The present invention relates to an aluminum-based terminal fitting to be attached to a conductor constituted by aluminum or an aluminum alloy, and to a terminal connecting structure of an electric wire provided with such a terminal fitting. In particular, the present invention relates to an aluminum-based terminal fining in which a Sn layer provided on the surface has high peel resistance.
In electric wires used in movable equipment such as automobiles and airplanes and industrial equipment such as robots, an insulating layer is removed from an end portion to expose a conductor, and a terminal fitting is attached to the exposed portion. The terminal fitting may be of a variety of forms. For example, when the terminal fittings are connected to each other, a female terminal fitting 100F provided with a female fitting portion 130 or a male terminal fitting 100M provided with a male fitting portion 140, such as shown in
The female terminal fitting 100F and the male terminal fitting 100M shown in
Copper materials such as copper or copper alloys, which excel in electric conductivity, are mainly used as constituent materials for conductive bodies or terminal fittings of electric wires. In recent years, the possibility of using, as constituent materials, aluminum or aluminum alloys (referred to hereinbelow as Al alloys), which have a specific gravity of about ⅓ that of Cu, in order to reduce the electric wires in weight has been studied (Japanese Patent Application Publication No. 2010-272414).
Japanese Patent Application Publication No. 2010-272414 suggests to provide a plated layer on the surface of the above-described fitting portion in order to reduce the electric connection resistance when the terminal fittings are connected to each other. The plated layer includes a Zn layer, a Cu layer, and a Sn layer, or a Zn layer, a Ni layer, a Cu layer, and a Sn layer, in the order of description from the base material. Since Sn (tin) is soft and easy to deform, sufficient conduction between the terminals fittings that are to be connected can be ensured by Sn deformation. In other words, by causing a Sn layer to function as a contact material, it is possible to reduce the connection resistance. Further, by covering the base material surface with such a plate layer, it is possible to prevent the oxidation of the Al alloy constituting the base material.
When a Sn layer is provided on the outer circumference of a terminal fitting constituted by an aluminum alloy, it is desirable that the Sn layer be closely attached to the terminal fitting over a long period of time. In particular, when the Sn layer is used as a contact material, it is desirable that the Sn layer have high peel resistance, since the peeling of the Sn layer increases the connection resistance.
The results of the investigation conducted by the inventors demonstrate that where a Zn layer is provided as an underlayer, as described in Patent Document 1, the Zn layer is eluted with time because of contact corrosion of dissimilar metals and, therefore, the Sn layer provided on the outer circumference of the Zn layer can peel off. For this reason, it is desirable to develop an aluminum-based terminal fitting in which a Sn layer can be sufficiently present, without falling off, over a long period of time.
Accordingly, it is an object of the present invention to provide an aluminum-based terminal fitting in which a Sn layer has high peel resistance. Another object of the present invention is to provide an aluminum-based terminal fitting such that connection resistance can be reduced when the terminal fittings are connected together. Yet another object of the present invention is to provide a terminal connecting structure of an electric wire provided with the aluminum-based terminal fitting.
The present invention attains the object by forming a Sn layer directly on the base material constituted by an aluminum alloy. The terminal fitting in accordance with the present invention is an aluminum-based terminal fitting including a conductor connecting portion for connection to a conductor of an electric wire, and an electric connecting portion that is provided to extend from the conductor connecting portion and is electrically connected to a separate connection object. The terminal fitting is to be attached to the conductor constituted by aluminum or an aluminum alloy. Further, a Sn layer directly formed on a base material constituting the terminal fitting is provided on at least a contact region in the electric connecting portion on the surface of the terminal fitting.
The terminal connecting structure of an electric wire in accordance with the present invention includes an electric wire provided with a conductor, and a terminal fitting attached to the end portion of the conductor, and the conductor is constituted by aluminum or an aluminum alloy. The terminal fitting is the aluminum-based terminal fitting in accordance with the present invention which is provided with the Sn layer.
In the aluminum-based terminal fitting in accordance with the present invention, the Sn layer is directly formed on the surface of the base material constituted by an aluminum alloy, no Zn layer is provided between the base material and the Sn layer. For this reason, in the terminal fitting in accordance with the present invention, the Sn layer is not lost or peeled off following the elution of Zn layer caused by contact corrosion of dissimilar metals, and the Sn layer can be sufficiently maintained over a long period of time. Since the Sn layer is provided in the contact region and used as a contact material, in the terminal fitting in accordance with the present invention, contact resistance with a separate connection object can be reduced and a state with a low connection resistance can be maintained over a long period of time. Further, the region covered by the Sn layer outside the contact region can be prevented from corrosion.
Since the terminal contact structure of an electric wire in accordance with the present invention is provided with the terminal fitting in accordance with the present invention, a connecting structure demonstrating a low connection resistance or a high oxidation prevention effect for a long period of time can be constructed and loss caused by the increase in connection resistance can be inhibited.
In an embodiment of the terminal fitting in accordance with the present invention, the electric connecting portion is a fitting portion that is fitted into and electrically connected to a separate terminal fitting, and the Sn layer is provided on a contact region in the fitting portion.
In this embodiment, the terminal fittings are connected to each other, and by providing the Sn layer at least on the contact region, it is possible to cause the Sn layer to function as a contact material and to reduce the connection resistance. Further, in this embodiment, the state with a low connection resistance can be maintained over a long period of time.
In an embodiment of the terminal fitting in accordance with the present invention, the Sn layer includes an immersion-plated layer and an electroplated layer in the order of description from the base material constituting the terminal fitting, and the thickness of the immersion-plated layer is 0.05 μm (inclusive) to 0.3 μm (inclusive), the thickness of the electroplated layer is 0.25 μm (inclusive) to 1.7 μm (inclusive), and the total thickness of the two plated layers is 0.3 μm (inclusive) to 2 μm (inclusive).
Since aluminum alloys are active metals, where they are exposed to oxygen-containing atmosphere such as air, a self-oxidation film is formed. Where the self-oxidation film is present, the plated metal is unlikely to bond sufficiently to the base material. Since the self-oxidation film is an electric insulator, the plated layer is difficult to form by using an electroplating method for which conduction is necessary. For those reasons, the Zn layer is formed by performing zincate treatment in Patent Document 1, but where the Zn layer is formed, the Sn layer can fall off with the passage of time as mentioned hereinabove. Accordingly, the inventors formed a Sn layer by immersion plating or vacuum plating, e.g. plasma sputtering, the Sn layer, instead of performing the zincate treatment. As a result, when a thick Sn layer was formed, where the Sn layer was formed by using a single technique such as immersion plating, it was found that the Sn layer could peel off. The additional research demonstrated that where a thin layer is formed by immersion plating or sputtering and then a Sn layer of the desired thickness is formed by electroplating by using the thin layer as an underlayer, a Sn layer is obtained that has excellent adhesion to the base material constituted by an aluminum alloy. In particular, the immersion plating method makes it possible to form the plated layer faster than the vacuum plating method, and the productivity can be increased.
In this embodiment, where a composite layer is formed that includes a comparatively thin immersion-plated layer and a comparatively thick electroplated layer, the Sn layer is less likely to peel off and has better adhesion than the Sn layer formed by immersion plating to the same thickness as the composite layer. Furthermore, the presence of the Sn layer can be ensured over a long period of time. Further, in this embodiment, by providing a Sn layer of a specific thickness, it is possible to cause the Sn layer to function efficiently as a contact material or an oxidation preventing layer. In addition, in this embodiment, when the Sn layer is formed to a specific thickness, a thick film is obtained by the electroplating method that is comparatively easy to implement and the productivity is, therefore, high.
In an embodiment of the terminal fitting in accordance with the present invention, the Sn layer can be formed over the entire surface thereof. In this embodiment, since the entire aluminum alloy constituting the terminal fitting is covered with the Sn layer, the oxidation of the base material constituted by the aluminum alloy can be prevented and resistance to corrosion induced by external environment can be improved. Meanwhile, when the Sn layer is used as a contact material, the Sn layer can be provided only on part of the surface of the terminal fitting, more specifically, on the contact region in the electric connecting portion. In this case, in an embodiment of the terminal fitting in accordance with the present invention, the ratio of the surface area of the Sn layer to the exposed surface area of the base material is 0.02% (inclusive) to 0.6% (inclusive).
The research results obtained by inventors demonstrate that where the Sn layer is made relatively small as compared with the exposed surface area of the base material constituted by the aluminum alloy, more specifically, where the aforementioned surface area ratio is within the specific range, the elution of the base material caused by contact corrosion of dissimilar metals can be effectively reduced. Therefore, in this embodiment, by reducing the contact corrosion of dissimilar metals and ensuring the sufficient presence of the base material, it is possible to use effectively the Sn layer provided at least on the contact region as a contact material and a state with a low connection resistance can be maintained over a long period of time. The case in which the surface area ratio is within a predetermined range, for example, where the base material is assumed to be a 20 mm×20 mm aluminum alloy plate, is the case in which the Sn layer has a round region with a diameter φ of 0.5 mm (inclusive) to 2.5 mm (inclusive).
In an embodiment of the fitting terminal in accordance with the present invention, the base material constituting the terminal fitting is constituted by an aluminum alloy of at least one type selected from 2000 series alloys, 6000 series alloys, and 7000 series alloys.
Since the aforementioned aluminum alloys excel in mechanical properties such as bending ability, and heat resistance, pressing can be easily performed and excellent production ability can be attained in the embodiment, and the terminal fitting can be used in high-temperature environment (for example, at a temperature about 120° C. to 150° C. in automotive applications).
In the aluminum-based terminal fitting in accordance with the present invention and the terminal connecting structure of an electric wire in accordance with the present invention, the Sn layer has high peel resistance.
In
In
The present invention is described below in greater detail.
[Terminal Fitting]
[Composition]
The aluminum-based terminal fitting in accordance with the present invention is constituted by an aluminum alloy. Aluminum alloys of various compositions are available. In particular, there are compositions that excel in mechanical properties such as bending ability, and heat resistance, specific examples thereof including 2000 series alloys, 6000 series alloys, and 7000 series alloys conforming to JIS. The 2000 series alloys are Al—Cu alloys that are called duralumin and super duralumin and excel in strength. Examples of specific alloy numbers include 2024 and 2219. The 6000 series alloys are Al—Mg—Si alloys that excel in strength, corrosion resistance, and anodization ability. A specific alloy number is, for example, 6061. The 7000 series alloys are Al—Zn—Mg alloys called extra super duralumin and have a very high strength. A specific alloy number is, for example, 7075.
[Configuration]
The terminal fitting in accordance with the present invention is provided with a conductor connecting portion for connection to a conductor provided at an electric wire, and an electric connecting portion to be electrically connected to a separate connection object. The conductor connecting portion can be of a crimping type that crimps the conductor and of a melting type for connection to a molten conductor. In the crimping-type configuration, a wire battery portion based on a pair of crimping pieces or a single crimping tube is used as the conductor connecting portion. More specifically, a wire barrel portion can be considered that has a U-shaped cross portion and is constituted by a bottom portion where the conductor of the electric wire is disposed and a pair of crimping pieces that are provided vertically at the bottom portion and sandwich the conductor. The wire barrel portion is connected to the conductor when the crimping pieces are compressed to be bent. The crimping tube has a hole for inserting the conductor, and the wire barrel portion is connected to the conductor by inserting the conductor into the hole and compressing in this state.
The electric connecting portion is provided to extend from one side of the conductor connecting portion and connected to an electronic device or a separate terminal fitting which is the connection object. Where the terminal fittings are connected to each other, the electric connecting portions can be in the form of the rod-shaped male fitting portion 140 and the female fitting portion 130 having elastic pieces 131, 132 disposed opposite each other, such as shown in
Further, the terminal fitting in accordance with the present invention can be provided with the insulation barrel portion 120 for crimping the insulating layer 220 of the electric wire 200 on the other side of the conductor connecting portion, as shown in
[Sn Layer]
The main feature of the terminal fitting in accordance with the present invention is that a Sn layer directly formed on a base material constituted by an aluminum alloy is provided on at least part of the surface of the terminal fitting. Since the Sn layer can be advantageously used as a contact material, in the terminal fitting in accordance with the present invention, the Sn layer is provided on the contact region in at least the above-described electric connecting portion. Further, since the Sn layer can function as an oxidation-preventing layer, the Sn layer can be also provided at a location where it is desirable to prevent oxidation corrosion, as an embodiment of the terminal fitting in accordance with the present invention.
The contact region is taken as a region of the electric connecting portion that is in direct contact with a separate connection object. In the configuration provided with the above-described fitting portions, in the case of the male terminal fitting, the contact region is at least part of two opposing surfaces of the rod-shaped male fitting portion that are in contact with the elastic pieces 131, 132 (
Where the thickness (total thickness) of the Sn layer is too large, deformation and friction become significant when the terminal fittings are connected to each other, and connection operability is degraded. Where the thickness is too small, wear occurs when the terminal fittings are connected to each other, the base material is exposed, and the desired functions cannot be sufficiently demonstrated. Therefore, the thickness of the Sn layer is preferably 0.3 μm (inclusive) to 2 μm (inclusive), more preferably 0.7 μm (inclusive) to 1.2 μm (inclusive). Where the thickness of the Sn layer is within the above-mentioned ranges, the Sn layer can be advantageously used as a contact material or oxidation preventing layer.
In the Sn layer, at least the region that is in contact with the base material is preferably formed by an immersion plating method which is a wet plating method, or a vacuum plating method (PVD method) which is a dry plating method. With the immersion plating method, a Sn layer can be formed while removing the natural oxidation film formed on the surface of the base material constituted by an aluminum alloy. Therefore, a Sn layer that excels in adhesion to the base material can be formed. Further, the immersion plating method makes it possible to form a Sn layer over a comparatively short period of time and excels in productivity. Examples of the vacuum plating method include a vacuum vapor deposition method, a sputtering method (for example, a plasma sputtering method), and an ion plating method. A natural oxidation film can be removed by vacuum plasma processing as pretreatment.
When the immersion plating method is used, the thickness of the immersion-plated layer is made equal to or less than 0.3 μm. Where the total thickness of the Sn layer is greater than 0.3 μm, it is preferred that a layer produced by a different technique be formed on the immersion-plated layer by using another technique such as an electroplating method so as to obtain the Sn layer of the desired thickness. As a result of producing a composite configuration by forming a thin immersion-plated layer, such as described hereinabove, and then forming a layer by a different technique, the Sn layer can be effectively prevented from peeling and the Sn layer of excellent adhesion can be obtained, by contrast with the case in which a thick immersion-plated layer is provided as a single layer. Where the thickness of the immersion-plated layer is equal to or greater than 0.05 μm, this layer can be sufficiently used as an underlayer for an electroplated layer, and a configuration in which an electroplated layer is provided thereupon can be easily formed. Where the layer provided on the immersion-plated layer is an electroplated layer, such a layer can be formed comparatively easily with excellent productivity. The thickness of the electroplated layer is preferably 0.25 μm (inclusive) to 1.7 μm (inclusive), more preferably 0.4 μm (inclusive) to 1.15 μm (inclusive). The thickness of the immersion-plated layer and the electroplated layer is selected such that the total thickness of the two layers is within the above-mentioned range (0.3 μm to 2 μm). The thickness of the Sn layer formed on the surface of the base material constituted by an aluminum alloy is an average value obtained by observing the cross section of the base material under a microscope and determining the average value of thickness in a measurement region (for example, when the Sn layer is formed in a round shape, a region with a thickness equal to or greater than 20% of the diameter thereof) selected from the observed image.
The Sn layer provided on the terminal fitting in accordance with the present invention excels in adhesion to the base material constituted by an aluminum alloy. More specifically, substantially no peeling occurs when the below-described adhesion test is performed. Further, where a cross section is obtained, the cross section is observed under a scanning electron microscope (SEM, magnification: ×1,000 to about ×10,000), and a random measurement length (for example, when the Sn layer is formed in a round shape, the length equal to or greater than 20% of the diameter thereof) is selected from the observed image, substantially no voids are present at the boundary of the base material and the Sn layer in the region taking 95% or more of the measurement length.
[Manufacturing Method]
Any of the terminal fittings of the above-described configuration typically can be manufactured by plastic processing including punching a sheet blank into a predetermined shape and pressing into a predetermined shape. The sheet blank can be manufactured by a process of casting→hot rolling→cold rolling→heat treatment of various types (for example, T6 treatment or T9 treatment).
The terminal fitting in accordance with the present invention basically can be manufactured by the following procedure: production of the above-described sheet blankpunchingpressing. The Sn layer is formed in the desired region over a random period of time of the manufacturing process, more specifically at a sheet blank stage, a stage of a blank piece punched into the predetermined shape, and a stage of the shaped body obtained by pressing. At the sheet blank and blank piece stage, the object for forming the Sn layer has a flat shape. Therefore, the Sn layer can be formed easily and with excellent productivity. At the shaped body stage, the Sn layer can be formed with high accuracy in the desirable region. The locations where the Sn layer is not to be formed, are masked in advance. The immersion plating method, vacuum plating method, or electroplating method can be used, as described hereinabove, to form the Sn layer. The conditions (in the case of the immersion plating layer or electroplating layer, the material of the washing liquid used in a washing step prior to plating, the material of the plating solution, temperature, time, and current density; in the case of a vacuum plating method, the degree of vacuum and the target temperature) are adjusted to obtain the desired thickness of the Sn layer. In the abovementioned methods, the Sn layer is easily decreased in thickness by reducing the immersion time in the plating solution, excitation tine, or vapor deposition time.
[Terminal Connecting Structure of Electric Wire]
[Electric Wire]
The electric wire for attaching the terminal fitting in accordance with the present invention includes a conductor and an insulating layer provided on the outer circumference of the conductor. The conductor is constituted by aluminum or an aluminum alloy (Al alloy and the like). In other words, the terminal connecting structure of the electric wire in accordance with the present invention is the connecting structure of a terminal fitting constituted by an aluminum alloy and a conductor constituted by an Al alloy or the like, that is, a connecting structure in which the main components are metals of the same kind, and substantially no cell corrosion occurs between the conductor and the terminal fitting.
The aluminum alloy constituting the conductor, for example, includes a total of 0.005% by mass (inclusive) to 5.0% by mass (inclusive) of at least one element selected from Fe, Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr, with the balance being Al and impurities. The following content ratios of the elements are preferred (percent by mass): Fe 0.005% (inclusive) to 2.2% (inclusive), Mg 0.05% (inclusive) to 1.0% (inclusive), Mn, Ni, Zr, Zn, Cr, and Ag a total of 0.005% (inclusive) to 0.2% (inclusive), Cu 0.05% (inclusive) to 0.5% (inclusive), and Si 0.04% (inclusive) to 1.0% (inclusive). Only one of those additional elements or a combination of two or more thereof can be included. In addition to the abovementioned additional elements, Ti and B can be contained within a range below 500 ppm (inclusive) (mass ratio). Examples of alloys comprising the additional elements include Al—Fe alloys, Al—Fe—Mg alloys, Al—Fe—Mg—Si alloys, Al—Fe—Si alloys, Al—Fe—Mg-(at least one of Mn, Ni, Zr, and Ag), Al—Fe—Cu alloys, Al—Fe—Cu-(at least one of Mg and Si) alloys, and Al—Mg—Si—Cu alloys. A well-known aluminum alloy wire can be used as the wire constituting the conductor.
The wire constituting the conductor may be a single wire, a twisted wire obtained by twisting together a plurality of wires, or a compressed wire obtained by compressing a twisted wire. The diameter of the wire constituting the conductor (in the case of a twisted wire, the diameter of a single wire prior to twisting) can be selected, as appropriate, according to the application. For example, a wire with a diameter from 0.2 mm (inclusive) to 1.5 mm (inclusive) can be used.
The wire constituting the conductor (in the case of a twisted wire, the diameter of a single wire) has at least one of the following properties: tensile strength 110 MPa (inclusive) to 200 MPa (inclusive), 0.2% proof strength equal to or greater than 40 MPa, elongation equal to or greater than 10%, and electric conductivity equal to or greater than 58% IACS. In particular, the wire with an elongation equal to or greater than 10% excels in impact resistance and break resistance when the terminal fitting is attached to another terminal fitting, connector, or electronic device.
The insulating layer can be constituted of a variety of insulating materials, for example, poly(vinyl chloride) (PVC), a halogen-free resin composition based on polyolefin resins, and flame retardant compositions. The thickness of the insulating layer can be selected, as appropriate, with consideration for the desired insulation strength.
The conductor can be manufactured, for example, by a process including the steps of casting→hot rolling (→in the case of a cast billet: homogenizing treatment)→cold drawing (→softening treatment, twisting, and compression, as appropriate). The electric wire can be manufactured by forming the insulating layer on the conductor.
The conductor is exposed by stripping the insulating layer at the end portion of the electric wire, and the exposed portion is disposed at and connected to the conductor connecting portion of the terminal fitting in accordance with the present invention. For example, in the embodiment using a crimping piece, the conductor is disposed at the bottom portion of the conductor connecting portion, and the crimping piece is bent to enclose the conductor and then compressed. In this case, the compression state is adjusted such that the crimp height (C/H) has a predetermined value. With the above-described process, it is possible to manufacture the terminal connecting structure of the electric wire in accordance with the present invention, or a terminal-equipped electric wire in which the terminal fitting in accordance with the present invention is attached to the end of the electric wire.
A metal plated layer including a Zn layer was formed on an aluminum alloy sheet, a corrosion test was conducted, and the state of contact corrosion of dissimilar metals was examined.
In the test, a 6000 series alloy (corresponds to the 6061 alloy) conforming to JIS was prepared and subjected to the T6 treatment (in this case, 550° C.×3 h→cooling with water→175° C.×16 h). The prepared aluminum alloy sheet was cut to the appropriate sizes to prepare test plates of various sizes. The test plates were subjected to zincate treatment under well-known conditions, and then an appropriate Ni layer was formed by electroplating under well-known conductions, a Sn layer was formed on the uppermost surface, and a sample including the Zn layer, Ni layer, and Sn layer, or the sample including the Zn layer and the Sn layer, in the order of description from the base material constituted by the aluminum alloy, was produced.
More specifically, sample No. A included a test plate 1000 constituted by the aluminum alloy, a Zn layer 1100, a Ni layer 1200, and a Zn layer 1300 in the order of description from the base material, as shown in
Sample No. C was provided with a test plate 1001 constituted by the aluminum alloy, a Zn layer 1101, a Ni layer 1201, and a Sn layer 1301, as shown in
Samples No. A to E were subjected to a corrosion test and the corrosion state thereof was then checked. The corrosion test was conducted and the corrosion process was examined under the conditions combining the test conditions of the salt water spraying test method conforming to JIS Z 2371 (2000) and high-temperature high-humidity conditions.
The results obtained demonstrated that in samples No. A and B in which the surface area SAl of the test plate constituted by the aluminum alloy where the metal plated layers were formed was equal to the formation surface area of the metal plated layers, peeling of the metal plated layers was observed at the lamination surface (end surface) formed by lamination of the metal plated layers. In samples No. C and D in which the surface area of the metal plated layers was less than the surface area SAl of the test plate, the Zn layer eluted and the Sn layer located thereupon was removed from the test plate. In sample No. E in which the surface area of the metal plated layers was less than the surface area SAl of the test plate, and the surface area of the Sn layer was further reduced with respect to the surface area SAl, the Zn layer eluted and the Sn layer located thereupon was removed in the same manner as in samples No. C and D. Further, pitting corrosion 1010 was observed on the zones of the test plates of samples No. C, D, and E where the metal plated layers were not provided.
The above-described results confirmed that when the Zn layer was formed directly on the base material constituted by the aluminum alloy, the Zn layer eluted regardless of the size of the Zn layer formation region. As a result, the Sn layer provided above the Zn layer was removed and peeled off from the base material.
A Sn layer was formed directly on an aluminum alloy plate, a corrosion test was performed, and the state of contact corrosion of dissimilar metals was examined.
In this test, an aluminum alloy plate (aluminum alloy plate corresponding to the 6061 alloy that was subjected to the T6 treatment) similar to that of Test Example 1 was prepared and cut to 20 mm×20 mm to obtain a test plate. A Sn layer (the Sn layer had a thickness of 0.1 μm, a round shape, and a diameter φ of 2 mm) was directly formed by an immersion plating method on the test plate. The sample obtained was used as sample No. 2-1. The immersion plating was performed by the process including the following steps: degreasing→etching→washing with water→pickling→washing with water→plating→washing with water. In the degreasing step, the steel plate was immersed in a commercial degreasing solution, then immersed in ethanol under stirring, and then ultrasonically washed. The etching step was performed by using an aqueous solution of sodium hydroxide (200 g/L, pH 12) as an alkali solution. The pickling step used a mixed acid-water solution in which nitric acid at 400 ml/L was mixed with 50% hydrofluoric acid at 40 ml/L. In the plating step, a Sn layer of the abovementioned thickness was formed by using a tin plating solution manufactured by Daiwakasei Industry Co., Ltd. (sodium stannate at 150 g/L+aqueous solution of sodium hydroxide (10 g/L, pH 12)). The steps of washing with water after etching and pickling were performed by ultrasonic washing, and washing with water after the plating step used flowing water. The thickness of the formed Sn layer was measured at the sample cross section by using a microscope (measurement region: 2 mm×20%=0.4 mm or more).
For comparison, sample No. D produced in Test Example 1 was prepared. The test plate has the same size (flat plate 20 mm×20 mm) as sample No. 2-1, the Sn layer had a thickness of 0.1 μm, the Zn layer and Sn layer had a round shape, and the diameter φ was 2 mm.
Samples No. 2-1 and D were subjected to a corrosion test under the conditions same as those of Test Example 1 and the corrosion state was then checked. In this case, the external appearance was examined under an optical microscope and elemental analysis (Sn or Al) by EDX was performed with respect to the region where the metal plated layer was formed in the test plate and the vicinity thereof by using a scanning electron microscope (SEM) equipped with an energy-dispersive X-ray analyzer (EDX). The microscopic image and element mapping are shown in
The microscopic image of
The elemental analysis results demonstrated that practically no Sn could be detected and an Al component of the aluminum alloy constituting the base material was detected in sample No. D. Meanwhile, in sample No. 2-1, the analysis of the Sn component revealed locations where the Sn component was detected and locations where the Sn component practically was not detected, and the analysis of the Al component revealed locations where the Al component was detected and locations where the Al component practically was not detected. The locations where the Sn component was detected and the regions where the Al component practically could not be detected were round regions, and it can be said that a sufficient fraction of the immersion-plated layer formed to have a round shape remained in sample No. 2-1.
The above-described results confirmed that by forming the Sn layer directly on the base material constituted by the aluminum alloy, it is possible to inhibit the loss and peeling of the Sn layer caused by contact corrosion of dissimilar metals.
A Sn layer was directly formed on an aluminum alloy layer, and the relationship between the Sn layer thickness and adhesion was examined.
In this test, an aluminum alloy plate (aluminum alloy plate corresponding to the 6061 alloy that was subjected to the T6 treatment) similar to that of Test Example 1 was prepared and cut to an appropriate size to obtain a test plate. A Sn layer was directly formed by an immersion plating method on the test plate in the same manner as in Test Example 2. However, in this test, the formation conditions of the immersion plating method were adjusted to obtain samples with different Sn layer thickness. Thus, sample No. 3-1 had a Sn layer thickness of 0.1 μm, and sample No. 3-100 had a Sn layer thickness of 0.4 μm. In each sample, the immersion-plated layer was formed on the entire surface of the prepared test plate.
The following adhesion test was performed with respect to the prepared samples No. 3-1 and 3-100. In the adhesion test, a commercial adhesive tape 3000 was attached (length 20 mm) to the surface of an immersion-plated layer 2300 formed on a test plate 2000, as shown in
In sample No. 3-1 with a small Sn layer thickness, the Sn layer was not peeled off at all, as shown in
The cross-sections of the produced samples No. 3-1 and 3-100 were examined under a SEM. As shown in
Samples with aluminum alloys of different compositions were produced and the adhesion test was performed in the same manner. Sample No. 3-3 was from an aluminum alloy plate from a 2000 series alloy (corresponds to 2219 alloy) conforming to JIS that was subjected to the T6 treatment, and sample No. 3-4 was from an aluminum alloy plate from a 7000 series alloy (corresponds to 7075 alloy) conforming to JIS that was subjected to the T73 treatment. Sample No. 3-2 was from an aluminum alloy plate from a 6000 series alloy (corresponds to 6061 alloy) conforming to JIS that was subjected to the T6 treatment. A Sn layer with a thickness of 0.1 μm was directly formed on the base material (test plate) from the aluminum alloy by immersion plating in all of samples No. 3-2 to 3-4.
The adhesion test using a commercial adhesive tape was performed as described hereinabove. The results are shown in
The above-described results confirm that where a Sn layer is formed by immersion plating on the base material from an aluminum alloy, excellent adhesion between the base material and the Sn layer is achieved by forming a comparatively thin layer. Such results lead to a conclusion that in order to form a Sn layer of a certain large thickness, it is preferred, for example, that a thin layer (preferably with a thickness equal to or less than 0.3 μm) be formed by immersion plating and then a layer of the desired thickness be formed thereupon by electroplating or vacuum plating.
A Sn layer was directly formed on an aluminum alloy plate and the relationship between the size of the Sn layer formation region and the corrosion state induced by contact corrosion of dissimilar metals was examined.
In this test, an aluminum alloy plate (aluminum alloy plate corresponding to the 6061 alloy that was subjected to the T6 treatment) similar to that of Test Example 1 was prepared and cut to 20 mm×20 mm to obtain a test plate. A Sn layer was directly formed on the test plate. In this test, an immersion-plated layer with a thickness of 0.1 μm was formed by immersion plating in the same manner as in sample No. 3-1 of Test Example 3 and an electroplated layer with a thickness of 0.9 μm was formed by electroplating thereupon, thereby forming a Sn layer with a total thickness of 1 μm. A tin plating solution (aqueous solution of tin salt for plating 46 g/L+acid for plating 48 g/L+additive 85 ml/L) manufactured by Ishihara Yakuhin Co., Ltd. was used for electroplating, and washing with water flow was performed after the plating. Samples No. 4-1 to 4-4 all had the same total thickness (1 μm) of the Sn layer and only the surface area of the formation region was different. More specifically, sample No. 4-1 had a round shape with a diameter of 1.0 mm, sample No. 4-2 had a round shape with a diameter of 2.0 mm, sample No. 4-3 had a round shape with a diameter of 3.0 mm, and sample No. 4-4 had a round shape with a diameter of 5.0 mm. The ratio of the surface area of the Sn layer to the exposed surface area of the test plate constituted by the aluminum alloy was about 0.1% in sample No. 4-1, about 0.4% in sample No. 4-2, about 0.9% in sample No. 4-3, and about 2.5% in sample No. 4-4. The exposed surface area of the test plate is calculated by subtracting the surface area of the round Sn layer from a total surface area of 800 mm2 of the surface where the Sn layer is provided and the opposing surface, the side surface of the test plate (surface along the thickness direction of the test plate) being ignored.
The corrosion test was conducted with respect to the produced samples No. 4-1 to 4-4 under the same conditions as in Test Example 1 and the corrosion state was thereafter checked. The external appearance in this case was studied under an optical microscope. The results are shown in
As shown in
The above-described results confirmed that where the size of the Sn layer is made comparatively small in relation to the exposed surface area of the base material when the Sn layer is formed on part of the surface of the base material constituted by the aluminum alloy, the Sn layer is unlikely to be peeled off due to contact corrosion of dissimilar metals. Therefore, those results can be said to indicate that when the Sn layer is formed on part of the base material surface, for example, when the Sn layer is used as a contact material, the presence of the Sn layer can be ensured over a long period of time by adjusting the Sn layer formation region.
With respect to Test Examples 2 to 4, a Sn layer was formed by plasma sputtering on the base material constituted by the aluminum alloy and the corrosion state determined by contact of dissimilar metals and the adhesion were similarly examined. The results confirmed that the base material and the Sn layer demonstrated excellent adhesion to each other, the Sn layer had high peel resistance, and the loss or peeling of the Sn layer caused by contact corrosion of dissimilar metals could be inhibited.
The test results demonstrate that by directly forming a Sn layer on at least part of the surface of the terminal fitting constituted by an aluminum alloy, it is possible to prevent the Sn layer from peeling and ensure the presence of the Sn layer over a long period of time. In particular, where the Sn layer is formed on the contact region in the electric connecting portion that is electrically connected to a separate connection object, more specifically, to the contact region of the male fitting portion provided at the male terminal fitting or the contact region of the female fitting portion provided at the female terminal fitting, the Sn layer can be effectively used as a contact material, and a connecting structure (for example, terminal connecting structure of electric wires) with a low connection resistance can be expected to be obtained.
The present invention is not limited to the above-described embodiments and can be variously changed without departing from the essence of the present invention. For example, the composition of the terminal fitting and the thickness of the Sn layer can be changed, as appropriate.
The terminal fitting in accordance with the present invention and the terminal connecting structure of an electric wire in accordance with the present invention can be advantageously used for constituent members of wiring structures of mobile equipment such as electric automobiles and airplanes, or industrial equipment such as robots. In particular, since the main component is aluminum and, therefore, has a small weight, the present invention can be advantageously used for constituent members of wire harnesses for electric automobiles.
Number | Date | Country | Kind |
---|---|---|---|
2011-190135 | Aug 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/071239 | 8/22/2012 | WO | 00 | 2/28/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/031611 | 3/7/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2423290 | Bonwitt | Jul 1947 | A |
3108006 | Gore | Oct 1963 | A |
4039244 | Leachy | Aug 1977 | A |
4169770 | Cooke | Oct 1979 | A |
4670312 | Ehrsam | Jun 1987 | A |
5248262 | Busacco et al. | Sep 1993 | A |
6183885 | Nakamura et al. | Feb 2001 | B1 |
8496504 | Ono | Jul 2013 | B2 |
8915761 | Kakuta | Dec 2014 | B2 |
20010024895 | Sakiyama | Sep 2001 | A1 |
20010031565 | Sakiyama | Oct 2001 | A1 |
20050124233 | Hammam | Jun 2005 | A1 |
20070257372 | Tada | Nov 2007 | A1 |
20070258173 | Chen | Nov 2007 | A1 |
20070264873 | Kakuta | Nov 2007 | A1 |
20080080978 | Zimmerman | Apr 2008 | A1 |
20090074903 | Kotaka | Mar 2009 | A1 |
20100255735 | Moriuchi et al. | Oct 2010 | A1 |
20110042201 | Von Gutfeld | Feb 2011 | A1 |
20120115375 | Kakuta | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1610993 | Apr 2005 | CN |
10-302864 | Nov 1998 | JP |
11-121075 | Apr 1999 | JP |
2004-006070 | Jan 2004 | JP |
2007-113080 | May 2007 | JP |
2010-165529 | Jul 2010 | JP |
2010-267418 | Nov 2010 | JP |
2010-267419 | Nov 2010 | JP |
2010-272414 | Dec 2010 | JP |
WO 2010001851 | Jan 2010 | WO |
Entry |
---|
International Search Report of Oct. 26, 2012. |
Japanese Patent Application No. 2011-190135—Office Action issued Nov. 18, 2014. |
Chinese Patent Appl. No. 201280039084.9—Office Action issued Jun. 30, 2015. |
Number | Date | Country | |
---|---|---|---|
20140235116 A1 | Aug 2014 | US |