite material becomes. However, to reduce the thermal stress which is generated between the ceramics thermal spray film and the composite material, the content of the ceramics in the composite material must be increased, and it is difficult to obtain the structure including the thermal spray film having strong adhesion.
Thus, the inventors of the present invention have made extensive studies on a structure which can solve the above-mentioned problems and can be suitably used as structural parts which form chamber walls, a sample placing stage, a section of receiving ion beams or charged particles such as electrons, a Faraday cup and the like in semiconductor manufacturing equipment, and a section where constant temperature or high temperature is required, low temperature target sections, and additionally sections where generally strength and homoeothermal property are both required, and consequently have found that an aluminium composite structure having a channel therein where a core material precedently having a concave groove on its surface is covered with a covering material composed of aluminium or aluminium alloy and the channel in which a heating medium flows is formed therein by utilizing the concave groove of the core material and further closing an opening of the concave groove with a lid composed of aluminium or aluminium alloy is excellent in machinability, processing cost, strength of the structure and sealability of the channel, and have completed the present invention.
It is therefore an object of the present invention to provide an aluminium composite structure having a channel excellent in sealability inside the structure, where joint ability of members when the composite structure is formed is favorable, and which is excellent in durability.
It is another object of the present invention to provide a method of manufacturing an aluminium composite structure having a channel therein where machinability is excellent when the structure with the channel therein is formed, a channel can be easily formed into an arbitrary shape, and processing cost can be considerably reduced.
That is, the present invention provides an aluminium composite structure having a channel therein, including: a preform (core material) having a concave groove on a surface; a matrix (covering material) made up of aluminium or aluminium alloy which covers the surface of the core material other than an inner surface of the concave groove; and a lid which is firmly joined to the covering material to close an opening of the concave groove of the core material, forms a channel for running a heat exchange medium therein, and is made up of the aluminium or aluminium alloy.
Also, the present invention provides a method of manufacturing an aluminium composite structure having a channel therein, including: placing a perform (core material) having a concave groove on a surface in a die; adding a molten metal of aluminium or aluminium alloy into the die; solidifying the molten metal to prepare a composite member where the surface of the core material is covered with a matrix (covering material) made up of the aluminium or aluminium alloy; taking out the composite member from the die; removing at least a part of the covering material filled in the concave groove of the core material by machining; and firmly fixing a lid made up of the aluminium or aluminium alloy which closes an opening of the concave groove to the covering material to form a channel in which a heat exchange medium flows.
The aluminium composite structure in the present invention can be suitably used as structural parts for forming chamber walls, a sample placing stage, a section of receiving ion beams or charged particles such as electrons, a Faraday cup and the like in semiconductor manufacturing equipment, and a section where constant temperature or high temperature is required, low temperature target sections, and additionally sections where generally strength and homoeothermal property are both required. Therefore, a shape of the aluminium composite structure, a size, a thickness, and the like thereof can be freely designed in accordance with the structural parts as the above. For example, in the case of a sample placing stage on which the sample such as semiconductor wafer is placed, the structure may be formed into a disc shape, and may be formed into a quadrangular shape such as rectangle and square for use in sidewalls of a reaction chamber in semiconductor manufacturing equipment. For the channel formed inside the aluminium composite structure, depending on the equipment and a site thereof for which the structural part is used or depending on a kind of heat exchange medium which flows in the channel, a route and number thereof can be freely designed so that the desired temperature control becomes possible.
In the accompanying drawings:
Hereinafter, preferred embodiment modes of the present invention are specifically described with reference to the accompanying drawings. Hereinafter, for example, a disc-shaped aluminium composite structure which can be used for a sample placing stage on which a semiconductor substrate is placed is illustrated, but the aluminium composite structure in the present invention is not limited to the following illustration. That is, the aluminium composite structure may be square, rectangular, quadrangular polygonal, circular, and other in planer shape so as to be used for a structural part for forming a chamber wall, a sample placing stage, a section of receiving ion beams or charged particles such as electrons, a Faraday cup, and the like in semiconductor manufacturing equipment, and a section where constant temperature or high temperature is required, low temperature target section, and additionally section where generally strength and homoeothermal property are both required. Channels which the aluminium composite structure has may be formed so as to become circular, straight linear, and the other when the aluminium composite structure is viewed in a projected plane, and the number of channels may be one or two or more.
First, a circle-like concave groove 2 as shown in
In the above, it is desirable that a dimension of each part of the core material 1 be slightly smaller by a thickness of the covering material 5 from a required final processed shape of the aluminium composite structure X. The core material 1 may be formed by machining a bulk of porous ceramics, or a ceramics porous body may be obtained by machining of a precursor before sintering followed by sintering. In all cases, the processing is much easier than that in the case of performing the machining on the composite material after impregnating a matrix into a preform, which is generally performed.
As shown in
For the composite member 6 obtained above, at least a part of the covering material 5 filled in the concave groove 2 of the core material 1 is removed by machining by using a cutting tool such as an end mill. This removed section is utilized for the channel 10 later. At least a part of the covering material 5 filled in the core material through-holes 3 is removed by a drilling process using a cutting tool such as an end mill in order to form the structure through-holes 13. Furthermore, the excessive covering material 5 given on the surfaces of the composite member 6 is cut and removed in addition to the above by machining. For the machining to remove the excessive covering material 5 on the surfaces of the composite member 6, including removal of the covering material 5 filled in the concave groove 2 of the core material 1 and the drilling process for the removal of the covering material 5 in the core material through-holes 3, as described above, the same cutting process as the process of a usual aluminum material which include no reinforcing material such as ceramics powder is possible, and thus, the process is much easier and the machining cost can be reduced compared to the process of a bulk composite material which include a reinforcing material.
According to the above machining, it is desirable to allow the film thickness of the covering material 5 which covers on the surfaces of the core material 1 to fall within the range of 0.2 to 5 mm, and preferably 0.5 to 5 mm. When the film thickness of the covering material 5 is thinner than 0.2 mm, there is a possibility that the core material 1 is exposed at the surface owing to error of the machining. In contrast, when the film thickness is thicker than 5 mm, there is a possibility that the thermal stress between the covering material and the core material 1 becomes large owing to a thermal expansion difference to cause exfoliation at the interface due to a heat cycle. It is preferable that the film thickness be in the range of 0.5 to 5 mm in terms of durability for abrasion when a heat exchange medium is run, particularly also for the inner side covering material 5 when a channel is formed.
For the die 4, as shown in
For the composite member 6 obtained above, an opening of the concave groove 2 of the core material 1 from which at least a part of the covering material 5 is removed is closed with a lid 9 composed of aluminium or aluminium alloy to complete the aluminium composite structure X.
For the above aluminium composite structure X, an anodic oxide coating 11 may be formed on the surfaces of the covering material 5 and the lid 9 which form exposed faces of the aluminium composite structure X by performing anodic oxide treatment.
For the above aluminium composite structure X, a ceramics thermal spraying film 12 may be formed on the surfaces of the covering material 5 and a lid 9 which form the exposed faces of the aluminium composite structure X.
When the ceramics thermal spraying film 12 is formed on the exposed face of the aluminium composite structure X, it is desirable that a film thickness of the covering material 5 be preferably 1 mm or less. When the film thickness of the covering material 5 is thicker than 1 mm, the thermal expansion coefficient of the aluminium composite structure X having the ceramics thermal spraying film 12 is dominantly affected by the aluminium or aluminium alloy, and low thermal expansion performance as the aluminium composite structure X is reduced. As a result, there is a possibility that the thermal stress between the covering material 5 and the ceramics thermal spraying film 12 becomes large. It is desirable that a film thickness of the ceramics thermal spraying film 12 be preferably 100 to 500 μm. A material of the ceramics thermal spraying film 12 can be selected from alumina, alumina nitride, mixture of alumina and titania, yttria, and the like.
Hereinafter, with reference to the accompanying drawings, the aluminium composite structure X according to Example of the present invention is specifically illustrated.
A disc-shaped ceramics porous body with a diameter of 250 mm and a thickness of 25 mm shown in
The machining was given to the above composite member 6. In
A lid 9 made of aluminium alloy (A1050) with a width of 18 mm and a thickness of 2 mm shown in
For the completed aluminium composite structure X, sealability at a welding section was examined by air-tightly closing one of the connection holes 14 of the lid 9 and connecting a helium leak detector to another connection hole 14, and then a leak rate was 2E-10 (Torr·L/sec) and it was confirmed that very high vacuum seal was obtained.
For the purpose of forming a protective film on an exposed face of the above aluminium composite structure X, sulfuric acid anodic oxide treatment was given to the aluminium composite structure X, and the anodic oxide coating 11 with a thickness of 50 μm was formed on the entire exposed face. A film thickness of the anodic oxide coating 11 obtained by the anodic oxide treatment was 50±5 μm, and it was possible to obtain the anodic oxide coating excellent in film thickness uniformity. An insulation resistance of the anodic oxide coating 11 took a value of 50 MΩ or more with respect to a DC voltage of 1000 V, and it also exhibited an excellent property in the insulation resistance.
As illustrated in the above, according to the present invention, the aluminium or aluminium alloy which is a matrix (covering material) is impregnated in a preform (core material) to which a desired shape processing has been given by precedently defining the concave groove on the surface, and subsequently machining could be performed on the covering material which covers the surface of the core material into a final processed shape. Thus, it is possible to considerably reduce the processing cost compared to the prior art. The covering material composed of the aluminium or aluminium alloy covers the surface of the core material, and thus, joint property is much excellent when the lid composed of the aluminium or aluminium alloy is firmly fixed after machining to form the channel therein. Furthermore, in the aluminium composite structure obtained in this way, it is also possible to form the excellent coating when the surface treatment such as anodic oxide treatment or ceramics thermal spraying is performed. That is, the aluminium composite structure in the present invention is the aluminium composite structure which has the channel excellent in sealability inside the structure, is favorable in joint property of members when forming the composite structure, is excellent in durability and is highly reliable. Also, according to the method of manufacturing the aluminium composite structure in the present invention, machinability is excellent when forming the structure as the above, the channel can be easily formed into an arbitrary shape, and the processing cost can be remarkably reduced.
The aluminium composite structure in the present invention can be suitably used as structural parts for forming chamber walls, a sample placing stage, a section of receiving ion beams or charged particles such as electrons, a Faraday cup and the like in semiconductor manufacturing equipment, and a section where constant temperature or high temperature is required, low temperature target sections, and additionally sections where generally strength and homoeothermal property are both required.
Number | Name | Date | Kind |
---|---|---|---|
5361824 | Keck | Nov 1994 | A |
5646814 | Shamouilian et al. | Jul 1997 | A |
5715312 | Ijtsma | Feb 1998 | A |
5886863 | Nagasaki et al. | Mar 1999 | A |
5904776 | Donde et al. | May 1999 | A |
5910338 | Donde | Jun 1999 | A |
6263829 | Schneider et al. | Jul 2001 | B1 |
6929874 | Hiramatsu et al. | Aug 2005 | B2 |
7033444 | Komino et al. | Apr 2006 | B1 |
7084376 | Ito et al. | Aug 2006 | B2 |
20040021475 | Ito et al. | Feb 2004 | A1 |
20040200419 | Mauck et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
11-061448 | Mar 1999 | JP |
11-080857 | Mar 1999 | JP |
11-121598 | Apr 1999 | JP |
2001-329350 | Nov 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060086475 A1 | Apr 2006 | US |