1. Technical Field
The present disclosure relates to an aluminum alloy wire rod used as a conductor of an electric wiring structure, an aluminum alloy stranded wire, a coated wire, a wire harness, and a method of manufacturing an aluminum alloy wire rod, and particularly relates to an aluminum alloy wire rod that has an improved impact resistance and bending fatigue resistance while ensuring strength, elongation and conductivity equivalent to the related art products, even when used as an extra fine wire having a strand diameter of less than or equal to 0.5 mm.
2. Background
In the related art, a so-called wire harness has been used as an electric wiring structure for transportation vehicles such as automobiles, trains, and aircrafts, or an electric wiring structure for industrial robots. The wire harness is a member including electric wires each having a conductor made of copper or copper alloy and fitted with terminals (connectors) made of copper or copper alloy (e.g., brass). With recent rapid advancements in performances and functions of automobiles, various electrical devices and control devices installed in vehicles tend to increase in number and electric wiring structures used for devices also tends to increase in number. On the other hand, for environmental friendliness, lightweighting of transportation vehicles is strongly desired for improving fuel efficiency of transportation vehicles such as automobiles.
As one of the measures for achieving lightweighting of transportation vehicles, there have been, for example, continuous efforts in the studies of using aluminum or aluminum alloys as a conductor of an electric wiring structure, which is more lightweight, instead of conventionally used copper or copper alloys. Since aluminum has a specific gravity of about one-third of a specific gravity of copper and has a conductivity of about two-thirds of a conductivity of copper (in a case where pure copper is a standard for 100% IACS, pure aluminum has approximately 66% IACS), an aluminum conductor wire rod needs to have a cross sectional area of approximately 1.5 times greater than that of a copper conductor wire rod to allow the same electric current as the electric current flowing through the copper conductor wire rod to flow through the pure aluminum conductor wire rod. Even an aluminum conductor wire rod having an increased cross section as described above is used, using an aluminum conductor wire rod is advantageous from the viewpoint of lightweighting, since an aluminum conductor wire rod has a mass of about half the mass of a pure copper conductor wire rod. Note that, “% IACS” represents a conductivity when a resistivity 1.7241×10−8 Ωm of International Annealed Copper Standard is taken as 100% IACS.
However, it is known that pure aluminum wire rods, typically an aluminum alloy wire rod for transmission lines (JIS (Japanese Industrial Standard) A1060 and A1070), is generally poor in its durability to tension, resistance to impact, and bending characteristics. Therefore, for example, it cannot withstand a load abruptly applied by an operator or an industrial device while being installed to a car body, a tension at a crimp portion of a connecting portion between an electric wire and a terminal, and a cyclic stress loaded at a bending portion such as a door portion. On the other hand, an alloyed material containing various additive elements added thereto is capable of achieving an increased tensile strength, but a conductivity may decrease due to a solution phenomenon of the additive elements into aluminum, and because of excessive intermetallic compounds formed in aluminum, a wire break due to the intermetallic compounds may occur during wire drawing. Therefore, it is essential to limit or select additive elements to provide sufficient elongation characteristics to prevent a wire break, and it is further necessary to improve impact resistance and bending characteristics while ensuring a conductivity and a tensile strength equivalent to those in the related art.
For example, aluminum alloy wire rods containing Mg and Si are known as high strength aluminum alloy wire rods. A typical example of this aluminum alloy wire rod is a 6xxx series aluminum alloy (Al—Mg—Si based alloy) wire rod. Generally, the strength of the 6xxx series aluminum alloy wire rod can be increased by applying a solution treatment and an aging treatment. However, when manufacturing an extra fine wire such as a wire having a wire size of less than or equal to 0.5 mm using a 6xxx series aluminum alloy wire rod, although the strength can be increased by applying a solution heat treatment and an ageing treatment, the elongation tends to be insufficient.
For example, Japanese Laid-Open Patent Publication No. 2012-229485 discloses a conventional 6xxx series aluminum alloy wire used for an electric wiring structure of the transportation vehicle. An aluminum alloy wire disclosed in Japanese Laid-Open Patent Publication No. 2012-229485 is an extra fine wire that can provide an aluminum alloy wire having a high strength and a high conductivity, as well as an improved elongation. Also, Japanese Laid-Open Patent Publication No. 2012-229485 discloses that good elongation results in improved bending characteristics. However, for example, it is neither disclosed nor suggested to use an aluminum alloy wire as a wire harness attached to a door portion, and there is no disclosure or suggestion about impact resistance or bending fatigue resistance under an operating environment in which a fatigue fracture is likely to occur due to repeated bending stresses exerted by opening and closing of the door.
The present disclosure is related to providing an aluminum alloy wire rod used as a wire rod of an electric wiring structure, an aluminum alloy stranded wire, a coated wire, a wire harness, and a method of manufacturing an aluminum alloy wire rod that has an improved impact resistance and bending fatigue resistance while ensuring strength, elongation and conductivity equivalent to those of a product of the related art (aluminum alloy wire disclosed in Japanese Laid-Open Patent Publication No. 2012-229485), even when it is a prerequisite to use an aluminum alloy containing Mg and Si and to suppress the segregation of a Mg component and a Si component at grain boundaries, and particularly when used as an extra fine wire having a strand diameter of less than or equal to 0.5 mm.
The present inventors have observed a microstructure of the aluminum alloy wire rod of the related art containing Mg and Si, and found that a Si-element concentration part and a Mg-element concentration part were formed at a grain boundary. Therefore, the present inventors have carried out assiduous studies under the assumption that due to existence of the Si-element concentration part and the Mg-element concentration part at the grain boundary, an interface bonding between these concentration parts and an aluminum parent phase weakens which results in a decrease in a tensile strength, elongation, impact resistance and bending fatigue resistance. The present inventors have prepared various types of aluminum alloy wire rod with various Si element concentration parts and Mg element concentration parts existing at a grain boundary by controlling a manufacturing process, and carried out a comparison. As a result, it was found that, in a case where Si element concentration parts and Mg element concentration parts are not formed at a grain boundary, an improved impact resistance and bending fatigue resistance can be achieved while ensuring strength, elongation and conductivity equivalent to a product of the related art (aluminum alloy wire disclosed in Japanese Laid-Open Patent Publication No. 2012-229485), and contrived the present disclosure.
According to a first aspect of the present disclosure, an aluminum alloy wire rod has a composition consisting of 0.1 mass % to 1.0 mass % Mg; 0.1 mass % to 1.0 mass % Si; 0.01 mass % to 1.40 mass % Fe; 0.000 mass % to 0.100 mass % Ti; 0.000 mass % to 0.030 mass % B; 0.00 mass % to 1.00 mass % Cu; 0.00 mass % to 0.50 mass % Ag; 0.00 mass % to 0.50 mass % Au; 0.00 mass % to 1.00 mass % Mn; 0.00 mass % to 1.00 mass % Cr; 0.00 mass % to 0.50 mass % Zr; 0.00 mass % to 0.50 mass % Hf; 0.00 mass % to 0.50 mass % V; 0.00 mass % to 0.50 mass % Sc; 0.00 mass % to 0.50 mass % Co; 0.00 mass % to 0.50 mass % Ni; and the balance being Al and incidental impurities, wherein at least one of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition or none of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition, a dispersion density of an Mg2Si compound having a particle size of 0.5 μm to 5.0 μm is less than or equal to 3.0×10−3 particles/μm2, and each of Si and Mg at a grain boundary between crystal grains of a parent phase has a concentration of less than or equal to 2.00 mass %.
According to a second aspect of the present disclosure, a wire harness includes a coated wire including a coating layer at an outer periphery of one of an aluminum alloy wire rod and an aluminum alloy stranded wire, the aluminum alloy stranded wire comprising a plurality of the aluminum alloy wire rods which are stranded together, and a terminal fitted at an end portion of the coated wire, the coating layer being removed from the end portion, the aluminum alloy wire rod having a composition consisting of 0.1 mass % to 1.0 mass % Mg; 0.1 mass % to 1.0 mass % Si; 0.01 mass % to 1.40 mass % Fe; 0.000 mass % to 0.100 mass % Ti; 0.000 mass % to 0.030 mass % B; 0.00 mass % to 1.00 mass % Cu; 0.00 mass % to 0.50 mass % Ag; 0.00 mass % to 0.50 mass % Au; 0.00 mass % to 1.00 mass % Mn; 0.00 mass % to 1.00 mass % Cr; 0.00 mass % to 0.50 mass % Zr; 0.00 mass % to 0.50 mass % Hf; 0.00 mass % to 0.50 mass % V; 0.00 mass % to 0.50 mass % Sc; 0.00 mass % to 0.50 mass % Co; 0.00 mass % to 0.50 mass % Ni; and the balance being Al and incidental impurities, wherein at least one of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition or none of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition, a dispersion density of an Mg2Si compound having a particle size of 0.5 μm to 5.0 μm is less than or equal to 3.0×10−3 particles/μm2, and each of Si and Mg at a grain boundary between crystal grains of a parent phase has a concentration of less than or equal to 2.00 mass %.
According to a third aspect of the present disclosure, a method of manufacturing an aluminum alloy wire rod according to the first aspect of the disclosure, the aluminum alloy wire rod being obtained by forming a drawing stock through hot working subsequent to melting and casting, and thereafter carrying out processes including a first wire drawing process, a first heat treatment process, a second wire drawing process, a second heat treatment process and an aging heat treatment process in this order, wherein the first heat treatment process includes, after heating to a predetermined temperature within a range of 480° C. to 620° C., cooling at an average cooling rate of greater than or equal to 10° C./s at least to a temperature of 150° C., and the second heat treatment includes, after heating to a predetermined temperature within a range of not less than 300° C. but less than 480° C. for less than two minutes, cooling at an average cooling rate of greater than or equal to 9° C./s at least to a temperature of 150° C.
The aluminum alloy wire rod of the present disclosure is based on a prerequisite to use an aluminum alloy containing Mg and Si, and by suppressing the segregation of a Mg component and a Si component at grain boundaries, particularly when used as an extra fine wire having a strand diameter of less than or equal to 0.5 mm, an aluminum alloy wire rod used as a conductor of an electric wiring structure, an aluminum alloy stranded wire, a coated wire, a wire harness, and a method of manufacturing an aluminum alloy wire rod can be provided with an improved impact resistance and bending fatigue resistance while ensuring strength, elongation and conductivity equivalent to those of a product of the related art (aluminum alloy wire disclosed in Japanese Laid-Open Patent Publication No. 2012-229485), and thus it is useful as a conducting wire for a motor, a battery cable, or a harness equipped on a transportation vehicle, and as a wiring structure of an industrial robot. Particularly, since an aluminum alloy wire rod of the present disclosure has a high tensile strength, a wire size thereof can be made smaller than that of the wire of the related art, and it can be appropriately used for a door, a trunk or a hood requiring a high impact resistance and bending fatigue resistance.
An aluminum alloy wire rod of the present disclosure has a composition consisting of an aluminum alloy wire rod having a composition consisting of 0.10 mass % to 1.00 mass % Mg; 0.10 mass % to 1.00 mass % Si; 0.01 mass % to 1.40 mass % Fe; 0.000 mass % to 0.100 mass % Ti; 0.000 mass % to 0.030 mass % B; 0.00 mass % to 1.00 mass % Cu; 0.00 mass % to 0.50 mass % Ag; 0.00 mass % to 0.50 mass % Au; 0.00 mass % to 1.00 mass % Mn; 0.00 mass % to 1.00 mass % Cr; 0.00 mass % to 0.50 mass % Zr; 0.00 mass % to 0.50 mass % Hf; 0.00 mass % to 0.50 mass % V; 0.00 mass % to 0.50 mass % Sc; 0.00 mass % to 0.50 mass % Co; 0.00 mass % to 0.50 mass % Ni; and the balance being Al and incidental impurities, wherein at least one of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition or none of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition, a dispersion density of an Mg2Si compound having a particle size of 0.5 μm to 5.0 μm is less than or equal to 3.0×10−3 particles/μm2, and each of Si and Mg at a grain boundary between crystal grains of a parent phase has a concentration of less than or equal to 2.00 mass %.
Hereinafter, reasons for limiting chemical compositions or the like of the aluminum alloy wire rod of the present disclosure will be described.
(1) Chemical Composition
<Mg: 0.10 Mass % to 1.00 Mass %>
Mg (magnesium) is an element having a strengthening effect by forming a solid solution with an aluminum base material and a part thereof having an effect of improving a tensile strength, a bending fatigue resistance and a heat resistance by being combined with Si to form precipitates. However, in a case where Mg content is less than 0.10 mass %, the above effects are insufficient. In a case where Mg content exceeds 1.00 mass %, there is an increased possibility that a Mg-concentration part will be formed on a grain boundary, thus resulting in decreased tensile strength, elongation, and bending fatigue resistance, as well as a reduced conductivity due to an increased amount of Mg element forming the solid solution. Accordingly, the Mg content is 0.10 mass % to 1.00 mass %. The Mg content is, when a high strength is of importance, preferably 0.50 mass % to 1.00 mass %, and in case where a conductivity is of importance, preferably 0.10 mass % to 0.50 mass %. Based on the points described above, 0.30 mass % to 0.70 mass % is generally preferable.
<Si: 0.10 Mass % to 1.00 Mass %>
Si (silicon) is an element that has an effect of improving a tensile strength, a bending fatigue resistance and a heat resistance by being combined with Mg to form precipitates. However, in a case where Si content is less than 0.10 mass %, the above effects are insufficient. In a case where Si content exceeds 1.00 mass %, there is an increased possibility that an Si-concentration part will be formed on a grain boundary, thus resulting in decreased tensile strength, elongation, and fatigue resistance, as well as a reduced conductivity due to an increased amount of Si element forming the solid solution. Accordingly, the Si content is 0.10 mass % to 1.00 mass %. The Si content is, when a high strength is of importance, preferably 0.50 mass % to 1.00 mass %, and in case where a conductivity is of importance, preferably 0.10 mass % to 0.50 mass %. Based on the points described above, 0.30 mass % to 0.70 mass % is generally preferable.
<Fe: 0.01 Mass % to 1.40 Mass %>
Fe (iron) is an element that contributes to refinement of crystal grains mainly by forming an Al—Fe based intermetallic compound and provides improved tensile strength and bending fatigue resistance. Fe dissolves in Al only by 0.05 mass % at 655° C. and even less at room temperature. Accordingly, the remaining Fe that could not dissolve in Al will be crystallized or precipitated as an intermetallic compound such as Al—Fe, Al—Fe—Si, and Al—Fe—Si—Mg. This intermetallic compound contributes to refinement of crystal grains and provides improved tensile strength and bending fatigue resistance. Further, Fe has, also by Fe that has dissolved in Al, an effect of providing an improved tensile strength. In a case where Fe content is less than 0.01 mass %, those effects are insufficient. In a case where Fe content exceeds 1.40 mass %, a wire drawing workability worsens due to coarsening of crystallized materials or precipitates. As a result, a target bending fatigue resistance cannot be achieved and also a conductivity decreases. Therefore, Fe content is 0.01 mass % to 1.40 mass %, and preferably 0.15 mass % to 0.90 mass %, and more preferably 0.15 mass % to 0.45 mass %.
The aluminum alloy wire rod of the present disclosure includes Mg, Si and Fe as essential components, and may further contain at least one selected from a group consisting of Ti and B, and/or at least one selected from a group consisting of Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni, as necessary.
<Ti: 0.001 Mass % to 0.100 Mass %>
Ti is an element having an effect of refining the structure of an ingot during dissolution casting. In a case where an ingot has a coarse structure, the ingot may crack during casting or a wire break may occur during a wire rod processing step, which is industrially undesirable. In a case where Ti content is less than 0.001 mass %, the aforementioned effect cannot be achieved sufficiently, and in a case where Ti content exceeds 0.100 mass %, the conductivity tends to decrease. Accordingly, the Ti content is 0.001 mass % to 0.100 mass %, preferably 0.005 mass % to 0.050 mass %, and more preferably 0.005 mass % to 0.030 mass %.
<B: 0.001 Mass % to 0.030 Mass %>
Similarly to Ti, B is an element having an effect of refining the structure of an ingot during dissolution casting. In a case where an ingot has a coarse structure, the ingot may crack during casting or a wire break is likely to occur during a wire rod processing step, which is industrially undesirable. In a case where B content is less than 0.001 mass %, the aforementioned effect cannot be achieved sufficiently, and in a case where B content exceeds 0.030 mass %, the conductivity tends to decrease. Accordingly, the B content is 0.001 mass % to 0.030 mass %, preferably 0.001 mass % to 0.020 mass %, and more preferably 0.001 mass % to 0.010 mass %.
To contain at least one of <Cu: 0.01 mass % to 1.00 mass %>, <Ag: 0.01 mass % to 0.50 mass %>, <Au: 0.01 mass % to 0.50 mass %>, <Mn: 0.01 mass % to 1.00 mass %>, <Cr: 0.01 mass % to 1.00 mass %>, and <Zr: 0.01 mass % to 0.50 mass %>, <Hf: 0.01 mass % to 0.50 mass %>, <V: 0.01 mass % to 0.50 mass %>, <Sc: 0.01 mass % to 0.50 mass %>, <Co: 0.01 mass % to 0.50 mass %>, and <Ni: 0.01 mass % to 0.50 mass %>.
Each of Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is an element having an effect of refining crystal grains, and Cu, Ag and Au are elements further having an effect of increasing a grain boundary strength by being precipitated at a grain boundary. In a case where at least one of the elements described above is contained by 0.01 mass % or more, the aforementioned effects can be achieved and a tensile strength, an elongation, and a bending fatigue resistance can be further improved. On the other hand, in a case where any one of Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni has a content exceeding the upper limit thereof mentioned above, a wire break is likely to occur since a compound containing the said elements coarsens and deteriorates wire drawing workability, and also a conductivity tends to decrease. Therefore, ranges of contents of Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni are the ranges described above, respectively.
The more the contents of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni, the lower the conductivity tends to be and the more the wire drawing workability tends to deteriorate. Therefore, it is preferable that a sum of the contents of the elements is less than or equal to 2.00 mass %. With the aluminum alloy wire rod of the present disclosure, since Fe is an essential element, the sum of contents of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is 0.01 mass % to 2.00 mass %. It is further preferable that the sum of contents of these elements is 0.10 mass % to 2.00 mass %. In a case where the above elements are added alone, the compound containing the element tends to coarsen more as the content increases. Since this may degrade wire drawing workability and a wire break is likely to occur, ranges of content of the respective elements are as specified above.
In order to improve the tensile strength, the elongation, the impact resistance and the bending fatigue resistance while maintaining a high conductivity, the sum of contents of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is particularly preferably 0.10 mass % to 0.80 mass %, and further preferably 0.20 mass % to 0.60 mass %. On the other hand, in order to further improve the tensile strength, the elongation, the impact resistance and the bending fatigue resistance, although the conductivity will slightly decrease, it is particularly preferably more than 0.80 mass % to 2.00 mass %, and further preferably 1.00 mass % to 2.00 mass %.
<Balance: Al and Incidental Impurities>
The balance, i.e., components other than those described above, includes Al (aluminum) and incidental impurities. Herein, incidental impurities means impurities contained by an amount which could be contained inevitably during the manufacturing process. Since incidental impurities could cause a decrease in conductivity depending on a content thereof, it is preferable to suppress the content of the incidental impurities to some extent considering the decrease in the conductivity. Components that may be incidental impurities include, for example, Ga, Zn, Bi, and Pb.
(2) Dispersion Density of a Mg2Si Compound Having a Particle Size of 0.5 μm to 5.0 μm is Less than or Equal to 3.0×10−3 Particles/μm2
The aluminum alloy wire rod of the present disclosure prescribes density of an Mg2Si compound having a particular dimension and existing in a crystal grain of an aluminum parent phase. The Mg2Si compound of 0.5 μm to 5.0 μm is mainly formed in a case where a first heat treatment described below is performed for two minutes or more and below 480° C., in a case where a cooling rate of a first heat treatment is less than 10° C./s, in a case where a second heat treatment is performed for two minutes or more and below 480° C., and in case where a cooling rate of a second heat treatment is less than 9° C./s. When Mg2Si compound of 0.5 μm to 5.0 μm is formed with a dispersion density of over 3.0×10−3/μm2, an acicular Mg2Si precipitate formed in the aging heat treatment decreases, and a range of improvement of tensile strength, impact resistance, flex fatigue resistance, and conductivity decreases. It is preferable that the dispersion density of the Mg2Si compound of 0.5 μm to 5 μm is lower. That is, it is preferable when it is closer to zero. Also, when a density of not only the Mg2Si compound, but also a compound composed primarily of a Mg—Si system is out of the aforementioned prescribed range, an acicular Mg2Si precipitate which is formed during the aging heat treatment will decrease and a range of improvement of tensile strength, impact resistance, flex fatigue resistance, and conductivity will decrease, a density of a compound composed primarily of a Mg—Si system is also set similarly in the aforementioned prescribed range.
(3) Each of Si and Mg at a Grain Boundary Between Crystal Grains of a Parent Phase has a Concentration of Less than or Equal to 2.00 Mass %
The aluminum alloy wire rod of the present disclosure has respective concentrations at Si element and Mg element concentration parts at the grain boundary of the aluminum parent phase prescribed as described below, and thus ensures strength, elongation and conductivity at levels equivalent to those of a product of the related art (aluminum alloy wire disclosed in Japanese Laid-Open Patent Publication No. 2012-229485), and can improve impact resistance and flex fatigue resistance.
It is an essential matter to specify the invention that each of Si and Mg at a grain boundary between crystal grains of an aluminum parent phase has a concentration of less than or equal to 2.00 mass %. If a concentration part in which at least one of the one of concentrations of Si and Mg is higher than 2.00 mass % is formed at a grain boundary, an interface between the concentration parts of Si and Mg and an aluminum parent phase become weak due to this, there is a tendency that tensile strength, elongation, impact resistance and flex fatigue resistance decrease, and also a wire drawing workability may decrease. The concentrations of Si and Mg at the grain boundary is preferably less than or equal to 1.50 mass %, respectively, and more preferably, less than or equal to 1.20 mass %, respectively.
Note that the measurement of the densities of Si and Mg was performed using an optical microscope, an electron microscope, and an electron probe micro analyzer (EPMA). First, samples were prepared such that a crystal grain contrast can be viewed, and thereafter, while observing crystal grains and a grain boundary with an optical microscope or the like, an observation position was identified in an observation field of view by providing impression marks at four vertices of a square of, for example, 120 μm×120 μm. Then, a surface analysis was carried out with EPMA in a field of view of 120 μm×120 μm including the four impression marks. Then, a concentration part of Mg or Si having a linear shape of a length of greater than or equal to 1 μm existing at a grain boundary and prescribed in the present disclosure and a concentration part of Mg or Si having a granular shape of a compound origin were distinguished, and the granular concentration part of the compound origin was excluded from a measurement target. Then, in the present disclosure, in a case where the aforementioned linear concentration part of Mg or Si was observed, a line analysis was performed by arbitrary setting a length of the linear analysis across the concentration part of the grain boundary, and maximum concentrations of the Si element and Mg element of the aforementioned linear shaped concentration parts are measured. On the other hand, in a case where the linear concentration portion is not observed, a concentration of each of Mg or Si in the grain boundary may be regarded as 0 mass % and a line analysis need not be performed. Ten linear concentration portions are selected randomly and concentration was measured with such a measurement method. In a case where it is not possible to measure ten positions in a single field of view, an observation is similarly made in another field of view and a total of ten positions of linear concentration parts are measured. Note that, in the present disclosure, since each of the concentrations of Si and Mg at the grain boundary of the aluminum parent phase is less than or equal to 2.00 mass %, during the measurement across the grain boundary, it does not need to extend across a direction perpendicular to the grain boundary. Even if it extends obliquely across the grain boundary, it is sufficient if each of the concentrations of Si and Mg is less than or equal to 2.00 mass %.
Such an aluminum alloy wire rod in which the Si element and Mg element concentration parts are suppressed can be obtained by controlling performed with a combination of alloy composition and a manufacturing process. A description is now made of a preferred manufacturing method of the aluminum alloy wire rod of the present disclosure.
(Manufacturing Method of the Aluminum Alloy Wire Rod of the Present Disclosure)
The aluminum alloy wire rod of the present disclosure can be manufactured with a manufacturing method including sequentially performing each of the processes including [1] melting, [2] casting, [3] hot working (e.g., grooved roller processing), [4] first wire drawing, [5] first heat treatment (solution heat treatment), [6] second wire drawing, [7] second heat treatment, and [8] aging heat treatment. Note that a stranding step or a wire resin-coating step may be provided before or after the second heat treatment or after the aging heat treatment. Hereinafter, steps of [1] to [8] will be described.
[1] Melting
Melting is performed while adjusting the quantities of each component to obtain an aluminum alloy composition described above.
[2] Casting and [3] Hot Working (e.g., Groove Roller Process)
Subsequently, using a Properzi-type continuous casting rolling mill which is an assembly of a casting wheel and a belt, molten metal is cast with a water-cooled mold and continuously rolled to obtain a bar having an appropriate size of, for example, a diameter of 5.0 mmφ to 13.0 mmφ). A cooling rate during casting at this time is, in regard to preventing coarsening of Fe-based crystallized products and preventing a decrease in conductivity due to forced solid solution of Fe, preferably 1° C./s to 20° C./s, but it is not limited thereto. Casting and hot rolling may be performed by billet casting and an extrusion technique.
[4] First Wire Drawing
Subsequently, the surface is stripped and the bar is made into an appropriate size of, for example, 5.0 mm φ to 12.5 mm φ, and wire drawing is performed by cold rolling. It is preferable that a reduction ratio η is within a range of 1 to 6. The reduction ratio η is represented by:
η=ln(A0/A1),
where A0 is a wire rod cross sectional area before wire drawing and A1 is a wire rod cross sectional area after wire drawing.
In a case where the reduction ratio η is less than 1, in a heat processing of a subsequent step, a recrystallized particle coarsens and a tensile strength and an elongation significantly decreases, which may cause a wire break. In a case where the reduction ratio η is greater than 6, the wire drawing becomes difficult and may be problematic from a quality point of view since a wire break might occur during a wire drawing process. The stripping of the surface has an effect of cleaning the surface, but does not need to be performed.
[5] First Heat Treatment (Solution Heat Treatment)
A first heat treatment is applied on the cold-drawn work piece. The first heat treatment of the present disclosure is a solution heat treatment that is performed for a purpose such as dissolving compound of Mg and Si randomly contained in the work piece into a parent phase of an aluminum alloy. The solution heat treatment is performed immediately before the aging heat treatment in the related art. Whereas, in the present disclosure, it is performed before the second wiredrawing. Accordingly, it is possible to even out the Mg and Si concentration parts during a working (it homogenizes) and leads to a suppression in the segregation of a Mg component and a Si component at grain boundaries after the final aging heat treatment. That is, the first heat treatment of the present disclosure is a heat treatment which is different from an intermediate heat treatment which is usually performed during the wire drawing in a manufacturing method of the related art. The first heat treatment is specifically a heat treatment including heating to a predetermined temperature in a range of 480° C. to 620° C. and thereafter cooling at an average cooling rate of greater than or equal to 10° C./s to a temperature of at least to 150° C. When a predetermined temperature during the first heat treatment temperature is higher than 620° C., an aluminum alloy wire containing the added elements will partly melt, and there is a possibility of a decrease in elongation, impact resistance and bending fatigue resistance, and when the predetermined temperature is lower than 480° C., the solution treatment cannot be achieve sufficiently and an increasing effect of the tensile strength in the subsequent aging heat treatment step cannot be obtained sufficiently, and the tensile strength will decrease. Therefore, the predetermined temperature during the heating in the first heat treatment is in a range of 480° C. to 620° C. and preferably in a range of 500° C. to 600° C., and more preferably in a range of 520° C. to 580° C.
A method of performing the first heat treatment may be, for example, batch heat treatment or may be continuous heat treatment such as high-frequency heating, conduction heating, and running heating.
In a case where high-frequency heating and conduction heating are used, a wire rod temperature increases with a passage of time, since it normally has a structure in which electric current continues flowing through the wire rod. Accordingly, since the wire rod may melt when an electric current continues flowing through, it is necessary to perform heat treatment in an appropriate time range. In a case where running heating is used, since it is an annealing in a short time, the temperature of a running annealing furnace is usually set higher than the wire rod temperature. Since the wire rod may melt with a heat treatment over a long time, it is necessary to perform heat treatment in an appropriate time range. Also, all heat treatments require at least a predetermined time period in which Mg and Si compounds contained randomly in the work piece will be dissolved into an aluminum parent phase. Hereinafter, the heat treatment by each method will be described.
The continuous heat treatment by high-frequency heating is a heat treatment by joule heat generated from the wire rod itself by an induced current by the wire rod continuously passing through a magnetic field caused by a high frequency. Steps of rapid heating and rapid cooling are included, and the wire rod can be heat-treated by controlling the wire rod temperature and the heat treatment time. The cooling is performed after rapid heating by continuously allowing the wire rod to pass through water or in a nitrogen gas atmosphere. This heat treatment time is 0.01 s to 2 s, preferably 0.05 s to 1 s, and more preferably 0.05 s to 0.5 s.
The continuous conducting heat treatment is a heat treatment by joule heat generated from the wire rod itself by allowing an electric current to flow in the wire rod that continuously passes two electrode wheels. Steps of rapid heating and rapid cooling are included, and the wire rod can be heat-treated by controlling the wire rod temperature and the heat treatment time. The cooling is performed after rapid heating by continuously allowing the wire rod to pass through water, atmosphere or a nitrogen gas atmosphere. This heat treatment time period is 0.01 s to 2 s, preferably 0.05 s to 1 s, and more preferably 0.05 s to 0.5 s.
A continuous running heat treatment is a heat treatment in which the wire rod continuously passes through a heat treatment furnace maintained at a high-temperature. Steps of rapid heating and rapid cooling are included, and the wire rod can be heat-treated by controlling the temperature in the heat treatment furnace and the heat treatment time. The cooling is performed after rapid heating by continuously allowing the wire rod to pass through water, atmosphere or a nitrogen gas atmosphere. This heat treatment time period is 0.5 s to 120 s, preferably 0.5 s to 60 s, and more preferably 0.5 s to 20 s.
The batch heat treatment is a method in which a wire rod is placed in an annealing furnace and heat-treated at a predetermined temperature setting and a setup time. The wire rod itself should be heated at a predetermined temperature for about several tens of seconds, but in industrial application, it is preferable to perform for more than 30 minutes to suppress uneven heat treatment on the wire rod. An upper limit of the heat treatment time is not particularly limited as long as there are five crystal grains when counted in a radial direction of a wire rod, but in industrial application, since productivity increases when performed in a short time, heat treatment is performed within ten hours, and preferably within six hours.
In a case where one or both of the wire rod temperature or the heat treatment time are lower than conditions defined above, a solution process will be incomplete and an amount of an Mg2Si precipitate produced in the aging heat treatment, which is a post-process, decreases. Thus, a range of improvement of tensile strength, impact resistance, flex fatigue resistance and conductivity decreases. In a case where one or both of the wire rod temperature and the annealing time are higher than conditions defined above, coarsening of crystal grains and also a partial fusion (eutectic fusion) of a compound phase in the aluminum alloy wire rod occur. Thus, the tensile strength and the elongation decrease, and a wire break is likely to occur when handling the wire rod.
It is an essential matter to specify the invention to perform the cooling in the first heat treatment at an average cooling rate of greater than or equal to 10° C./s to a temperature of at least 150° C. This is because, at an average cooling rate of less than 10° C./s, precipitates of Mg and Si or the like will be produced during the cooling and a solution process will not be performed sufficiently, and thus an improvement effect of the tensile strength in the subsequent aging heat treatment step will be restricted and a sufficient tensile strength will not be obtained. Note that the average cooling rate is preferably greater than or equal to 50° C./s, and more preferably greater than or equal to 100° C./s.
For any of the heat treatment methods described above, the cooling in the first heat treatment of the present disclosure is preferably performed by heating the aluminum alloy wire rod after the first wire drawing to a predetermined temperature and thereafter allowing the wire rod to pass through water, but in such a case, the cooling rate is possible cannot be measured accurately. Thus, in such a case, in each of the heat treatment methods, assuming that an aluminum alloy wire rod is cooled to water temperature (approximately 20° C.) immediately after water cooling, a cooling rate calculated as described below was taken as an average cooling rate by water cooling after heating for each of the heat treatment methods. That is, in a batch heat treatment, from the perspective that it is important that a period of time in which 150° C. or above is maintained is within 40 seconds from the beginning of the cooling, the cooling rate is greater than or equal to (500-150)/40=8.75° C./s when it is heat-treated to 500° C., and greater than or equal to (600-150)/40=11.25° C./s when it is heat-treated to 600° C. In a continuous heat treatment by high-frequency heating, the cooling rate is 100° C./s or above, since it is a mechanism that, after heating, passes an aluminum alloy wire rod for a few to several meters at a wire speed of 100 m/min to 1500 m/min and thereafter water cools the aluminum alloy wire rod. In a continuous heat treatment by conduction heating, the cooling rate is 100° C./s or above, since it is a mechanism that, immediately after heating, water cools an aluminum alloy wire rod. In a continuous heat treatment by running heating, the cooling rate is 100° C./s or above, in a case of a mechanism that, immediately after heating, water cools an aluminum alloy wire rod at a wire speed of 10 m/min to 500 m/min, and in a case of a mechanism that, after heating, air cools while being passed for a few to several meters to a few to several tens of meters, assuming that the aluminum alloy wire rod is cooled to room temperature (approximately 20° C.) immediately after being wound up on a drum with a length of section during air-cooling being 10 m and a cooling start temperature being 500° C., it can be calculated that a cooling of approximately 6° C./s to 292° C./s is carried out. Thus, the cooling rate of 10° C./s or above is well possible. However, in any of the heat treatment methods, it is only necessary to rapidly cool to at least 150° C. from the perspective of achieving a purpose of solution heat treatment.
Further, it is preferable that the cooling in the first heat treatment is performed at an average cooling rate of 20° C./s or above to a temperature of at least 250° C. to give an effect of improving the tensile strength in the subsequent aging heat treatment step by suppressing the precipitation of Mg and Si. Since peaks of precipitation temperature zones of Mg and Si are located at 300° C. to 400° C., it is preferable to speed up the cooling rate at least at the said temperature to suppress the precipitation of Mg and Si during the cooling.
[6] Second Wire Drawing
After the first heat treatment, wire drawing is further carried out in a cold processing. During this, a reduction ratio η is preferably within a range of 1 to 6. The reduction ratio η has an influence on formation and growth of recrystallized grains. This is because, if the reduction ratio η is less than 1, during the heat treatment in a subsequent step, there is a tendency that coarsening of recrystallized grains occur and the tensile strength and the elongation drastically decrease, and if the reduction ratio η is greater than 6, wire drawing becomes difficult and there is a tendency that problems arise in quality, such as a wire break during wire drawing.
[7] Second Heat Treatment
A second heat treatment is performed on a cold wire-drawn work piece. The second heat treatment is a heat treatment which is different from the first heat treatment described above and the aging heat treatment described below. The second heat treatment may be performed by batch annealing similarly to the first heat treatment, or may be performed by continuous annealing such as high-frequency heating, conduction heating, and running heating. However, it is necessary to perform in a short time. This is because when heat treatment is applied for a long time, precipitation of Mg and Si occurs, and an effect of improving of the tensile strength in the subsequent aging heat treatment step cannot be obtained and the tensile strength decreases. That is, the second heat treatment needs to be applied by a manufacturing method that can perform processes of increasing the temperature from 150° C., holding, decreasing the temperature to 150° C. in less than two minutes. Therefore, in the case of the batch annealing that is usually carried out by a holding for a long period of time, it is difficult to practically perform, and thus continuous annealing such as high-frequency heating, conduction heating, and running heating is preferable.
The second heat treatment is not a solution heat treatment such as the first heat treatment, but rather a heat treatment that performed for recovering a flexibility of the wire rod, and to improve elongation. The heating temperature of the second heat treatment is higher than or equal to 300° C. and lower than 480° C. This is because when heating temperature of the second heat treatment is lower than 300° C., recrystallization will not take place, and there is a tendency that an effect of improving the elongation cannot be obtained, and when the heating temperature is 480° C. or higher, concentration of Mg and Si elements is likely to occur, and a tensile strength, an elongation, an impact resistance, and a flex fatigue resistance tend to decrease. Further, the heating temperature of the second heat treatment is preferably 300° C. to 450° C., and more preferably 325° C. to 450° C. The heating time of the second heat treatment is shorter than two minutes, since if it is two minutes or longer, an Mg2Si compound of 0.5 μm to 5.0 μm is likely to be produced and a dispersion density of the Mg2Si compound of 0.5 μm to 5.0 μm tends to exceed 3.0×10−3/μm2.
It is an essential matter to specify the invention to perform the cooling in the second heat treatment at an average cooling rate of greater than or equal to 8° C./s to a temperature of at least 150° C. This is because, at an average cooling rate of less than 9° C./s, precipitates such as Mg and Si will be produced during the cooling, and this restricts an effect of improving the tensile strength by the subsequent aging heat treatment step and a sufficient tensile strength will not be obtained. Note that the average cooling rate is preferably greater than or equal to 50° C./s, and more preferably greater than or equal to 100° C./s.
Further, in the cooling in the second heat treatment, it is preferable to perform at an average cooling rate of greater than or equal to 20° C./s to a temperature of at least 250° C., to give an effect of improving the tensile strength by a subsequent aging heat treatment step by suppressing the precipitation of Mg and Si. Since the peaks of precipitation temperature zones of Mg and Si are located at 300° C. to 400° C., it is preferable to speed up the cooling rate at least at the said temperature to suppress the precipitation of Mg and Si.
[8] Aging Heat Treatment
Subsequently, an aging heat treatment is applied. The aging heat treatment is conducted to cause precipitation of acicular Mg2Si precipitates. The heating temperature in the aging heat treatment is preferably 140° C. to 250° C. When the heating temperature is lower than 140° C., it is not possible to cause precipitation of the acicular Mg2Si precipitates sufficiently, and strength, impact resistance, bending fatigue resistance and conductivity tend to lack. When the heating temperature is higher than 250° C., due to an increase in the size of the Mg2Si precipitate, the conductivity increases, but strength, impact resistance, and bending fatigue resistance tend to lack. The heating temperature in the aging heat treatment is, preferably 160° C. to 200° C. when an impact resistance and a high flex fatigue resistance are of importance, and preferably 180° C. to 220° C. when conductivity is of importance. As for the heating time, the most suitable length of time varies with temperature. In order to improve a strength, an impact resistance, and a bending fatigue resistance, the heating time is preferably a long when the temperature is low and the heating time is short when the temperature is high. Considering the productivity, a short period of time is preferable, which is preferably 15 hours or less and further preferably 10 hours or less. It is preferable that, the cooling in the aging heat treatment is performed at the fastest possible cooling rate to prevent variation in characteristics. However, in a case where it cannot be cooled fast in a manufacturing process, an aging condition can be set appropriately by taking into account that an increase and a decrease in the acicular Mg2Si precipitate may occur during the cooling.
A strand diameter of the aluminum alloy wire rod of the present disclosure is not particularly limited and can be determined as appropriate depending on an application, and it is preferably 0.1 mmφ to 0.5 mmφ for a fine wire, and 0.8 mmφ to 1.5 mmφ for a case of a middle sized wire. The present aluminum alloy wire rod has an advantage in that it can be used as a thin single wire as an aluminum alloy wire, but may also be used as an aluminum alloy stranded wire obtained by stranding a plurality of them together, and among the aforementioned steps [1] to [8] of the manufacturing method of the present disclosure, after bundling and stranding a plurality of aluminum alloy wires obtained by sequentially performing each of steps [1] to [6], the steps of [7] second heat treatment and [8] aging heat treatment may be performed.
Also, in the present disclosure, homogenizing heat treatment performed in the prior art may be performed as a further additional step after the continuous casting rolling. Since a homogenizing heat treatment can uniformly disperse precipitates (mainly Mg—Si based compound) of the added element, it becomes easy to obtain a uniform crystal structure in the subsequent first heat treatment, and as a result, improvement in a tensile strength, an elongation, an impact resistance, and a flex fatigue resistance can be obtained more stably. The homogenizing heat treatment is preferably performed at a heating temperature of 450° C. to 600° C. and a heating time of 1 to 10 hours, and more preferably 500° C. to 600° C. Also, as for the cooling in the homogenizing heat treatment, a slow cooling at an average cooling rate of 0.1° C./min to 10° C./min is preferable since it becomes easier to obtain a uniform compound.
Note that the above description merely indicates an example of an embodiment of the present disclosure and can add various modification may be added to the claims. For example, the aluminum alloy wire rod of the present disclosure has an impact absorption energy of greater than or equal to 5 J/mm2, and can achieve an improved impact resistance. Further, a number of cycles to fracture measured by a flex fatigue test is 200,000 times or more, and can achieve an improved flex fatigue resistance. Also, the aluminum alloy wire rod of the present disclosure can be used as an aluminum alloy wire, or as an aluminum alloy stranded wire obtained by stranding a plurality of aluminum alloy wires, and may also be used as a coated wire having a coating layer at an outer periphery of the aluminum alloy wire or the aluminum alloy stranded wire, and in addition, it can also be used as a wire harness having a coated wire and a terminal fitted at an end portion of the coated wire, the coating layer being removed from the end portion.
The present disclosure will be described in detail based on the following examples. Note that the present disclosure is not limited to examples described below.
Using a Properzi-type continuous casting rolling mill, molten metal containing Mg, Si, Fe and Al, and selectively added Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni, with contents (mass %) shown in Tables 1-1, 1-2, 1-3 and 2 is cast with a water-cooled mold and rolled into a bar of approximately 9.5 mmφ. A casting cooling rate at this time was approximately 15° C./s. Then, a first wire drawing was carried out to obtain a predetermined reduction ratio. Then, an first heat treatment was performed with conditions indicated in Tables 3-1, 3-2, 3-3, 4-1 and 4-2 on a work piece subjected to the first wire drawing, and further, a second wire drawing was performed until a wire size of 0.31 mmφ was obtained. Then, a second heat treatment was applied under conditions shown in Tables 3-1, 3-2, 3-3, 4-1 and 4-2. In both of the first and second heat treatments, in a case of a batch heat treatment, a wire rod temperature was measured with a thermocouple wound around the wire rod. In a case of continuous conducting heat treatment, since measurement at a part where the temperature of the wire rod is the highest is difficult due to the facility, the temperature was measured with a fiber optic radiation thermometer (manufactured by Japan Sensor Corporation) at a position upstream of a portion where the temperature of the wire rod becomes highest, and a maximum temperature was calculated in consideration of joule heat and heat dissipation. In a case of high-frequency heating and consecutive running heat treatment, a wire rod temperature in the vicinity of a heat treatment section outlet was measured. After the second heat treatment, an aging heat treatment was applied under conditions shown in Tables 3-1, 3-2, 3-3, 4-1 and 4-2 to produce an aluminum alloy wire. Note that Comparative Example 12 was also evaluated since it has a composition of sample No. 2 in Table 1 in Patent Japanese Laid-Open Patent Publication No. 2012-229485 and an aluminum alloy wire was produced with a manufacturing method equivalent to the manufacturing method disclosed in Japanese Laid-Open Patent Publication No. 2012-229485.
For each of aluminum alloy wires of the Example and the Comparative Example, each characteristic was measured by methods shown below. The results are shown in Tables 3-1, 3-2, 3-3, 4-1 and 4-2.
(A) Observation and Evaluation Method of Dispersion Density of Mg2Si Compound Particles
Wire rods of Examples and Comparative Examples were formed as thin films by a Focused Ion Beam (FIB) method and an arbitrary range was observed using a transmission electron microscope (TEM). The Mg2Si compound was subjected to a composition analysis by EDX and the kinds of compounds were identified. Further, since the Mg2Si compound was observed as a plate-like compound, a compound with a part corresponding to an edge of the plate-like compound is 0.5 μm to 5.0 μm was counted in the captured image. In a case where a compound extends outside the measuring range, it is counted into the number of compound if 0.5 μm or more of the compound was observed. The dispersion density of the Mg2Si compound was obtained by setting a range in which 20 or more can be counted and calculating using an equation: Mg2Si Dispersion Density of Compound (number/μm2)=Number of Mg2Si Compounds (number)/Count Target Range (μm2). Depending on the situation, a plurality of photographic images were used as the count target range. In a case where there were not much compound and it was not possible to count 20 or more, 1000 μm2 was specified and a dispersion density in that range was calculated.
Note that the dispersion density of an Mg2Si compound was calculated with a sample thickness of the thin film of 0.15 μm being taken as a reference thickness. In a case where the sample thickness is different from the reference thickness, the dispersion density can be calculated by converting the sample thickness with the reference thickness, in other words, multiplying (reference thickness/sample thickness) by a dispersion density calculated based on the captured image. In the present examples and the comparative examples, all the samples were produced using a FIB method by setting the sample thickness to approximately 0.15 μm. If the dispersion density of the Mg2Si compound was within a range of 0 to 3.0×10−3 μm2, it was determined that the dispersion density of the Mg2Si compound is within an appropriate range and regarded as “pass”, and if it was not within a range of 0 to 3.0×10−3 μm2, it was determined that the dispersion density of the Mg2Si compound is within an inappropriate range and regarded as “fail”.
(B) Measurement of Density of Si and Mg at Grain Boundary
Densities of Si and Mg were measured using an optical microscope and EPMA. Note that the measurement of the densities of Si and Mg was performed using an optical microscope, an electron microscope, and an electron probe micro analyzer (EPMA). First, samples were prepared such that a crystal grain contrast can be viewed, and thereafter, while observing crystal grains and a grain boundary with an optical microscope or the like, an observation position was identified in an observation field of view by providing impression marks at four vertices of a square of, for example, 120 μm×120 μm. Then, a surface analysis was carried out with EPMA in a field of view of 120 μm×120 μm including the four impression marks, and a concentration part of Mg or Si having a linear shape of a length of greater than or equal to 1 μm prescribed in the present disclosure and a concentration part of Mg or Si having a granular shape of a compound origin were distinguished. In the present disclosure, in a case where the aforementioned linear concentration part exists, the linear concentration part is taken as a grain boundary by referring to the first observation result of the optical microscopes or the like in which the linear concentration part was observed, and the granular concentration part of the compound origin was excluded from a measurement target. Then, a line analysis was performed across the concentration portion of the grain boundary, and maximum concentrations of a Si element and a Mg element of the aforementioned linear concentration part were measured. Ten linear concentration portions were selected randomly and concentration was measured with such a measurement method. In a case where it was not possible to measure ten positions in a single field of view, an observation was similarly made in another field of view and a total of ten positions of linear concentration parts were measured. The length of a line analysis was 50 μm. On the other hand, in a case where the linear concentration portion was not observed, a concentration of each of Mg or Si in the grain boundary was regarded as 0 mass % and a line analysis was not performed. In Tables 3-1, 3-2, 3-3, 4-1 and 4-2, in a case where each of Si and Mg has a concentration of 2.00 mass % or less in all ranges of the line analysis, or in a case where the aforementioned linear concentration part is not observed, it was regarded as a pass and indicated as “pass” since the segregation at grain boundaries was not produced or a degree of the segregation at grain boundaries was low, and in a case where each of Si and Mg has a concentration of greater than 2.00 mass %, it was regarded as “fail” since the segregation at grain boundaries was produced.
(C) Measurement of Tensile Strength (TS) and Flexibility (Elongation after Fracture)
In conformity with JIS Z2241, a tensile test was carried out for three materials under test (aluminum alloy wires) each time, and an average value thereof was obtained. The tensile strength of greater than or equal to 150 MPa was regarded as a pass level so as to keep the tensile strength of a crimp portion at a connection portion between an electric wire and a terminal and to withstand a load abruptly applied during an installation work to a car body. As for the elongation, greater than or equal to 5% was regarded as a pass.
(D) Conductivity (EC)
In a constant temperature bath in which a test piece of 300 mm in length is held at 20° C. (±0.5° C.), a resistivity was measured for three materials under test (aluminum alloy wires) each time using a four terminal method, and an average conductivity was calculated. The distance between the terminals was 200 mm. The conductivity is not particularly prescribed, but those greater than or equal to 40% IACS was regarded as a pass.
(E) Impact Absorption Energy
It is an index showing how much impact the aluminum alloy wire rod can withstand which is calculated by (potential energy of weight)/(cross sectional area of aluminum alloy wire rod) immediately before a wire break of the aluminum alloy wire rod. Specifically, a weight was attached to one end of the aluminum alloy wire rod wire and the weight was allowed to fall freely from a height of 300 mm. The weight was changed into a heavier weight sequentially, and the impact absorption energy was calculated from the weight immediately before a wire break. It can be said that the larger the impact absorption energy is, the higher the impact absorption. As for the impact absorption energy, 5 J/cm2 or higher was regarded as a pass level.
(F) Number of Cycles to Fracture
As a reference of the bending fatigue resistance, a strain amplitude at an ordinary temperature is assumed as ±0.17%. The bending fatigue resistance varies depending on the strain amplitude. In a case where the strain amplitude is large, a fatigue life decreases, and in a case where the strain amplitude is small, the fatigue life increases. Since the strain amplitude can be determined by a wire size of the wire rod and a radius of curvature of a bending jig, a bending fatigue test can be carried out with the wire size of the wire rod and the radius of curvature of the bending jig being set arbitrarily. With a reversed bending fatigue tester manufactured by Fujii Seiki Co., Ltd. (existing company Fujii Co., Ltd.) and using a jig that can give a 0.17% bending strain, a repeated bending was carried out and a number of cycles to fracture was measured. In the present disclosure, number of cycles to fracture of 200,000 times or more was regarded as a pass.
The following is elucidated from the results indicated in Tables 3-1, 3-2, 3-3, 4-1 and 4-2. Each of the aluminum alloy wires of Examples 1 to 57 had a tensile strength, elongation and conductivity at equivalent levels to those of the related art (aluminum alloy wire disclosed in Japanese Laid-Open Patent Publication No. 2012-229485, corresponds to Comparative Example 12), and had improved impact resistance and flex fatigue resistance. In contrast, each of the aluminum alloy wires of Comparative Examples 1 to 19 has a small number of cycles to fracture of 180,000 times or less, and had a reduced flex fatigue resistance. Those other than Comparative Examples 10 and 16 had a reduced impact resistance as well. Also, each of the Comparative Examples 5 to 9 broke during a wire drawing step. Each of the aluminum alloy wires of Comparative Examples 12 to 15 and 18 that has a chemical composition within the range of the present disclosure but the concentrations of Si and Mg at the grain boundary exceeds 2.00 mass %, respectively, which are out of an appropriate range of the present disclosure each had a reduced flex fatigue resistance and impact resistance.
The aluminum alloy wire rod of the present disclosure is based on a prerequisite to use an aluminum alloy containing Mg and Si and to suppress the segregation of a Mg component and a Si component at grain boundaries, and particularly when used as an extra fine wire having a strand diameter of less than or equal to 0.5 mm, an aluminum alloy wire rod used as a conductor of an electric wiring structure, an aluminum alloy stranded wire, a coated wire, a wire harness, and a method of manufacturing an aluminum alloy wire rod can be provided with an improved impact resistance and bending fatigue resistance while ensuring strength, elongation and conductivity equivalent to those of a product of the related art (aluminum alloy wire disclosed in Japanese Laid-Open Patent Publication No. 2012-229485), and thus it is useful as a conducting wire for a motor, a battery cable, or a harness equipped on a transportation vehicle, and as a wiring structure of an industrial robot. Particularly, since the aluminum alloy wire rod of the present disclosure has a high tensile strength, a wire size thereof can be made smaller than that of the wire of the related art, and it can be appropriately used for a door, a trunk or a hood requiring a high impact resistance and bending fatigue resistance.
Number | Date | Country | Kind |
---|---|---|---|
2013-075403 | Mar 2013 | JP | national |
This is a continuation application of International Patent Application No. PCT/JP2013/080955 filed Nov. 15, 2013, which claims the benefit of Japanese Patent Application No. 2013-075403, filed Mar. 29, 2013, the full contents of all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3843418 | Oida | Oct 1974 | A |
4042424 | Nicoud | Aug 1977 | A |
20030143102 | Matsuoka | Jul 2003 | A1 |
20060013719 | Ichikawa | Jan 2006 | A1 |
20070221396 | Izumida | Sep 2007 | A1 |
20080196923 | Susai | Aug 2008 | A1 |
20100059151 | Iwamura | Mar 2010 | A1 |
20100071933 | Otsuka | Mar 2010 | A1 |
20110132659 | Kusakari | Jun 2011 | A1 |
20120118607 | Ishibashi | May 2012 | A1 |
20130264115 | Kobayashi | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
59-47365 | Mar 1984 | JP |
2010-265509 | Nov 2010 | JP |
2012-229485 | Nov 2012 | JP |
Entry |
---|
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority (Forms PCT/IB/373 and PCT/ISA/237) for International Application No. PCT/JP2013/080955, dated Sep. 29, 2015, with an English translation. |
Decision to Grant a Patent of Japanese Patent Application No. 2014-508615, mailed Aug. 11, 2014. |
International Search Report, mailed Feb. 4, 2014, issued in PCT/JP2013/080955. |
Notification of Reasons for Refusal of Japanese Patent Application No. 2014-508615, mailed May 19, 2014. |
Written Opinion of the International Searching Authority, mailed Feb. 4, 2014, issued in PCT/JP2013/080955. |
Number | Date | Country | |
---|---|---|---|
20150279499 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2013/080955 | Nov 2013 | US |
Child | 14681742 | US |