The present teachings relate to outdoor, foldable furniture, and in particular to a folding chair that can be placed on an angled surface while providing a substantially horizontal seat position for sitting in by a user.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Many parks, common areas and outdoor entertainment venues have ground seating areas that cover hills or inclines. Typically these seating areas do not employ any fixed seats or chairs. Instead, the user sits directly on the seating areas. To eliminate direct contact between the ground of the seating area and the user's bottom, the user typically positions a blanket or folding chair on the ground for sitting purposes. The blanket and folding chair, however, lie on the seating area at the same angle of the ground of the seating area. Therefore, due to the angled ground surface, the user sits at the angle resulting in uncomfortable sitting position by the user.
Generally, the legs of known folding chairs extend to contact the ground such that when the chair is placed on a sloped surface, seat of the chair is oriented at the angle similar to that of the sloped surface. Hence, when a user sits in a known folding chair that is been placed on a sloped surface, the user is forced to sit in an awkward and/or uncomfortable unorthodox sitting position, as opposed to what is generally considered a standard, comfortable sitting position wherein the user's legs and bottom are oriented in a generally horizontal plane and the user's torso is oriented in a generally vertical position.
Other folding chairs employ collapsible fabric as the seat area. This collapsible fabric conforms to the user's bottom when the user sits within the fabric. Due to the leg configurations of these chairs, the user still sits at the angle of the ground sitting area. Furthermore, due to the angled ground, current folding chairs slip on the angled surface since the legs do not anchor to the ground surface.
The present disclosure provides a chair that is configurable to provide a substantially horizontal seating surface when the chair is disposed on an angled ground surface. In various embodiments, the chair comprises a back frame having a pair of telescoping back legs including an upper back leg tube and a lower back leg tube slidingly disposed within the upper back leg tube. The chair additionally includes a seat frame pivotally connected to the back frame and a pair of locking mechanisms fixedly connected the upper back leg tubes. Each locking mechanism comprises a locking key including a locking aperture through which the respective lower back leg tube extends. Each locking mechanism is structured and operable to selectively position the respective locking key in each of an engaged position that binds the lower back leg tube such that the lower back leg tube cannot slide into the upper back leg tube, and a disengaged position that allows the lower back leg tube to freely slide within the upper back leg tube.
Further areas of applicability of the present teachings will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present teachings in any way.
Corresponding reference numerals indicate corresponding parts throughout the several views of drawings.
The following description is merely exemplary in nature and is in no way intended to limit the present teachings, application, or uses. Throughout this specification, like reference numerals will be used to refer to like elements.
Referring to
The chair 10 includes a pair of locking mechanisms 14 structured and operable to lock the chair 10 in any desired configuration suitable to position a seat frame 46 of the chair substantially horizontal while the chair is disposed on an angled or sloped surface 12. The locking mechanisms 14 are also structured and operable to pivotally, or hindgedly, connect a back frame 44 with a seat frame 46 of the chair 10. The respective locking mechanisms 14 are disposed on opposing sides of the chair 10 and are substantially the same in structure and functionality, however for brevity and clarity, generally only various embodiments of a single locking mechanism 14 will be described and illustrated herein.
In various embodiments, each locking mechanism 14 includes a seat bracket 18 connected to a back bracket 22 by a single bolt or pin 26 which allows the seat and back brackets 18 and 22 to pivot relative to each. In such embodiments, each locking mechanism 14 additionally includes a lock 30, comprised of rubber or similar material, that moves freely along an arc within the back bracket 22, but is permanently attached to the seat bracket 18 by locking bolts or pins 34 that travel through slots 38 within the back bracket 22.
As upper tubes 42A of telescoping back legs 42 of the back frame 44 are pulled away from lower tubes 42B of the back legs 42, and the seat frame 46, to which the seat bracket 18 is connected, is pulled away from the back legs 42 and pushed toward the surface 12, e.g., the ground, to transition the chair 10 from a collapsed position (shown in
Accordingly, regardless of the angle or slope of the surface 12, e.g., from perfectly flat to a steep angle or slope, when a back lower cross member 70 and/or the lower back tubes 42B of the back frame 44, and a front lower cross member 74 and/or front legs 58 of a front frame 78 are in contact with the ground and the upper back leg tubes 42A are pulled to their highest position, the seating frame 46 will automatically lock into a substantially horizontal position. As pressure is applied to the seating frame 46, e.g., pressure applied when a person sits in a seat panel 62 connected to the seat frame 46, the locking mechanism 14 will exert even more pressure onto the locking key 50 and lower back leg tubes 42B making the locking function of the locking mechanism 14 consistently stronger as more weight is applied.
In various embodiments, the locking mechanism 14 further includes a leveling spring 66 that is structured and operable to apply pressure to the back end 50B of the locking key 50 that includes the locking aperture 54. The pressure applied by the leveling spring 66 maintains the locking key 50 in a substantially level position such that the lower back leg tubes 42B are able to smoothly slide within the locking aperture 54 until the lock 30 of each locking mechanism 14 comes into contact with the tongue 50A of the respective locking key 50. That is, the leveling springs 66 prevent ‘chattering’ of the locking keys 50 on the lower back leg tubes 42B as the chair 10 is transitioned between the collapsed position and an expanded position.
To unlock the locking mechanism 14, the user simply stands up to relieve the pressure of his/her weight off the locking keys 50. The user then can grasp the front of the seat frame 46 and the top of the back frame 44 and simultaneously pull the front of the seat frame 46 and the top of the back frame 44 upward, i.e., vertically away from the surface 12, to disengage the locks 30 locking pins 34 and collapse the chair 10. Subsequently, the chair 10 can be re-folded to the collapsed position for easy portability and storage.
Referring now to
As illustrated in
In various embodiments, the chair 10 further includes a backrest panel 94 connected to the back frame 44 to provide a backrest for a user sitting in the chair 10. The backrest panel 94 can be fabrication of any material suitable to provide support for the user's back when sitting the chair 10, such as nylon or canvas.
Referring now to
Particularly, as the seat frame 46 is pivoted downward to configure the chair 10 in the expanded position, the respective seat frame side tube terminal end 110 contacts the fulcrum pad 102 of the respective locking key 50, thereby exerting a downward force on the tongue 50A of the locking key 50 pushing the tongue 50A downward and consequently pushing the back end 50B of the locking key 50 upward. More specifically, the downward force exerted on the fulcrum pad 102 by the respective seat frame side tube 46A causes the locking key aperture 54 to cant such that a leading edge 54A and a trailing edge 54B of the locking aperture 54 pinch or bind the lower back leg tube 42B. Moreover, since the hinge bracket 98 is fixedly formed with, or attached to, the upper back leg tube 42A, this pinching or binding prevents, or at least greatly restricts, telescopic travel of the lower back leg tube 42B into the upper back leg tube 42A such that the back leg 42 is locked at a certain length L (
Referring now to
Therefore, in such embodiments, as the seat frame 46 is pivoted downward to position the chair 10 in the expanded position, the fulcrum pins 104 protruding from the lower side of the seat frame side tube terminal ends 110 contact the locking key beveled leading ends 112, thereby exerting a downward force on the respective tongues 50A. As the seat frame 46 is pivoted further toward the expanded position, the fulcrum pins 104 move along the beveled leading ends 112 onto the flat top surface of the locking key tongues 50A, thereby exerting greater downward force on the respective tongues 50A and consequently pushing the back end 50B of the locking key 50 upward. More specifically, the downward force exerted on the locking key tongues 50A by the respective fulcrum pins 104 cause the locking key apertures 54 to cant such that the leading edge 54A and the trailing edge 54B of the locking aperture 54 pinch or bind the lower back leg tube 42B. Moreover, since the hinge bracket 98 is fixedly formed with, or attached to, the upper back leg tube 42A, this pinching or binding prevents, or at least greatly restricts, telescopic travel of the lower back leg tube 42B into the upper back leg tube 42A such that the back leg 42 is locked at the desired length L (
Referring now to
Therefore, regardless of the angle or slope of the surface 12, e.g., from perfectly flat to a steep angle, when the back lower cross member 70 and/or the lower back tubes 42B of the back frame 44, and the front lower cross member 74 and/or front legs 58 are in contact with the ground and the upper back leg tubes 42A are pulled to the desired length L, the seating frame 46 will automatically lock into a substantially horizontal position. Moreover, as pressure is applied to the seating frame 46, e.g., pressure applied when a person sits in a seat panel 62 connected to the seat frame 46, the locking mechanism 14 will exert even more pressure onto the locking key 50 making the locking function of the locking mechanism 14 consistently stronger as more weight is applied.
As described above, in various embodiments, the locking mechanism 14 can include a leveling spring 66 that is structured and operable to apply pressure to the back end 50B of the locking key 50. The pressure applied by the leveling spring 66 maintains the locking key 50 in a substantially level position such that the lower back leg tubes 42B are able to smoothly slide within the locking aperture 54 until the seat frame side tubes 46A contact the fulcrum pads 102. Hence, the leveling springs 66 prevent ‘chattering’ of the locking keys 50 on the lower back leg tubes 42B as the chair 10 is transitioned between the collapsed position and an expanded position.
As also described above, to unlock the locking mechanism 14, the user simply stands up to relieve the pressure of his/her weight off the locking keys 50. The user then can grasp the front of the seat frame 46 and the top of the back frame 44 and simultaneously pull the front of the seat frame 46 and the top of the back frame 44 toward each other to remove the downward force on the locking key tongues 50A, thereby disengaging the locking key apertures 54 from the lower back leg tubes 42B. Subsequently, the back upper cross member 82 can be pushed downward to telescopingly force the lower back leg tubes 42B into the upper back leg tubes 42B, thereby placing the chair 10 in the collapsed position.
Referring now to
The anchoring and stabilizing mechanism 122 further includes one or more stabilizing feet 138 mounted to a distal end of the kick arm 130. For example, as shown in Figure, in various implementations the anchoring and stabilizing mechanism 122 can have a single stabilizing foot 138 mounted to the distal end of the kick arm 130 such that opposing ends of the stabilizing foot 138 extend outward from opposing sides of the kick arm 130. Still further, in various embodiments, the anchoring and stabilizing mechanism 122 includes one or more anchoring stakes 142 slidingly and/or pivotally mounted to the stabilizing foot 138.
In operations, once the chair 10 is configured and locked in the expanded position, as described above, the user can move the kick arm 130 from the stowed position to the deployed position whereby the locking tongue 134 securely engages with the tongue receiver 134 such that the kick arm 130 is selectively locked in the deployed position. To return the kick arm 130 to the stowed position, the locking tongue 134 must be disengaged from the tongue receiver 136. Importantly, when the kick arm 130 is locked in the deployed position, the stabilizing foot 138 is in contact with the surface 12, thereby inhibiting side-to-side and front-to-back rocking of the chair 10 and providing additional stability to chair 10. Once the kick arm 130 is locked in the deployed position, the user can selectively position one or more of the anchoring stakes 142 to anchor the chair 10 to the surface 12. Particularly, one or more of the anchoring stakes 142 can be rotated and/or slidingly positioned such that the anchoring stake(s) 142 are oriented such that they can be pushed into the surface 12 to anchor the chair 10 to the surface 12 and provide further stability to chair 10.
For example, in various implementations, the anchoring stake(s) 142 are mounted to the stabilizing foot 138 via slots 146 such that the anchoring stake(s) 142 are pivotally and slidingly mounted to the stabilizing foot 138. In such embodiments, once the kick arm is locked into the deployed position, each anchoring stake 142 can be pivoted upward such that a tip 150 of each anchoring stake 142 is pointed downward toward the surface 12. Thereafter, the user can step on a back end 154 of each anchoring stake 142 to force the respective anchoring stake 142 to penetrate the surface and ‘stake’, i.e., secure, the chair 10 to the surface 12.
In various embodiments, the chair 10 can include a closing and carrying strap 158 that is structured and operable to selectively maintain the chair 10 in the collapsed position and provide a convenient handle or carrying strap for the user to utilize when transporting, i.e., carrying, the chair 10. The closing and carrying strap 158 includes a cord or strap 162 that is slidingly engaged with the back upper cross member 82 and fixedly connected to the back lower cross member 70. For example, in various implementations, the cord 162 is slidingly inserted through holes (not shown) in the back upper cross member 82 and affixed, e.g., tied, to the mounting bracket 126 of the anchoring and stabilizing mechanism 122 such that a top section of the cord 162 extends beyond the back upper cross member 82. When the chair 10 is in the expanded position at least a portion of cord top section extends beyond the back upper cross member 82. In various implementations the closing and carrying strap 158 can include a handle 166 disposed on the top section of the cord 162. Subsequently, once the chair 10 is configured in the collapsed position, as described above, a greater amount of the top section of the cord 162 extends beyond the back upper cross member 82 providing a handle or shoulder strap that can be utilized by the user to conveniently transport the chair 10. In various embodiments, the closing and carrying strap 158 can be utilized to retain the chair 10 in the collapsed position. That is, by virtue of the cord 162 being fixedly connected to the back lower cross member 70, when the chair is in the collapsed position and the being carried by the closing and carrying strap 158, the weight of the chair will maintain tension on the closing and carrying strap 158, which will in turn apply an upward force on the back lower cross member 70 and the lower back leg tubes 42B. This upward force will dispose and retain the lower back leg tubes 42B within the upper back leg tubes 42A to the maximum potential and not allow the lower back leg tubes 42B to telescopingly extend downward, or outward, from the upper back leg tubes 42A.
Referring now to
Furthermore, in such embodiments, a bottom end 186 of the upper back leg tube 42A is angled relative to a longitudinal axis of the upper back leg tube 42A. That is, a trailing edge 186A of the bottom end 186 is nearer a longitudinal center of the upper back leg tube 42A than a leading edge 186B of the bottom end 186. Still further, in such embodiments, the locking mechanism 14 includes an engagement spring 190 disposed between the bottom plate 170B of the housing and locking key 50 such that the engagement spring 190 applies a constant upward force on the locking key 50.
More specifically, the upward force provided by the engagement spring 190 is operable to maintain the locking key 50 in an engaged position, as shown in
To disengage the locking keys 50 from the lower back leg tubes 42B, the user merely places his/her thumb on the upper surface of the locking key tongue 50A that is extending through the rear wall window 178 and his/her forefinger in the bottom plate 170B of the housing 170 and squeezes to apply a downward force to the locking key tongue 50A. This downward force will oppose the upward force of the engagement spring 190 and disengage the locking key aperture 54 from pinching or binding the lower back leg tube 42B. Once disengaged, the lower back leg tube 42B is free to easily slide or travel within the locking key aperture 54 and telescopingly travel into and out of the upper back leg tube 42A to adjust the length L (
Referring now to
As illustrated in
Once the back legs 42 have been set to a desired length, the user can utilize the release knobs 194B to move the lock bar 194A of the disengagement lock 194 into the vertical slots of the L-shaped apertures 198. Once the lock bar 194A is positioned within the vertical slots of the L-shaped apertures 198, the locking key 50 is no longer held in the disengaged position by the lock bar 194A and the upward force of the engagement spring 190 will move the locking key 50 into the engaged position, as described above.
Referring now to
As illustrated in
Referring now to
As illustrated in
As illustrated in
Referring now to
Furthermore, in such embodiments, a bottom end 186 of the upper back leg tube 42A is angled relative to the longitudinal axis of the upper back leg tube 42A. That is, a trailing edge 186A of the bottom end 186 is nearer a longitudinal center of the upper back leg tube 42A than the leading edge 186B of the bottom end 186. Still further, in such embodiments, the locking mechanism 14 includes the engagement spring 190 disposed between the bottom plate 170B of the housing and locking key 50 such that the engagement spring 190 applies a constant upward force on the locking key 50. Still yet further, in such embodiments, the locking key 50 and the locking aperture 54 of the locking key 50 are sized and/or structured such that the locking key 50 can rotate about the lower back leg tube 42B and within the housing 270 when the locking key 50 is in the disengaged position, as shown in
As illustrated in
To engage the locking key 50, the locking key tongue 50A is moved along the horizontal leg to rotate the locking key 50 within the housing 270 about the lower back leg tube 42A until the tongue 50A is positioned within the vertical leg of the L-shaped aperture 278. Subsequently, the upward force provided by the engagement spring 190 will force the locking key tongue 50A upward within the vertical leg of the L-shaped aperture 278, and thereby position and maintain the locking key 50 in the engaged position, as shown in
To disengage the locking keys 50 from the lower back leg tubes 42B, the user merely pushes downward on the locking key tongue 50A to move the tongue 50A down in the vertical leg of the L-shaped aperture 278 to disengage the locking key 50 from binding/pinching the lower back leg tube 42B. The user then slides the tongue 50A sideways into the horizontal leg of the L-shaped aperture 278 to maintain the locking key 50 in the disengaged position.
Once disengaged, the lower back leg tube 42B is free to easily slide or travel within the locking key aperture 54 and telescopingly travel into and out of the upper back leg tube 42A to adjust the length L (
Referring now to
To disengage the locking mechanism 14, the user simply stands up to relieve the pressure of his/her weight off the locking keys 50. The user then can grasp the front of the seat frame 46 and the top of the back frame 44 and simultaneously pull the front of the seat frame 46 and the top of the back frame 44 toward each other. The user can then easily disengage the respective locking keys 50 from the lower back leg tubes 42B, as described above, and push downward on the back upper cross member 82 to telescopingly force the lower back leg tubes 42B into the upper back leg tubes 42B, thereby placing the chair 10 in the collapsed position.
As described above, in various embodiments, the locking mechanism 14 can include a leveling spring 66 that is structured and operable to apply pressure to the back end 50B of the locking key 50. The pressure applied by the leveling spring 66 maintains the locking key 50 in a substantially level position when the locking key 50 is in the disengaged position, such that the lower back leg tubes 42B are able to smoothly slide within the locking aperture 54. Hence, the leveling springs 66 prevent ‘chattering’ of the locking keys 50 on the lower back leg tubes 42B as the chair 10 is transitioned between the collapsed position and an expanded position.
Although the various embodiments of the locking mechanism 14 have describe above for use in adjusting and maintaining the length L of the back legs 42 of the chair 10, such that the chair 10 will stably provide a substantially horizontal seating surface for a person to sit while the chair 10 is disposed on an angled or sloped surface 12, it is envisioned that the locking mechanism 14, as described above, can be used with any telescoping pole, rod, tubing, leg, etc. That is, locking mechanism 14, as described above, can be implemented with any device, mechanism, apparatus or system that includes one or more telescoping poles, rods, tubings, legs, etc., to adjust the respective telescoping poles, rods, tubings, legs, etc., to a desired length and maintain the respective telescoping poles, rods, tubings, legs, etc., at the desired length. More specifically, when the locking mechanism 14 is implemented in such devices, mechanisms, apparatuses or systems and configured in the engaged position, the locking mechanism 14 will maintain the desired length of the respective telescoping pole, rod, tubing, leg, etc., and prevent, or at least greatly restrict, telescopic travel of the inner tube of the respective telescoping pole, rod, tubing, leg, etc. into the outer tube of the respective telescoping pole, rod, tubing, leg, etc.
Subsequently, to allow telescopic travel of the inner tube into and out of the outer tube of the respective telescoping pole, rod, tubing, leg, etc. the locking mechanism 14 can be disengaged as described above.
The description herein is merely exemplary in nature and, thus, variations that do not depart from the gist of that which is described are intended to be within the scope of the teachings. Such variations are not to be regarded as a departure from the spirit and scope of the teachings.
This application claims the benefit of U.S. Provisional Application No. 61/574,256 filed on Jul. 29, 2011 and Provisional Application No. 61/630,142 filed Dec. 5, 2011. The disclosures of the above applications are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
534501 | Evers | Feb 1895 | A |
1694933 | Walker et al. | Dec 1928 | A |
1730895 | Ness | Oct 1929 | A |
1869365 | Corduan | Aug 1932 | A |
1876479 | Weller | Sep 1932 | A |
1916772 | Pratt | Jul 1933 | A |
1963708 | Marvin | Jun 1934 | A |
2110519 | Croft | Mar 1938 | A |
2450783 | Collins | Oct 1948 | A |
2505702 | Benjamin | Apr 1950 | A |
2699557 | Gravatt | Jan 1955 | A |
2732006 | Crescent | Jan 1956 | A |
2809047 | Strohmaier | Oct 1957 | A |
3137511 | Weil et al. | Jun 1964 | A |
4030781 | Howard | Jun 1977 | A |
4251107 | Sato | Feb 1981 | A |
4367894 | Manuel | Jan 1983 | A |
5078451 | Sobel | Jan 1992 | A |
5087095 | McFate | Feb 1992 | A |
5110184 | Stein et al. | May 1992 | A |
5244249 | Tseng | Sep 1993 | A |
D361683 | Juhl | Aug 1995 | S |
5464268 | Levrangi | Nov 1995 | A |
5503456 | Rossini | Apr 1996 | A |
5584529 | Cheng | Dec 1996 | A |
5588695 | Gomes | Dec 1996 | A |
5588696 | Jay et al. | Dec 1996 | A |
5718473 | Lynch, Jr. | Feb 1998 | A |
5944384 | Patterson | Aug 1999 | A |
5988750 | Rubottom | Nov 1999 | A |
6056172 | Welsh | May 2000 | A |
6056353 | Meara | May 2000 | A |
6089651 | Carmen | Jul 2000 | A |
6382727 | Pickard | May 2002 | B1 |
6471288 | Alexander, Jr. | Oct 2002 | B2 |
6547324 | Ammann, Jr. | Apr 2003 | B1 |
6796605 | Chu | Sep 2004 | B1 |
6926355 | Le Gette et al. | Aug 2005 | B2 |
7147277 | Miller | Dec 2006 | B1 |
8061766 | Miller | Nov 2011 | B2 |
8459741 | Mazzola et al. | Jun 2013 | B2 |
20020145316 | Oliver | Oct 2002 | A1 |
20040130190 | Zheng | Jul 2004 | A1 |
20040195879 | Amirault | Oct 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20130026799 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61574256 | Jul 2011 | US | |
61630142 | Dec 2011 | US |