1. Field of the Invention
The present invention relates generally to heat exchanger tubes and manifolds or headers for fluid pressurized heat exchangers used in refrigeration units and, more particularly, to flat tube heat exchanger tubes and fabricated manifolds or headers made from composite metal sheets or coils.
2. Description of Related Art
Heretofore in the manufacture of heat exchanger tubes and manifolds or headers for heating, ventilating and air conditioning (HVAC) applications, it has been common practice to use aluminum alloy as the material of choice for the extruded tubes in the manufacture of parallel flat tube heat exchangers and for the round tubes forming the side manifolds or headers. Aluminum offers good formability, brazability, good thermal conduction, light weight and relatively low cost for this heat exchanger application. Recently, however, it has been found that when the Freon or other fluid heat transfer media used in the heat exchanger is replaced and run at higher operating pressures, the conventional seamless, extruded flat aluminum heat exchanger tubes and manifolds tend to swell or balloon, causing a malfunction of the heat exchanger. It has, therefore, been observed that the conventional extruded flat tubes and manifolds made from a brazable aluminum alloy do not possess sufficient strength to resist elastic deformation caused by the interior fluid pressure. The heat exchanger tubes and manifolds or headers of the present invention are intended to replace the flat all-aluminum heat exchanger tubes and round manifold or header tubes known in the art by providing a stronger composite material that is capable of withstanding higher fluid pressures and brazability, all at a reasonable cost.
The present invention overcomes the ballooning problems occurring in the prior art all-aluminum heat exchanger tubes and manifolds or headers (hereinafter referred to collectively as a manifold) by providing a composite heat exchanger tube which can be easily formed and joined and which can withstand the higher Freon pressures without ballooning. Briefly stated, the present invention is directed to a flat heat exchanger tube or manifold made from a composite metal comprising a steel core roll bonded to one or two layers of aluminum alloy. The composite metal sheet is preferably made by using a core of an aluminized carbon steel sheet, i.e., a carbon steel sheet that is hot dipped in aluminum alloy, such as a silicon aluminum alloy, so that a thin coating of the silicon aluminum alloy is applied to one or both sides of the carbon steel sheet, hereinafter referred to as “aluminized carbon steel sheet”. This aluminized carbon steel sheet product is readily available commercially and at a reasonable cost. The core of aluminized carbon steel sheet is then roll bonded between layers of aluminum alloy such as type 3003 aluminum alloy (or other aluminum alloy that is suitable for brazing) at a total reduction of about 15% in several rolling passes conducted at about 600° F. As an alternative construction, a galvanized carbon steel sheet could also be used as a core material in the composite sheet.
In another presently preferred embodiment of the invention, the core of the composite metal may be galvanized carbon steel or a mesh or screen of carbon steel or stainless steel roll bonded to one or two layers of brazable aluminum alloy sheet.
The roll bonded composite sheet is then formed by bending into the desired heat exchanger or manifold tube shape, such as a flat tube or rectangular manifold, for example. The flat tube is in a generally rectangular shape in cross-section, obtained by bending the composite sheet 180° upon itself and then brazing the opposed edges of the aluminum alloy together to form a pressure tight conduit for a pressurized fluid such as Freon or other heat transfer fluid media. The manifold may be formed by bending the composite sheet in a series of 90° bends to form a four-sided rectangular or square shape in cross-section with closed ends. The manifold has a plurality of slots formed through one face thereof to receive the open ends of the heat exchanger tubes therein for subsequent brazing to form a fluid tight joint.
Referring now to the drawings,
The core layer 4 of aluminized carbon steel has layers 10 of aluminum alloy roll bonded to opposed sides thereof. Each of the aluminum alloy layers 10 are preferably type 3003 aluminum alloy, each layer 10 having a starting minimum thickness of about 0.040 inch. As mentioned above, however, another aluminum alloy, other than type 3003, that has good brazing characteristics may also be used as layer 10. The stock for forming the roll bonded composite material 2 may be in sheet form or in coil form. As shown in phantom lines in
Prior to roll bonding, the facing surfaces of the materials to be bonded, namely, the aluminized carbon steel core 4 and the aluminum alloy layers 10, are cleaned to remove grease and dirt and then mechanically abraded to remove oxide layers on their facing surfaces.
The three layers shown in
The roll bonded composite material 2 is then formed by bending to the desired configuration of a flat tube heat exchanger tube 16 shown in
The open ends 26 of the flat heat exchanger tube 16 are joined by brazing to hollow manifolds (shown in
As an alternate embodiment of the present invention, the steel core 4 of the composite material 2 can be a mesh or screen-like layer of carbon steel or stainless steel. The mesh steel core 4 is then roll bonded to the brazable aluminum alloy layer or layers 10. By way of example, the wire screen or mesh material employed as steel core 4 may have a wire thickness of about 0.010 inches, with a screen mesh of about 28 wires per inch. When roll bonded, the layers 10 of aluminum alloy material will bond to adjacent surfaces as they are forcibly engaged through the openings in steel screen material. A steel core 4 of a wire mesh or screen will provide additional strength with less weight than a solid core of steel.
A manifold 30 made in accordance with the present invention is shown in
The manifold 30 of
A plurality of slots 50 are punched out, preferably during the stamping operation which forms the blank 30′. The slots 50 are formed of a desired size and configuration to receive the open end portions of the heat exchanger tubes 16 of the present invention or heat exchanger tubes of a different construction, such as extruded multi-port tubes (MPE tubes), known in the heat exchanger art. The heat exchanger tubes (and fins) can then be oven brazed to the manifolds 30 as previously described.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. The presently preferred embodiments described herein are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 60/844,050 filed Sep. 12, 2006, and is incorporated by reference herein in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 60844050 | Sep 2006 | US |