Field
This disclosure is generally related to a solar cell. More specifically, this disclosure is related to a solar cell that uses an aluminum grid as a backside conductor.
Related Art
The negative environmental impact caused by the use of fossil fuels and their rising cost have resulted in a dire need for cleaner, cheaper alternative energy sources. Among different forms of alternative energy sources, solar power has been favored for its cleanness and wide availability.
A solar cell converts light into electricity using the photoelectric effect. There are several basic solar cell structures, including a single p-n junction, p-i-n/n-i-p, and multi-junction. A typical single p-n junction structure includes a p-type doped layer and an n-type doped layer. Solar cells with a single p-n junction can be homojunction solar cells or heterojunction solar cells. If both the p-doped and n-doped layers are made of similar materials (materials with equal bandgaps), the solar cell is called a homojunction solar cell. In contrast, a heterojunction solar cell includes at least two layers of materials of different bandgaps. A p-i-n/n-i-p structure includes a p-type doped layer, an n-type doped layer, and an intrinsic (undoped) semiconductor layer (the i-layer) sandwiched between the p-layer and the n-layer. A multi-junction structure includes multiple single-junction structures of different bandgaps stacked on top of one another.
In a solar cell, light is absorbed near the p-n junction, generating carriers. The carriers diffuse into the p-n junction and are separated by the built-in electric field, thus producing an electrical current across the device and external circuitry. An important metric in determining a solar cell's quality is its energy-conversion efficiency, which is defined as the ratio between power converted (from absorbed light to electrical energy) and power collected when the solar cell is connected to an electrical circuit.
Based on industrial surveys, crystalline-Si-wafer based solar cells dominate nearly 90% of the market. However, the cost of conventional solar grade Si is well above $100/kg, which drives the cost of solar cells to $3-$4 per Watt peak (Wp). In addition to the cost of solar grade Si wafers, the cost of Al used for the backside electrode can also be significant, given that a large amount of Al is needed to cover the whole backside of the solar cell.
One embodiment of the present invention provides a solar cell. The solar cell includes a substrate, a first heavily doped crystalline-Si (c-Si) layer situated above the substrate, a lightly doped c-Si layer situated above the first heavily doped crystalline-Si layer, a second heavily doped c-Si layer situated above the lightly doped c-Si layer, a front side electrode grid situated above the second heavily doped c-Si layer, and a backside electrode grid situated on the backside of the substrate.
In a variation on the embodiment, the substrate is an MG-Si substrate.
In variation on the embodiment, the backside electrode grid comprises Al paste.
In a further variation, the Al paste includes Al and one or more of the following materials: frit, Ag, Pd, Cr, Zn, and Sn.
In a variation on the embodiment, the backside electrode grid is formed using screen-printing or aerosol-jet printing.
In a further variation, the backside electrode grid is solderable, and the backside electrode grid is formed using a single printing step.
In a variation on the embodiment, the backside electrode grid pattern includes one or more of: straight lines, crossed lines, zigzagged lines, and circles.
In a variation on the embodiment, the first heavily doped c-Si layer and the lightly doped c-Si layer are p-type doped, and the second heavily doped c-Si layer is n-type doped.
In a variation on the embodiment, the first heavily doped c-Si layer and the lightly doped c-Si layer are deposited using a chemical-vapor-deposition (CVD) technique.
In a variation on the embodiment, the solar cell further includes a dielectric layer stack situated above the second heavily doped c-Si layer.
In a further variation, the dielectric layer stack includes at least one of: SiO2, SiNx:H, and SiOxNy.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
Embodiments of the present invention provide a solar cell that uses an Al grid as a backside electrode. A thin layer of heavily p-type doped c-Si is deposited on a metallurgical-grade Si (MG-Si) substrate forming a back-surface-field (BSF) layer, and a thin layer of lightly p-type doped c-Si is deposited on the BSF layer to form a base layer. The emitter layer can be formed by depositing a heavily n-type doped c-Si layer or by diffusing n-type dopants, such as phosphorous, at a high temperature. A dielectric layer stack that includes one or more of silicon oxy-nitride (SiOxNy), silicon-dioxide (SiO2), and hydrogen-rich silicon-nitride (SiNx:H) is used for passivation and anti-reflection. Instead of applying a layer of Al paste to cover the whole backside of the solar cell, the backside electrode is formed by screen-printing or aerosol-jet printing of an Al grid, thus reducing the fabrication cost.
Fabrication Process
In operation 2A, an MG-Si substrate 200 is prepared. Because MG-Si is much cheaper than c-Si, solar cells based on MG-Si substrates have a significantly lower manufacture cost. The purity of MG-Si is usually between 98% and 99.99%. To ensure a high efficiency of the subsequently fabricated solar cell, the starting MG-Si substrate ideally has a purity of 99.9% or better. In addition, the surface of the MG-Si substrate needs to be further purified. In one embodiment, MG-Si substrate 200 is baked at a temperature between 1100° C. and 1250° C. in a chemical-vapor-deposition (CVD) chamber filled with hydrogen (H2) in order to remove native silicon-oxide in the substrate. Afterwards, at the same temperature, hydrogen chloride (HCl) gas is introduced inside the CVD chamber to leach out any residual metal impurities from MG-Si substrate 200, thus further preventing the impurities from diffusing into the subsequently grown c-Si thin films. Due to the fact that metal impurities, such as iron, have a high diffusion coefficient at this temperature, the metal impurities tend to migrate to the surface of substrate 200, and react with the HCl gas to form volatile chloride compounds. The volatile chloride compounds can be effectively purged from the chamber using a purge gas, such as H2. Note that the metal-impurity leaching process can be carried out either in the CVD chamber, which is subsequently used for the growth of c-Si thin films, or in another stand-alone furnace. The metal-impurity leaching process can take between 1 minute and 120 minutes. MG-Si substrate 200 can be either p-type doped or n-type doped. In one embodiment, MG-Si substrate 200 is p-type doped.
In operation 2B, a thin layer of heavily doped (with a doping concentration of greater than 1×1017/cm3) c-Si film 202 is epitaxially grown on the surface of MG-Si substrate 200. Various methods can be used to epitaxially grow c-Si thin film 202 on MG-Si substrate 200. In one embodiment, c-Si thin film 202 is grown using a CVD process, such as plasma-enhanced CVD (PECVD). Various types of Si compounds, such as SiH4, SiH2Cl2, and SiHCl3, can be used in the CVD process to form c-Si thin film 202. In one embodiment, SiHCl3 (TCS) is used due to its abundance and low cost. C-Si thin film 202 can be either p-type doped or n-type doped. In one embodiment, boron is added to make thin film 202 p-type doped. The doping concentration of thin film 202 can be between 1×1017/cm3 and 1×1020/cm3, and the thickness of thin film 202 can be between 1 μm and 8 μm. Because c-Si thin film 202 is heavily doped, it can act as a back-surface field (BSF) and barrier for minority carriers, hence reducing minority carrier recombination at the back surface of the subsequently grown base film. The existence of BSF layer 202 makes an Al-BSF layer unnecessary. Hence, instead of covering the whole backside of the solar cell with Al paste, it is possible to partially cover the backside with Al paste because the metal only serves as an electrical contact.
In operation 2C, a layer of lightly doped (with a doping concentration of less than 5×1017/cm3) c-Si base film 204 is epitaxially grown on top of thin film 202. The growing process of base film 204 can be similar to that used for thin film 202. Similarly, base film 204 can be either p-type doped or n-type doped. In one embodiment, base film 204 is lightly doped with a p-type dopant, such as boron. The doping concentration of base film 204 can be between 5×1015/cm3 and 5×1017/cm3, and the thickness of base film 204 can be between 5 μm and 100 μm. Note that, compared with a conventional bulk solar cell that uses a c-Si wafer as a base layer, embodiments of the present invention use an epitaxially grown crystalline-Si film as a base layer, which can be much thinner than a c-Si wafer. As a result, the manufacture cost of solar cells can be significantly reduced.
In operation 2D, the surface of base film 204 can be textured to maximize light absorption inside the solar cell, thus further enhancing efficiency. The surface texturing can be performed using various etching techniques including dry plasma etching and wet chemical etching. The etchants used in the dry plasma etching include, but are not limited to: SF6, F2, and NF3. The wet chemical etchant can be an alkaline solution. The shapes of the surface texture can be pyramids or inverted pyramids, which are randomly or regularly distributed on the surface of base film 204.
In operation 2E, a thin layer of heavily doped c-Si film is formed on base film 204 to form an emitter layer 206. Depending on the doping type of base film 204, emitter layer 206 can be either n-type doped or p-type doped. In one embodiment, emitter layer 206 is heavily doped with an n-type dopant, such as phosphorus. The doping concentration of emitter layer 206 can be between 5×1017/cm3 and 5×1020/cm3. In one embodiment, emitter layer 206 can be formed by diffusing ions in a diffusion chamber or by in-situ doping in the CVD chamber where base film 204 is formed. In a further embodiment, emitter layer 206 can be formed using a CVD process, such as PECVD.
In operation 2F, a thin layer of SiO2 (layer 208) is formed on top of emitter layer 206. SiO2 layer 208 can be formed using different oxidation techniques including dry oxidation, rapid thermal oxidation (RTO), and wet oxidation. For example, SiO2 layer 208 can be formed by flowing oxygen (O2) over the surface of emitter layer 206 at a high temperature between 700° C. and 1050° C. The thickness of SiO2 layer 208 can be between 10 Å and 300 Å, preferably between 100 Å and 200 Å. SiO2 layer 208 can further reduce minority-carrier surface recombination, because the oxide growth can effectively remove Si surface interstitial defects, thus passivating the dangling bonds.
In operation 2G, a relatively thick layer of SiNx:H (layer 210) is deposited on top of SiO2 layer 208. Techniques used for depositing SiNx:H layer 210 include, but are not limited to: PECVD, sputtering, and electron beam (e-beam) evaporation. In addition to passivation by hydrogenation and surface field effect, SiNx:H layer 210 also acts as an anti-reflective layer. In order to reduce light reflection effectively, SiNx:H layer 210 has a thickness between 500 Å and 1000 Å. In addition to SiNx:H, other materials, such as ZnS and TiO2 can also be used to form an anti-reflective layer.
In operation 2H, a frontside metal grid 212 is formed by screen printing Ag paste on top of SiNx:H layer 210. During the screen printing process, Ag paste is forced through a patterned screen to form a metal pattern on the front surface of the solar cell. In a further embodiment, front side metal grid 212 is formed by aerosol-jet printing Ag ink with glass frit.
In operation 2J, finger strips of a backside metal grid 214 are formed by screen-printing or aerosol-jet printing Al paste on the backside of MG-Si substrate 200.
In operation 2L, solderable busbars are formed on the backside of MG-Si substrate 200. Solderable busbars 224 and 226 connect to external leads and collect current from the Al finger strips. In one embodiment, busbars 224 and 226 are formed by screen-printing or aerosol-jet printing Ag paste.
In some embodiments, operation 2J and operation 2L can be combined into a single operation that prints both the fingers and the busbars. Because Al alone does not provide solderability, in some embodiments, the printing material that is used to form finger strips and busbars in a single operation includes Al paste (a mixture of Al, glass frit, and solvent) mixed with one or more of other metals including, but not limited to: Ag, Pd, Cr, Zn, and Sn.
In operation 2M, front side metal grid 212 and backside metal grid 214 are co-fired at a temperature above 500° C. to form front side and backside ohmic contact. Hence, front side metal grid 212 becomes front side electrode grid 228 and backside metal grid 214 becomes backside electrode grid 230. Traditionally, in order to form a good ohmic contact between front side electrode grid 228 and emitter layer 206, photolithography is needed to open a window in SiO2 layer 208 and SiNx:H layer 210. Such a lithographic process is expensive and is not suitable for low-cost, large-scale solar cell manufacture. However, when firing at a high temperature, Ag paste can etch through SiO2 layer 208 and SiNx:H layer 210 to make a good ohmic contact with emitter layer 206.
The use of an MG-Si substrate and a patterned backside electrode greatly reduces the fabrication cost, making it possible to fabricate solar cells at a price that is below $1/Wp. The inclusion of a heavily doped c-Si layer acting as BSF ensures the high efficiency (>17%) of the fabricated solar cell.
In addition to saving fabrication costs, using a patterned backside electrode also solves the wafer-warping problem, which is often caused by the thick layer of Al paste on the backside of a wafer, making using a thinner (<50 μm) substrate possible.
The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention.
The present patent is a continuation of, and hereby claims priority to, pending U.S. patent application Ser. No. 12/617,382, entitled “ALUMINUM GRID AS BACKSIDE CONDUCTOR ON EPITAXIAL SILICON THIN FILM SOLAR CELLS,” by inventors Chentao Yu, Zheng Xu, Jiunn Benjamin Heng, and Jianming Fu, filed on Nov. 12, 2009.
Number | Name | Date | Kind |
---|---|---|---|
819360 | Mayer | Mar 1902 | A |
2938938 | Dickson | May 1960 | A |
3094439 | Mann et al. | Jun 1963 | A |
3116171 | Nielsen | Dec 1963 | A |
3459597 | Baron | Aug 1969 | A |
3676179 | Bokros | Jul 1972 | A |
3961997 | Chu | Jun 1976 | A |
3969163 | Wakefield | Jul 1976 | A |
4015280 | Matsushita et al. | Mar 1977 | A |
4082568 | Lindmayer | Apr 1978 | A |
4124410 | Kotval et al. | Nov 1978 | A |
4124455 | Lindmayer | Nov 1978 | A |
4193975 | Kotval et al. | Mar 1980 | A |
4200621 | Liaw et al. | Apr 1980 | A |
4213798 | Williams et al. | Jul 1980 | A |
4251285 | Yoldas | Feb 1981 | A |
4284490 | Weber | Aug 1981 | A |
4315096 | Tyan | Feb 1982 | A |
4336648 | Pschunder et al. | Jun 1982 | A |
4342044 | Ovshinsky et al. | Jul 1982 | A |
4431858 | Gonzalez et al. | Feb 1984 | A |
4514579 | Hanak | Apr 1985 | A |
4540843 | Gochermann et al. | Sep 1985 | A |
4567642 | Dilts et al. | Feb 1986 | A |
4571448 | Barnett | Feb 1986 | A |
4577051 | Hartman | Mar 1986 | A |
4586988 | Nath et al. | May 1986 | A |
4589191 | Green et al. | May 1986 | A |
4612409 | Hamakawa et al. | Sep 1986 | A |
4617421 | Nath | Oct 1986 | A |
4633033 | Nath et al. | Dec 1986 | A |
4652693 | Bar-On | Mar 1987 | A |
4657060 | Kaucic | Apr 1987 | A |
4667060 | Spitzer | May 1987 | A |
4670096 | Schwirtlich | Jun 1987 | A |
4694115 | Lillington et al. | Sep 1987 | A |
4729970 | Nath | Mar 1988 | A |
4753683 | Ellion | Jun 1988 | A |
4771017 | Tobin et al. | Sep 1988 | A |
4784702 | Henri | Nov 1988 | A |
4877460 | Flodl | Oct 1989 | A |
4933061 | Kulkarni | Jun 1990 | A |
4968384 | Asano | Nov 1990 | A |
5053355 | von Campe | Oct 1991 | A |
5057163 | Barnett | Oct 1991 | A |
5075763 | Spitzer et al. | Dec 1991 | A |
5084107 | Deguchi | Jan 1992 | A |
5118361 | Fraas | Jun 1992 | A |
5131933 | Flodl et al. | Jul 1992 | A |
5155051 | Noguchi | Oct 1992 | A |
5178685 | Borenstein | Jan 1993 | A |
5181968 | Nath et al. | Jan 1993 | A |
5213628 | Noguchi et al. | May 1993 | A |
5217539 | Fraas et al. | Jun 1993 | A |
5279682 | Wald et al. | Jan 1994 | A |
5286306 | Menezes | Feb 1994 | A |
5364518 | Hartig | Nov 1994 | A |
5401331 | Ciszek | Mar 1995 | A |
5455430 | Noguchi et al. | Oct 1995 | A |
5461002 | Safir | Oct 1995 | A |
5563092 | Ohmi | Oct 1996 | A |
5576241 | Sakai | Nov 1996 | A |
5627081 | Tsuo et al. | May 1997 | A |
5676766 | Probst et al. | Oct 1997 | A |
5681402 | Ichinose et al. | Oct 1997 | A |
5698451 | Hanoka | Dec 1997 | A |
5705828 | Noguchi et al. | Jan 1998 | A |
5726065 | Szlufcik et al. | Mar 1998 | A |
5808315 | Murakami | Sep 1998 | A |
5814195 | Lehan et al. | Sep 1998 | A |
5903382 | Tench et al. | May 1999 | A |
5935345 | Kuznicki | Aug 1999 | A |
6017581 | Hooker | Jan 2000 | A |
6034322 | Pollard | Mar 2000 | A |
6091019 | Sakata et al. | Jul 2000 | A |
6140570 | Kariya | Oct 2000 | A |
6232545 | Samaras | May 2001 | B1 |
6303853 | Fraas | Oct 2001 | B1 |
6333457 | Mulligan et al. | Dec 2001 | B1 |
6410843 | Kishi | Jun 2002 | B1 |
6441297 | Keller | Aug 2002 | B1 |
6468828 | Glatfelter | Oct 2002 | B1 |
6488824 | Hollars | Dec 2002 | B1 |
6538193 | Fraas | Mar 2003 | B1 |
6620645 | Fraas | Mar 2003 | B2 |
6552414 | Horzel et al. | Apr 2003 | B1 |
6586270 | Tsuzuki et al. | Jul 2003 | B2 |
2626907 | Chandra | Sep 2003 | A1 |
6672018 | Shingleton | Jan 2004 | B2 |
6683360 | Dierickx | Jan 2004 | B1 |
6736948 | Barrett | May 2004 | B2 |
6761771 | Satoh | Jul 2004 | B2 |
6803513 | Beernink | Oct 2004 | B2 |
6841051 | Crowley | Jan 2005 | B2 |
7030413 | Nakamura et al. | Apr 2006 | B2 |
7128975 | Inomata | Oct 2006 | B2 |
7164150 | Terakawa et al. | Jan 2007 | B2 |
7328534 | Dinwoodie | Feb 2008 | B2 |
7388146 | Fraas | Jun 2008 | B2 |
7399385 | German et al. | Jul 2008 | B2 |
7534632 | Hu et al. | May 2009 | B2 |
7635810 | Luch | Dec 2009 | B2 |
7737357 | Cousins | Jun 2010 | B2 |
7749883 | Meeus | Jul 2010 | B2 |
7769887 | Bhattacharyya | Aug 2010 | B1 |
7772484 | Li | Aug 2010 | B2 |
7777128 | Montello | Aug 2010 | B2 |
7825329 | Basol | Nov 2010 | B2 |
7829781 | Montello | Nov 2010 | B2 |
7829785 | Basol | Nov 2010 | B2 |
7872192 | Fraas | Jan 2011 | B1 |
7905995 | German et al. | Mar 2011 | B2 |
7977220 | Sanjurjo | Jul 2011 | B2 |
8070925 | Hoffman et al. | Dec 2011 | B2 |
8115093 | Gui | Feb 2012 | B2 |
8119901 | Jang | Feb 2012 | B2 |
8152536 | Scherer | Apr 2012 | B2 |
8168880 | Jacobs | May 2012 | B2 |
8182662 | Crowley | May 2012 | B2 |
8196360 | Metten | Jun 2012 | B2 |
8209920 | Krause et al. | Jul 2012 | B2 |
8222513 | Luch | Jul 2012 | B2 |
8222516 | Cousins | Jul 2012 | B2 |
8258050 | Cho | Sep 2012 | B2 |
8343795 | Luo et al. | Jan 2013 | B2 |
8586857 | Everson | Nov 2013 | B2 |
8671630 | Lena | Mar 2014 | B2 |
8686283 | Heng | Apr 2014 | B2 |
8815631 | Cousins | Aug 2014 | B2 |
9029181 | Rhodes | May 2015 | B2 |
9147788 | DeGroot | Sep 2015 | B2 |
9287431 | Mascarenhas | Mar 2016 | B2 |
9761744 | Wang | Sep 2017 | B2 |
20010008143 | Sasaoka et al. | Jul 2001 | A1 |
20020015881 | Nakamura | Feb 2002 | A1 |
20020072207 | Andoh | Jun 2002 | A1 |
20020086456 | Cunningham | Jul 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020189939 | German | Dec 2002 | A1 |
20030000568 | Gonsiorawski | Jan 2003 | A1 |
20030000571 | Wakuda | Jan 2003 | A1 |
20030034062 | Stern | Feb 2003 | A1 |
20030042516 | Forbes et al. | Mar 2003 | A1 |
20030070705 | Hayden et al. | Apr 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030116185 | Oswald | Jun 2003 | A1 |
20030118865 | Marks | Jun 2003 | A1 |
20030121228 | Stoehr et al. | Jul 2003 | A1 |
20030136440 | Machida | Jul 2003 | A1 |
20030168578 | Taguchi et al. | Sep 2003 | A1 |
20030183270 | Falk et al. | Oct 2003 | A1 |
20030201007 | Fraas | Oct 2003 | A1 |
20040035458 | Beernink | Feb 2004 | A1 |
20040065363 | Fetzer et al. | Apr 2004 | A1 |
20040103937 | Bilyalov et al. | Jun 2004 | A1 |
20040112419 | Boulanger | Jun 2004 | A1 |
20040112426 | Hagino | Jun 2004 | A1 |
20040123897 | Ojima et al. | Jul 2004 | A1 |
20040135979 | Hazelton | Jul 2004 | A1 |
20040152326 | Inomata | Aug 2004 | A1 |
20040185683 | Nakamura | Sep 2004 | A1 |
20040200520 | Mulligan | Oct 2004 | A1 |
20050009319 | Abe | Jan 2005 | A1 |
20050012095 | Niira et al. | Jan 2005 | A1 |
20050022746 | Lampe | Feb 2005 | A1 |
20050022861 | Rose et al. | Feb 2005 | A1 |
20050061665 | Pavani | Mar 2005 | A1 |
20050062041 | Terakawa | Mar 2005 | A1 |
20050064247 | Sane | Mar 2005 | A1 |
20050074954 | Yamanaka | Apr 2005 | A1 |
20050109388 | Murakami et al. | May 2005 | A1 |
20050126622 | Mukai | Jun 2005 | A1 |
20050133084 | Joge et al. | Jun 2005 | A1 |
20050178662 | Wurczinger | Aug 2005 | A1 |
20050189015 | Rohatgi et al. | Sep 2005 | A1 |
20050199279 | Yoshimine et al. | Sep 2005 | A1 |
20050252544 | Rohatgi et al. | Nov 2005 | A1 |
20050257823 | Zwanenburg | Nov 2005 | A1 |
20050268963 | Jordan | Dec 2005 | A1 |
20060012000 | Estes et al. | Jan 2006 | A1 |
20060060238 | Hacke et al. | Mar 2006 | A1 |
20060060791 | Hazelton | Mar 2006 | A1 |
20060130891 | Carlson | Jun 2006 | A1 |
20060154389 | Doan | Jul 2006 | A1 |
20060213548 | Bachrach et al. | Sep 2006 | A1 |
20060231803 | Wang et al. | Oct 2006 | A1 |
20060255340 | Manivannan et al. | Nov 2006 | A1 |
20060260673 | Takeyama | Nov 2006 | A1 |
20060272698 | Durvasula | Dec 2006 | A1 |
20060283496 | Okamoto et al. | Dec 2006 | A1 |
20060283499 | Terakawa et al. | Dec 2006 | A1 |
20070023081 | Johnson et al. | Feb 2007 | A1 |
20070023082 | Manivannan et al. | Feb 2007 | A1 |
20070108437 | Tavkhelidze | May 2007 | A1 |
20070110975 | Schneweis | May 2007 | A1 |
20070132034 | Curello et al. | Jun 2007 | A1 |
20070137699 | Manivannan et al. | Jun 2007 | A1 |
20070148336 | Bachrach et al. | Jun 2007 | A1 |
20070186853 | Gurary | Aug 2007 | A1 |
20070186968 | Nakauchi | Aug 2007 | A1 |
20070186970 | Takahashi et al. | Aug 2007 | A1 |
20070187652 | Konno | Aug 2007 | A1 |
20070202029 | Burns et al. | Aug 2007 | A1 |
20070235077 | Nagata | Oct 2007 | A1 |
20070235829 | Levine | Oct 2007 | A1 |
20070256728 | Cousins | Nov 2007 | A1 |
20070274504 | Maes | Nov 2007 | A1 |
20070283996 | Hachtmann et al. | Dec 2007 | A1 |
20070283997 | Hachtmann | Dec 2007 | A1 |
20080000522 | Johnson | Jan 2008 | A1 |
20080011350 | Luch | Jan 2008 | A1 |
20080035489 | Allardyce | Feb 2008 | A1 |
20080041436 | Lau | Feb 2008 | A1 |
20080041437 | Yamaguchi | Feb 2008 | A1 |
20080047602 | Krasnov | Feb 2008 | A1 |
20080047604 | Korevaar et al. | Feb 2008 | A1 |
20080053519 | Pearce | Mar 2008 | A1 |
20080061293 | Ribeyron | Mar 2008 | A1 |
20080092947 | Lopatin et al. | Apr 2008 | A1 |
20080121272 | Besser et al. | May 2008 | A1 |
20080121276 | Lopatin et al. | May 2008 | A1 |
20080121932 | Ranade | May 2008 | A1 |
20080128013 | Lopatin | Jun 2008 | A1 |
20080128017 | Ford | Jun 2008 | A1 |
20080149161 | Nishida et al. | Jun 2008 | A1 |
20080149163 | Gangemi | Jun 2008 | A1 |
20080156370 | Abdallah et al. | Jul 2008 | A1 |
20080173347 | Korevaar | Jul 2008 | A1 |
20080173350 | Choi et al. | Jul 2008 | A1 |
20080196757 | Yoshimine | Aug 2008 | A1 |
20080202577 | Hieslmair | Aug 2008 | A1 |
20080202582 | Noda | Aug 2008 | A1 |
20080216891 | Harkness et al. | Sep 2008 | A1 |
20080223439 | Deng | Sep 2008 | A1 |
20080230122 | Terakawa | Sep 2008 | A1 |
20080251114 | Tanaka | Oct 2008 | A1 |
20080251117 | Schubert et al. | Oct 2008 | A1 |
20080264477 | Moslehi | Oct 2008 | A1 |
20080276983 | Drake et al. | Nov 2008 | A1 |
20080283115 | Fukawa et al. | Nov 2008 | A1 |
20080302030 | Stancel et al. | Dec 2008 | A1 |
20080303503 | Wolfs | Dec 2008 | A1 |
20080308145 | Krasnov et al. | Dec 2008 | A1 |
20090007965 | Rohatgi et al. | Jan 2009 | A1 |
20090014055 | Beck | Jan 2009 | A1 |
20090056805 | Barnett | Mar 2009 | A1 |
20090065043 | Hadorn | Mar 2009 | A1 |
20090078318 | Meyers et al. | Mar 2009 | A1 |
20090084439 | Lu et al. | Apr 2009 | A1 |
20090101872 | Young et al. | Apr 2009 | A1 |
20090120492 | Sinha | May 2009 | A1 |
20090139512 | Lima | Jun 2009 | A1 |
20090151771 | Kothari | Jun 2009 | A1 |
20090151783 | Lu et al. | Jun 2009 | A1 |
20090155028 | Boguslayskiy | Jun 2009 | A1 |
20090160259 | Ravindranath | Jun 2009 | A1 |
20090188561 | Aiken et al. | Jul 2009 | A1 |
20090194233 | Tamura | Aug 2009 | A1 |
20090221111 | Frolov et al. | Sep 2009 | A1 |
20090229854 | Fredenberg | Sep 2009 | A1 |
20090239331 | Xu et al. | Sep 2009 | A1 |
20090250108 | Zhou et al. | Oct 2009 | A1 |
20090255574 | Yu et al. | Oct 2009 | A1 |
20090272419 | Sakamoto | Nov 2009 | A1 |
20090283138 | Lin et al. | Nov 2009 | A1 |
20090283145 | Kim et al. | Nov 2009 | A1 |
20090293948 | Tucci et al. | Dec 2009 | A1 |
20090301549 | Moslehi | Dec 2009 | A1 |
20090308439 | Adibi | Dec 2009 | A1 |
20090317934 | Scherff | Dec 2009 | A1 |
20090320897 | Shimomura | Dec 2009 | A1 |
20100006145 | Lee | Jan 2010 | A1 |
20100015756 | Weidman et al. | Jan 2010 | A1 |
20100043863 | Wudu | Feb 2010 | A1 |
20100065111 | Fu et al. | Mar 2010 | A1 |
20100068890 | Stockum et al. | Mar 2010 | A1 |
20100084009 | Carlson | Apr 2010 | A1 |
20100087031 | Veschetti | Apr 2010 | A1 |
20100108134 | Ravi | May 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100124619 | Xu et al. | May 2010 | A1 |
20100131108 | Meyer | May 2010 | A1 |
20100132774 | Borden | Jun 2010 | A1 |
20100132792 | Kim et al. | Jun 2010 | A1 |
20100147364 | Gonzalez | Jun 2010 | A1 |
20100154869 | Oh | Jun 2010 | A1 |
20100169478 | Saha | Jul 2010 | A1 |
20100175743 | Gonzalez | Jul 2010 | A1 |
20100186802 | Borden | Jul 2010 | A1 |
20100193014 | Johnson | Aug 2010 | A1 |
20100218799 | Stefani | Sep 2010 | A1 |
20100224230 | Luch et al. | Sep 2010 | A1 |
20100229914 | Adriani | Sep 2010 | A1 |
20100236612 | Khajehoddin | Sep 2010 | A1 |
20100240172 | Rana | Sep 2010 | A1 |
20100243021 | Lee | Sep 2010 | A1 |
20100269904 | Cousins | Oct 2010 | A1 |
20100279492 | Yang | Nov 2010 | A1 |
20100300506 | Yu | Dec 2010 | A1 |
20100300507 | Heng | Dec 2010 | A1 |
20100300525 | Lim | Dec 2010 | A1 |
20100313877 | Bellman | Dec 2010 | A1 |
20100326518 | Juso | Dec 2010 | A1 |
20110005569 | Sauar | Jan 2011 | A1 |
20110005920 | Ivanov | Jan 2011 | A1 |
20110023958 | Masson | Feb 2011 | A1 |
20110030777 | Lim | Feb 2011 | A1 |
20110048491 | Taira | Mar 2011 | A1 |
20110073175 | Hilali | Mar 2011 | A1 |
20110088762 | Singh | Apr 2011 | A1 |
20110120518 | Rust | May 2011 | A1 |
20110146759 | Lee | Jun 2011 | A1 |
20110146781 | Laudisio et al. | Jun 2011 | A1 |
20110156188 | Tu | Jun 2011 | A1 |
20110168250 | Lin et al. | Jul 2011 | A1 |
20110168261 | Welser | Jul 2011 | A1 |
20110174374 | Harder | Jul 2011 | A1 |
20110186112 | Aernouts | Aug 2011 | A1 |
20110220182 | Lin | Sep 2011 | A1 |
20110245957 | Porthouse | Oct 2011 | A1 |
20110259419 | Hagemann | Oct 2011 | A1 |
20110272012 | Heng et al. | Nov 2011 | A1 |
20110277688 | Trujillo | Nov 2011 | A1 |
20110277816 | Xu | Nov 2011 | A1 |
20110277825 | Fu et al. | Nov 2011 | A1 |
20110284064 | Engelhart | Nov 2011 | A1 |
20110297224 | Miyamoto | Dec 2011 | A1 |
20110297227 | Pysch et al. | Dec 2011 | A1 |
20110308573 | Jaus | Dec 2011 | A1 |
20120000502 | Wiedeman | Jan 2012 | A1 |
20120012153 | Azechi | Jan 2012 | A1 |
20120012174 | Wu | Jan 2012 | A1 |
20120028461 | Ritchie et al. | Feb 2012 | A1 |
20120031480 | Tisler | Feb 2012 | A1 |
20120040487 | Asthana | Feb 2012 | A1 |
20120042925 | Pfennig | Feb 2012 | A1 |
20120060911 | Fu | Mar 2012 | A1 |
20120073975 | Ganti | Mar 2012 | A1 |
20120080083 | Liang | Apr 2012 | A1 |
20120085384 | Heng | Apr 2012 | A1 |
20120122262 | Kang | May 2012 | A1 |
20120125391 | Pinarbasi | May 2012 | A1 |
20120145233 | Syn | Jun 2012 | A1 |
20120152349 | Cao | Jun 2012 | A1 |
20120152752 | Keigler | Jun 2012 | A1 |
20120167986 | Meakin | Jul 2012 | A1 |
20120192932 | Wu | Aug 2012 | A1 |
20120199184 | Nie | Aug 2012 | A1 |
20120240995 | Coakley | Sep 2012 | A1 |
20120248497 | Zhou | Oct 2012 | A1 |
20120279443 | Kornmeyer | Nov 2012 | A1 |
20120279548 | Munch | Nov 2012 | A1 |
20120285517 | Souza | Nov 2012 | A1 |
20120305060 | Fu et al. | Dec 2012 | A1 |
20120318319 | Pinarbasi | Dec 2012 | A1 |
20120318340 | Heng et al. | Dec 2012 | A1 |
20120319253 | Mizuno | Dec 2012 | A1 |
20120325282 | Snow | Dec 2012 | A1 |
20130000705 | Shappir | Jan 2013 | A1 |
20130014802 | Zimmerman | Jan 2013 | A1 |
20130019919 | Hoang | Jan 2013 | A1 |
20130056051 | Jin | Mar 2013 | A1 |
20130096710 | Pinarbasi | Apr 2013 | A1 |
20130112239 | Liptac | May 2013 | A1 |
20130130430 | Moslehi | May 2013 | A1 |
20130139878 | Bhatnagar | Jun 2013 | A1 |
20130152996 | Degroot | Jun 2013 | A1 |
20130160826 | Beckerman | Jun 2013 | A1 |
20130174897 | You | Jul 2013 | A1 |
20130206213 | He | Aug 2013 | A1 |
20130206221 | Gannon | Aug 2013 | A1 |
20130213469 | Kramer | Aug 2013 | A1 |
20130220401 | Scheulov | Aug 2013 | A1 |
20130228221 | Moslehi | Sep 2013 | A1 |
20130247955 | Baba | Sep 2013 | A1 |
20130269771 | Cheun | Oct 2013 | A1 |
20130291743 | Endo | Nov 2013 | A1 |
20130306128 | Kannou | Nov 2013 | A1 |
20140000682 | Zhao | Jan 2014 | A1 |
20140053899 | Haag | Feb 2014 | A1 |
20140066265 | Oliver | Mar 2014 | A1 |
20140102524 | Xie | Apr 2014 | A1 |
20140120699 | Hua | May 2014 | A1 |
20140124013 | Morad et al. | May 2014 | A1 |
20140124014 | Morad et al. | May 2014 | A1 |
20140154836 | Kim | Jun 2014 | A1 |
20140196768 | Heng et al. | Jul 2014 | A1 |
20140242746 | Albadri | Aug 2014 | A1 |
20140261624 | Cruz-Campa | Sep 2014 | A1 |
20140299187 | Chang | Oct 2014 | A1 |
20140318611 | Moslehi | Oct 2014 | A1 |
20140345674 | Yang et al. | Nov 2014 | A1 |
20140349441 | Fu | Nov 2014 | A1 |
20150007879 | Kwon | Jan 2015 | A1 |
20150020877 | Moslehi | Jan 2015 | A1 |
20150075599 | Yu | Mar 2015 | A1 |
20150090314 | Yang | Apr 2015 | A1 |
20150096613 | Tjahjono | Apr 2015 | A1 |
20150114444 | Lentine | Apr 2015 | A1 |
20150144180 | Baccini | May 2015 | A1 |
20150171230 | Kapur | Jun 2015 | A1 |
20150214409 | Pfeiffer | Jul 2015 | A1 |
20150236177 | Fu | Aug 2015 | A1 |
20150270410 | Heng | Sep 2015 | A1 |
20150280641 | Garg | Oct 2015 | A1 |
20150340531 | Hayashi | Nov 2015 | A1 |
20150349145 | Morad | Dec 2015 | A1 |
20150349153 | Morad | Dec 2015 | A1 |
20150349161 | Morad | Dec 2015 | A1 |
20150349162 | Morad | Dec 2015 | A1 |
20150349167 | Morad | Dec 2015 | A1 |
20150349168 | Morad | Dec 2015 | A1 |
20150349169 | Morad | Dec 2015 | A1 |
20150349170 | Morad | Dec 2015 | A1 |
20150349171 | Morad | Dec 2015 | A1 |
20150349172 | Morad | Dec 2015 | A1 |
20150349173 | Morad | Dec 2015 | A1 |
20150349174 | Morad | Dec 2015 | A1 |
20150349175 | Morad | Dec 2015 | A1 |
20150349176 | Morad | Dec 2015 | A1 |
20150349190 | Morad | Dec 2015 | A1 |
20150349193 | Morad | Dec 2015 | A1 |
20150349701 | Morad | Dec 2015 | A1 |
20150349702 | Morad | Dec 2015 | A1 |
20150349703 | Morad | Dec 2015 | A1 |
20160163888 | Reddy | Jun 2016 | A1 |
20160190354 | Agrawal | Jun 2016 | A1 |
20160204289 | Tao | Jul 2016 | A1 |
20160322513 | Martin | Nov 2016 | A1 |
20160329443 | Wang | Nov 2016 | A1 |
20170084766 | Yang | Mar 2017 | A1 |
20170222082 | Lin | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1253381 | May 2000 | CN |
1416179 | Oct 2001 | CN |
101233620 | Jul 2008 | CN |
101553933 | Oct 2009 | CN |
102012010151 | Jan 2010 | CN |
101305454 | May 2010 | CN |
102088040 | Jun 2011 | CN |
102263157 | Nov 2011 | CN |
104205347 | Dec 2014 | CN |
2626907 | Mar 2015 | CN |
4030713 | Apr 1992 | DE |
102006009194 | Aug 2007 | DE |
202007002897 | Aug 2008 | DE |
102008045522 | Mar 2010 | DE |
102010061317 | Jun 2012 | DE |
10201201051 | Nov 2013 | DE |
H04245683 | Nov 2013 | DE |
1770791 | Apr 2007 | EP |
1816684 | Aug 2007 | EP |
2071635 | Jun 2009 | EP |
2113946 | Nov 2009 | EP |
2362430 | Aug 2011 | EP |
2385561 | Nov 2011 | EP |
2387079 | Nov 2011 | EP |
2002057357 | Nov 2011 | EP |
2011123646 | Jul 2012 | EP |
2479796 | Aug 2013 | EP |
2479796 | Jul 2015 | EP |
2626907 | Aug 2015 | EP |
5789269 | Jun 1982 | JP |
S7089269 | Jun 1982 | JP |
2011008881 | Sep 1992 | JP |
06196766 | Jul 1994 | JP |
2385561 | Sep 1995 | JP |
10004204 | Jan 1998 | JP |
H1131834 | Feb 1999 | JP |
2000164902 | Jun 2000 | JP |
2010085949 | Feb 2002 | JP |
20050122721 | Jun 2005 | JP |
2006523025 | Oct 2006 | JP |
2006324504 | Nov 2006 | JP |
2007123792 | May 2007 | JP |
2008135655 | Jun 2008 | JP |
2009054748 | Mar 2009 | JP |
2009177225 | Aug 2009 | JP |
2011181966 | Sep 2011 | JP |
2012119393 | Jun 2012 | JP |
2013526045 | Jun 2013 | JP |
2013161855 | Aug 2013 | JP |
2013536512 | Sep 2013 | JP |
2013537000 | Sep 2013 | JP |
2013219378 | Oct 2013 | JP |
2013233553 | Nov 2013 | JP |
2013239694 | Nov 2013 | JP |
2013247231 | Dec 2013 | JP |
2003083953 | Dec 2005 | KR |
2005159312 | Jan 2006 | KR |
2006097189 | Feb 2009 | KR |
9120097 | Nov 1991 | WO |
2011005447 | Dec 1991 | WO |
1991017839 | Oct 2003 | WO |
20060003277 | Sep 2006 | WO |
2008089657 | Jul 2008 | WO |
2009094578 | Jul 2009 | WO |
2009150654 | Dec 2009 | WO |
20090011519 | Dec 2009 | WO |
2010070015 | Jun 2010 | WO |
2009150654 | Jul 2010 | WO |
2010075606 | Jul 2010 | WO |
H07249788 | Aug 2010 | WO |
2010075606 | Sep 2010 | WO |
100580957 | Oct 2010 | WO |
2010123974 | Oct 2010 | WO |
2010104726 | Jan 2011 | WO |
2010123974 | Jan 2011 | WO |
2011005447 | Jan 2011 | WO |
2011008881 | Jan 2011 | WO |
2011053006 | May 2011 | WO |
104409402 | Oct 2011 | WO |
2013020590 | Feb 2013 | WO |
2013020590 | Feb 2013 | WO |
2013046351 | Apr 2013 | WO |
2014066265 | May 2014 | WO |
2014074826 | May 2014 | WO |
2014110520 | Jul 2014 | WO |
2014117138 | Jul 2014 | WO |
2015183827 | Dec 2015 | WO |
2016090332 | Jun 2016 | WO |
Entry |
---|
Hornbachner et al., “Cambered Photovoltaic Module and Method for its Manufacture” Jun. 17, 2009. |
Machine translation of JP 10004204 A, Shindou et al. |
Hornbachner et a ., “Cambered Photovoltaic Module and Method for its Manufacture” Jun. 17, 2009. |
“Nonequilibrium boron doping effects in low-temperature epitaxial silicon” Meyerson et al., Appl. Phys. Lett. 50 (2), p. 113 (1987). |
“Doping Diffusion and Implantation” Parthavi, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/content/course03/pdf/0306.pdf>. |
Kanani, Nasser. Electroplating: Basic Principles, Processes and Practice, Chapter 8—“Coating Thickness and its Measurement,” 2004, pp. 247-291. |
P. Borden et al. “Polysilicon Tunnel Junctions as Alternates to Diffused Junctions” Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Sep. 1-5, 2008, pp. 1149-1152. |
L. Korte et al. “Overview on a-Se:H/c heterojunction solar cells—physics and technology”, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, pp. 859-865. |
Jianhua Zhao et al. “24% Efficient pert silicon solar cell: Recent improvements in high efficiency silicon cell research”. |
Chabal, Yves J. et al., ‘Silicon Surface and Interface Issues for Nanoelectronics,’ The Electrochemical Society Interface, Spring 2005, pp. 31-33. |
Cui, ‘Chapter 7 Dopant diffusion’, publically available as early as Nov. 4, 2010 at <https://web.archive.org/web/20101104143332/http://ece.uwaterloo.ca/˜bcui/content/NE/%20343/Chapter/%207%20Dopant%20 diffusion%20_%201.pptx> and converted to PDF. |
Davies, P.C.W., ‘Quantum tunneling time,’ Am. J. Phys. 73, Jan. 2005, pp. 23-27. |
Green, Martin A. et al., ‘High-Efficiency Silicon Solar Cells,’ IEEE Transactions on Electron Devices, vol. ED-31, No. 5, May 1984, pp. 679-683. |
Roedern, B. von, et al., ‘Why is the Open-Circuit Voltage of Crystalline Si Solar Cells so Critically Dependent on Emitter-and Base-Doping?’ Presented at the 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge, CO, Aug. 9-11, 1999. |
Yao Wen-Jie et al: ‘Interdisciplinary Physics and Related Areas of Science and Technology;The p recombination layer in tunnel junctions for micromorph tandem solar cells’, Chinese Physics B, Chinese Physics B, Bristol GB, vol. 20, No. 7, Jul. 26, 2011 (Jul. 26, 2011), p. 78402, XP020207379, ISSN: 1674-1056, DOI: 10.1088/1674-1056/20/7/078402. |
WP Leroy et al., “In Search for the Limits of Rotating Cylindrical Magnetron Sputtering”, Magnetron, ION Processing and ARC Technologies European Conference, Jun. 18, 2010, pp. 1-32. |
Beaucarne G et al: ‘Epitaxial thin-film Si solar cells’ Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH LNKD-DOI:10.1016/J.TSF.2005.12.003, vol. 511-512, Jul. 26, 2006 (Jul. 26, 2006), pp. 533-542, XP025007243 ISSN: 0040-6090 [retrieved on Jul. 26, 2006]. |
Collins English Dictionary (Convex. (2000). In Collins English Dictionary. http://search.credoreference.com/content/entry/hcengdict/convex/0 on Oct. 18, 2014). |
Dosaj V D et al: ‘Single Crystal Silicon Ingot Pulled From Chemically-Upgraded Metallurgical-Grade Silicon’ Conference Record of the IEEE Photovoltaic Specialists Conference, May 6, 1975 (May 6, 1975), pp. 275-279, XP001050345. |
Hamm, Gary, Wei, Lingyum, Jacques, Dave, Development of a Plated Nickel Seed Layer for Front Side Metallization of Silicon Solar Cells, EU PVSEC Proceedings, Presented Sep. 2009. |
JCS Pires, J Otubo, AFB Braga, PR Mei; The purification of metallurgical grade silicon by electron beam melting, J of Mats Process Tech 169 (2005) 16-20. |
Khattak, C. P. et al., “Refining Molten Metallurgical Grade Silicon for use as Feedstock for Photovoltaic Applications”, 16th E.C. Photovoltaic Solar Energy Conference, May 1-5, 2000, pp. 1282-1283. |
Merriam-Webster online dictionary—“mesh”. (accessed Oct. 8, 2012). |
Mueller, Thomas, et al. “Application of wide-band gap hydrogenated amorphous silicon oxide layers to heterojunction solar cells for high quality passivation.” Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008. |
Mueller, Thomas, et al. “High quality passivation for heteroj unction solar cells by hydrogenated amorphous silicon suboxide films.” Applied Physics Letters 92.3 (2008): 033504-033504. |
Munzer, K.A. “High Throughput Industrial In-Line Boron BSF Diffusion” Jun. 2005. 20th European Photovoltaic Solar Energy Conference, pp. 777-780. |
National Weather Service Weather Forecast Office (“Why Do We have Seasons?” http://www.crh.noaa.gov/lmk/?n=seasons Accessed Oct. 18, 2014). |
O'Mara, W.C.; Herring, R.B.; Hunt L.P. (1990). Handbook of Semiconductor Silicon Technology. William Andrew Publishing/Noyes. pp. 275-293. |
Stangl et al., Amorphous/Crystalline Silicon heterojunction solar cells—a simulation study; 17th European Photovoltaic Conference, Munich, Oct. 2001. |
Warabisako T et al: ‘Efficient Solar Cells From Metallurgical-Grade Silicon’ Japanese Journal of Applied Physics, Japan Society of Applied Physics, JP, vol. 19, No. Suppl. 19-01, Jan. 1, 1980 (Jan. 1, 1980), pp. 539-544, XP008036363 ISSN: 0021-4922. |
Parthavi, “Doping by Diffusion and Implantation”, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/course03/pdf/0306.pdf>. |
Weiss, “Development of different copper seed layers with respect to the copper electroplating process,” Microelectronic Engineering 50 (2000) 443-440, Mar. 15, 2000. |
Tomasi, “Back-contacted Silicon Heterojunction Solar Cells With Efficiency>21%” 2014 IEEE. |
Electrically Conductive Foil Tape for Bus Bar Components in Photovoltaic Modules, Adhesives Research, http://www.adhesivesresearch.com/electrically-conductive-foil-tape-for-bus-bar-components-in-photovoltaic-modules/, accessed Oct. 12, 2017. |
Geissbuhler et al., Silicon Heterojunction solar Cells with Copper-Plated Grid Electrodes: Status and Comparison with Silver Thick-Film Techniques, IEEE Journal of Photovoltaics, vol. 4, No. 4, Jul. 2014. |
Meyerson et al. “Nonequilibrium boron doping effects in low-temperature epitaxial silicon”, Appl. Phys. Lett. 50 (2), p. 113 (1987). |
Li, “Surface and Bulk Passsivation of Multicrystalline Silicon Solar Cells by Silicon Nitride (H) Layer: Modeling and Experiments”, Ph.D. dissertation, N.J. Inst. of Tech., Jan. 2009. |
Number | Date | Country | |
---|---|---|---|
20150270411 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12617382 | Nov 2009 | US |
Child | 14691403 | US |