Ambulances are widely used for transporting sick or injured individuals. Ambulances carry a variety of specialized equipment to facilitate treatment of such individuals as well as other devices commonly found on most motor vehicles. These devices may be used by the ambulance operators to care for the patient and/or to drive the ambulance. Herein, the term “operator” is used to encompass not only the driver of an ambulance, but also other personnel that may be involved with the treatment of sick or injured individuals.
The specialized equipment carried on board an ambulance may include such equipment as oxygen supplies, defibrillators, temperature control systems (e.g., heating and air conditioning systems), various specialized lighting systems, and so on. In some cases, other devices are now being placed on board ambulances that make additional information available to an operator regarding operation of the ambulance. For example, in some cases, video equipment is being placed on ambulances to monitor the patient compartment and/or to monitor the vehicle exterior (e.g., to assist maneuvering of the ambulance by providing the vehicle operator with one or more additional views of the vehicle's surroundings).
It is desirable for an operator of an ambulance to be able to monitor the equipment. For example, the operator may monitor the vehicle systems to determine whether all of the appropriate systems on the vehicle are fully operational, to determine vehicle status, and/or to determine patient status. As more devices and systems are placed on-board ambulances, improvements are desirable to make monitoring the information provided by such equipment, as well as controlling such equipment, easier for an operator of the ambulance.
Ambulances are also often left unattended at the scene of an emergency. In these situations, the vehicle is typically left with the engine running. This is done to allow certain vehicle systems to continue running and maintaining the appropriate state while the vehicle is unattended. Currently in the industry, ambulances are sometimes provided with an anti-theft feature that protects the ambulance while the ambulance is running unattended. When the vehicle operator leaves the ambulance unattended, the operator may remove the key and the ambulance will remain running. If the vehicle is shifted out of the park position, the vehicle shuts off until the vehicle operator re-inserts the ignition key. In many instances, the anti-theft feature is implemented to shut off the vehicle ignition and all the systems. Improvements in this arrangement would also be desirable.
According to a first preferred embodiment, an ambulance comprises a video camera, a plurality of input devices and a plurality of output devices, a plurality of microprocessor-based interface modules, a communication network, and an user interface including a display. The plurality of interface modules are interconnected to each other by way of the communication network. Each of the plurality of interface modules is coupled to respective ones of the plurality of input devices and the plurality of output devices to control operation of the plurality of output devices based on input status information from the plurality of inputs devices. The display is configured to display I/O status information regarding the plurality of input devices and the plurality of output devices, and is configured to display video images provided by the video camera.
According to a second preferred embodiment, a control system for an ambulance comprises a power source, a power transmission link, a plurality of input devices, a plurality of output devices, a plurality of microprocessor-based interface modules, and a communication network. The plurality of interface modules are coupled to the power source by way of the power transmission link and are interconnected to each other by way of the communication network. Each of the plurality of interface modules being coupled to respective ones of the plurality of input devices and the plurality of output devices. The control system is configured to disable operation of the ambulance until proper vehicle authorization is provided. The control system is configured to allow engine of the ambulance to remain running without an ignition key being inserted, and to disable the ambulance when an operator input is received without the ignition key being reinserted.
The invention will be more readily understood by reference to the following description taken with the accompanying drawings, in which:
Referring to
Control system 12 may be configured in a number of different ways. For example, control system 12 may be configured to include multiple control systems that are coupled together. Also, control system 12 may be configured to include multiple nested control systems so that control system 12 includes one or more sub-control systems that form parts of the overall control system 12. Thus, it should be understood that the particular configuration of control system 12 shown in
Control system 12 can be configured to monitor a number of systems used to provide emergency medical care within the ambulance 10. Examples of these systems may include the oxygen delivery system, the climate control system, power to a defibrillator, etc. The I/O devices 30 and 40 may include I/O devices associated with these systems (e.g., a pressure sensor to measure oxygen level, switches such as relays to control operation of the heating/air conditioning system, switches to control power to a defibrillator, temperature sensors to measure indoor and outdoor temperatures, one or more input devices for an operator to provide information regarding patient status (green, yellow, red) to the system 12, and so on). Control system 12 may be used to control these systems from the user interface 14. The advantages of control system 12, which are described using the example of the ambulance, may equally apply to other types of vehicles.
In an exemplary embodiment, interface modules 20 are microprocessor-based and are connected to and communicate with input and output devices 30 and 40. In general, in order to minimize wiring, the interface modules 20 are placed close to input devices 30, from which status information is received, and output devices 40 that are controlled. In one embodiment, interface modules 20 are coupled to input devices 30 and output devices 40 via dedicated communication links, which may simply be a hardwired link between an interface module 20 and an input device 30 or an output device 40. In an alternative embodiment, an input device 30 or an output device 40 may be coupled directly to communication network 50 and configured to communicate directly over communication network 50 to all of the interface modules (e.g., the status of the device is broadcast over the network), one interface module (e.g., the interface module requested information from the particular input device 30 or output device 40), or a subset of interface modules on the network.
In an exemplary embodiment, interface modules 20 are identical both in software, hardware, and physical dimensions. Thus, interface modules 20 are physically and functionally interchangeable because they are capable of being plugged in at any slot on communication network 50, and are capable of performing any functions that are required at that slot. In an alternative embodiment, interface modules 20 may be different in software, hardware, and/or physical dimensions, for example being optimized into a limited number of different configurations (e.g., with different interface modules being configured to connect to different types of I/O devices).
In an exemplary embodiment, each of the interface modules 20 stores I/O status information for all of the other interface modules 20. In this configuration, each interface module has total system awareness. As a result, each interface module 20 processes its own inputs and outputs based on the I/O status information. The I/O status information may be provided to interface modules 20 in a number of ways. For example, in an exemplary embodiment, each of interface modules 20 may be configured to broadcast the status of input devices 30 over communication network 50 to the other interface modules 20 at predetermined intervals. In another exemplary embodiment, interface modules 20 may be configured to simultaneously or sequentially broadcast the status information to the other interface modules 20. In another exemplary embodiment, interface modules 20 may be configured to broadcast the status information in response to a change in the state of an input device 30. This lessens the amount of traffic over communication network 50. In another exemplary embodiment, interface modules 20 may be configured to regularly transmit status information to a central controller which executes a control program to control operations of the interface modules 20.
In another exemplary embodiment, as mentioned previously, some of the input and/or output devices 30 or 40 may be coupled directly to communication network 50. In this configuration, the input devices 30 can broadcast status information across network 50 to interface modules 20. Input and/or output devices 30 or 40 coupled directly to communication network 50 typically do not store the status information broadcast across the network for other I/O devices. Thus, one or more of interface modules 20 may be configured to control input and/or output devices 30 or 40 coupled directly to communication network 50. However, in an alternative embodiment, input and/or output devices 30 or 40 may be configured to store the status information broadcast by the other interface modules 20 and/or other devices on communication network 50.
Communication network 50 may be implemented using an appropriate network protocol. In an exemplary embodiment, communication network 50 uses a network protocol that is in compliance with the Society of Automotive Engineers (SAE) J1708/1587 and/or J1939 standards. However, the particular network protocol that is utilized is not critical.
The transmission medium for communication network 50 may be implemented using copper or fiber optic cable or other media. Communication network 50 may be configured in a number of ways. For example, in an exemplary embodiment, network 50 may be a single network. In another exemplary embodiment, network 50 may be comprised of multiple networks coupled together.
Power is provided to interface modules 20 from a power source by way of a power transmission link. The power transmission link may comprise, for example, a power line that is routed throughout ambulance 10 to each of interface modules 20. Interface modules 20 then distribute the power to output devices 40. This type of distributed power transmission reduces the amount of wiring needed for ambulance 10.
Input devices 30 and output devices 40 are generally located on the chassis of ambulance 10. In an exemplary embodiment, input devices 30 include devices that provide inputs used to control output devices 40. Also, input devices 30 may include devices that provide status information pertaining to vehicle parameters that are not used to control output devices 40 but may be used for other purposes (e.g., diagnosing faults in ambulance 10, generating reports regarding utilization of ambulance 10, inform operator of status of a device, etc.).
The various blocks depicting interface modules 20, input devices 30, output devices 40, user interface 14, etc., may be implemented as physically separate units, physically integrated units, or a combination of both. For example, interface module 20 and user interface 14 may be physically combined in one housing that performs the same function of both interface module 20 and user interface 14. In another embodiment, a particular input device 30 or output device 40 may be integrated physically with an interface module 20 so that the resulting combination functions in a manner that is similar to a configuration where the devices are separate yet still coupled together.
The user interface 14 shown in
Display 16 is used to communicate, and in particular to display, information to the operator. Display 16 may be one of a number of various types of displays such as an LCD display, alpha-numeric display, touch screen display, SVGA display and so on. In one embodiment, as described in greater detail, the display 16 is used to display information from the control system 12. The display 16 may also comprise a heads-up display to allow information to be projected in front of a driver of the ambulance 10 (e.g., in a view space which allows the driver's eyes to focus at a location in traffic or otherwise well in front of the vehicle) so that the driver may view the information in the display while also driving the ambulance 10. The display 16 may also comprise a display which is mounted on the steering wheel or column of the ambulance 10. In another embodiment, also as described in greater detail, the display 16 is used to display information from the control system 12 as well as video information from one or more video cameras 45a and 45b mounted on the ambulance.
In an exemplary embodiment, user interface 14 is semi-permanently mounted within ambulance 10. By semi-permanently mounted, it is meant that the user interface 14 is mounted within the ambulance 10 in a manner that is sufficiently rugged to withstand normal operation of the vehicle for extended periods of time (at least days or weeks) and still remain operational, while still allowing the user interface 14 to be removed (e.g., for servicing of the intelligent display module) without significantly degrading the structural integrity of the mounting structure employed to mount user interface 14 to the remainder of ambulance 10. In one embodiment, the user interface 14 may remain in communication with the control system 12 even after it is removed from the operator compartment (e.g., via a blue tooth link), to allow an operator to manipulate I/O states while moving around and about the ambulance 10 (e.g., to diagnose malfunctions). User interface 14 is desirably mounted in an operator compartment of ambulance 10, for example, in a recessed compartment within the operator compartment or on an operator panel provided on the dashboard. Also, while
Additional control systems 24 and 28 may also be included as part of control system 12. In an exemplary embodiment depicted in
By connecting control systems 24 and 28 to control system 12, an array of additional input and output status information becomes available. For example, for the engine, this allows the control system 12 to obtain I/O status information pertaining to engine speed, engine hours, oil level, coolant level, fuel level, and so on. For the transmission, this allows control system 12 to obtain, for example, information pertaining to transmission temperature, transmission fluid level and/or transmission state (e.g., 1st gear, 2nd gear, and so on). Assuming that an off-the-shelf engine or transmission control system is used, the information that is available depends on the manufacturer of the system and the information that they have chosen to make available.
Referring now to
In one embodiment, the video cameras 45a and 45b are mounted on the ambulance 10 so as to obtain video information in different directions away from the ambulance. For example, one or more of the cameras 45a and 45b may be positioned to view a region in back of the ambulance 10. Video interface logic 47 may then be configured to alter a manner in which the video information from the video cameras 45a and 45b is displayed depending on a direction of movement of the ambulance. In practice, the video interface logic may be configured as part of the display 16 or as separate logic. In one embodiment, the display 16 includes multiple video inputs and is capable of selecting between the video inputs (e.g., to provide a picture-in-picture display). The selection may occur using either internal or external interface logic 47. If external logic is employed, a selector signal may be provided to the display 16 indicating which mode of operation has been selected.
For example, if the video interface logic 47 determines that the ambulance 10 is moving backward (e.g., if the transmission has been put into reverse), the video interface logic may automatically switch to the video information provided by the camera that is mounted at the back of the ambulance 10. Alternatively, the cameras 45a and 45b may be mounted on the side of the ambulance 10, and the video interface logic 47 may switch between the cameras 45a and 45b depending on a direction the vehicle is turning (as indicated, e.g., by an input from the steering wheel or other steering sensor). As yet another alternative, the video interface logic 47 may display video information from the video cameras 45a and 45b as a function of speed. For example, if the ambulance reaches a certain forward speed, then the video interface logic 47 may be configured to deactivate the video feed from the video cameras 45a and 45b (on the assumption that the operator will drive the ambulance normally).
The display 16 may display information from the cameras 45a-45c in a variety of formats. In one configuration, shown in
Although the display arrangement of
Also shown in
To facilitate diagnosing malfunctions in the control system 12 or other vehicle devices, the operator may also be provided with the ability to manipulate I/O states of the control system 12 by way of the user interface 14, e.g., to allow an operator to manually override an input device (e.g., a switch) and monitor resulting behavior of a corresponding output device to help pinpoint the source of a malfunction. User interface 14 may be configured to provide instructions to the operator for performing various operations such as diagnostics, calibrating vehicle parameters, etc. For example, display 16 may be used to prompt the operator to enter information using keypad 18, buttons or other input device. Generally speaking, any of the diagnostic and other functions described in App. No. 20030158638 may be incorporated.
With reference to
With reference to
Referring now to
As shown in
As shown in
In region 104, a button panel is provided which may be used by the operator to provide inputs to adjust operation of the control system 12. Buttons or other switches 112 are provided on the touchscreen which can be “pressed” by an operator to control operation of output devices connected to the interface modules 20. The buttons 112 may activate vehicle functions such as module lighting, security system, siren modes, etc. The operator may be provided with the ability to navigate between different menus or groups of buttons 112 corresponding to different vehicle functions, and make different menu selections (e.g., to control different output devices) based on which group of buttons is displayed. Although a generic “Button 1” label is depicted, it will be appreciated that different buttons 112 may be displayed with different labels that provide descriptions of the output device 40 (or other vehicle function) controlled by the respective button 112.
In region 106, information provided by dispatch system 92 is displayed. Dispatch system 92 may be used to provide an operator of ambulance 10 with information concerning a dispatch location to which the ambulance has been dispatched (e.g., address information), along with priority information and other information. The dispatch system 92 may also be used to track status, log times and dispatch-related events, and so on. The dispatch system 92 may also provide for data exchange with billing or tripsheet software.
In a region 108, map information is displayed. The map information may be generated based on pre-stored maps, information regarding a present location from GPS system 53, and information regarding a desired location from the dispatch system 92. The map information may show a preferred route from the present location to the desired location, as shown.
Other regions may also be displayed. For example, as shown in
With reference to
An advantage of implementing the theft-protection function through the control system 12 is that it allows operation of the theft protection function to be configured according to operator preferences. For example, the operator may be allowed to define a group of output devices 40 by way of the user interface 14 which are allowed to remain running when the ignition key is removed. Thus, a suitable sequence of screens as in
Additionally, assuming the user interface 14 is provided as a removable interface that is wirelessly connected to the ambulance 10, the operation of the ambulance 10 may be controlled remotely. The user interface 14 may transmit wireless signals to the remainder of the control system 12 at the ambulance 10 to control operation of the ambulance 10. For example, if it is taking longer than expected to perform initial on-site treatment of a patient before loading a patient into the ambulance, the user interface 14 may be used by the operator to cause the ignition of the ambulance 10 to turn off, and may subsequently be used to cause the ignition of the ambulance 10 to turn on again before the operator returns to the vehicle (e.g., to let the ambulance warm up before it is needed). This may be performed remotely without the operator having to return to the ambulance. Likewise, the operator may be allowed to use the user interface 14 remotely activate patient care or other equipment from the initial patient treatment site. Further, the status of critical systems may be checked remotely. For example, if it appears that oxygen will be needed, a check of the user interface 14 may be made to confirm that the oxygen supply is at an adequate level. Also, the control system 12 may be configured to activate an audible alert device and/or provide a visual indicator on the user interface 14 at step 108, to provide a remote indication to the operator that an unauthorized individual is attempting to steal the ambulance 10. Additional functions may be incorporated to allow wireless interaction with ambulance 10 and control system 12, for example, for remote diagnosis, system monitoring, and so on, including any/all of those described in App. No. 20030158638.
Referring now to
At step 140, motion is detected by the sensor. For example, motion may be detected when an operator opens the back door of the ambulance 10. At step 142, power is activated. For example, power to the interface modules 20 may be routed through the sensor, such that the sensor is capable of providing power to each of the interface modules 20 responsive to motion being detected. Once power from the sensor is received, each of the interface modules 20 may power up and begin normal operation. Alternatively, each of the interface modules 20 may be provided with the ability to receive a wakeup signal from the sensor, either directly via a hardwired input (in the case of the interface module 20 to which the sensor is connected) or indirectly (via communication network 50, in the case of the remaining interface modules).
At step 144, a timer is initialized. The timer then begins to count down until it is determined (step 146) that additional motion has been detected. At this point, the process returns to step 144 where the timer is reinitialized. If no motion is detected, the process proceeds to step 148 where it is determined whether time on the timer has expired. If time has expired, then the process proceeds to step 150, where power is deactivated. Thus, once the time delay is activated, the timer will only continue to count down if the motion sensor does not detect motion. Any time motion is detected, the timer resets, thus preventing the vehicle from deactivating while an operator is working in the cabin of the ambulance.
Steps 142-150 may be performed by each interface module 20 in the control system 12. Thus, when motion is detected when the control system 12 is in a “shut-down” state, the interface modules 20 may each power-up and then remain powered up until a predetermined amount of time (as defined by the timer) has elapsed without motion being detected. In an exemplary embodiment, the control system 12 may be configured such that some functions (e.g., interior cabin utility lighting) but not other functions (e.g., cab functions) are available. This arrangement further reduces power drain when an operator is performing routine maintenance tasks in the cabin of the ambulance.
Throughout the specification, numerous advantages of preferred embodiments have been identified. It will be understood of course that it is possible to employ the teachings herein so as to without necessarily achieving the same advantages. Additionally, although many features have been described in the context of an ambulance control system comprising multiple modules connected by a network, it will be appreciated that such features could also be implemented in the context of other hardware configurations. Further, although various figures depict a series of steps which are performed sequentially, the steps shown in such figures generally need not be performed in any particular order. For example, in practice, modular programming techniques are used and therefore some of the steps may be performed essentially simultaneously. Additionally, some steps shown may be performed repetitively with particular ones of the steps being performed more frequently than others. Alternatively, it may be desirable in some situations to perform steps in a different order than shown.
Many other changes and modifications may be made to the present invention without departing from the spirit thereof.
This application is a continuation-in-part of U.S. Ser. No. 10/326,862, filed Dec. 19, 2002, published Aug. 21, 2003 as App. No. 20030158638, which claims priority to U.S. Prov. Ser. No. 60/342,292, filed Dec. 21, 2001, each of which is hereby expressly incorporated by reference. This application also claims priority to U.S. Prov. Ser. No. 60/514,277, filed Oct. 24, 2003, also hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60514277 | Oct 2003 | US | |
60342292 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10326862 | Dec 2002 | US |
Child | 10972085 | Oct 2004 | US |