The presently disclosed embodiments are generally related to devices configured to detect a hazard condition and sound an alarm, such as smoke detectors and carbon monoxide detectors, and more particularly, to an ambient light sensor and a method of using the same.
Hazard detectors, such as and not limited to smoke alarms and carbon monoxide detectors, are utilized for detecting and warning the inhabitants of a home or other occupied locations of the existence of a hazardous condition. While the detectors are very effective at notifying individuals of the possible existence of the hazardous condition, certain types of other status indications may often be very annoying to a user. These alarms indications may be triggered, for example, by a low battery (i.e., the “low battery chirp”). The hazard detector may also feature a display that illuminates a status of the device. The intensity of the display may also create an unwanted condition for the user.
Accordingly, there exists a need for an efficient, effective and value added hazard detector to better control these unwanted conditions to increase the satisfaction of the user.
In one aspect, a hazard detector is provided. The hazard detector includes a processor in communication with a memory disposed within a housing. One or more programs are stored in memory and the programs are configured to be executed by the processor to perform the method described herein.
The hazard detector further includes a light detector in communication with the processor. The light detector is configured to measure an intensity of received light. The hazard detector further includes a signaling device in communication with the processor. The signaling device is configured to provide an audible and/or visual signal.
In one aspect, the method includes the step of operating the light detector to sample a light intensity within an enclosed space a plurality of times to produce a plurality of light intensity measurements.
The method further includes the step of operating the processor to determine a light intensity value for a first pre-determined interval, wherein the light intensity value is based upon the plurality of light intensity measurements. In an embodiment, the light intensity value comprises a running average of the plurality of light intensity measurements. In one embodiment, the first pre-determined interval is adjustable. In another embodiment, the first pre-determined interval is less than or equal to approximately one hour.
In an embodiment, the method further includes the step of operating the processor to record each light intensity value in the memory. The method further includes the step of operating the processor to decide whether a night cycle can be determined based on the light intensity values. In an embodiment, creating a night cycle includes the step of determining whether a difference between a highest light intensity value (“HLIV”) and a lowest light intensity value (“LLIV”) is greater than or equal to a minimum light intensity threshold. In an embodiment, the minimum light threshold is adjustable. In another embodiment, the minimum light threshold is less than or equal to a light detector output of approximately 100 millivolts (mV).
If the difference between the HLIV and the LLIV is greater than the minimum light threshold, the method proceeds to the step of determining a start time and an end time of the night cycle based on a darkness threshold. In one embodiment, the darkness threshold is calculated as the LLIV plus a percentage of the difference between the highest light intensity value HLIV and the LLIV. If the difference between the HLIV and the LLIV is less than the minimum light threshold, the method ends and a night cycle may not be determined.
The step of determining a start time and an end time of the night cycle based on a darkness threshold includes the step of determining whether a difference between the end time and the start time is less than or equal to a pre-determined darkness duration. In one embodiment, the pre-determined darkness duration is adjustable. In another embodiment, the pre-determined darkness duration is greater than or equal to approximately 6 continuous hours.
If the difference between the end time and the start time is greater than the darkness duration, the method proceeds to the step of determining whether a light period occurs during the night cycle. In an embodiment, the light period includes a period of time during which a light intensity value is greater than the darkness threshold. If a light period occurs during a night cycle, the method proceeds to the step of determining whether the light period is less than or equal to a pre-determined light period threshold. In an embodiment, the pre-determined light period threshold is adjustable. In another embodiment, the pre-determined light period threshold is less than or equal to approximately 3 continuous hours. If the light period is less or equal to than the pre-determined light period threshold, the light period is filtered out in the determination of the night cycle. If the light period is greater than the pre-determined light period threshold, the light period is not filtered out in the determination of the night cycle.
In an embodiment, the method further includes the step of operating the processor to adjust an operation of a signaling device during the night cycle. In an embodiment, the signaling device comprises at least one of a digital display, a speaker, and a night light
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
The hazard detector 10 further includes a light detector 18 in communication with the processor 12. The light detector 18 is configured to measure an intensity of received light, for example, ambient light to name one non-limiting example. The hazard detector 10 further includes a signaling device 20 in communication with the processor 12. The signaling device 20 is configured to provide an audible and/or visual signal. For example, the signaling device 20 may include a digital display 20A, speaker 20B, and a night light 20C to name a few non-limiting examples.
The method 100 further includes step 104 of operating the processor 12 to determine a light intensity value for a first pre-determined interval, wherein the light intensity value is based upon the plurality of light intensity measurements. In an embodiment, the light intensity value comprises a running average of the plurality of light intensity measurements. In an embodiment, the first pre-determined interval is adjustable. In another embodiment, the first pre-determined interval is less than or equal to approximately one hour. It will be appreciated that the first pre-determined interval may be greater than one hour. As an example, the processor 12 takes each light intensity measurement, taken every 5 seconds, and computes the running average of the measurement over the course of one hour. Steps 102 and 104 are repeated a plurality of times to produce sufficient data for the determination of a night cycle.
In an embodiment, the method 100 further includes step 106 of operating the processor 12 to record each light intensity value in the memory 14. For example, the current average light intensity value is recorded into a data structure 22, stored in memory 14, every hour. In the illustrated structure 22, shown in
The method 100 further includes step 108 of operating the processor 12 to decide whether a night cycle can be determined based on the light intensity values. In an embodiment, creating a night cycle includes the step 110 of determining whether a difference between a highest light intensity value (HLIV) and a lowest light intensity value (LLIV) is greater than or equal to a minimum light threshold. In an embodiment, the minimum light threshold is adjustable. In another embodiment, the minimum light threshold value is less than or equal to a light detector 18 output of approximately 100 millivolts (mV). It will be appreciated that the minimum light threshold may be greater than a light detector 18 output of 100 millivolts.
For example, after data has been gathered for at least 24 hours, the data within structure 22 is analyzed. The processor 12 determines the difference between the highest light intensity value and the lowest light intensity value, as illustrated in the embodiment of
Darkness Threshold=[N×(HLIV−LLIV)]+LLIV, wherein 0≦N≦1.
It will be appreciated that the darkness threshold may be determined by any suitable difference between the highest and lowest light intensity value as suitable for the device 10. If the delta between the highest light intensity and the lowest light intensity value is less than the minimum light threshold, the method ends at step 122 and a night cycle may not be determined.
Step 112 in this embodiment includes the step 114 of determining whether the difference between the end time and the start time is less than or equal to a predetermined darkness duration. In one embodiment, the predetermined darkness duration is adjustable. In another embodiment, the predetermined darkness threshold is greater than or equal to approximately 6 continuous hours. It will be appreciated that the predetermined darkness duration may be less than 6 continuous hours.
For example, with continued reference to
The processor 12 analyzes the next instance where the light intensity value is below 495 mV. The processor 12 determines a second start time at approximately 10:00 pm and a second end time at approximately 6:00 am. As a result, the difference between the second end time and the second start time (approximately 8 continuous hours) is greater than the predetermined darkness duration (6 continuous hours). As such, the method 100 may continue in establishing the night cycle. It will be appreciated that if the difference between the first end time and the first start time is less than the darkness duration for any given twenty four hour sample, the processor 12 cannot determine a night cycle, and the method ends at step 122.
If the difference between the end time and the start time is greater than the darkness duration, the method proceeds to step 116 of determining whether a light period occurs during the night cycle. In an embodiment, the light period includes a duration of time where a light intensity value is greater than the darkness threshold. For example, with continued reference to
If a light period occurs during a night cycle, the method proceeds to step 118 of determining whether the light period is less than or equal to a predetermined light period threshold. In an embodiment, the predetermined light period threshold is adjustable. In another embodiment, the predetermined less than or equal to approximately 3 continuous hours. It will be appreciated that the pre-determined light period may be greater than approximately 3 continuous hours.
If the light period is less than or equal to the pre-determined light period threshold (i.e., a light period does not occur), the light period is filtered out in the determination of the night cycle. If the light period is greater than the pre-determined light period threshold, the light period is not filtered out in the determination of the night cycle. For example, with continued reference to
In an embodiment, the method 100 further includes the step 120 of operating the processor 12 to adjust an operation of at least one of the signaling devices 20 during the night cycle. For example, the processor 12 may adjust the brightness of the display 20A, reduce the volume of a low battery chirp in signaling device 20B, and/or reduce the brightness of a night light 20C to name a few non-limiting examples.
It will therefore be appreciated that the hazard detector 10 operates to measure a light source to determine a night cycle, and to alter the operation of certain signals to reduce unwanted conditions for the user.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
The present application is related to, and claims the priority benefit of, U.S. Provisional Patent Application Ser. No. 62/121,802 filed Feb. 27, 2015, the contents of which are hereby incorporated in their entirety into the present disclosure.
Number | Date | Country | |
---|---|---|---|
62121802 | Feb 2015 | US |