Offshore drilling rigs, such as fixed platforms, jack-up or semi-submersible platforms, and drill ships, used in hydrocarbon production, normally use a riser to connect the rig with a wellhead at the seabed. In use, the riser keeps water from the drilling string and conveys circulated drilling mud. Typically, the riser has sections of metal pipe that are positioned vertically between the rig and wellhead. These pipe sections include peripheral auxiliary lines and pipes for communicating hydraulic lines between the rig and a blowout preventer at the wellhead.
The significant weight of steel risers is one drawback that limits their use in deep-sea operation. As is know, each of the steel pipe sections of the riser must have an adequate wall thickness to handle working pressures and to withstand the tensile load of other sections. These requirements add weight to the riser string. In turn, the weight of the riser string can be substantially limited to payload capacity of the floating rig that can only carry a limited number of sections without exceeding its maximum load limit.
As an alternative to the use of steel, an aluminum riser known in the prior art uses sections of aluminum pipe serially coupled together by flange connectors at the ends of the pipe. An example of such an aluminum riser is disclosed in U.S. Pat. Nos. 6,415,867 and 6,615,922. These flange connectors have openings for bolts and threaded inserts to connect the flange connectors together and have openings for carrying auxiliary pipes longitudinally along the pipe's periphery. To make a reliable connection, operators must tighten each bolt with a specified torque. Some riser designs may have anywhere from 6 to up to 18 bolts per connection. Consequently, assembling the sections of pipe can takes significantly operators considerable time to complete and verify.
In yet another drawback, the prior art riser assembly is made from the aluminum alloy 1980 T1 OCT 192048-90 (i.e., an aluminum alloy known as Russian Designation AL 1980 T1). (The “T1” designation is an equivalent to “WP” as described in R 0067—Alloy Temper Designation System for Aluminum (ANSI H35.1—2000). The letter “W” signifies “Solution Heat Treated”). For such thermo-strengthened alloys, the weld must be heat treated after welding. This makes it more difficult to fabricate the joints because the heat treatment procedure demands additional production time, personnel and equipment.
An aluminum riser assembly has a plurality of riser sections connectable together to form a riser string. Each of the riser sections has a pipe with upper (box) and lower (pin) connectors welded thereon. The upper connector has an internal tapered surface forming a box end and has an external tapered surface with an external thread. The lower connector has an external tapered surface. The internal and external tapered surfaces align and seal with one another and facilitate making up of the riser string. Preferably, components of the riser section are composed of an aluminum alloy that has a higher “strength-to-density” ratio compared with steel and, more particularly, are composed of a non-heat-strengthened aluminum alloy 1575 as per TU1-809-420-84 specification or composed of another aluminum alloy of the Al—Mg system that does not require heat treatment of welds after welding.
When upper and lower riser sections are assembled, the pin of the upper riser joint fits partially into the box of the lower riser joint so that the aligned and sealed tapered surfaces engage one another. Operators orient and align service lines to make up the two riser joints. Operators then use a hydraulic or pneumatic driver or actuator to rotate a beveled gear on a drive shaft supported on one of the supports. This beveled gear is mated with the beveled teeth formed around the edge of a sleeve that is rotatably supported on the pin's end of the upper riser section. Rather than using a beveled gear arrangement, the outside circumference of the sleeve can have a first sprocket or pin gear, and the drive can have a second sprocket or trundle mateable with the pin gear.
As the sleeve is rotated by the driver, a plurality of downward extending fingers on the sleeve rotates a union nut. Alternatively, dowel pins or bearings disposed in pockets of the union nut, and longitudinal slots in the sleeve cause the union nut to rotate. The union nut is also rotatably disposed on the pin's end of the riser joint and can also move axially along the riser joint during rotation against the bias of a spring. As the sleeve is rotated, thread on its internal tapered surface threads with the external thread on the lower section's upper end. The union nut is tightened until internal tapered surface of the box and external tapered surface of the pin will join. The entire process can then be repeated for additional riser joints to make up a riser string.
A riser string 40 connects the platform 11 with the blowout preventer 18 and uses a coupling 21, a flex joint 20, and a telescopic joint 30 to compensate for movement of the platform 11 relative to the wellbore 14. The riser string 40 has a plurality of riser joints 42 connected end-to-end to make up the riser string. The main function of the riser 40 is to guide drill pipes and tools to the wellbore 14 and to provide a return pathway for circulated drilling mud.
As is known, each riser joint 42 must be able to withstand a number of forces and loads, such as internal and external pressures, tensile loads caused by lower riser joints 42, and bending loads. In addition, each riser joint 42 is also preferably able to withstand high temperatures and the corrosive effects of both drilling mud and salt water. Accordingly, each riser joint 42 is constructed of a suitable metal material. In a preferred embodiment detailed below, components of the riser joints 42 are composed of an aluminum alloy that has a higher “strength-to-density” ratio compared with steel. This property of the riser joints 42 advantageously increases the number of sections 42 that can be used for a given load capacity of the drilling rig.
In
The main pipe 110 has a bore 111 therethrough. The connectors 120/130 are welded to ends of the pipe 110 by welds 112/113, which preferably do not require thermal treatment. These connectors 120/130 are different from one another. In particular, the upper connector 120 has a box 122 with external tapered thread 124 and has an internal tapered surface 126. Likewise, the lower connector 130 has an external tapered surface 132 and a collar 136.
The main pipe 110 is preferably composed of an aluminum alloy, as are the connectors 120/130. More particularly, the pipe 110 and connectors 120/130 are preferably composed of a non-heat-strengthened aluminum alloy 1575 as per TU1-809-420-84 specification that requires no weld annealing after welding. This simplifies the manufacture and assembly of the riser joint 100 when the connectors 120/130 are welded to the pipe 110 at welds 112/113 and also reduces the production costs and time of the riser section 100. Although the connectors 120/130 are also preferably made of the same aluminum alloy as the main pipe 110, in other embodiment of the disclosed riser section 100, the main pipe 110 and the connectors 120/130 may each be made of different aluminum alloys, and each may be made of an aluminum alloy different from the non-heat-strengthened aluminum alloy 1575 as per TU1-809-420-84 specification. Some examples of aluminum alloys include the aluminum alloys known as Russian Designation AL 1980 and Russian Designation AL 1953 and include any other aluminum alloy having a high strength-to-density ratio greater than that of steel.
The auxiliary pipes 150 are mounted on the clamps 140/145 positioned on the pipe's connectors 120/130 and on the intermediate clamps (not shown) located at various intervals along the main pipe 110. The auxiliary lines carried by these pipes 150 can include choke and kill lines, hydraulic lines, booster lines, etc. As shown, each auxiliary pipe 150 has upper and lower segments 152/154 connected together by a threaded coupling 156.
The union nut 160, the sleeve 170, and the driver 200 position at the lower (pin) connector 130 of the pipe 110 and are used to mate the riser joint 100 to another such riser joint. As shown, the union nut 160 positions on the pipe's lower connector 130 and can abut against the upper face of the collar 136. This union nut 160 has an interior tapered thread 164 for making up riser joints as discussed below. The union nut 160 also has outer longitudinal slots 162 formed along its top for engaging the sleeve 170. The sleeve 170 mounts above the union nut 160 and has fingers 172 positioned in the outer slots 162 of the union nut 160, as best shown in the cross-section of
With the rotation of the sleeve 170 by the driver 200 as detailed below, the union nut 160 also rotates and can move axially along the lower connector 130 against the bias of the spring 165 to couple the riser joint 100 with another joint. The connection provided with the union nut 160, sleeve 170, and driver 200 advantageously allows operators to assemble the riser sections 100 efficiently while aligning the auxiliary pipes and without requiring the installed pipes to be rotated for assembly.
Further details of the sleeve 170 and driver 200 are provided in
Bracket 147 supports the driver 200 on the lower face of the clamp 145 between the clamp 145 and the upper edge 174 of the sleeve 170. The driver 200 includes a drive shaft 202 having a square head 204 on its outer end and having a pinion gear 206 with beveled teeth 208 on the other. The sleeve's upper edge 174 has a beveled rim 176 with teeth 178 formed thereon that mate with the pinion gear's teeth 208. As discussed below, a hydraulic or pneumatic tool can couple to the square head 204 to rotate the shaft 202 and pinion gear 206. In turn, the pinion gear 206 mated with beveled rim 176 rotates the sleeve 170 around the pipe's lower connector 130, which in turn rotates the union nut 160 (
With an understanding of the various components of the riser section 100, discussion now turns to the process of coupling riser joints together to make up a riser string for running to the seabed. As shown in
In seating the connectors 120L/130U, operators align the ends of the auxiliary pipes 150U/150L held by auxiliary clamps 140L/145U aligned. Advantageously, fitting of the upper's pin 132U in the lower's box 126L facilitates installation of the riser sections 100L/100U so that operators do not have to pre-align the riser joints, reducing assembly time.
When the connectors 120L/130U have been fully seated and the auxiliary pipes 150U/150L have been coupled, the two riser sections 100L/100U will be aligned and require no additional intervention. This arrangement prevents the two sections 100L/100U from moving in a horizontal plane by external actions and offers integrity to the auxiliary lines in the junction area. With the connectors 120L/130U seated, the upper's external tapered pin 132U engages the lower's internal tapered box 126L for sealing. In addition, the upper's end 133U fits against an internal shoulder of the lower's box 126L. Likewise, the lower's distal end 123L fits adjacent the upper's collar 136U. Furthermore, the union nut 160U engages the lower's connector 120L so that the union nut 160U moves up in the space below sleeve 170U against the bias of the spring 165U. However, the union nut's internal thread 164U does not yet thread with the outer tapered thread 124L of the lower connector 120L until actuated by the driver 200 (
To operate the driver 200 and complete the coupling, operators then fit a socket 210 on to the square head 204 of the drive shaft 202 and operate a pneumatic or hydraulic tool 220. As the shaft 202 rotates, the pinion gear 206 mated with the geared rim 176U turns the sleeve 170U, thereby rotating the union nut 160U and mating its thread 164U onto the lower section's outer thread 124L. Because the sleeve 170U connects with the union nut 160U by the fingers 172U, the union nut 160U can move axially in the space below the sleeve 170U against the bias of the spring 165U as the tapered threads 124L/164U are mated together. The amount of required torque to make up the connection can be controlled using appropriate pressure on the driver 220's pressure gauge.
As it is rotated, the union nut 160U may be tightened until it engages the collar 136U. Tightening the union nut 160U produces a sealed condition via the metal-to-metal sealing between the contacting surfaces of the box 126L and pin 132U. This eliminates the need for substantial elastomeric sealants or other seals that can be subject to crushing during assembly. To further enhance sealing, the upper section's end 133U may define a groove for an O-ring seal (not shown) for sealing against the internal face of the lower box 126L.
Once the threading has been completed, operators release the socket 210 from the driver 200, lift the made-up joints 100L/100U, after releasing the lower section 100L from the spider-elevator. To begin coupling a new riser joint, operators then lower these two assembled joints 100L/100U through the platform and seat the upper joint's connector (not shown) on the spider-elevator. After hook bails of a crown block system are released, operators grab another upper riser section (not shown) with the spider-elevator and places it above the riser section 100U to repeat the entire assembly process for this new riser joint.
As evidenced above, the assembly process can significantly reduce the time required to assemble/disassemble the riser joint 100. Likewise, by using the aluminum weldable structural alloy for the riser joint that requires no heat treatment of a semi-finished pipe and its welds to the connectors can likewise reduce the time and costs associated with producing the riser joints.
Another embodiment of a riser joint 300 is illustrated in
In contrast to previous embodiments, however, the upper connector 120 has a cylindrical box 126′ and an external thread 124′ that is cylindrical or tapered. In addition, the lower connector 130 has a cylindrical pin 132′ for mating with the upper's cylindrical box 126′. Each riser section 300U-L also has a union nut 360 and a sleeve 370 that are different from previous embodiments. As best shown in
As before, the sleeve 370 fits over the union nut 360 and is held longitudinally fixed but rotatable about the lower connector 130. In addition, the sleeve's upper edge 374 has beveled gear teeth that mate with the driver 200 for turning the sleeve 370. Rather than having fingers as before to engage the union nut 360, however, the sleeve 370 has longitudinal slots 376 along its interior. These slots 376 hold dowels or bearings 380 in the dowel seats 366 of the union nut 360 thereby coupling the sleeve 370 to the union nut 360. These dowels 380 can slide longitudinally in the slots 376.
When the upper and lower riser sections 300U-L are first coupled together as shown in
As operators then operate the driver 200, the sleeve 370 rotates. Through the coupling of the dowels 380 in the slots 376 and dowel seats 366, the union nut 360 likewise rotates. As it rotates, the union nut's thread 364 begins to thread with the upper connector's thread 124′, and the union nut 360 moves further down along the connector 130. The sleeve 370, however, remains in position mated with the driver 200. Yet, the dowels 380 are allowed to move longitudinally in the slots 376 as the union nut 360 further mates with the connector's thread 124′.
Operators continue to drive the sleeve 370 until the union nut 360 sufficiently couples with the upper connector 120, as shown in
In
As shown in
The driver 400 includes the high-torque hydraulic motor 401, a joint 402, and the gear box 403 that has the trundle 404 on its end. These components has are supported on a frame 406, which is in turn supported on a base plate 408 and a column base 407. The frame 406 is movable on the base plate 408 using rotatable rollers 410 positioned on bearing supports 409 connected to the base plate 408.
In operation, the frame 406 is moved on the rollers 410 away from the upper and lower riser sections 300U-L as they are first coupled together so the driver 400 is out of the way as the sections 300U-L are seated and the auxiliary pipes 150 are installed. When the sections 300U-L have been fully seated and the auxiliary pipes 150 have been coupled, operators then move the driver 400 on the rollers 410 so that the gear box's trundle 404 mates with the pins 397 of the sleeve's pin gear 391. Advantageously, the sprocket form of mating between the trundle 404 and pin gear 391 does not require exact alignment or meshing between the teeth and has a simplified construction.
Operated by the motor 401, joint 402, and gear box 403, the trundle 404 rotates the pin gear 391 and the sleeve 390. In turn, the sleeve 390 rotates the union nut 360 and mates the nut's thread 364 onto the lower section's outer thread 124′. As it is threaded, the union nut 360 moves further down along the connector 130 while the sleeve 390 remains in position mated with the driver 400. Yet, dowels 380 are allowed to move longitudinally in slots 376 as the union nut 360 further mates with connector's thread 124′. Operators continue to drive the sleeve 390 until the union nut 360 sufficiently couples with the upper connector 120. Once coupled, the union nut's top portion 362 meets the collar 136, as shown in
The foregoing description of preferred and other embodiments is not intended to limit or restrict the scope or applicability of the inventive concepts conceived of by the Applicants. It will be appreciated that although assembly steps have been described for coupling riser sections together, reverse operations can be performed to uncouple riser sections from one another. Although beveled gears and sprockets have been described above, it will be appreciated that other types of gears or connections could be used to impart rotation from a drive to the sleeve. In exchange for disclosing the inventive concepts contained herein, the Applicants desire all patent rights afforded by the appended claims. Therefore, it is intended that the appended claims include all modifications and alterations to the full extent that they come within the scope of the following claims or the equivalents thereof.
This is a non-provisional of U.S. Provisional Appl. Ser. No. 61/050,242, filed 4 May 2008, to which priority is claimed and which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61050242 | May 2008 | US |