The present invention relates to ambulance cots, cot systems and methods of using the same. In particular, the present invention provides an ambulance cot comprising one or more control features (e.g., a notched ladder rail assembly (e.g., for preventing hot dropping of cot); a hand braking system; and/or team lift rails) and methods of using the same (e.g., to transport a subject (e.g., into and/or from an ambulance)).
An Emergency Medical Technician (EMT) is an emergency responder trained to provide medical services to the ill and injured. Once thought of as an “ambulance driver or attendant,” the modern EMT performs many more duties than in the past, and responds to many types of emergency calls, including medical emergencies, hazardous materials exposure, mass casualty/triage events, childbirth, patient transport, fires, rescues, injuries, trauma and other types of calls. EMTs may be part of an Emergency Medical Service (EMS), hospital-based EMS, fire department, or independent response team.
EMTs are trained in practical emergency medicine and skills that can be deployed within a rapid time frame. In general, EMT intervention aims to expedite the safe and timely transport of a subject (e.g., to a hospital for definitive medical care, or from one location to another).
EMTs generally utilize ambulance cots to transport subjects. Ambulance cots typically comprise a generally rectangular patient support frame (e.g., supporting a patient litter) located above a generally rectangular wheeled base frame, as well as one or more collapsible assemblies. Various ambulance cots are described in U.S. Pat. Nos. 4,097,941 to Merkel, 4,192,541 to Ferneau, 4,767,148 to Ferneau and Dunn, 5,537,700 to Way et al., and 5,575,026 to Way et al.
However, each one of these references suffers from one or more of the following disadvantages: they utilize a raising, lowering and/or height locking mechanism that allows an inadvertent, uncontrolled and rapid dropping of the patient litter (“hot dropping”); they lack means to assist a user of the cot to control cot speed (e.g., while descending a sloped surface); and/or they lack grab areas for a team of EMTs to distribute (e.g., equally) the weight of the cot (e.g., supporting the weight of a subject transported thereon) among each member of the team without exposing the members to dangerous pinch points (e.g., in which an EMT may pinch, cut and/or break fingers, hands, etc.). Thus, using a cot disclosed in the above identified references has in turn led to injuries to subjects transported on cots as well as to injuries to EMTs and other users of cots (e.g., musculoskeletal injuries) as a result of poor control of the cot (e.g., overexertion lifting and/or straining to raise/lower a subject and/or to regain control of a wayward cot).
To facilitate an understanding of the present invention, a number of terms and phrases are defined below:
As used herein, the term “subject” refers to a human or other vertebrate animal. It is intended that the term encompass patients.
As used herein, the term “amplifier” refers to a device that produces an electrical output that is a function of the corresponding electrical input parameter, and increases the magnitude of the input by means of energy drawn from an external source (i.e., it introduces gain). “Amplification” refers to the reproduction of an electrical signal by an electronic device, usually at an increased intensity. “Amplification means” refers to the use of an amplifier to amplify a signal. It is intended that the amplification means also includes means to process and/or filter the signal.
As used herein, the term “receiver” refers to the part of a system that converts transmitted waves into a desired form of output. The range of frequencies over which a receiver operates with a selected performance (i.e., a known level of sensitivity) is the “bandwidth” of the receiver.
As used herein, the term “transducer” refers to any device that converts a non-electrical parameter (e.g., sound, pressure or light), into electrical signals or vice versa.
The term “circuit” as used herein, refers to the complete path of an electric current.
As used herein, the term “resistor” refers to an electronic device that possesses resistance and is selected for this use. It is intended that the term encompass all types of resistors, including but not limited to, fixed-value or adjustable, carbon, wire-wound, and film resistors. The term “resistance” (R; ohm) refers to the tendency of a material to resist the passage of an electric current, and to convert electrical energy into heat energy.
The term “housing” refers to the structure encasing or enclosing at least one component (e.g., circuit board) of the devices of the present invention. In some embodiments, the housing comprises at least one hermetic feedthrough through which leads extend from the component inside the housing to a position outside the housing.
As used herein, the term “hermetically sealed” refers to a device or object that is sealed in a manner that liquids or gases located outside the device are prevented from entering the interior of the device, to at least some degree. “Completely hermetically sealed” refers to a device or object that is sealed in a manner such that no detectable liquid or gas located outside the device enters the interior of the device. It is intended that the sealing be accomplished by a variety of means, including but not limited to mechanical, glue or sealants, etc. In particularly preferred embodiments, the hermetically sealed device is made so that it is completely leak-proof (i.e., no liquid or gas is allowed to enter the interior of the device at all).
As used herein the term “processor” refers to a device that is able to read a program from a computer memory (e.g., ROM or other computer memory) and perform a set of steps according to the program. Processor may include non-algorithmic signal processing components (e.g., for analog signal processing).
As used herein, the terms “memory component,” “computer memory” and “computer memory device” refer to any storage media readable by a computer processor. Examples of computer memory include, but are not limited to, RAM, ROM, computer chips, digital video disc (DVDs), compact discs (CDs), hard disk drives (HDD), and magnetic tape.
As used herein, the term “computer readable medium” refers to any device or system for storing and providing information (e.g., data and instructions) to a computer processor. Examples of computer readable media include, but are not limited to, DVDs, CDs, hard disk drives, magnetic tape, flash memory, and servers for streaming media over networks.
As used herein the terms “multimedia information” and “media information” are used interchangeably to refer to information (e.g., digitized and analog information) encoding or representing audio, video, and/or text. Multimedia information may further carry information not corresponding to audio or video. Multimedia information may be transmitted from one location or device to a second location or device by methods including, but not limited to, electrical, optical, and satellite transmission, and the like.
As used herein, the term “Internet” refers to any collection of networks using standard protocols. For example, the term includes a collection of interconnected (public and/or private) networks that are linked together by a set of standard protocols (such as TCP/IP, HTTP, and FTP) to form a global, distributed network. While this term is intended to refer to what is now commonly known as the Internet, it is also intended to encompass variations that may be made in the future, including changes and additions to existing standard protocols or integration with other media (e.g., television, radio, etc). The term is also intended to encompass non-public networks such as private (e.g., corporate) Intranets.
As used herein the term “security protocol” refers to an electronic security system (e.g., hardware and/or software) to limit access to processor, memory, etc. to specific users authorized to access the processor. For example, a security protocol may comprise a software program that locks out one or more functions of a processor until a certain event occurs (e.g., until an appropriate password is entered, authorized radio-frequency identification (RFID) tag is presented, proper biometric match is made, or the like).
As used herein the term “resource manager” refers to a system that optimizes the performance of a processor or another system. For example a resource manager may be configured to monitor the performance of a processor or software application and manage data and processor allocation, perform component failure recoveries, optimize the receipt and transmission of data, and the like. In some embodiments, the resource manager comprises a software program provided on a computer system of the present invention.
As used herein the term “in electronic communication” refers to electrical devices (e.g., computers, processors, communications equipment) that are configured to communicate with one another through direct or indirect signaling. For example, a conference bridge that is connected to a processor through a cable or wire, such that information can pass between the conference bridge and the processor, are in electronic communication with one another. Likewise, a computer configured to transmit (e.g., through cables, wires, infrared signals, telephone lines, etc) information to another computer or device, is in electronic communication with the other computer or device.
As used herein the term “transmitting” refers to the movement of information (e.g., data) from one location to another (e.g., from one device to another) using any suitable means.
As used herein, the terms “hot drop,” “hot dropping” and the like refer to a rapid and/or uncontrolled lowering of a patient litter of an ambulance cot (e.g., supporting a subject). Hot dropping is one of the most common safety issues in emergency medicine. Generally, hot drops occur due to inadvertent squeezing of a handle and/or lever (e.g., used to release a mechanism used to maintain the height of the patient litter (e.g., release of a rod from a rail)). For example, hot drops occur when an emergency medical technician or other type of responder inadvertently squeezes a handle (e.g., that releases a mechanism used to maintain patient litter height) and one or more other persons are not ready (e.g., prepared) to bear the weight of the litter (e.g., thereby resulting in the litter rapidly and uncontrollably falling to a lower position (e.g., a completely collapsed cot position). For example, conventional cots have notches in ladder rail systems that run within a horizontal plane (e.g., with or without a tip). Thus, when a handle is inadvertently squeezed (e.g., when someone else is lifting up on a portion of the cot), conventional cots are unable to support the weight of the litter (e.g., supporting a subject) and the litter (e.g., and anything supported thereon) rapidly descends to the ground. Hot drops occur under all types of conditions including, but not limited to, when a cot is moved across a surface and when a cot is unloaded from an ambulance deck (e.g., anytime when the patient litter is in an elevated position).
The present invention relates to ambulance cots, cot systems and methods of using the same. In particular, the present invention provides an ambulance cot comprising one or more control features (e.g., a notched ladder rail assembly (e.g., for preventing hot dropping of cot); a hand braking system; and/or team lift rails) and methods of using the same (e.g., to transport a subject (e.g., into and/or from an ambulance)).
The following embodiments are provided by way of example and are not intended to limit the invention to these particular configurations. Numerous other applications and configurations will be appreciated by those of ordinary skill in the art.
An ambulance cot system of the present invention is depicted in the drawings. For example, an ambulance cot system, and components thereof, embodied by the invention is shown in
In some embodiments, the ambulance cot system comprises a pair of frames comprising a base frame 10 and a top frame 74 as shown, for example, in
The base frame 10 includes a foot-end cross tube 12 and a head-end cross tube 11, a plurality of base connectors 16 and base side rails 13. In some embodiments, the cross tubes 11, 12 are connected on each end to a base connector 16, as are the base side rails 13 (e.g., as shown in
As shown in
The present invention is not limited by the size of the wheels utilized. In some embodiments, the diameter of the wheels utilized is greater than 6.5 inches, although larger (e.g., greater than 6.7 inches, greater than 7 inches, greater than 7.5 inches, greater than 8 inches or larger) and smaller (e.g., diameter greater than 3 inches, greater than 4 inches, greater than 4.5 inches, greater than 5 inches, greater than 6 inches) are utilized. In some embodiments, the width of a wheel is 1-1.5 inches, 1.5-2.0 inches, 2.0-2.5 inches, 2.5-3.0 inches, 3.0-3.5 inches or larger. In some embodiments, the wheels utilized are 6.5 inches in diameter and are 2.25 inches wide. Wider wheels provide superior handling and maneuverability over rough terrain and also provide a lower initial push weight to get a cot moving (e.g., rolling). In some embodiments, cot wheels comprise a customizable trim ring on the sidewall of the wheel (e.g., that permit users (e.g., purchasers of a cot of the present invention)) to customize the cot (e.g., the wheels). In some embodiments, a user may utilize alpha numeric characters for customization (e.g., for departmental customization (e.g., City Fire, City EMS, etc.). The trim ring and/or alpha numeric characters may be any color (e.g., thereby permitting easy recognition of a cot (e.g., thereby reducing “cot confusion” in a mass casualty or multiple service response)). In some embodiments, the wheels comprise a camber (e.g., that provides the least amount of resistance to roll while providing sufficient surface contact for maximum traction). In some embodiments, the wheels comprise a tread pattern that permits maximum traction, water, snow and/or ice displacement, and/or low resistance. In some embodiments, the wheels are utilized in the context of an independent suspension and/or traction control system. In some embodiments, wheel rotation is utilized to generate electric power and/or to charge one or more batteries associated with the cot's use.
A caster fork 14 that is connected to a cot wheel 15 is designed to prevent bearing wear at the top of the caster where it connects and rotates about a base connector 16. In some embodiments, the top caster bearing is constructed of a material that allows maximum rotation and that prevents the bearing from cracking and disintegrating (e.g., TEFLON or other suitable material known to those of ordinary skill in the art).
As illustrated in
In some embodiments, a hand braking assembly provided herein works by transferring motion created by the user to the wheels, causing a temporary interference at the wheel. For example, in some embodiments, a user applies a force to a hand brake lever 208 (e.g., fastened to a component of a telescoping load rail assembly (e.g., as shown in
As shown in
In some embodiments, a hand brake lever cable 20 connects to a hand brake lever 208 via a cable stop 32 located in a pocket (e.g., as shown in
The hand brake lever cable 20 end mounts to the hand brake pull block 243 via cable stop 32, and two other hand brake lever cables 20 are attached via cable stops 32. The force and motion of the first hand brake lever cable 20 is transferred to the second two, allowing for two brakes to be used simultaneously. The second two hand brake lever cables are attached to the same hand brake cable mount via threaded ends. In some embodiments, the threaded ends allow for adjustment of the cable length to account for manufacturing conditions. At each wheel, the hand brake lever cable 20 pulls on the rotary ramped lifter 22 and rotates it approximately 90 degrees. The hand brake lever cable 20 is covered in a sheath that has a slotted metal end to allow for it to be located on the connector cover 17 with the hand brake cable locator 29. The hand brake cable locator 29 is riveted to the connector cover and has a tab that fits into the hand brake lever cable 20 locator slot. The hand brake lever cable 20 has a cable stop 32 on the end that is located in a pocket of the rotary ramped lifter 22. The rotary ramped lifter 22 has a slot to allow for clearance. The rotary ramped lifter 22 is housed in a connector cover 17 which constrains the outside diameter of the rotary ramped lifter 22 and a thrust washer 23 constrains the rotary ramped lifter 22. The thrust washer 23 is constrained by the base connector 16 and the connector cover 17. The thrust washer 23 is used to reduce friction of the bottom surface of the rotary ramped lifter 22. The linear ramped lifter 21 is constrained in the connector cover 17 by two tabs that do not allow for rotary motion, only linear. The cam surface of the rotary ramped lifter 22 pushes onto the linear ramped lifter 21 and moves it upwards (e.g., approximately 0.280 inches, or more) during braking. The rotary ramped lifter is biased such that the brake is relaxed (e.g., collapsed) by way of a torsion spring between linear ramped lifter and the rotary ramped lifter. The brake arm cable 25 is constrained in a pocket of the linear ramped lifter 21 by a cable stop 32 on its end, and is located at the center of the wheel caster rotation. This allows for the wheel to rotate freely without the cable becoming twisted. The brake arm cable 25 has a cable stop 32 on the other end that is constrained in a pocket of the brake arm 28. The rotary ramped lifter 22, linear ramped lifter 21, and the brake arm 28 have a sufficient hole and slot that allow for the cables to be attached to the part with the balls already swaged. The brake arm 28 pivots about a shoulder bolt. The brake arm 28 is biased such that the brake arm 28 is not in contact with the wheel unless a force is applied by the user by way of a conical spring 31 applying a force. In some embodiments, the brake arm 28 is located such that it drags against the wheel (e.g., rather than digging into the wheel (e.g., that could cause a sudden complete and un-safe stop)). A conical spring 31 is used to allow for a larger range of motion. The caster wheel nut 30 is used to fasten the base connector 16 to inner raceway of the ball bearing that is pressed into the caster bracket sleeve 27. The caster wheel nut 30 has a counter bore that allows for the retention of the conical spring 31.
The present invention also provides other types of hand braking systems. For example, in some embodiments, a braking system configuration (e.g., shown in
In some embodiments, the present invention provides a cot comprising wheels that are easily changeable in order to adapt to a particular environment. For example, in some embodiments, a cot user may change cot wheels to a nobbied wheel for an off pavement rescue/recovery (e.g., through a corn field or forest). In some embodiments, a cot utilizes skis and/or treads (e.g., an adapted tank tread) in place of wheels (e.g., for a snow environment). In some embodiments, a cot of the present invention comprises a locking mechanism that engages a pair of wheels (e.g., the wheels on the foot-end, and/or the wheels on the head-end) in a fixed, straight position. This type of fixing/locking provides a means to keep the wheels, and the cot, straight (e.g., allowing the cot to track better (e.g., precluding the cot from getting sideways (e.g., on inclines))). In some embodiments, because each caster fork 14 can move independently from the others, this allows a cot of the present invention to roll forward (e.g., down or up an incline) at a sideways angle. In some embodiments, a caster fork 14 comprises an integrated spring suspension system (e.g., reducing and/or preventing vibration artifacts, increasing patient/subject comfort, and/or participating in a traction control system).
As shown in
As illustrated in the figures (e.g.,
As further illustrated in
As shown in
In some embodiments, the present invention provides telescoping legs 50 comprising a outer leg 51 and an inner leg 55, wherein each of the outer legs 51 are fastened to an extruded portion comprising a pivot 52 (e.g., as shown in
The cross tube 56 serves multiple functions in a cot of the present invention. The cross tube 56 harmonizes the movement of each of the telescoping legs 50 (e.g., the outer legs 51 and inner legs 55) when the cot is raised or collapsed. Additionally, the cross tube 56 steadies the cot when the cot is raised or lowered (e.g., by absorbing energy associated with movement about a pivot point of the cot (e.g., that occurs when a cot is raised or collapsed)).
Thus, in some embodiments, the present invention provides a cot comprising a pair of fixed legs 40 and a pair of telescoping legs 50, wherein the outer legs 51 of the telescoping legs 50 and the fixed length legs 40 are fastened to each other via a cross tube 56 that is fastened to each of the extruded portions (41,52) of the fixed legs 40 and outer telescoping leg 51 (e.g., as shown in
In some embodiments, the present invention provides an ambulance cot comprising a telescoping leg assembly comprising a roller bearing system. In some embodiment, the telescoping leg assembly comprising a roller bearing system comprises both a main, outer rail/leg and an inner rail/leg. In some embodiments, the main rail comprises a top side and bottom side, wherein the top side of the main rail comprises an extruded portion fastened to the main rail that comprises a roller bearing, wherein the roller bearing rolls along the top side of the inner rail (e.g., when the telescoping leg assembly is expanded (e.g., when the cot is raised) or contracted (e.g., when a cot is lowered or collapsed). In some embodiments, a cot comprises two telescoping leg assemblies (e.g., with each comprising a roller bearing system) that are parallel to each other wherein the main rails of each telescoping leg assembly are fastened to each other via a cross tube that is irremovably attached to each of the extruded portions of the main rails. In some embodiments, a cot comprises four telescoping leg assemblies (e.g., with each comprising a roller bearing systems). In some embodiments, the inner rail comprises a top side and a bottom side, wherein one or more roller bearings (e.g., two, three, four or more) are connected to a top portion and one or more roller bearings (e.g., two, three, four or more) are connected to a bottom portion of the inner leg, wherein the roller bearings roll along the inside face of the top side of the main rail and the inside face of the bottom side of the main rail when the telescoping leg is expanded (e.g., when a cot is raised) or contracted (e.g., when a cot is lowered or collapsed). In some embodiments, the roller bearing system reduces frictional force of the telescoping legs (e.g., the frictional force associated with an increase or decrease in length of the telescoping legs (e.g., that occurs with raising or lowering of the cot)).
For example,
The present invention is not limited by the number of roller bearings 65 attached to the inner rail 55 (e.g., on a top portion or on a bottom portion of the inner rail 55). For example, an inner rail 55 may comprise two, three, four, five or more roller bearings 65 attached to a top portion of the inner rail 55 (e.g., that contact and/or roll along the inside face of the top side of the main rail 51) and/or two, three, four, five or more roller bearings 65 attached to a bottom portion of the inner rail 55 (e.g., that contact and/or roll along the inside face of the bottom side of the main rail 51). Similarly, the main rail 51 may comprise a plurality of roller bearings 63 attached to the extruded portion 62 of the main rail 51. For example, in addition to the roller bearing 63 attached to the extruded portion 62 of the main rail 51 (e.g., shown in
Thus, in some embodiments, the present invention provides a telescoping leg assembly 50 comprising a roller bearing system, wherein the system comprises a telescoping leg comprising a main rail and an inner rail, wherein the main rail comprises one or more roller bearings that contact and roll along the inner rail and wherein the inner rail comprises one or more roller bearings that contact and roll along the inside of the main rail (e.g., during telescoping movement of a portion of the inner rail from within the main rail to a position outside of the main rail). Thus, a roller bearing system of the present invention reduces frictional force associated with raising and/or lowering a patient on a cot (e.g., increasing or decreasing the length of the telescoping legs). In alternative embodiments, a roller bearing system of the present invention utilizes any rolling means known to one of skill in the art (e.g., a polymeric roller or the like (e.g., DELRIN roller (DUPONT, Wilmington, Del.))) that reduces and/or eliminates sliding friction associated with raising and/or lowering cot legs (e.g., telescoping legs).
As illustrated in
In some embodiments, a cot system of the present invention comprises a fixed leg assembly comprising a pair of fixed-length legs 40 (e.g., as illustrated in
In some embodiments, the configuration of a cot system shown in
In some embodiments, the present invention provides a cot that comprises a position of the pivot point that satisfies certain requirements. For example, in some embodiments, a cot comprising a fixed leg assembly (e.g., comprising one pair of legs of fixed length) and a telescoping leg assembly (e.g., comprising a pair of legs with variable length) comprises a litter seat height that, at the lowest cot position (e.g., a fully collapsed position), is around 15 inches from the ground. The present invention is not limited to this height. Indeed, at the lowest cot position (e.g., a fully collapsed position), several different litter seat heights are contemplated including, but not limited to, around 9 inches, 10 inches, 11 inches, 12 inches, 13 inches 14 inches, 16 inches, 17 inches, 18 inches, or heights below or above these amounts. In some embodiments, it is preferred to keep the litter as close to “level” as possible when to cot is at its lowest (e.g., most compact) position. Accordingly, in some embodiments, some degree of “negative slope” (e.g., head lower than feet) is tolerated (e.g., due to the combination of fixed and variable length legs). In some embodiments, the negative slope of the cot when the cot is at the lowest cot position (e.g., is fully collapsed) is around 2 degrees (although lower (e.g., 1 degree or less) and higher (e.g., 3 degrees 4 degrees, 5 degrees or more) are also contemplated). Similarly, in some embodiments, some degree of “positive slope” (e.g., head higher than feet) is tolerated (e.g., due to the combination of a fixed leg assembly and a telescoping leg assembly). In some embodiments, the positive slope of the cot when the cot is at a fully raised position (e.g., when a load wheel height of 36 inches or higher is achieved and/or when the litter seat height is about 43 inches and is around 12 degrees “positive slope”.
In some embodiments, when the litter is in a semi-raised position to a point at which the litter is approximately parallel to the ground, the litter seat height is about 28 inches high. In some embodiments, the litter seat height will be less than 28 inches (e.g., 27, 26, 25, 24 inches or less) or more than 28 inches (e.g., 29, 30, 31, 32 or more inches) when the litter is approximately parallel to the ground. In some embodiments, having the litter seat parallel to the ground at about 28 inches from the ground helps to facilitate the transfer of a patient (e.g., to and/or from a bed, to and/or from another cot, etc.).
Thus, in some embodiments, a cot system of the present invention comprises a pivot point that is fixed about an axis residing below (e.g., that is 0.125 inches to 0.25 inches below, 0.25-0.5 inches below, 0.5-1.0 inch below, 1.0-1.5 inches below, 1.5-2.0 inches below, more than two inches below) the centerline of the legs (e.g., fixed legs and/or telescoping legs). In some embodiments, placement of the pivot point location (e.g., fixed about an axis residing below the centerline of the legs) provides a sturdier, more robust, more energy efficient and therefore a more useful cot.
As shown in
In some embodiments, as shown in the figures, each ladder rail 510, comprises a plurality of orifices that serve a variety of purposes. For example, as shown in
Configuration of a cot as described herein permits a user(s) to raise or lower a cot (e.g., supporting subject) without the worry of a rapid dropping of the cot from an elevated height (e.g., a hot-drop of the patient litter from an elevated height supported by the legs (e.g., that are supported by the base frame that is supported on a surface (e.g., the ground)) to a more fully collapsed position (e.g., completely collapsed (e.g., in an uncontrolled manner)). Such drops have been associated with serious injury of both subjects being transported by cots as well as subjects using cots (e.g., EMTs, firefighters, etc,) to transfer others.
For example, a cot of the present invention can be raised or lowered (e.g., in order to raise or lower a subject supported by the cot). In some embodiments, a cot of the present invention is positioned into a raised position (e.g., as shown in
In some embodiments, the configuration of a cot of the present invention prevents accidental disengagement of the ladder rail assembly (e.g., of an unsupported cot (e.g., a cot that is not supported by forces other than components of the cot (e.g., by one or a plurality of users of the cot and/or an ambulance deck))). For example, if either of the release handles 518 or 516 (e.g., shown in
In some embodiments, a cot of the present invention can be positioned into a lower and/or collapsed position (e.g., as shown in
Thus, as described herein, in some embodiments, a ladder rail assembly of a cot of the present invention acts within a vertical plane (e.g., the plane of gravity). Thus, in some embodiments, a cot of the present invention provides a ladder rail assembly that benefits from the earth's gravitational force (e.g., gravity assists engagement of the ladder rod into a notch or pair of notches within a ladder rail assembly of the present invention (e.g., precluding a rapid, uncontrolled lowering (e.g., hot dropping) of the patient litter)). Thus, in contrast to conventional cots that utilize a ladder system that acts in a horizontal plane (e.g., wherein gravity does not assist rail engagement), a cot of the present invention provides the advantage of having a force responsible for rapid, uncontrolled lowering of a patient litter (e.g., hot-dropping) in conventional cots actually assist the anti-hot drop safety feature of a cot of the present invention. This safety feature provides significant safety benefits (e.g., not present in conventional cots) to both a use of the cot (e.g., an EMT) as well as to a subject transported on a cot.
Thus, in some embodiments, under conditions of repositioning the cot to a lower position that occur with one of the handles pulled and a deliberate, controlled motion (e.g., at a safe (e.g., slow) speed), the cot is positioned to a desired height by users of the cot. However, if a cot (e.g., supporting a subject) is accidently dropped (e.g., from either end or both ends (e.g., from a position above the lowest, fully collapsed position)), as the ladder rod 520 passes over the ramps 530 on the opposite side of the ladder rail orifice (e.g., see
In some embodiments, various components attach to the top frame 74. For example, the top frame 74 attaches to a telescoping load rail assembly comprising wheels (e.g., utilized for rolling the cot out of and into an ambulance deck). As shown in
As shown in
In some embodiments, the telescoping load-rail assembly is designed to shorten the overall length of the cot when being used in confined spaces (e.g., narrow hallways, small elevators, etc.). In some embodiments, the load-rail assembly is released by pulling back on a round tube (e.g., ½″ round tube) 193 that runs horizontally between the two load-wheel casting fork assemblies 191. This tube 193 is attached to a small connector assembly 192 at each end. These connector assemblies 192 run axially within the load-rails 184 and disengage, via cable assembly 195, a spring-loaded lock-pin assembly 201 mounted within each load-rail 184. The spring-loaded lock-pin assembly engages either of two holes placed within each of the outer main rails 74 of the litter assembly. One of these two holes provides the standard length position for the load-rails 184 and the other provides the shortened length. In some embodiments, more than two holes are placed in the outer main rails 74 in order to provide greater than two lengths at which the telescoping load rail assembly may be positioned. In some embodiments, the telescoping load-rail assembly also features a system whereby properly securing the cot in a mount system prevents unintentional disengagement of a spring-loaded lock-pin assembly while the cot is secured within an ambulance. For example, the pin 201 is used to lock-out the telescoping rail release rod 193 when in ambulance. The catch bar pivots 187 attached to the catch bar 188 rotate pivotally about load rail cross tube 186 when properly secured in an ambulance. The catch bar pivots 187 push up the spring loaded pin assembly 201. The pin 201 engages a pocket in the release connector assemblies 192 and prevents the rod 193 from being pulled.
Components utilized to attach a patient litter to the top frame 74 also attach to the top frame 74. For example, as shown in
In some embodiments, a patient litter (e.g., shown in
The present invention is not limited by the type of cot mattress utilized with a cot system of the invention. Indeed, a variety of cot mattresses find immediate use with a cot system described herein. Similarly, future cot mattresses may be designed specifically for use with a cot system described herein. In some embodiments, mattress design conforms to the unique design of the attachment point position of a shoulder strap harness of the present invention. In some embodiments, a cot mattress is constructed of a puncture resistant and/or rip resistant material (e.g., pliable vinyl or similar material). In some embodiments, a cot mattress is heat sealed (e.g., for maximum durability and cross-contamination prevention). In some embodiments, a cot mattress is constructed of an impervious, non-porous material (e.g. that is easy to clean and/or that comprises anti-microbial properties). In some embodiments, a cot mattress comprises built-in articulation seams (e.g., for maximum performance (e.g., around the knee gatch and torso joint areas)). In some embodiments, a cot mattress comprises recessed indentions for allowing a user to easily secure fasteners around the mattress (e.g., for attachment to the molded litter). In some embodiments, hook and loop fasteners (e.g., 3M DUO-LOCK fasteners) are utilized (e.g., with or without industrial grade adhesive) to attach a mattress to the blow-molded patient litter. In some embodiments, a cot mattress comprises a two-tone color pattern (e.g., for increased visibility and/or patient alignment upon the mattress). In some embodiments, a cot mattress comprises a padded flap on the head-end (e.g., to cover an oxygen bottle holder present at the head-end of the cot (e.g., for increased patient safety and/or comfort)). In some embodiments, a cot mattress comprises a visoelastic foam (e.g., TEMPERPEDIC mattress) or other type of memory foam. In some embodiments, a cot mattress comprises a neck roll head support. In some embodiments, a cot mattress is temperature controlled (e.g., utilizing the cot battery power and/or another power source). In some embodiments, temperature control includes both warming as well as cooling functionality (e.g., to warm (e.g., for hypothermia) and/or cool (e.g., heart condition, heat exhaustion, spinal injury, etc.) subjects residing on the cot). The present invention is not limited by the manner in which a cot mattress is heated or cooled. In some embodiments, a temperature controlled cot mattress utilizes heat consolidating beads. In some embodiments, a temperature controlled cot mattress utilizes heated and/or cooled water from an external source. In some embodiments, a temperature controlled cot mattress is reusable and/or disposable. In some embodiments, a disposable cot mattress is heated and/or cooled using similar chemical reactions found in a hot pack and or cold pack. In some embodiments, a temperature controlled cot mattress is stored flat on the cot and/or is rolled like a sleeping bag for easy storage and deployment. In some embodiments, a cot mattress comprises a design similar to that of a roller bearing warehouse shipping table (e.g., that assists in moving a subject off of the cot (e.g., onto an emergency room table or hospital bed).
In some embodiments, a cot of the present invention comprises side rails 76 (e.g., shown in
In some embodiments, a cot of the present invention comprises a system that provides energy to retract the leg assemblies described herein (e.g., from a raised position to a retracted and/or collapsed position (e.g., when a cot described herein is loaded into an ambulance)). The present invention is not limited by the type of system utilized to provide energy to retract the legs. In some embodiments, the system comprises the ability to store mechanical energy, and the stored mechanical energy is utilized to retract the legs. In some embodiments, the system comprises an air pressurized cylinder. In some embodiments, the system comprises fluid and fluid valves. In some embodiments, the system does not utilize electrical energy (e.g., from a direct current or alternating current source) for retraction of the legs. In some embodiments, the system utilizes electrical energy (e.g., from a direct current or alternating current source) for retraction of the legs.
In some embodiments, a cot system of the present invention comprises a patient restraint system. In some embodiments, the patient restraint system comprises a lower leg restraint, lap restraint, and/or upper torso/shoulder restraint. In some embodiments, the restraint system comprises restraint attachment points (e.g., present on team lift mount extrusions). In some embodiments the restraint attachment point is a shoulder bolt fastened to the team lift mount extrusion. In some embodiments, the restraints have a quick clip and/or snap clip belt end (e.g., similar to those used in automobile racing) that attach to the shoulder bolt (e.g., thereby providing for quick removal). In some embodiments, restraints may comprise an antimicrobial substance and/or an impervious material (e.g., that inhibits and/or reduces absorption of bodily fluids (e.g., blood)). In some embodiments, a restraint system of the present invention comprises a sensor and/or alert system (e.g., added to a female or male belt attachment point (e.g., that provides a warning tone when a subject is not strapped in (e.g., prior to and/or upon movement of an ambulance))). In some embodiments, a restraint strap comprises a male attachment point (e.g., so that if the attachment points on the cot line up across a subject's joint (e.g., knee, hip, etc.), the strap can attach to itself on the team lift handle (e.g., thereby avoiding strapping across the joint)).
In some embodiments, the present invention provide a restraint system comprising a restraint clip 600 (e.g., shown in
In some embodiments, the body 606 is designed with a spherical “bullet nose” end. This design provides several advantages including, but not limited to, functioning to automatically center the clip 600 during installation, as well as to effectively reduce the diameter of the body 606 (e.g., so that when the cap 605 is pressed down, the choke point 601 on the clip 600 passes over the body 606). The choke point 601 is smaller than the body 606 diameter, therefore the clip 600 cannot be removed unless the cap 605 is first pushed down.
In some embodiments, the cap 605 is designed with a cavity in order to push the clip 600 higher up on the body 606 (e.g., as shown in
In some embodiments, to engage the restraint system, one holds the restraint clip 600 near the bottom, and using a surface 602 (e.g., shown in
A cot of the present invention can be placed into a number of different positions. In some embodiments, the head/upper torso litter 164 elevation is controlled by a gas charged spring (strut) 168 (e.g., shown in
As shown in
In some embodiments, a cot system 1 of the present invention comprises a hydraulic system (e.g., that is utilized to raise and lower the leg assemblies of the cot (e.g., thereby raising and lowering the patient litter (e.g., for loading a subject onto the cot and/or for loading a cot carrying a subject into an ambulance))). The present invention is not limited to any particular hydraulic system. Indeed, a variety of hydraulic systems may be utilized in the present invention including, but not limited to, a hydraulic system described in U.S. patent application Ser. No. 11/968,013, hereby incorporated by reference in its entirety for all purposes. Thus, in some embodiments, controlling (e.g., powering) the raising and collapsing of leg assemblies (e.g., fixed leg assembly and a telescoping leg assembly comprising a roller bearing system) is performed by a hydraulic system.
In some embodiments, a cot described herein comprises a tip angle monitoring, recording and alert system. For example, in some embodiments, a cot system of the present invention comprises a tip angle monitoring, recording and alert system. A tip angle system of the present invention comprises the ability to simultaneously, and in real time, measure cot load, cot height and cot angle, and utilize each of these measurements to calculate tip angle of the cot. As used herein, the term “tip angle,” refers to the position at which a cot (e.g., not bearing a load, or bearing load weight (e.g., of any weight (e.g., ranging from about 10 pounds to about 1000 pounds))) is at that angle at which the cot will tip (e.g., dependent upon factors such as cot height, load weight, and the angle of lateral (e.g., side-to-side) movement of one or more reference points upon the cot (e.g., a 3-axis accelerometer mounted upon the cot) with respect to a horizontal plane that is more or less perpendicular to the earth's gravitational force). The present invention is not limited by the method of determining load weight upon a cot of the present invention. In some embodiments, load weight is determined utilizing a pressure transducer or similar device (e.g., a load cell, use of a pressure switch, or a combined use of one or more pressure switches and/or motor current feedback). Similarly, the present invention is not limited by the method of determining cot height. In some embodiments, cot height is measured using an ultrasonic sensor. Likewise, the present invention is not limited by the method of determining the angle of lateral movement of one or more reference points upon the cot. For example, in some embodiments, one or more reference points are used to determine angle of side-to-side movement of the cot utilizing an accelerometer and/or gyroscope.
In some embodiments, a tip angle measuring, recording and alert system comprises a controller (e.g., comprising a processor, and memory component (e.g., used to monitor, record and store cot use information). In some embodiments, the tip angle monitoring, recording, and alert system captures and records cot operational use information. In some embodiments, recorded cot operational use information is stored in a memory component (e.g., present on a circuit board housed within the controller housing). In some embodiments, cot operational use information comprises cot angle (e.g., all angles recorded by the tip angle system described herein (e.g., any angle of the cot that is outside a range (e.g., three degrees) approaching the tip angle of the cot (e.g., an angle at which a cot is parallel to a horizontal plane that is perpendicular to the earth's gravitational force), angles of the cot that are within a range (e.g., three degrees or less) of the tip angle, angles that are equal to the tip angle and/or angles that are greater than the tip angle (e.g., calculated for a cot)))). The present invention is not limited by the type of cot operational use information recorded and stored. For example, cot operational use information includes, but is not limited to, cot angle, cot height, cot load weight, calendar date, time, identification of user, etc. In some embodiments, cot operational use information comprises unsafe cot operational angles.
In some embodiments, a cot of the present invention comprises a pole for placement of one or more intravenous (IV) fluid bags. For example, as shown in
In some embodiments, the second stage 230, when extended, is held in place by a compression fitting 234. The third stage 236 is held in place by flexible stamping (flat spring) 237 that protrudes out when the IV stage 3236 is pulled out from inside the IV stage 2230, similar to an umbrella.
In some embodiments, the IV pole locating block 225 is located inside of the team lift handle 73 via 2 screw holes that are used to also capture the IV sleeve bearing top 224 and IV sleeve bearing bottom 226. There is an additional hole that captures the IV spring pin assembly 221 when it is pushed down.
In some embodiments, the IV sleeve bearing top 224 and IV sleeve bearing bottom 226 are attached to the team lift handle 73 (e.g., by one or a plurality of screws). They provide a bearing surface for the IV pivot housing 223 to rotate on and also provide an over travel stop when the stowed and folded pole is rotated up.
The IV pivot housing 223 has several functions including, but not limited to attaching the IV pole 213 to the team lift handle 73, via fasteners around the team lift handle 73 and to is constrain the IV pivot pin 219 (e.g., constrains the IV pin assembly 221, both the minor and major diameter); possessing a shelf feature to contact the IV sleeve bearings 224,226 to prevent over travel; and slot features that allow for retention of the IV position grip dowel pin 220.
IV spring pin assembly 221 minor diameter is used to prevent motion between the IV pivot housing 223 and the IV pole locating block 225. The major diameter is used as bearing surface between the IV position grip dowel pin 220. The diameter and thickness are sufficient enough that when the pin is raised the slots in the IV pivot housing 223 for retention of the IV position grip dowel pin 220 are closed. Thus, this prevents foreign objects (e.g., clothing, IV tubes, etc.) from getting caught in the slot and damaged when the IV position grip 216 is pulled down.
In some embodiments, the IV spring pin assembly spring 222 is used to bias the IV spring pin assembly 221 up and out of the team lift handle 73. IV position grip 216 retains the IV position grip dowel pins 220. In addition the IV position grip 216 slides over the IV pivot housing 223 to lock out one of the axis of rotation. The IV position grip dowel pins 220 contact the IV pin assembly 221 and hold it down against the IV spring pin assembly spring 222. They also provide the lockout features to the IV pivot housing 223.
The IV pivot pin 219 has features that allow it to rotate about the IV pivot housing pin bearing 218. It is slotted to allow clearance for the IV position grip dowel pins 220. An additional slot allows retention of an E-ring 228. There are also features to allow for IV Stage 1229 retention. The IV pivot housing pin 217 retains the IV pivot housings 223 and is the axle for the IV pivot pin 219. It is knurled to create better retentions in the IV pivot housings 223. The IV pivot housing pin bearing 218 provides a smooth bearing surface for the IV pivot pin 219. The E-ring 228 snaps onto the IV pivot pin 219 and provides a surface for the IV position grip spring 227 to push on.
The IV position grip spring 227 provide an upwards bias force to the IV position grip 216 to allow the grip 216 to be clear of the IV pivot housing 233 when folding. Thus, in some embodiments, an IV pole 213 of the present invention reduces and/or eliminates damage caused by a user not pulling the lock out tube up far enough.
The IV stage 1229 provides the necessary height for the IV bag hook 242 to allow for IV Bag fluid to flow. It is threaded at one end to allow for the IV collet 233 to be attached, slides over IV pivot pin 219 and is retained by a roll pin 232.
The IV collet bushing 235 is located on top of IV Stage 1229 and is used as a bearing between the IV collet 233 and the IV collet compression ring 234. It has a chamfered edge that the IV collet compression ring 234 sits on to help decrease the normal acting on the IV collet compression ring 234 (e.g. thereby reducing friction (e.g., wear)). This allows the IV collet compression ring 234 to compress and decompress repeatedly.
The IV collet compression ring 234 is used to apply pressure to the IV Stage 2230 and hold it in place. The IV collet 233 and the IV collet compression ring 234 have chamfered surfaces, that when the IV collet 233 is screwed down the IV Stage 1229, it cause the IV collet compression ring 234 to decrease in diameter. This decrease in diameter causes the ring to tighten onto the IV Stage 2230. There is a slot in the IV collet compression ring 234 to allow for the decrease in diameter.
The IV Stage 2230 provides the necessary height for the IV bag hook 242 to allow for IV bag fluid to flow. On the lower end it allows for the retention of the IV Stage 2 bottom cap 231. There is a form area at the top that provides a stop for the IV Stage 3 bottom cap 239, to prevent the IV Stage 3236 from coming completely out of the IV Stage 2230. On the upper end it allows for a flange bearing 238 to be pressed in that the IV Stage 3 locking spring 237 rests upon.
IV Stage 2 bottom cap 231 provides a tighter fit to the IV Stage 1229 and a better bearing surface.
IV Stage 3236 provides the necessary height for the IV bag hook 242 to allow for IV bag fluid to flow. On the lower end it slides over and allows for the retention of the IV Stage 3 bottom cap 239 by a roll pin 232. It also has slots that allow for the IV Stage 3 locking spring 237 to be retained. On the upper end it slides over the IV Stage 3 top cap assembly 241 and is retained by a roll pin 232.
IV Stage 3 bottom cap 239 retains an O-ring 240 that provides a tighter fit to the IV Stage 2230 and acts to window lock the IV Stage 3236. The window locking prevents a free fall in the event the IV Stage 3 locking spring 237 is depressed and then the IV Stage 3236 is let go.
IV Stage 3 locking spring 237 protrudes out of the IV Stage 2230 when the IV Stage 3236 in pulled out a sufficient distance. When the IV Stage 3 locking spring 237 is flexed out, it prevents the IV Stage 3236 from falling down. IV Stage 3 top cap assembly 241 allows for an IV bag to be attached to the IV pole 213.
The pre-hospital arena (e.g., treatment (e.g., with one or more pharmaceutical drugs) of a subject prior to arrival at a hospital) is subject to many problems related to pharmaceutical drug protocols. For example, problems range from security (e.g., for controlled substances such as opiates (e.g., morphine)), inappropriate storage temperature, absence of proper dosing/presence of drug delivery error, poor lighting, lack of record keeping and event recording procedures, and inefficient procurement/restocking, accountability. Thus, in some embodiments, the present invention provides a drug bag and/or drug box (e.g., that accompanies and/or attaches to a cot of the present invention) that addresses these problems.
A drug bag/box of the present invention provides a secure system to handle narcotics generally carried by pre-hospital service teams (e.g., EMS, EMTs, etc.) as part of their patient pain management (e.g., opiates such as morphine) and/or seizure control (e.g., valium) protocols. Thus, a drug bag/box of the present invention provides a security system that reduces and/or eliminates employee theft of drugs (e.g., narcotics).
A drug bag/box of the present invention also provides a controlled environment for drugs that are required to be maintained at a certain temperature for efficacy. Many intravenous and intramuscular drugs are exposed to extreme temperatures that fall outside of the manufactures specified storage temperature for the drug to retain drug efficacy. For example, extreme heat in the South and Southwest regions of America can elevate internal drug bag/box temperatures well over 100 degrees (e.g., while a drug bag/box is stored in an external vehicle compartment in an ambulance/rescue vehicle that is out of the station). Cold temperatures are also an issue during the winter northern climates. Even in a department's vehicle bay, drugs can be subject to temperatures that exceed the maximum or minimum limits. In general, the stated temperature range on most pre-hospital drugs is 59° F. to 86° F. degrees (15° C. to 30° C.). Thus, in some embodiments, the present invention provides a drug temperature bag/box that maintains an internal temperature (e.g., at, within or near the suggested storage temperature (e.g., between 59° F. to 86° F. degrees, although lower (e.g., less than 59° F.) and higher (e.g., greater than 86° F.) temperatures may be maintained)). In some embodiments, the drug bag/box can be used when attached to a cot described herein, whereas in other embodiments, the bag/box can be removed and carried (e.g., using a strap and/or handle) away from a cot (e.g., to places not accessible to the cot).
A drug bag/box of the present invention can also be used for accuracy in dosing. For example, a drug bag/box may comprise a dosing system (e.g., that identifies a drug pulled from the bag and provides suggested dosage (e.g., based on patient weight, age, medical status, etc.). Thus, in some embodiments, the present invention provides a drug bag/box that decreases and/or eliminates administration of the wrong medication and/or drug and/or dosage of the same. In some embodiments, a drug bag/box of the invention provides identification of the proper sequence to administer two or more drugs. In some embodiments, a drug bag/box comprises a lighting system (e.g., that provides sufficient light to illuminate a scene (e.g., for reading a label on a bottle).
The present invention also provides a drug bag that records removal of drugs from the bag and/or the type and/or amount of drug administered (e.g., to a patient/subject in the field). For example, in some embodiments, a drug bag recording system replaces other methods of determining what and/or how much of a certain drug or medication was administered (e.g., counting empty packaging on an ambulance floor and/or writing present on a glove or medical tape used by the emergency medical service provider or on the provider's hand). In some embodiments, the drug bag is integrated with an event recording system (e.g., to monitor and record what was done (e.g., therapy provided) and in what order and time events occur (e.g., if a proper order was followed (e.g., whether defibrillation shocks were delivered and what drugs were given in between the shocks and/or after the shocks)). The drug bag may also be used for procurement and restocking and/or accountability. For example, restocking the drug bag after a call is a requirement. The drugs may come from the hospital pharmacy (which is not Medicare lawful) and/or from suppliers that ship the medications. In this more common practice, the service is subject to ordering errors, shipping errors, receiving errors, etc. With EMS having a 24/7/365 response liability to the community, the EMS service should be performing drug bag inventory checks after and before each shift change. A drug bag (e.g., utilized with a cot of the present invention) addresses these needs.
In some embodiments, the present invention provides a temperature controlled drug bag (e.g., for use in combination with a cot system (e.g., hydraulic cot system or manual cot system) of the present invention). For example, in some embodiments, the drug bag is utilized by an emergency medical service provider (e.g., an emergency medical technician) or other person prior to arrival of a subject at a hospital. The drug bag may comprise heating and/or cooling functionality. In some embodiments, a drug bag comprises bar code verification (e.g., to identify a proper user (e.g., that is accessing the bag)), or to identify that the correct drug and/or correct dose is being retrieved from the bag. In some embodiments, a drug bag comprises a voice prompt verification system. In some embodiments, a drug bag comprises a RFID tag narcotic authorization system. A drug bag for use with a cot system (e.g., hydraulic cot system or manual cot system) may comprise auxiliary lighting, an event recording system, and/or an inventory control system. In some embodiments, the drug bag is battery powered.
In some embodiments, the present invention provides software that tracks and/or manages data collected, recorded and stored by a tip angle monitoring, recording and alert system of the present invention. In some embodiments, the software comprises setup, import, search, report and/or backup functionalities. In some embodiments, the software comprises a set-up function that allows a user to configure the program to behave the way the user desires (e.g., collection of data in a specific way (e.g., by date, user, patient weight, cot angle, etc.). In some embodiments, retrieval of information from a memory component of a cot system of the present invention is password protected. In some embodiments, data can be exported into any type of database (e.g., MICROSOFT EXCEL, ACCESS, SQL database, etc.). In some embodiments, the software comprises import functionalities that permit a user to remove data from the cot (e.g., from a memory component of the cot (e.g., via USB, cable, wireless technology). In some embodiments, importing data comprises importing information associated with each “run” of the cot (e.g., that are identified by a serial number assigned (e.g., by the controller) to each run). In some embodiments, the software comprises a search function that allows a user to search for specific data (e.g., imported from the memory component). For example, a user can search for data specific to a particular user of a cot, all data related to a particular cot, data related to specific events (e.g., failure data (e.g., sensor and/or transducer error, battery low error, etc.)), data related to a specific date and/or time, data related to a specific range of subjects transported on the cot (e.g., all subjects with a weight within the range of 275-375 pounds) etc.). Thus, the search function allows a user to select only that data that the user is interested in. The software is also configured to permit generation of results based upon search criteria (e.g., tables and/or diagrams for reports).
In some embodiments, software configured to track and/or manage information and/or data collected, recorded and/or stored by a tip angle monitoring, recording and alert system of the present invention is housed and/or run on a personal digital assistant (PDA), a personal computer (PC), a Tablet PC, and/or a smartphone. In some embodiments, the software is configured to run independently of other software. In some embodiments, the software is configured to run within or together with other software including, but not limited to, WINDOWS (e.g., WINDOWS XP, WINDOWS CE, or other WINDOWS based operating system), JAVA, cell phone operating systems, or other type of software. In some embodiments, information and/or data collected, recorded and/or stored by a tip angle monitoring, recording and alert system of the present invention is communicated to a software configured to track and/or manage such information via BLUETOOTH, ZIGBEE, infrared, FM, AM, cellular, WIMAX, WIFI, or other type of wireless technology. In some embodiments, information and/or data collected, recorded and/or stored by a tip angle monitoring, recording and alert system of the present invention is made available over a network (e.g., TCP/IP, SANS, ZIGBEE, wireless, wired, USB, and/or other type of network) or via mobile information recording devices (e.g., flash card, memory stick, disc, jump drive, etc.). In some embodiments, a network is configured to comply with certain government protocols (e.g., Health Insurance Portability and Accountability Act rules and/or regulations, Joint Commission on the Accreditation of Healthcare Organizations rules and/or regulations, and/or other types of rules and/or regulations). In some embodiments, software configured to interact with a cot system of the present invention comprises a mobile resource a cot user in the field. For example, in some embodiments, software is configured to provide a user of a cot of the present invention a variety of information including, but not limited to, drug information (e.g., prescription drug, herbal and/or over the counter generic and trade names (e.g., with extensive kinetics and mechanism of action information)), drug compatibility information (e.g., permitting a user to identify items that can be used interchangeably between different manufactures and applications (e.g., a user can determine whether a certain IV line is compatible with certain IV catheters (e.g., thereby decreasing the confusion for a user regarding compatibility between standard IV products and needleless IV products))), administration protocols, instructional videos, decision trees, inventory information, or other types of information.
Having described the invention in detail, those skilled in the art will appreciate that various modifications, alterations, and changes of the invention may be made without departing from the spirit and scope of the present invention. Therefore, it is not intended that the scope of the invention be limited to the specific embodiments illustrated and described.
All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the relevant fields, are intended to be within the scope of the following claims.
This Application claims priority to U.S. Provisional Patent Application Ser. No. 61/033,297, filed 3 Mar. 2008, hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61033297 | Mar 2008 | US |