Aluminized silicious powder and water purification device incorporating same

Information

  • Patent Grant
  • 9309131
  • Patent Number
    9,309,131
  • Date Filed
    Monday, June 10, 2013
    11 years ago
  • Date Issued
    Tuesday, April 12, 2016
    8 years ago
Abstract
A reaction product of silicious material, aluminum metal, and an aqueous solution is disclosed. The reaction product may be used to form a sorbent that is used to purify water of contaminants such as biological matter, dyes, soluble metals, arsenic, or radioactive elements. Additives may be added to the reaction product to further improve the sorption qualities of the sorbent. Water purification devices having the sorbent are also disclosed.
Description
BACKGROUND

The use of silicious materials such as diatomaceous earth and perlite for water purification are known. Silicious materials work via size exclusion of particles that are larger than the pore sizes of the coating or filter made from the silicious material. Silicious materials are inert, meaning that they cannot be functionalized.


Accordingly, there is a need for a sorption material that can remove contaminants that are smaller than the pore sizes formed in silicious coatings or filters, and that are capable of being functionalized.


SUMMARY

In an embodiment, a reaction product is disclosed. The reaction product is made from a mixture comprised of (a) a silicious powder, (b) an aluminum metal, and (c) an aqueous solution. In embodiments, the silicious powder may comprise diatomaceous earth, perlite, talc, vermiculite, sand, calcine composites, or combinations thereof In embodiments, the aluminum metal may be a powder, flakes, or combinations thereof In embodiments, the aqueous solution may be acidic. In embodiments, the aqueous solution may be alkaline.


In an embodiment, a sorbent comprising the reaction product is disclosed.


In an embodiment, a method of purifying water is disclosed. In an embodiment, the method of purifying comprises forming a liquid suspension by mixing the sorbent with a volume of water, and separating a volume of purified water from the liquid suspension.


In an embodiment, a method of manufacturing a sorbent is disclosed. In an embodiment, the method of manufacturing comprises mixing (i) a silicious powder and (ii) aluminum metal in (iii) an aqueous solution, heating the mixture to a temperature from 60° C. to 80° C. to form a reaction product, and neutralizing the reaction product to a pH from 6.0 to 8.0.


In an embodiment, a device for removing contaminants from a water source is disclosed. The device comprises a sorption chamber structured and arranged to store a sorbent comprising a reaction product formed from a mixture comprising silicious powder, aluminum metal, and an aqueous solution, the sorption chamber further structured and arranged to communicate with the water source and to mix a volume of the water source with the sorbent to form a liquid suspension; and a separation element structured and arranged to receive the liquid suspension from the sorption chamber, and further structured and arranged to separate a volume of purified water from the liquid suspension, wherein the separation element comprises a port structured and arranged to eject at least a portion of the purified water.





BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the disclosed sorbent will be more readily appreciated upon reference to the following disclosure when considered in conjunction with the accompanying drawings.



FIG. 1 is a schematic of an embodiment of a device for removing contaminants from a water source.



FIG. 2 is a schematic of another embodiment of a device for removing contaminants from a water source.



FIG. 3 graphically depicts the reciprocal zeta potential of an embodiment of the sorbent as a function of the resistivity of the filtered water.



FIG. 4 illustrates the zeta potential of DEAL powder as a function of the loading of aluminum solids.



FIG. 5 graphically depicts the removal efficiency of an embodiment of the sorbent functionalized with graphene oxide.



FIG. 6 graphically depicts the removal of arsenic V from RO water by an embodiment of the sorbent.





DETAILED DESCRIPTION

For purposes of the following detailed description, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. Moreover, other than in any operating examples, or where otherwise indicated, all numbers expressing, for example, quantities of ingredients used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard variation found in their respective testing measurements.


Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.


In this application, the use of the singular includes the plural and plural encompasses singular, unless specifically stated otherwise. In addition, in this application, the use of “or” means “and/or” unless specifically stated otherwise, even though “and/or” may be explicitly used in certain instances.


In this application, unless specifically indicated to the contrary, when it is stated that a reaction product or a sorbent is “substantially free” of a particular component, it means that the material being discussed is present in the reaction product or the sorbent, if at all, as an incidental impurity. In other words, the material is not intentionally added to the reaction product or the sorbent, but may be present at minor or inconsequential levels, because it was carried over as an impurity as part of an intended component of the reaction product or the sorbent.


As used herein, “natural organic matter” means the natural degradation products of flora.


In an embodiment, a reaction product that is used to form a sorbent for use in water purification is disclosed. In other words, the sorbent is used to remove contaminants from a water source, such as to remove contaminants from municipal drinking or waste water, water sources that have been contaminated by oil refining or oil or gas drilling, water sources that are used in industrial or pharmaceutical settings, or to remove radioisotopes from water sources in nuclear reactors. Thus, non-limiting examples of the water source include, but are not limited to, municipal drinking water, municipal waste water, and water sources in industrial, pharmaceutical, or nuclear plants. Non-limiting examples of the contaminants include, but are not limited to, soluble toxic metals such as lead, lead oxide, soluble dyes, oil such as spill oil and emulsified oil, carcinogens, arsenic, biological materials such as bacteria, virus, natural organic matter, cell debris, or combinations thereof. The contaminants may have any particle size, including a particle size from, including contaminants having a particle size from 0.0003 μm to 3 μm, such as from 0.1 μm to 2 μm, such as from 0.2 μm to 1 μm.


In an embodiment, the reaction product is formed from a mixture comprising a silicious powder, an aluminum metal, and an aqueous solution. In an embodiment, the aluminum metal may react with water in the aqueous solution to form aluminum oxide/hydroxide and hydrogen gas. In an embodiment, the reaction product comprises particles of silicious powder that are at least partially coated by aluminum oxide/hydroxide.


In an embodiment, the silicious powder is comprised of a silicious mineral. In an embodiment, the silicious mineral may be diatomaceous earth, perlite, talc, vermiculite, sand, calcine composites, or combinations thereof. In an embodiment, the silicious material may be comprised of particles having a size from 0.25 μm to 100 μm, such as from 0.5 μm to 80 μm, such as from 5 μm to 50 μm, such as from 10 μm to 25 μm.


In an embodiment, the silicious powder may be present in the mixture in an amount ranging from 60 to 98% by weight based on the total weight of the silicious powder and the aluminum metal. In another embodiment, the silicious powder may be present in the reaction mixture in an amount ranging from 70 to 90% by weight based on the total weight of the silicious powder and the aluminum metal, such as from 80 to 85% by weight based on the total weight of the silicious powder and the aluminum metal.


In an embodiment, the aluminum metal may be a powder, flakes, or combinations thereof. In another embodiment, the aluminum metal is not a salt.


In an embodiment, the aluminum metal may be present in the mixture in an amount ranging from 3 to 40% by weight based on the total weight of the silicious powder and the aluminum metal. In another embodiment, the aluminum metal may be present in the mixture in an amount ranging from 10 to 35% by weight based on the total weight of the silicious powder and the aluminum metal. In another embodiment, the aluminum metal may be present in the mixture in an amount ranging from 15 to 25% by weight based on the total weight of the silicious powder and the aluminum metal.


In an embodiment, the weight ratio of the weight of the silicious powder to the aluminum metal may be from 40:1 to 1.5:1.


In an embodiment, an excess amount of the aqueous solution is added to the mixture relative to the amount of silicious powder and aluminum metal in the mixture. In an embodiment, the aqueous solution may be alkaline and may be, for example, sodium hydroxide, potassium hydroxide, ammonia, ammonium hydroxide, or combinations thereof In an embodiment, the aqueous solution may be added to the mixture in an amount sufficient to yield a mixture having a pH from 9 to 14, such as from 10 to 13, such as from 11 to 12.


In an embodiment, the aqueous solution may be acidic and may be, for example, a mineral acid, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, or combinations thereof. In an embodiment, the aqueous solution may be added to the mixture in an amount sufficient to yield a mixture having a pH from 0 to 4, such as from 1 to 3.5, such as from 2.5 to 3.5.


In an embodiment, the mixture may further comprise iron, iron oxide, iron hydroxide, graphene, graphene oxide, or combinations thereof.


In an embodiment, the reaction product may comprise a polymer coating that may be modified by a functional group, including as examples, but not limited to, an alcohol, an aromatic ring, an alkane, an aldehyde, a carboxylic acid, an ester, or combinations thereof.


In an embodiment, the reaction product may be used to form a sorbent.


In an embodiment, the method of manufacturing the sorbent comprises the steps of forming a reaction product from a mixture. In an embodiment, the step of forming the reaction product comprises mixing a silicious powder, an aluminum metal, and an acidic or alkaline aqueous solution, as described above. The step of mixing may be carried out at ambient pressure. Following mixing, the mixture is heated to a temperature from 25° C. to 100° C., such as from 50° C. to 90° C., such as from 60° C. to 80° C. to form the reaction product. The pH of the reaction product is then neutralized to a pH from 6 to 8. In embodiments in which the pH of the reaction product is greater than 8, the reaction product may be neutralized to a pH from 6 to 8 using an acid. Suitable acids may be, for example, inorganic acids such hydrochloric acid, nitric acid, or sulfuric acid, or organic acids such as acetic acids, or combinations thereof. In other embodiments in which the pH of the reaction product is less than 6, the reaction product is neutralized to a pH from 6 to 8 using a base. Suitable bases may be, for example, sodium hydroxide, potassium hydroxide, ammonia, or combinations thereof. After the pH is neutralized, the reaction product is then filtered or decanted to separate the solid matter, or sludge, from the fluids.


In an embodiment, the sludge is formed into a slurry that is used as the sorbent.


In an embodiment, the sludge is then dried and pulverized to form a sorbent. In embodiments, the sludge is dried at a temperature from ambient temperature to 100° C., such as from 50 to 80° C. such as from 60 to 75° C. The sludge is then pulverized by application of a mechanical force using any suitable mechanism known to those skilled in the art. In an embodiment, the sludge is dry-milled.


In an embodiment, the mixture further comprises organic or inorganic material such as, for example, iron, iron oxide, iron hydroxide, graphene, graphene oxide, or combinations thereof. In an embodiment, the organic or inorganic material may be added to the mixture prior to mixing the silicious powder and the aluminum metal in the aqueous solution. In another embodiment, the organic or inorganic material may be added to the mixture after mixing the silicious powder and the aluminum metal in the aqueous solution, that is, after the silicious powder is coated with the aluminum metal.


In an embodiment, the formed sorbent may be a slurry that is dispersed in an aqueous solution, a powder, or a cake. In an embodiment, the sorbent may be substantially free of fibers. In an embodiment, the sorbent is not a matte.


In an embodiment, the sorbent has a zeta potential greater than 0, such as +3 mV to +81 mV, such as +25 mV to +60 mV.


In an embodiment, a device for removing contaminants from an aqueous solution is disclosed. The device may have a sorbent comprising the reaction product described above. In an embodiment, a volume of water from a water source is exposed to the sorbent followed by phase separation of the particles from the fluid. In embodiments, phase separation may be accomplished by filtration or the difference in density between spent particles and the purified solution. In an embodiment, the device may be capable of a high capacity and high speed of retention for a wide variety of contaminants. In embodiments, the device may filter microbiological materials such as MS2 virus at several orders of magnitude greater than conventional filtering devices. In embodiments, the device may eliminate the need for precoating that is used in conventional filtration systems using diatomaceous earth. In other embodiments, the device may include a precoat that may be made from the silicious material. In embodiments, the sorbent can be used to filter many contaminants rather than the short term (2-4 days) batch method known in conventional diatomaceous earth precoat processing. In an embodiment, the reactor for forming the sorbent may be joined to the mixing chamber containing the contaminant and the separation device.


In an embodiment illustrated in FIG. 1, the device has a sorbent (1) and a body feed tank (2). The sorbent (1) is made from the reaction product, described above. The sorbent (1) and a feed of contaminated water (3) may be pumped to the body feed tank (2). An agitator having a propeller (4) mixes the sorbent (1) and the stream of contaminated water (3). An effluent (5) is fed into a hydrocyclone (7A) via a tangential feed (6). The sorbent (1) settles at the internal periphery of the hydrocyclone (7A) and accumulates as sludge while purified water is extracted through port (8). In an embodiment, the device has additional hydrocyclones (7B, 7C) that operate in series. In hydrocyclones (7B, 7C), the sludge is extracted through ports 9.


Another embodiment of a device is schematically illustrated in FIG. 2. The sorbent from tank (1) is added to the reaction chamber (2) as raw water is pumped through pipe (3). Reacted sorbent is pumped up through pipe (4) into a conical settling chamber. The flow velocity of the fluid is slowed considerably as it enters the settling zone (5) allowing the partially spent sorbent to react further while settling. Clean water flows out though decanting trough (6). After significant accumulation of sorbent in the base of the unit, it may be washed out as sludge (7) or scraped out with a solids scraper arm (8).


In an embodiment, a method of purifying water is disclosed. In an embodiment, the sorbent is mixed with a volume of an aqueous solution to form a liquid suspension and a volume of purified water is separated from the liquid suspension. The step of separating may be accomplished by a cyclone, gravity, a centrifuge, a filter, or combinations thereof.


Illustrating the invention are the following examples that are not to be considered as limiting the invention to their details. All parts and percentages in the examples, as well as throughout the specification, are by weight unless otherwise indicated.


EXAMPLES

As used throughout these Examples, “DE” refers to diatomaceous earth powder.


As used throughout these Examples, “PE” refers to perlite powder.


As used throughout these Examples, “DEAL” refers to the reaction product comprising diatomaceous earth coated with aluminum metal as described in Example 1A and 1B, below.


As used throughout these Examples, “PEAL” refers to the reaction product comprising perlite coated with aluminum metal as described in Example 1A and 1B, below.


Example 1A
Coating of Silicious Powder with Aluminum Metal in an Alkaline Solution

As shown in Table 1, silicious powder, in the form of diatomaceous earth or perlite (140 g to 1,400 g) were dispersed in 4 liter of RO water and were reacted in an 8 L stainless steel pot with 17.5 g to 175 g, respectively, of micron size aluminum powders (available from Atlantic Equipment Engineers) in the presence of 40 mL of 10 MNaOH at ambient pressure. The suspension was heated to its boiling point at ambient pressure while mixing with an air-driven mixer equipped with 5 cm diameter impeller at 300 RPM. The suspension was cooled to 40-50° C., neutralized with 10% sulfuric acid to pH 6-8, decanted, dried overnight at 100° C., crushed and sieved using a mechanical shaker through a 170 mesh sieve.


Example 1B
Coating of Silicious Powder with Aluminum Metal in an Acidic Solution

As shown in Table 1, silicious powder, in the form of diatomaceous earth or perlite (140 g), were dispersed in 0.4 liter of RO water and were reacted in an 8 L stainless steel pot with 17.5 g of micron size aluminum powders (available from Atlantic Equipment Engineers) in the presence of 30 mL of 95-98% sulfuric acid and 15 mL of 70% nitric acid at ambient pressure. The suspension was heated to its boiling point at ambient pressure while mixing with an air-driven mixer equipped with 5 cm diameter impeller at 300 RPM. The suspension was cooled to 40-50° C., neutralized with 1 MNaOH to pH 6-8, decanted, dried overnight at 100° C., crushed and sieved using a mechanical shaker through a 170 mesh sieve.









TABLE 1







Composition and properties of DEAL and PEAL powders

















Medium
Wt %



DE or PE



particle
aluminum



powders
Grades
Manufacturer
Treatment
size, μm
solids
Name





DE
Hyflo
Manville
Flux-
18
5, 10, 20, 50
DEAL



Super-Cel
Filtration and
calcined






MN23
EP Minerals
Natural
 5
20
DEAL-5



MN2
EP Minerals
Natural
15
20
DEAL-15


PE
Ultraper-
American Stone
Natural
25
20
PEAL-44



lite-44
Pioneers







Perlite-27
American Stone
Natural
25
20
PEAL-27




Pioneers









Examples 2-17 use DEAL formed as described in Example 1A.


Example 2
Calculation of DEAL's Zeta Potential

The streaming potential of the DEAL was measured by means of a pair of Ag/AgCl electrodes located on both parts of a filter column (18 mm diameter and 30 mm long) filled with DEAL powder. As is known by those skilled in the art, the apparent zeta potential (ζ) is a function of bulk conductivity of filtered liquid (λb) while the true zeta potential (ζtrue) is a function of bulk conductivity of filtered liquid (λb) as well as surface conductance effect due to the powdered material (λs).


As shown in FIG. 3, the true zeta potential and specific surface conductance were calculated by plotting the reciprocal of the apparent zeta potential as a function of resistivity of the water. As shown in FIG. 3, the true zeta potential of DEAL-5 was 61 +10 mV.



FIG. 4 illustrates the zeta potential of DEAL powder as a function of the loading of aluminum metal as a solid.


As illustrated in FIGS. 3 and 4, DEAL is electropositive, with a true zeta potential of greater than +50 mV at aluminum oxide/hydroxide solids loading greater than ˜20%.


Examples 3-9
Removal of Contaminants With or Without Precoat

The Buchner funnel is a laboratory device known to those skilled in the art that may be used to test efficiencies of filtering aid powders or slurries.


In Examples 3-9, the Buchner funnel test was modified to form a precoat (DE, DEAL, PE, or PEAL) to simulate the filter septum. The removal efficiency of various contaminants were compared between samples exposed to either: DE body fluid; DE precoat+DE body fluid; DEAL body fluid; DEAL precoat+DEAL body fluid; PE body fluid; PE precoat+PE body fluid; PEAL body fluid; or PEAL precoat+PEAL body fluid.


Example 3A
Formation of Precoat

The precoats were formed by using Nalgene Filter holders with receiver (available from Cole-Palmer, Cat #S-06730-53). The upper chamber capacity was 500 mL and the receiver capacity was 1 L. Five layers of 47 mm diameter woven wire screen with an average pore size of 200 μm were used as a support to form the precoat. A vacuum pump was used to reduce pressure in the receiver chamber to provide a differential pressure with respect to the upper chamber that was held at the ambient atmospheric pressure. The test was conducted in batches. Each individual batch was 1 L volume. Four grams of either DE, PE, DEAL, or PEAL powders were manually mixed in 1 L of reverse osmosis water to form powder suspensions at concentrations of 4 g/L. 500 mL of the powder suspension of either DE, PE, DEAL, or PEAL was poured into the upper chamber and the suction valve was opened on the vacuum pump to control the flow rate. After filtering 650 mL of slurry, the suction valve on the vacuum pump was closed and flow was terminated. Each precoat was 12 cm2 and 3 mm thick.


Example 3B
Formation of Body Fluid

After the precoat was formed, the lower reservoir was emptied and flushed several times with reverse osmosis water or distilled water to reduce turbidity to below a detection limit of 0.05 NTU. A known amount of a contaminant (described below in each of Examples 3-9) was added to the remaining 350 mL of the powder suspension and was filtered through the precoat. The flow of the body fluid was initiated by opening the suction valve. After 350 mL of contaminant seeded water was filtered at a flow rate of 10-30 mL/min through the precoat layer, the effluent was analyzed for the residuals.


Example 3
Bacteria Retention

Table 2 illustrates the removal efficiency of E. coli bacteria using a body fluid water at various contact times with or without a precoat. As illustrated in Table 2, at 30 minutes of contact time, a DEAL precoat+DEAL body fluid had a removal efficiency of >8.4 LRV compared to a removal efficiency of 0.3 LRV using a DE precoat+DE body fluid.









TABLE 2







Removal efficiencies of E. coli bacteria (ATCC 15597) by DEAL and DE














Contact
Influent
Effluent
Removal




time,
concentration,
concentration,
efficiency,


Powder
Mode of filtration
min
CFU/mL
CFU/mL
LRV















DEAL
Precoat + body fluid
30
7.2 · 106
<0.9
>8.4



Precoat
30

2.0 · 1010

1.4 · 106
4.2



Body fluid
1
7.0 · 107
7.2 · 106
1.0




3

1.2 · 107
0.8




10

4.0 · 106
1.2




40

5.0 · 106
1.1


DE
Precoat + body fluid
30
2.1 · 107
9.6 · 106
0.3









Example 4
Virus Retention

Table 3 illustrates the removal efficiency of virus using a body fluid water at various contact times with or without a precoat. As illustrated in Table 3, at at least 30 minutes of contact time, the removal efficiency of MS2 bacteriophage was at least 16 LRV when using a DEAL precoat+DEAL body fluid. Specifically, the MS2 bacteriophage removal efficiency of the DEAL precoat was 9 LRV at 30 minutes of contact time and the removal efficiency of the DEAL body fluid was 7.3 LRV at an input concentration of 1.3·1010 PFU/mL and a contact time of 40 minutes. The precoat surface area was greater than 10 cm2 in order to avoid premature clogging of the device.


Similarly, when using the DEAL body fluid, the removal efficiency of fr bacteriophage was at least 4.3 LRV at an input concentration of 1.1·105 PFU/mL and a contact time of 10 minutes.


When using the PEAL-44 precoat+PEAL-44 body fluid, the removal efficiency of MS2 bacteriophage was of 3.6 LRV at an input concentration of 5.0·109 PFU/mL and a contact time of 10 minutes. When using the PEAL-27 precoat+PEAL-27 body fluid, the removal efficiency of MS2 bacteriophage was 2.8 LRV at an input concentration of 4.2·108 PFU/mL and a contact time of 30 minutes.


When using the DE precoat+DE body fluid, the removal efficiency of MS2 bacteriophage was 0.3 LRV.


Thus, these data illustrate that DEAL, whether used as a precoat, a body fluid, or as a precoat+body fluid, was more efficient than the DE precoat+DE body fluid or the PEAL precoat+PEAL body fluid.


Virtually all bacteria and viruses (including E coli and MS2) are electronegative at neutral pH. Virus fr is electropositive at neutral pH since it has isoelectric point (pI) at pH 9.0. While not wishing to be bound by theory, it is thought that the DEAL disclosed herein has an electropositive surface. Therefore, it was an unexpected and surprising result that DEAL was able to remove an electropositive particle such as the fr bacteriophage. These data suggest that DEAL functions by a different mechanism than electropositive modified media/sorbents known in the art.









TABLE 3







Removal efficiencies of MS2a and frb bacteriophages by


DEAL and DE at pH
















Con-
Influent
Effluent
Removal



Mode

tact
concen-
concen-
effi-



of
Bacterio
time,
tration,
tration,
ciency,


Powder
filtration
phage
min
CFU/mL
CFU/mL
LRV
















DEAL
Precoat +
MS2
30
1.0 · 108
<0.9
>8.0



Body fluid








Precoat

30
1.3 · 1010
22
9.0



Body fluid

1
1.0 · 108
22
6.7





3

20
6.7





10

15
6.8





40

5
7.3



Body fluid
fr
5
1.1 · 105
11
4.0





10

5.5
4.3


PEAL-44
Precoat +
MS2
10
5.0 · 109
1.4 · 106
3.6



Body fluid







PEAL-27
Precoat +
MS2
30
4.2 · 108
  7 · 105
2.8



Body fluid







DE
Precoat +
MS2
30
2.1 · 107
9.6 · 106
0.3



Body fluid





Notes:



aATCC 15597-B1;




bATCC 15767-B1







Example 5
Turbidity Removal (Humic Acid)

DEAL has also been found to be highly efficient in the retention of natural organic matter (“NOM”) such as humic acid and other tannins, which are precursors in the formation of disinfection by-products, many of which are known to be carcinogenic. Methods of removing tannins from water sources in order to prevent membrane fouling have long been sought.


In this example, humic acid was added to the water source as the contaminant. As illustrated in Table 4, when using the DEAL precoat+DEAL body fluid, the removal efficiency of humic acid was 97% and the capacity was 8.4, while the removal efficiency when using the DE precoat+DE body fluid was only 11% and the capacity was 0.14.









TABLE 4







Humic acid reduction by DEAL and DE















Input
Input
Output
Output
Contact

Capacity,



TOC,
turbidity,
TOC,
turbidity,
time,
Removal
mg(TOC)/g


Sorbent
ppm
NTU
ppm
NTU
minutes
efficiency, %
sorbent

















DEAL
10
12
0.3
0.3
30
97
8.4



28.5
30
0.5
0.55
60
98
11.1


DE
10
11
8.0
8.9
30
11
0.14









Example 6
Turbidity Removal (Arizona Test Dust)

Arizona Test Dust, which is made mostly of silica, is an ultrafine test that has an average particle size of 1 μm on a volume basis and a high amount of sub-micron particles on a volume basis.


As illustrated in Table 5, DEAL precoat had a removal efficiency of 96% for Arizona Test Dust.









TABLE 5







Turbidity reduction by DEAL (Ultrafine Arizona dusta, 0-3 μm)
















Input

Output
Contact
Turbidity
Capacity,



Input,
turbidity,
Output,
turbidity,
time,
removal
mg(dust)/g


Sorbent
ppm
NTU
Ppm
NTU
minutes
efficiency, %
sorbent





DEAL
100
120
5.6
4.9
45
96
11





Note:



aAvailable from Powder Technology Inc. (PTI)







Example 7
Oil Separation

Motor oil (10W40) was added to 500 mL of DEAL body fluid at a DEAL concentration of 4 g/L and occasionally manually mixed for 20 minutes. After 20 minutes of dwelling time the motor oil caused coagulated masses that floated on the surface of the water and were easily removable by either decanting or by skimming (scooping) from the water surface. The oil was filtered through a DEAL precoat formed with 2 g of DEAL (i.e., depositing 0.5 L at a concentration of 4 g/L onto five layers of 47 mm diameter woven wire screen whose average pore size was 200 μm).


The thickness of the resulting oil sheen floating on a surface of 500 mL filtered water collected in 1 L polypropylene beaker (Available from VWR, cat. #25384-160) was determined by visually calibrating these sheens versus a known amount of dispersed 10W40 oil (i.e., 2 μL, 4 μL, 6 μL, 8 μL, and 10 μL) into several beakers filled with 500 mL of RO water. It was assumed that the density of 10W40 oil was ˜0.8 g/cm3.


As illustrated in Table 6, the removal efficiency of oil by DEAL in conventional DE process was >99.99% and DEAL had a sorption capacity for oil of 2.5 at a contact time of 40 minutes and of 10 at a contact time of 120 minutes.


Several phase separation methods may be used to remove oil from water, including decantation of the floating DEAL/oil mixture and extraction of the cleansed water from the bottom of a body fluid reactor once the stirrer is at rest as well as skimming









TABLE 6







Motor oil (10W40) removal by 4 g of DEAL












Contact






time,
Oil
Removal
Capacity, g


Amount of oil, g
min
remaining, g
efficiency, %
oil/g DEAL














10
40
<0.005
>99.95
2.5


20
40
<0.005
>99.97
5.0


30
60
<0.005
>99.98
7.5


40
120
<0.005
>99.99
10.0









Example 8
Adsorption of Dyes

Adsorption is known to be an effective method for removing dissolved organic matter from waste streams.


In this example, residual concentrations of dye in 100 mL filtered aliquots were measured at 25° C. with the use of Genesis 10 UV spectrophotometer at a wavelength of 674 nm. Sorption capacity at a given input dye concentration was estimated from the breakthrough curve, based on the assumption that the breakthrough curve was symmetric with respect to a 50% adsorption point on the curve.


Table 7 presents results of dissolved organic (metanil yellow) reduction by DEAL at pH 8.2. The data shown in Table 7 indicate that DEAL had a sorption capacity from 70 to 225 for metanil yellow at a pH of 8.2 compared to the sorption capacity of the non-woven media disclosed in U.S. Pat. No. 6,838,005, which had a sorption capacity of 5.









TABLE 7







Dissolved Organic (Metanil Yellow) Reduction by DEAL versus Non-


Woven Media Disclosed in U.S Pat. No. 6,838,005













Capacity,





mg(dye)/g



Sorbent
Input, ppm
sorbent














DEAL
400
70




700
140




1000
225



Non Woven
2.5
5



Media disclosed





in U.S. Pat. No.





6,838,005









Example 9
Method of Operation Without Precoat

In this example, MS2 viruses were removed from the body fluid to greater than 6 LRV (see Table 3) in one minute and with manual shaking of the DEAL, virus mixture. No precoat step was used. The virus level is regarded as safe for drinking water.


Example 10
Soluble Lead Reduction

As shown in Table 8, the DEAL composite adsorbed soluble lead from DI RO water (i.e., body fluid) at pH 6.5 at an efficiency of 61% and 77% for an input of 150 ppb and 350 ppb, respectively.









TABLE 8







Soluble lead reduction by DEAL at pH 6.5









Input, ppb
Output, ppb
Removal efficiency, %





150
59
61


350
80
77









Example 11
Virus Retention From High Salinity Water

Table 9 shows results of virus retention by DEAL-5 at high salinity and pH 7 and 8.5 from body fluid at contact time of 1 minute. As illustrated DEAL-5 removed MS2 bacteriophage from a solution having a high salinity at an efficiency from 2.8 to 4.9.









TABLE 9







Removal efficienciesa of MS2 bacteriophage by


DEAL-5 at pH 7.0 and 8.5 and high salinity










Challenge water




(body fluid)










pH
TDSb, g/L
Removal efficiencyc, LRV












7
0
3.4 ± 0.5


8.5
0
3.1 ± 0.5


7
30
2.8 ± 0.5


8.5
30
3.2 ± 0.5


7
200
4.9 ± 0.5


8.5
200
4.2 ± 0.5





Notes:



acontact time 1 min;




badjusted with NaCl;




cat input concentration of 2.2 · 108 PFU/mL







Examples 12-14

Examples 12 to 14 describe DEAL powders that have functionalized surfaces.


Example 12
Incorporating Graphene Oxide (GO) Onto DEAL Powders

375 mg of GO nanopowders (a single- or few-layer structure having sheets of sp2 hybridized carbon atoms) were dispersed in 15 mL of RO water. The GO was obtained from Rice University. Seven samples of 100 mg of DEAL powders were dispersed in 3 mL RO water in a 15 ml centrifuge tubes. Aliquots of GO suspension in quantities of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 mL were added to the DEAL sample tubes and were further filled with RO water to make an equal volume of 6.5 mL in each tube. Following a contact time of 1 minute on an orbiter shaker (Vortex Genie 2), the tubes were centrifuged at 1300 g for 10 seconds to cause the DEAL particles with adsorbed GO particles to settle. The supernatant was analyzed with the use of a Genesis 10 UV spectrophotometer at wavelength of 600 nm. The data are illustrated in FIG. 5.


In order to compare the capacity of the GO-DEAL with that of a known non-woven media, 1 mL of the GO suspension was diluted in 24 mL of RO water (i.e., a 1/25 dilution). The diluted GO suspension was passed through a non-woven media prepared in accordance with U.S. Pat. No. 6,838,005. After passing approximately 10 mL through a 25 mm disc at flow rate 1 GPM/ft2, the pressure drop through the media increased to 60 psi and filtration was stopped. The effluent was clear with turbidity less than 0.01 NTU. The data are shown in Table 10 and indicate that DEAL has 5.4 times greater sorption capacity for GO as compared to the non-woven media prepared in accordance with U.S. Pat. No. 6,838,005.









TABLE 10







Graphene Oxide Removal Efficiency













Capacity, mg



Sorbent
Input, ppm
GO/g sorbent














DEAL
11,500
543



Non Woven
1,000
100



Media (U.S.





Pat. No.





6,838,005)









Example 13
Coating of DEAL With FeOOH

After cooling the DEAL suspension prepared in Example 1 to 60° C., an additional 10 mL of 10 M NaOH was added, followed by 90 g of FeCl36H2O dissolved in 500 mL of RO water while mixing the mixture at 1000 RPM. The suspension was cooled to 40 to 50° C., neutralized with 10% sulfuric acid to pH 6-8, decanted, dried overnight at 100° C., crushed by hand and sieved using a mechanical shaker through a 170 mesh sieve. Data are shown in Table 11.


Example 14
Coating of DEAL-5 With Polymer

DEAL-5 powders as prepared in Example 1 were coated with poly(methyl methacrylate) (PMMA) in the following manner. 7.2 g PMMA was added to 700 mL ethyl acetate. 4 g of palmitic acid was added as a surfactant. 50 g of DEAL-5 powder was added and the ultrasonic power was added for 30 minutes while periodically mixing with a glass rod. 700 mL of water was added into a 3 L glass reservoir. 2 g of sodium lauryl sulfate was added as a surfactant and was mixed at 3000 RPM. The DEAL-5/MMA/ethyl acetate mixture was added to the water/sodium lauryl sulfate mixture while mixing for 10 minutes at 3000 RPM. 500-700 mL of ethyl alcohol was added to the reservoir. The mixture was poured onto filter paper and was dried at a temperature of about 50° C. The dried mixture was crushed in a mortar and was sieved through 170 mesh.


Example 15
Equilibrium Capacity of As III

Granular ferric oxide sorbent (Bayer AG Bayoxide E-33) is currently commercialized as an arsenic sorbent. The E-33 was sieved to a 170 mesh and was compared to the FeOOH coated DEAL-5 powders in order to compare arsenic adsorption.


Equilibrium capacity was measured for different sorbents by adding 9 mg of sorbent to a solution of 1 liter of As III at an input concentration of 480 ppb and pH6.5 and mixing with a magnetic stirrer. Acustrip arsenic indicator tape was used to estimate the total arsenic in the effluent. The indicator tape was capable of detecting from 2 ppb to 160 ppb arsenic. The coarse indicator product has a detection limit from about 5 ppb up to about 500 ppb for undiluted solution. The data are shown in Table 11. As illustrated in Table 11, the 15% FeOOH/85% DEAL and GO powders had higher As III equilibrium capacity than E33 and the arsenic absorption occurred more rapidly.









TABLE 11







Arsenic III removal from DI RO water by 9 mg of


sorbent at input concentration of 480 ppb and pH 6.5










Effluent As III concentration,
Equilibrium



ppb, After contact time
capacity, mg











Sorbent
10 min
20 min
100 min
As III/g sorbent





15% FeOOH/85% DEAL
150
160
160
36


Graphene Oxide (GO)
270
270
160
36


DEAL-5
450
240
225
28


30% GO/70% DEAL-5
250
180
200
31


Bayoxide E33
360
210
200
31









Example 16
Arsenic V Removal


FIG. 6 shows Arsenic V (As V) removal from RO water at input concentration of 280 ppb and at pH 6.5 in an apparatus with the precoat surface area of 930 cm2 at 4 LPM flow rate.


The data illustrated in FIG. 6 indicate that FeOOH/DEAL powders, prepared as described in Example 13, above, are capable to remove As V to less 10 ppb level at an input concentration of 280 ppb and at pH 6.5.


Example 17
Coagulation of Oil Droplets

20 mL of motor oil (10W40) was used as a contaminant and was added to 1 L of RO at a DEAL concentration of 2 g/L and mixed by air-driven mixer equipped with 5 cm diameter impeller at 3000 RPM 3 minutes. After 2 minutes of dwelling time the oil caused coagulated masses that floated on the surface of the water and were easily removable by either decanting or by skimming (scooping) from the water surface. To determine the efficiency of oil removal the turbidity of the body fluids was measured. Data are shown in Table 12 and demonstrate that DEAL-5 coagulated up to 10 g oil/g DEAL to form a thin sheen layer that floated on the surface of the water.









TABLE 12







Coagulation of oil droplets









Turbidity, NTU after



dwelling in a beaker










Suspension
2 min
17 hrs
94 hrs





20 mL oil/1 L RO
850 NTU
300 NTU
 95 NTU


 2 g DEAL-5/20 mL oil/1 L RO
170 NTU
 9.5 NTU
6.1 NTU









From the foregoing, it will be observed that numerous variations and modifications can be effected without departing from the spirit and scope of the disclosed sorbent. It is to be understood that no limitation with respect to the specific reaction products, sorbents, methods or device illustrated herein is intended or should be inferred. It is intended to cover by the appended claims all such modifications as fall within the scope of the claims.

Claims
  • 1. A product consisting of a silicious powder at least partially coated by a coating of aluminum oxide/hydroxide, wherein the coating of aluminum oxide/hydroxide is present in an amount of 20% or greater by weight based on the total weight of the product.
  • 2. The product of claim 1, wherein the coating is electropositive.
  • 3. The product of claim 1, wherein the product has a zeta potential of greater than 50 mV at a pH of 7.
  • 4. The product of claim 1, made by heating a mixture to a temperature of from 25° C. to 100° C., the mixture consisting of (a) the silicious powder, (b) an aluminum metal comprising micron size particles, and (c) an alkaline solution, wherein the aluminum metal reacts with the alkaline solution to form the at least partial coating of aluminum oxide/hydroxide over the silicious powder.
  • 5. The product of claim 4, wherein the silicious powder is present in the mixture in an amount from 60 to 98% by weight based on the weight of (a) plus (b).
  • 6. The product of claim 1, wherein the silicious powder comprises diatomaceous earth, perlite, talc, vermiculite, sand, calcine composites, or combinations thereof.
  • 7. The product of claim 4, wherein the aluminum metal is a powder, flakes, or combinations thereof.
  • 8. The product of claim 4, wherein the aluminum metal is present in the mixture in an amount from 3 to 40% by weight based on the weight of (a) plus (b).
  • 9. The product of claim 4, wherein the weight ratio of the silicious powder to the aluminum metal is from 40:1 to 1.5:1.
  • 10. The product of claim 4, wherein the pH of the mixture is from 9 to 14.
  • 11. The product of claim 4, wherein the aluminum metal reacts with the alkaline solution in the mixture to form the coating of aluminum oxide/hydroxide.
  • 12. The product of claim 4, wherein the particles of aluminum metal have an average particle size of from 3.5 μm to 4.9 μm, as measured by a Fisher sub sieve sizer.
  • 13. A sorbent comprising the product of claim 1.
  • 14. A method of purifying water, the method comprising: (a)forming a liquid suspension by mixing the sorbent of claim 13 with a volume of water; and(b) separating a volume of purified water from the liquid suspension.
  • 15. The method of purifying as in claim 14, wherein the separating is accomplished by a cyclone, a sedimentation chamber, a centrifuge, or a filter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/665,099, filed on Jun. 27, 2012, incorporated herein by reference.

US Referenced Citations (129)
Number Name Date Kind
2036258 Cummins Apr 1936 A
2773601 Keller et al. Dec 1956 A
2783894 Lovell et al. Mar 1957 A
2915475 Bugosh Dec 1959 A
2917426 Bugosh Dec 1959 A
3025233 Figert Mar 1962 A
3031417 Bruce Apr 1962 A
3031418 Bugosh Apr 1962 A
3056747 Arthur, Jr. Oct 1962 A
3117944 Harrell Jan 1964 A
3234075 Braitberg Feb 1966 A
3242073 Guebert et al. Mar 1966 A
3352424 Guebert et al. Nov 1967 A
3408315 Paine Oct 1968 A
3793061 Hammel et al. Feb 1974 A
3852202 Wells et al. Dec 1974 A
3947562 Grimshaw et al. Mar 1976 A
4007113 Ostreicher Feb 1977 A
4007114 Ostreicher Feb 1977 A
4059119 Grossman Nov 1977 A
4149549 Grossman Apr 1979 A
4153661 Ree et al. May 1979 A
4178438 Haase et al. Dec 1979 A
4230573 Kilty et al. Oct 1980 A
4242226 Siren Dec 1980 A
4282261 Greene Aug 1981 A
4288462 Hou et al. Sep 1981 A
4305782 Ostreicher et al. Dec 1981 A
4309247 Hou et al. Jan 1982 A
4321288 Ostreicher Mar 1982 A
4331631 Chapman et al. May 1982 A
4366068 Ostreicher et al. Dec 1982 A
4395332 Klein Jul 1983 A
4433697 Cline et al. Feb 1984 A
4455187 von Blucher et al. Jun 1984 A
4473474 Ostreicher et al. Sep 1984 A
4500647 Solomon Feb 1985 A
4510193 Blücher et al. Apr 1985 A
4511473 Hou Apr 1985 A
4523995 Pall et al. Jun 1985 A
4536440 Berg Aug 1985 A
4555347 O'Dowd et al. Nov 1985 A
4569756 Klein Feb 1986 A
4604208 Chu et al. Aug 1986 A
4606823 Lucas, III Aug 1986 A
4617128 Ostreicher Oct 1986 A
4664683 Degen et al. May 1987 A
4673504 Ostreicher et al. Jun 1987 A
4677019 von Blücher Jun 1987 A
4708803 Ostreicher et al. Nov 1987 A
4711793 Ostreicher et al. Dec 1987 A
4743418 Barnes, Jr. et al. May 1988 A
4761323 Mühlratzer et al. Aug 1988 A
4807619 Dyrud et al. Feb 1989 A
4824451 Vogt et al. Apr 1989 A
5085784 Ostreicher Feb 1992 A
5104546 Filson et al. Apr 1992 A
5109311 Hanazono et al. Apr 1992 A
5126044 Magnusson et al. Jun 1992 A
5147722 Koslow Sep 1992 A
5189092 Koslow Feb 1993 A
5219577 Kossovsky et al. Jun 1993 A
5225078 Polasky et al. Jul 1993 A
5307796 Kronzer et al. May 1994 A
5350443 von Blücher et al. Sep 1994 A
5366636 Marchin et al. Nov 1994 A
5486292 Bair et al. Jan 1996 A
5547607 Ando et al. Aug 1996 A
5562824 Magnusson Oct 1996 A
5611832 Suzuki et al. Mar 1997 A
5744236 Rohrbach et al. Apr 1998 A
5759394 Rohrbach et al. Jun 1998 A
5798220 Kossovsky Aug 1998 A
5800706 Fischer Sep 1998 A
5804295 Braun et al. Sep 1998 A
5855788 Everhart et al. Jan 1999 A
5865968 Denton et al. Feb 1999 A
6010606 Denton et al. Jan 2000 A
6057488 Koper et al. May 2000 A
6077588 Koslow et al. Jun 2000 A
6150300 Khare et al. Nov 2000 A
6155432 Wilson et al. Dec 2000 A
6197515 Bamdad et al. Mar 2001 B1
6200482 Winchester et al. Mar 2001 B1
6235388 Yamamoto et al. May 2001 B1
6290848 Tanner et al. Sep 2001 B1
6321915 Wilson et al. Nov 2001 B1
6344071 Smith et al. Feb 2002 B1
6355330 Koslow et al. Mar 2002 B1
6402819 DeRuiter et al. Jun 2002 B1
6420293 Change et al. Jul 2002 B1
6464757 Zhang et al. Oct 2002 B2
6514413 Pimenov et al. Feb 2003 B2
6524477 Hughes Feb 2003 B1
6550622 Koslow Apr 2003 B2
6565749 Hou et al. May 2003 B1
6630016 Koslow Oct 2003 B2
6660172 Koslow Dec 2003 B2
6716218 Holmes et al. Apr 2004 B2
6716525 Yadav et al. Apr 2004 B1
6797167 Koslow Sep 2004 B2
6830822 Yadav Dec 2004 B2
6838005 Tepper et al. Jan 2005 B2
6849109 Yadav et al. Feb 2005 B2
6872311 Koslow Mar 2005 B2
6872431 Kahlbaugh et al. Mar 2005 B2
6913154 Koslow Jul 2005 B2
6953604 Koslow Oct 2005 B2
6955708 Julos et al. Oct 2005 B1
6959820 Koslow Nov 2005 B2
7296691 Koslow Nov 2007 B2
7311752 Tepper et al. Dec 2007 B2
7390343 Tepper et al. Jun 2008 B2
7445718 Misra et al. Nov 2008 B2
7601262 Tepper et al. Oct 2009 B1
7621989 Forslund Nov 2009 B2
7708958 Namespetra et al. May 2010 B2
20010037972 Quick et al. Nov 2001 A1
20030127393 Tepper et al. Jul 2003 A1
20030177909 Koslow Sep 2003 A1
20050011827 Koslow Jan 2005 A1
20050029198 Tepper et al. Feb 2005 A1
20060123991 Braeunling et al. Jun 2006 A1
20060163174 Namespetra et al. Jul 2006 A1
20060169144 Forslund Aug 2006 A1
20060225574 Braeunling et al. Oct 2006 A1
20070175196 Tepper et al. Aug 2007 A1
20100038327 Ma Feb 2010 A1
20110139726 Jin et al. Jun 2011 A1
Foreign Referenced Citations (12)
Number Date Country
2410215 Sep 1974 DE
2510467 Sep 1976 DE
0099586 Feb 1984 EP
0525631 Mar 1993 EP
0958851 Nov 1999 EP
1219335 Jul 2002 EP
2045828 Nov 1980 GB
9802231 Jan 1998 WO
9947456 Sep 1999 WO
03000407 Jan 2003 WO
2008064504 Jun 2008 WO
2011016889 Feb 2011 WO
Non-Patent Literature Citations (39)
Entry
Truesdail et al(Analysis of Bacterial Deposition on Metal (Hydr)oxide-Coated Sand Filter Media, J Colloid and Interface Sci, 203, (1998) pp. 369-378).
U.S. Appl. No. 61/665,099, filed Jun. 27, 2012, “Aluminized Diatomaceous Earth Water Purification Device”.
Blackford, D.B. et al., Alteration in the Performance of Electrostatic Filters Caused by Exposure to Aerosols, 4th World Filtration Congress, 7.27-7.33.
Brown, R.C. et al., Effect of Industrial Aerosols on the Performance of Electrically Charged Filter Material, Hyg. vol. 32 (3): 271-94, 1988.
Henderson, D.W. et al., An Appartus for the Study of Airborne Infection, J. Hyg. Camb. vol. 50, p. 53-67, 1952.
Johnson, P.R., Whadaya Mean?, Filtration News vol. 20(5): 10-11, 2002.
Mandaro, Charge Modified Depth Filters: Cationic-Charge Modified Nylon Membranes, in Filtration in the Pharmaceutical Industry, T.H. Meltzer Ed., Marcel Dekker, Inc., NY, 1987.
Martin, S.M. et al., Electrostatic Respirator Filter Media: Filter Efficiency and Most Penetrating Particle Size Effects, Appl. Occ. & Envir. Hygiene vol. 15(8): 609-17, 2000.
Moyer, E.S. et al., Electrostatic N-95 Respirator Filter Media Efficiency Degradation Resulting from Intermittent NaCl Aerosol Expos., Appl. Occ. & Envir. Hyg. 15(8): 600-8.
Raynor, P.C. et al., The Long-Term Performance of Electrically Charged Filters in a Ventilation System, J. of Occ. and Envir. Hygiene, vol. 1(7): 463-471, Jul. 2004.
Wilkie, A.E. et al., Multi-Component Fiber Technology for Medical and Other Filtration Applications, 1st Inter. Conf. on Med. Filtration, DE Oct. 9, 2002.
Willkommen, H., Virus Validation of Filtration Procedures, PDA/FDA Viral Clearance Forum, Bethesda, MD, Oct. 2001.
Yavorovsky, N.A. et al., (2000), Ultra-fine powder by wire explosion method, Acta Materialia 44(8/9): 2247-2251.
Ahuja, S., Handbook of Bioseparations, Academic Press, 2000, TOC.
Dicosmo et al., Cell Immobilization by Adsorption to Glass Fibre Mats, I.A. Veliky et al., Ed., Blackie Academic & Professional, 1994.
Farrah, S.R. et al., Concentration of Viruses from Water by Using Cellulose Filters Modified by In-Situ Precipitation of Ferric and Aluminum Hydroxides, Appl. Envir. Micro, 1985.
Farrah, S.R. et al., Adsorption of Viruses by Diatomaceous Earth Coated with Metallic Oxides and Metallic Peroxides, Water Sci. Tech. 24(2): 235-40, 1991 (abstract).
Farrah, S. R. et al, Use of Modified Diatomaceous Earth for Removal and Recovery of Virus in Water, Appl. Envir. Micro, Sep. 1991, pp. 2502-2506.
Fulton, George, P., Diatomaceous Earth Filtration for Safe Drinking Water, 2000, Amer. Soc. Civil Engineers Press.
Gitzen, W.H., Alumina as a Ceramic Material, American Ceramic Soc., Special Pub. 4, 1970, 13-14, TOC.
Hou, K. et al., Capture of Latex Beads, Bacteria, Endotoxin and Viruses by Charge-Modified Filters, Appl Envir Micro, Nov. 1980, 892-96.
Katz, J. et al., Mestastable Nanosized Aluminum Powder as Reactant in Energetic Formulations, 1-7.
Khalil, K., Synthesis of Short Fibrous Boehmite Suitable for Thermally Stabilized Transition Aluminas Formation, Journal of Catalysis, 1198 (178):198-206, Abstract.
Knight, R. A., et al., Charge—Modified Filter Media in Filtration and Purification in the Biopharmaceutical Industry, Second Edition edited by Maik J. Jomitz, Theodore H. Meltzer.
Lukasik, J., et al., Adsorption of Microorganisms to Sand and Diatomaceous Earth Particles Coated With Metallic Hydroxides, KONA, No. 14, 87-90, 1996.
Lukasik, J. et al., Influence of Salts on Virus Adsorption to Microporous Filters, Appl. Envir. Micro, 66: 2914-20.
Marcano, D. C, et al., Improved Synthesis of Graphene Oxide, ACS NANO, v. 8, No. 8, p. 4806, 2010.
Meltzer, T.H. et al., Filtration in Biopharmaceutical Industry, Marcel Dekker, NY, 262-265, 1998. 5.
Ostreicher, E.A., Charge Modified Filter Media, Filtration and Purification in the Biopharmaceutical Industry, Drugs and the Pharmaceutical Sciences; 174.
Reife, A., et al., Environmental Chemistry of Dyes and Pigments, John Wiley & Sons, Inc., New York, 1996.
Robinson et al., Depyrogenation by Microporous Membrane Filters, Tech. Rpt. No. 7, Depyrogenation, Parenteral Drug Assn, Phila, PA, 1985, TOC, p. 55-69.
Romanchuk A.Y., et al., Graphene Oxide for Effective Radionuclide Removal, Phys. Chem. Chem. Phys. 2013, 15 (7) p. 2321.
Sinha, D., Pretreatment Process Considerations for the Semiconductor Industry, Ultrapure Water 7(6): 21-30, 1990.
Sobsey, M.D. et al., Poliovirus Concentration of from Tap Water with Electropositive Adsorbent Filters, Appl Enviro Micro, 1980: 201-210.
Tepper, F., Nanosize Powders Produced by Electro-Explosion of Wire and Their Potential Applications, Argonide Corporation, Sanford, FL, Abstract, 2000.
Tepper, F., et al., Non-Woven Electrostatic Media for Chromatographic Separation of Biological Particles, Chrom. & Related Technologies, 32, p. 607-627 2009.
Tien, Chi, Adsorption Calculations and Modeling, 1994 Butterworth-Heinemann (TOC provided).
Wang, L., K., Diatomaceous Earth Precoat Filtration, Chap. 5 in Handbook of Environmental Engineering, V. 4, 2004, Advanced Physicochemical Treatment Processes, Humana Press.
Yavorosvsky, N.A., (1996), Izvestiia VUZ, Fizika 4:114-35 1996(with translation of abstract).
Related Publications (1)
Number Date Country
20140001123 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
61665099 Jun 2012 US