1. Field of the Invention
The invention relates generally to spot welding methods, tools used for spot welding, and parts joined by spot welding.
2. Related Art
Spot welding is oftentimes used to join a first part formed of aluminum to a second part formed of aluminum or another metal material. The parts are held together under pressure by a pair of welding tips, which also function as electrodes. Current is supplied to the welding tips and concentrated in a single spot to melt the surface and form the weld. One drawback of spot welding aluminum parts is that aluminum oxides typically form along the surfaces, which reduces the integrity of the weld.
To break the oxide surface and reduce the amount of aluminum oxides formed during spot welding, the welding tips can present a spherical radius at their terminal end, and rotate continuously or intermittently at a controlled rate as they spot weld the parts together. An example of this technique was developed by KUKA and Mercedes-Benz® and is referred to as robo-spinning. The robo-spinning technique uses a robot to rotate the welding tips and spot weld the parts together. However, due to the significant force applied and the shape of the part being welded, the rotating weld tips tend to move out of position during the spot welding process. In addition, the terminal ends of the rotating welding tips can melt the surfaces of the parts and create locking divots.
The invention provides a welding tip for spot welding parts formed of conductive metal, such as aluminum. The welding tip comprises a shaft extending to a distal end and presenting a notch at the distal end. The shaft also includes a contact surface extending radially outwardly from the notch.
The invention also provides a method for spot welding. The method includes providing a first part formed of conductive metal and a second part formed of conductive metal. The method then includes contacting the first part with the welding tip while rotating the welding tip around its center axis.
The invention further provides a spot welded structure formed using the welding tip. The spot welded structure comprises the first part formed of conductive metal joined to the second part formed of conductive metal by a spot weld. The spot weld comprises a depression and a pin extending upwardly from the depression.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
The invention provides a welding tip 20, as shown in
The welding tip 20 may be formed of a copper alloy or another electrically conductive material so that when the welding tip 20 receives an electrical current the welding tip 20 functions as an electrode. The welding tip 20 of
The welding tip 20 includes a shaft 26 which is typically disposed in a spot welding gun (not shown). The shaft 26 extends along the center axis A to a distal end 38 and includes a notch 30 at the distal end 38. A contact surface 28 surrounds the notch 30 at the distal end 38 for engaging the parts 22, 24 to be welded. As shown in
In the example embodiment of
The notch 30 of the welding tip 20, also referred to as a cavity, dimple, depression, or arbor, reduces the area of the surface in contact with one of the parts 22, 24. As a result, of the reduced area, the welding tip 20 requires less electrical current during the spot welding process, compared to a traditional welding tip. The notch 30 is preferably located at an apex of the convex contact surface 28 and extends inwardly along the center axis A away from the distal end 38, as shown in
The depth d1 of the notch 30 can also vary depending on the size of the shaft 26 and parts 22, 24 to be joined, or other factors. In the example embodiment of
During the spot welding process, the contact surface 28 of the rotating welding tip 20 forms a depression 32 on the surface of one of the parts 22, 24 to be joined. As the contact surface 28 forms the depression 32, the notch 30 creates a pin 34 extending upwardly from the center of the depression 32. The notch 30 fixes or secures the welding tip 20 to the surface of one of the parts 22, 24, and the pin 34 provides a fixed axis of rotation for the welding tip 20. The pin 34 also prevents the welding tip 20 from moving radially relative to the center axis A while rotating around the center axis A. The notch 30 also allows for precise location of applied force and electrical current which further prevents the rotating welding tip 20 from moving out of position. As alluded to above, the notched welding tip 20 has much higher electrode force density and requires less initial electrical current during the welding process—compared to a traditional welding tip, since the contact surface 28 is reduced. The depression 32 and pin 34 remain on the final spot welded structure 25 as a witness to the process quality. It can be measured as a quality indicator relating to roundness in shape and surface indentation depth.
The invention also provides a method for joining the first part 22 formed of conductive metal to the second part 24 formed of conductive material by a spot welding method using the notched welding tip 20 and thus forming the spot welded structure 25. The method preferably includes the robo-spinning technique, but can comprise another method that involves rotating the welding tip 20 around its center axis A, either continuously or intermittently.
The method begins by providing the first part 22 and the second part 24 to be welded. The first part 22 is formed of conductive metal, such as aluminum, and the second part 24 is also formed of conductive metal, which is typically aluminum, but may be another conductive metal, such as steel. The size and shape of the parts 22, 24 can vary depending on the intended application of the finished spot welded structure 25. For example, the parts 22, 24 can be designed for use as a component of an automotive vehicle. In addition, the parts 22, 24 can be pre-conditioned in any manner know in the art to improve the integrity of the spot weld 36 ultimately joining the parts 22, 24. The conductive metal of the parts 22, 24 can also be coated or uncoated. Coating thicknesses are becoming increasingly thicker to cope with corrosion issues. Example coatings include aluminum, zinc, and combinations of alloys to protect the conductive metal from corrosion.
Typically, the method employs two of the notched welding tips 20, including the first welding tip 20 and a second welding tip 20′, as shown in
The method begins with a first phase including supplying power to the welding gun, which drives the welding tip 20 to rotate around its center axis A, preferably before contacting the part 22. In the example embodiment, the rotating step begins before the welding tip 20 contacts the surface of the part 22 in order to reduce process time. The first phase of the example spot welding process also includes crimping the parts 22, 24 before any electrical current I or heat is applied to the welding tips 20, 20′ or the parts 22, 24. This cold crimping first phase can be applied in any situation, but is typically applied when a gap between the parts 22, 24 is present, for example, due to manufacturing tolerances. The first phase comprises a first period of time at the start of the welding process, during which the rotating welding tips 20, 20′ first contact a spot along the surface of each of the parts 22, 24. As shown in
The welding tip 20 can rotate continuously or intermittently during the first phase. As the rotating welding tip 20 develops force, any oxide layer present on the surface of the part 22 is removed. The rotating welding tip 20 can also score, remove, condition, or scrub any coating on the surface of the part 22. At the end of the first phase, the force F applied to the welding tip 20 is typically reduced in preparation for the second phase.
The second phase of the example method shown in
The temperature of the part 22 also increases during the second phase as the welding tip 20 continues to rotate while in contact with the part 22. Thus, the spot along the surface of the part 22 engaged by the rotating welding tip 20 begins to melt, and the welding tip 20 begins forming the depression 32 and the pin 34 extending upwardly from the center of the depression 32. Once the pin 34 forms, the welding tip 20 rotates about the pin 34. The notch 30 and pin 34 fix the axis of rotation at the center axis A of the welding tip 20 and prevent the welding tip 20 from moving radially relative to the center axis A during the rotating step. In other words, the notch 30 and pin 34 fix or secure the welding tip 20 to the part 22 and prevent the welding tip 20 from moving or shifting radially relative to its center axis A during the rotating step of the second phase.
The welding tip 20 can rotate continuously or intermittently during the second phase. In either case, the welding tip 20 rotates quickly enough to prevent the melted aluminum or other conductive metal of the part 22 from sticking to the contact surface 28 or notch 30 of the welding tip 20. The lack of oxides on the surface of the part 22 also prevents the melted metal from sticking. Thus, the service life of the welding tip 22 is improved.
The third phase of the example method shown in
In the example embodiment shown in
The welding tip 20 typically stops rotating continuously around its center axis A at some point after the third phase. If the method includes the optional fourth phase, then the welding tip 20 stops rotating continuously before, during, or after the fourth phase. A cooling phase (not shown in
The invention further provides a structure 25 including the first part 22 formed of aluminum and the second part 24 formed of aluminum or another metal material joined together by the spot weld 36, as shown in
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the claims.
This U.S. National Stage Patent Application claims the benefit of PCT International Patent Application Ser. No. PCT/US2014/036333 filed May 1, 2014 entitled “Aluminum Spot Welding Method,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/819,182 filed May 3, 2013, entitled “Aluminum Spot Welding Method,” the entire disclosures of the applications being considered part of the disclosure of this application and hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/036333 | 5/1/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/179547 | 11/6/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2016866 | Lurie | Oct 1935 | A |
5047608 | Takahashi et al. | Sep 1991 | A |
5266776 | Boisvert | Nov 1993 | A |
5980972 | Ding | Nov 1999 | A |
6100511 | Kempe | Aug 2000 | A |
6143252 | Hossainy et al. | Nov 2000 | A |
7091440 | Gabbianelli et al. | Aug 2006 | B2 |
7815122 | Bauer | Oct 2010 | B2 |
7828357 | Hayashi | Nov 2010 | B2 |
8927894 | Sigler | Jan 2015 | B2 |
20020011509 | Nelson | Jan 2002 | A1 |
20050061413 | Chaylard | Mar 2005 | A1 |
20060081563 | Ueda | Apr 2006 | A1 |
20090218323 | Abe | Sep 2009 | A1 |
20090255908 | Sigler et al. | Oct 2009 | A1 |
20100258536 | Sigler et al. | Oct 2010 | A1 |
20100282717 | Ananthanarayanan | Nov 2010 | A1 |
20110266260 | Sigler | Nov 2011 | A1 |
20130015164 | Sigler | Jan 2013 | A1 |
20140076859 | Sigler | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
101267908 | Sep 2008 | CN |
H0957460 | Mar 1997 | JP |
H10957640 | Mar 1997 | JP |
H11342477 | Dec 1999 | JP |
H051367 | Feb 2000 | JP |
2006130514 | May 2006 | JP |
2007130659 | May 2007 | JP |
2008093707 | Apr 2008 | JP |
2010131666 | Jun 2010 | JP |
2010192413 | Sep 2010 | JP |
0226271 | Apr 2002 | WO |
03095242 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20160089745 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61819182 | May 2013 | US |