1. Field of the Invention
The present invention relates generally to firearms and more particularly to firearm receivers with ambidextrous controls.
2. Description of the Related Art
In modern warfare individual infantry men still play a significant role in military operations. An individual soldier's effectiveness depends, to a large extent, on the speed at which the individual solider can manipulate the controls of the issued firearm. As such, ergonomic and ambidextrously designed controls can be critical. Various situations arise which require an infantry man to operate the bolt catch of a firearm.
A soldier's ability to provide a high rate of accurate fire on target is critical on the modern battle field. Detachable box magazines are the most common ammunition feeding device used with modern firearm designs. Examples of this are found in the M16 series of firearms, German G3 and the Belgian FAL. Designs such as the M16 and FAL have a mechanism which interacts with the follower of the detachable magazine causing the bolt carrier group to be locked to the rear when the magazine is empty. Additionally, all of the aforementioned designs incorporate a mechanism by which the bolt carrier group might be manually locked to the rear.
In the prior art there are bolt release mechanisms for the M16 family of firearms which can be operated with either hand. These mechanisms use a standard left side control lever which is in operational contact with the bolt carrier group. However, no mechanism is provided on the right side of the receiver for the user to retain and release the bolt carrier group from the locked-back position. In consideration of this fact alone these mechanisms cannot be considered truly ambidextrous.
Locking the bolt carrier group in its rearward position allows the user to look into the ejection port of the firearm and inspect the chamber for a live round or to clear an operational malfunction. Once a loaded magazine is inserted into the receiver, or a malfunction is cleared, the user needs an efficient means for releasing the bolt carrier group from the locked-back position.
Unfortunately the various mechanisms used, for example in the M16 family of firearms, to secure the bolt carrier group in the open, or locked-back, position are primarily designed for right-handed shooters. While a left-handed shooter can operate the mechanism, the procedure is often slower and requires the use of a certain amount of the user's concentration to look at the firearm. While the time required may be less than a second, an enemy action may occur during a critical time, thereby dangerously distracting the shooter.
Another relevant situation occurs often in urban conflict. When soldiers find themselves in a situation that requires target engagement around corners or in tight confines, it often becomes necessary to operate the weapon with the “weak hand” or the hand with which the shooter typically does not perform fine motor functions. In this situation, a right-handed shooter is often required, for safety, to use the weapon with the left hand or vise-versa. It is therefore desired to provide a way to improve the speed and efficiency of reloading and resuming operation of the firearm and other functions attendant to the securing and release of the firearm's bolt carrier group which is efficient for both right and left-handed users. Further, this improved function needs to operate without detracting from any other aspects of the firearm's use.
The conventional charging handle of an M16 type firearm may be used with either the left or right hand. By retracting the bolt carrier group to the rear using the handle, the operating lever of the bolt catch assembly may be depressed, thus locking the bolt to the rear. Another use of the charging handle is to release the bolt carrier group from the locked-back position. By retracting the bolt carrier group to its rearmost position, the mechanism holding the bolt can be moved out of the bolt's path to release the charging handle and allow the bolt carrier group to move into the battery position. The disadvantage of this operation is that the user is required to move out of the firing position, thereby delaying his response to an enemy action. Releasing the bolt using the operating lever of the bolt catch assembly eliminates the need to use the charging handle for this purpose, but would be awkward during left-handed operation of the firearm.
Therefore, a need exists for a device to retain and release the bolt carrier group which can be adapted to the receiver of the firearm to facilitate the true ambidextrous operation of the bolt catch assembly. This device needs to have operating levers present on both the right and left sides of the receiver. In addition, the placement of the bolt catch assembly should be both familiar to the user and not obstruct the function of the base firearm design.
In view of the foregoing, one object of the present invention is to overcome the difficulties encountered by left-handed shooters when operating conventionally designed automatic weapons having a lever for operating a bolt catch assembly only on the right side of the weapon.
Another object of the present invention is to provide a bolt catch assembly having two bolt catch operating levers, with the standard or primary lever on the left side of the firearm and a second or secondary lever on the right side of the firearm.
A further object of the present invention is to provide a bolt catch assembly in accordance with the preceding objects in which force independently applied to either operating lever causes both operating levers to rotate toward the receiver.
Yet a further object of the present invention is to provide a bolt catch assembly in accordance with the preceding objects in which each lever has a primary contact surface and a secondary contact surface, force applied to either of the primary contact surfaces moving both levers which, in turn, moves a bolt engagement leg of the bolt catch assembly to an unlocked or static position in which the bolt carrier group can move into battery position.
Still another object of the present invention is to provide a bolt catch assembly in accordance with the preceding objects in which force applied to either of the secondary contact surfaces, after the bolt has been manually withdrawn rearwardly with respect to the receiver, moves both levers which, in turn, moves the bolt engagement leg of the bolt catch assembly to a locked or displaced position in which the bolt carrier group is held in the locked-back position.
A further object of the present invention is to provide a bolt catch assembly in accordance with the preceding objects in which the placement of the bolt catch operating levers is familiar to the user of the host firearm and does not impede standard operation of the firearm.
It is yet another object of the invention to provide a bolt catch assembly that is not complex in structure and which can be manufactured at reasonable cost but yet efficiently allows both right and left-handed shooters to operate the bolt catch assembly to both restrain and release the bolt carrier group without moving out of the firing position.
In accordance with these and other objects, the present invention is directed to a fast, efficient and ambidextrous bolt catch assembly that allows the user to both release and restrain the bolt carrier group of an autoloading firearm designed to receive detachable box magazines. The bolt catch assembly according to the present invention includes a primary bolt catch operating lever in the standard position found on the left side of the receiver, as in the M16 series of firearms, and a secondary bolt catch operating lever, in operational contact with the primary lever, placed on the right side of the receiver above the trigger group. The primary bolt catch operating lever includes a pivotally movable body having a bolt engagement leg and an engagement surface. The secondary bolt catch operating lever is connected via a rotating shaft to a lift arm with a coupling element complementary to the engagement surface. The coupling element is operationally coupled with the engagement surface on the body of the primary bolt catch operating lever so that movement of either operating lever serves to vertically displace the bolt engagement leg of the bolt catch assembly between the locked or displaced position, and the unlocked or static position.
Each bolt catch operating lever has a primary contact surface and a secondary contact surface. The location of the contact surfaces is such that they may be easily pushed towards the receiver of the host firearm. Pressing on either the secondary contact surface of the primary bolt catch operating lever or the secondary contact surface of the secondary bolt catch operating lever, when the bolt is in its rearmost position, causes the secondary contact surfaces of both levers to move, toward the receiver. This movement is translated into upward vertical displacement of the bolt engagement leg into the locked or displaced position. In the locked or displaced position, the bolt engagement leg is moved into the path of the bolt, preventing the bolt carrier group from moving forwardly into the battery position. Depressing either of the primary contact surfaces on the primary and secondary bolt operating levers moves the primary contact surfaces of both levers toward the receiver, which results in downward vertical displacement of the bolt engagement leg into the unlocked or static position. In the unlocked or static position, the engagement leg of the bolt catch assembly is taken out of the path of the bolt. With the bolt engagement leg no longer obstructing the path of the bolt, the bolt carrier group returns to its forward or battery position under spring compression.
In addition to using the operating levers, the charging handle provided on the host firearm may still be used to release the bolt carrier group. By fully retracting the bolt to the rear, resistance provided by the bolt to hold the engagement leg in the locked position is removed, thus allowing the operating levers of the bolt catch assembly to move back into the static position.
These together with other functions and advantages which will become subsequently apparent reside in the details of construction and operation as more fully hereinafter described and claimed, reference being had to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout.
In order that the manner in which the above recited and other novel features and advantages of the invention are obtained will be readily understood, a preferred embodiment of the invention briefly described above will be rendered by reference to a specific embodiment thereof which is illustrated in the accompanying drawings. It is expressly understood that these drawings depict only a preferred embodiment of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings.
Although only one preferred embodiment of the invention is explained in detail, it is to be understood that the embodiment is given by way of illustration only. It is not intended that the invention be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. Also, in describing the preferred embodiments, specific terminology will be resorted to for the sake of clarity. It is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
The present invention utilizes a number of physical principles to enhance the motion of parts in a firearm. The manner in which the present invention utilizes these principles to provide a modular ambidextrously operated firearm will be shown and described in greater detail with reference to
For this application, the phrases “connected to,” “coupled to,” and “in communication with”, if and when used, refer to any form of interaction between two or more elements, including mechanical. The phrase “attached to”, if and when used, refers to a form of mechanical coupling that restricts relative translation or rotation between the attached objects. The phrases “pivotally attached to” and “slidably attached to”, if and when used, refer to forms of mechanical coupling that permit relative rotation or relative translation, respectively, while restricting other relative motion.
The phrase “attached directly to”, if and when used, refers to a form of attachment by which the attached items are either in direct contact, or are only separated by a single fastener, adhesive, or other attachment mechanism. The term “abutting”, if and when used, refers to items that are in direct physical contact with each other, although the items may not be attached together. The phrase “in operational contact”, if and when used, means that the items come into contact during the normal operation of the device.
In addition, uses of the terms “bolt” and “bolt carrier group” are used interchangeably in many instances and are not intended to be exclusive in their reference to the bolt alone or to the bolt in combination with the bolt carrier and associated components unless so stated.
In operation, the shooter holds the grip 6 in one hand while pressing the buttstock 5 against his/her shoulder. The buttstock 5 and the grip 6 are mounted to the lower receiver 14. Generally, the lower receiver 14 and the upper receiver 17 are configured to receive the bolt carrier group 8 with the bolt 13 and bolt carrier 15 as an assembly, and the barrel 7.
During normal operation, the bolt strips a cartridge from the magazine 16 and moves the cartridge forward into the barrel 7 as the bolt carrier group 8 moves towards a battery position. When the bolt carrier group 8 is in the battery position, the user can activate a trigger 8, which is mounted to the lower receiver 14. The trigger releases a cocked hammer (not shown) and the hammer strikes a firing pin (not shown). The firing pin moves forward and ignites the loaded cartridge. As a result, the bullet contained in the cartridge is released to travel down the barrel 7 and exit at the muzzle 18. In automatic and semi-automatic firearms, the resulting explosion causes the bolt carrier group 8 to be moved in a backward direction opposite the direction of bullet travel. This backward movement of the bolt carrier ejects the spent cartridge. An action spring 75 (see
The body 25 is pivotally mounted to the receiver 14 by a pin 27a that extends through an opening 26 in the primary bolt catch operating lever 20 and through a pair of gudgeons 28 (see
As a result of the pivotal mounting of the body 25 on pin 27a, the bolt engagement leg 24 is vertically translatable between a static or unlocked position and a displaced or locked position relative to the bolt 13, as will be described more fully hereinafter. Concurrently, the bolt stop pin 29 also moves vertically with the pivoting of the body 25 to engage the cartridge follower 45 (see
When the bolt catch assembly 10 is assembled, the engagement surface 23 on the body 25 is in abutting operational contact with the coupling element 35 on the lift arm 34 so as to be pivotally coupled thereto. The lift arm 34 is coupled to the rotating shaft 33 by a roll pin 41. The secondary bolt catch operating lever 30 is secured by a pin 27b to the rotating shaft 33 which is received by a through hole 43 in the lower receiver 14. The rotating shaft 33 has various openings along its length to facilitate the coupling of the shaft 33 to the other connected components.
As shown, the body 25 and primary bolt catch operating lever 20 are mounted on the left side of the lower receiver 14. The secondary bolt catch operating lever 30 and the lift arm 34 are mounted on the right side of the lower receiver 14. Thus, in a preferred embodiment of the present invention, the bolt catch assembly 10 may be operated from either side of the receiver 14 and thus on both sides of the firearm, by using either the primary bolt catch operating lever 20 on the left side or the secondary bolt catch operating lever 30 on the right side. Hence, the inclusion of the two bolt catch operating levers 20, 30 provides a receiver 14 suited for ambidextrous use and having enhanced ergonomics.
The primary bolt catch operating lever 20 includes a primary contact surface 21 and a secondary contact surface 22. Similarly, the secondary bolt catch operating lever 30 includes a primary contact surface 31 and a secondary contact surface 32. When the bolt catch assembly 10 is assembled, pressure is applied against the back side of the secondary contact surface 22 on the primary bolt catch operating lever 20 by the spring 38 and detent 39. This pressure biases the bolt engagement leg 24 of the body 25 to the static or unlocked position, i.e., to the position in which the bolt engagement leg 24 does not interfere with forward movement of the bolt 13 to the battery position.
More particularly, the bolt stop pin 29, bolt engagement leg 24, engagement surface 23, and primary bolt catch operating lever 20 of the body 25 are all formed as an integral unit that is pivotally movable on an axis, defined by pin 27a, that is generally parallel with the longitudinal axis of the receiver. Therefore, in response to inward pressure applied to the primary contact surface of the primary bolt catch operating lever 20, the primary contact surface 21 moves toward the receiver and the bolt engagement leg 24, bolt stop pin 29, and engagement surface 23 are rotated downwardly. This downward vertical displacement of the bolt engagement leg 24 relative to the face 9 of the bolt 13 places the bolt engagement leg 24 in the static or unlocked position in which the bolt engagement leg is not in the path of the bolt's forward movement.
As already noted, the engagement surface 23 on the body also rotates downwardly concurrently with the downward rotation of the bolt engagement leg 24. This movement of the engagement surface 23 is transferred to the coupling element 35 on the lift arm 34 due to the operational relationship between the engagement surface and the coupling element. As a result, the coupling element 35 is displaced downwardly as the lift arm rotates, counterclockwise with respect to the view shown in
While the engagement surface 23 on the body is shown in
With the bolt engagement leg 24 in the static or unlocked position, the spring 38 and detent 39 bias the bolt catch assembly 10 to remain in the static or unlocked position. The displaced or locked position of the bolt engagement leg 24 is only desired when the bolt carrier group is to be locked-back, such as for reloading or clearing of the chamber.
As is known in the art, when the last cartridge that was contained in the magazine 16 has been discharged from a semi-automatic weapon, the cartridge follower 45 (see
As previously discussed, the action spring 75 biasing the bolt carrier 15 towards the battery position compresses as the bolt carrier 15 moves towards the fully recoiled position. Once the bolt carrier 15 reaches the fully recoiled position, the compressed operating spring applies force to direct the bolt carrier 15 back towards the battery position if the bolt engagement leg 24 is in the static or unlocked position, i.e., if the magazine is not yet empty.
As just described, in the blocking position, the bolt engagement leg 24 prevents forward movement of the bolt 13, holding it in the locked-back position (see
According to the present invention, therefore, a firearm including a receiver and an ambidextrously operated bolt catch assembly 10 is provided. In such a firearm, after removing an empty magazine 16 and inserting a loaded magazine, the ambidextrously operated bolt catch assembly can be actuated by depressing either the primary or secondary bolt catch operating levers 20, 30, so as to allow the bolt carrier group to return to battery position, stripping a cartridge from the magazine 16 in the process. Thus, the firearm according to the present invention is suited for ambidextrous release and restraint of the bolt in a manner which would be familiar to users of the M16 family of firearms.
The foregoing descriptions and drawings should be considered as illustrative only of the principles of the invention. The invention may be configured in a variety of shapes and sizes and is not limited by the dimensions of the preferred embodiment. Numerous applications of the present invention will readily occur to those skilled in the art. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4429479 | Johnson | Feb 1984 | A |
4615134 | Beretta | Oct 1986 | A |
5412895 | Krieger | May 1995 | A |
5499569 | Schuetz | Mar 1996 | A |
5519954 | Garrett | May 1996 | A |
6508158 | Murello | Jan 2003 | B2 |
6763755 | Johnson | Jul 2004 | B2 |
6851346 | Herring | Feb 2005 | B1 |
6959509 | Vais | Nov 2005 | B2 |
7219462 | Finn | May 2007 | B2 |
7240600 | Bordson | Jul 2007 | B1 |
7363740 | Kincel | Apr 2008 | B2 |
7661219 | Knight, Jr. | Feb 2010 | B1 |
8261652 | Findlay | Sep 2012 | B2 |
8359966 | Brotherton | Jan 2013 | B1 |
8572875 | Sisgold | Nov 2013 | B2 |
20060123683 | Garrett et al. | Jun 2006 | A1 |
20090031605 | Robinson | Feb 2009 | A1 |
20100275485 | Findlay | Nov 2010 | A1 |
20150323271 | McGinty | Nov 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20120167424 A1 | Jul 2012 | US |