The present invention relates to a wheeled chair for use in a hospital or other health care facility, and particularly to an ambulatory care chair that converts between a chair and a table. More particularly, the present invention relates to a wheeled hospital chair having articulated patient-support sections that move relative to one another between a generally upright position and a generally horizontal table position and that can be tilted and elevated so that a patient can rest and be transported in the chair. The chair can be converted to a table for supporting the patient during medical procedures without having to transfer the patient between separate chairs and tables.
Carriers for transporting a patient in a hospital or other care facility from one location to another are well known in the art. Conventional wheelchairs may be used by a caregiver to transport the patient when the patient is conscious and capable of sitting in an upright position. Such wheelchairs may also be used in a hospital to transport patients between hospital stations for medical testing, therapy, or recreation. In addition, wheelchairs having features designed to aid in the transfer of a patient between the hospital bed and the wheelchair are known in the art. See, for example, U.S. Pat. No. 4,453,732 to Assanah et al. and U.S. Pat. No. 4,119,342 to Jones. Each of these references discloses a wheelchair having back, seat, and leg sections that are convertible to a horizontal stretcher configuration.
Conventional stretchers having flat patient support surfaces may also be used as a carrier to transport patients. For example, conventional stretchers may transport the patient before or after surgery is performed on the patient or when the patient is otherwise incapacitated or unable to sit upright. Conventional stretchers that raise and lower can be used to transfer patients from the stretcher to a surface of an operating table, a bed, or another patient surface by adjusting the height of the stretcher to the same height as the patient surface receiving the patient. See, for example, U.S. Pat. No. 4,629,242 to Schrager and U.S. Pat. No. 3,304,116 to Stryker, each of which discloses a stretcher having a patient-support surface that can be vertically adjusted.
Caregivers may wish to adjust the position of the patient supported by the carrier. In addition, a patient supported by the carrier may wish to adjust their own position for reasons of comfort. Carriers having articulated back, seat, and leg sections that assist patients in moving between a lying-down position and a sitting-up position are known in the art. See, for example, U.S. Pat. No. 5,230,113 to Foster et al.; U.S. Pat. No. 5,398,357 to Foster; and U.S. Pat. No. 4,862,529 to Peck, all of which are assigned to the assignee of the present invention. Each of these references discloses a hospital bed that is convertible to a chair configuration.
Some hospital beds having patient-support decks including articulated patient-support sections also have mechanisms that adjust the height of the patient-support deck relative to a base frame. In addition, these hospital beds may include mechanisms that tilt the patient-support deck relative to the base frame. See, for example, U.S. Pat. No. 5,148,562 to Borders et al.; U.S. Pat. No. 4,894,876 to Fenwick; and U.S. Pat. No. 4,862,529 to Peck, all of which are assigned to the assignee of the present invention. Each of these references discloses a bed having an intermediate frame that is mounted to a base frame for vertical and tilting movement with respect thereto. Each reference also discloses an articulated patient-support deck carried by the intermediate frame and including patient-support sections that are movable relative to the intermediate frame.
What is desired is an ambulatory care chair that can be used both to transport the patient and as an operating chair or table when minor surgical procedures are to be performed on the patient. The ambulatory care chair should provide a comfortable and adjustable patient-support surface on which the patient can rest prior to such procedures, when recovering after such procedures, and at other times when desired. Such a chair should have articulated back, seat, and leg sections that are adjustable between a sitting-up position supporting the patient in a sitting position and a table position having the back, seat, and leg sections aligned and defining a generally planar upwardly-facing patient-support surface supporting the patient in a supine position. In addition, the ambulatory care chair should include mechanisms for raising and lowering the back, seat, and leg sections relative to a floor and mechanisms for tilting the back, seat, and leg sections.
According to the present invention, a chair is provided for supporting a patient above a floor. The chair includes a base frame and an intermediate frame coupled to the base frame for pivoting movement relative to the base frame about a generally horizontal transverse axis. An articulated patient support is mounted to the intermediate frame. The patient support has longitudinally spaced back and seat sections mounted to the intermediate frame for movement relative to one another and relative to the intermediate frame. The back and seat sections are movable relative to the base frame about the horizontal transverse axis of the intermediate frame.
In preferred embodiments, the ambulatory care chair includes an articulated patient support defining a patient-support surface. The patient support has back, seat, and leg sections that are mounted to the intermediate frame for movement between a sitting-up position carrying the patient in a sitting position and a table position carrying the patient in a supine position. The back, seat, and leg sections are lockable relative to the intermediate frame in an infinite number of positions between the sitting-up and table positions. In addition, the patient support can be tilted between a Trendelenburg position and a reverse Trendelenburg position when the sections of the patient support are in the table position. When the sections of the patient support are in the sitting-up position, the patient support can be tilted rearwardly to rock the patient to a leaned-back position or forwardly to assist with patient egress from the chair.
The ambulatory care chair includes a base frame having a lower frame and a staging frame mounted to the lower frame for upward and downward movement with respect thereto. An intermediate frame is pivotably mounted to the staging frame for pivoting movement relative to the staging frame about a generally transverse horizontal axis. The intermediate frame pivots between a forward tilt position and a rearward tilt position and is lockable at an infinite number of positions therebetween. The sections of the patient support are mounted to the intermediate frame for movement relative to the intermediate frame. When the patient support moves between the sitting-up and the table positions, the back and seat sections, move relative to the base frame about the same horizontal transverse axis as the intermediate frame when the intermediate frame pivots between the forward tilt position and the rearward tilt position.
The ambulatory care chair also includes foot pedals that control upward and downward movement of the staging frame, the intermediate frame, and the articulated patient support relative to the lower frame. A recline release handle unlocks the back, seat, and leg sections of the patient support for movement between the sitting-up and table positions relative to the intermediate frame. In addition, a tilt handle can be provided for unlocking the intermediate frame from the staging frame of the base frame for forward and rearward tilting movement about the horizontal axis relative to the staging frame.
The ambulatory care chair also includes a push bar having a grip extending across the back of the chair. When the patient support is in the sitting-up position, the caregiver can grasp the push bar when transporting a patient on the chair. A deployable center wheel can be easily deployed against the floor by the caregiver to assist with steering the ambulatory care chair. The caregiver can move the center wheel into and out of engagement with the floor by actuating a foot pedal coupled to the center wheel by a center wheel deployment mechanism. The foot pedal is also coupled to a braking mechanism which brakes and releases casters mounted to the lower frame. The center wheel automatically deploys against the floor or retracts away from the floor when the caregiver operates the braking mechanism.
When the foot pedal is in a braking position, the braking mechanism brakes two of the casters and prevents the braked casters from rotating or swivelling relative to the base frame. In addition, the center wheel engages the floor providing a third braking point to prevent inadvertent rotation of the chair about the braked casters. When the foot pedal is in a neutral position, the casters are free to rotate and swivel and the center wheel is spaced apart from the floor. When the caregiver moves the foot pedal to a steering position, the casters are free to rotate and swivel and the center wheel is in contact with the floor to assist in steering the chair by providing a frictional contact area about which the chair can be easily turned.
The ambulatory care chair can also include a pair of arm rest assemblies having generally upwardly-facing arm-support surfaces that can be infinitely positioned relative to the seat section between a raised position and a lowered position. Each arm rest assembly includes a locking mechanism that can be locked to lock the arm-support surface at any position between the raised and lowered positions and that can be released allowing the arm-support surface of the arm rest assembly to move relative to the seat section. Each arm rest assembly includes a release handle for releasing the locking mechanism to unlock the arm-support surfaces for upward and downward movement relative to the seat section.
It is within the scope of the invention as presently perceived to mount each arm rest assembly to a side portion of the seat section so that the arm-support surfaces move with the seat section. It is also within the scope of the invention as presently perceived to mount each arm rest assembly to the intermediate frame adjacent to side portions of the seat section so that the arm rest assemblies move with the intermediate frame.
In the upward raised position, the arm-support surfaces of the arm rest assemblies can carry the arms of a patient sitting-up on the patient-support surface when the patient support is in the sitting-up position. In the lowered position, the arm-support surfaces are out of the way of the patient-support surface both to provide a caregiver with unobstructed access to the patient carried by the chair and so that the patient can be transferred between the patient-support surface and another patient-support device without interference from the arm rest assemblies.
Additional objects, features, and advantages of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A first embodiment of an ambulatory care chair 20 in accordance with the present invention is shown in
Chair 20 includes an articulated patient support 32, as shown in FIGS. 1-6,upon which a patient can rest. Patient support 32 includes a back section 34 having a back-support surface 36, a seat section 38 having a seat-support surface 40, and a leg section 42 having a leg-support surface 44. Chair 20 also includes a foot section 46 having a foot-support surface 48. Back-support surface 36 cooperates with seat-support surface 40, leg-support surface 44, and foot-support surface 48 to define a patient-support surface 30.
Chair 20 has a front end 22, a rear end 24, a first side 26, and a second side 28. As used in this description with reference to chair 20, the phrase “front end 22” will be used to denote the end of any referred-to object that is positioned to lie nearest the front end 22 of chair 20 and the phrase “rear end 24” will be used to denote the end of any referred-to object that is positioned to lie nearest the rear end 24 of chair 20.
Chair 20 includes spaced-apart first and second arm rest assemblies 50 mounted to first side 26 and second side 28 of chair 20, respectively, as shown in
Chair 20 includes a base frame 54 as shown in FIG. 7. Front casters 58 and rear casters 60 are mounted to base frame 54 so that chair 20 can be rolled over a floor or other surface across which the patient is being transported, hereinafter referred to as floor 62. Front and rear casters 58, 60 each swivel freely about a vertical axis. Base frame 54 is shielded from view by a pair of side panels 56. Patient support 32 is supported above base frame 54 as shown in
A recline handle 70 is mounted to one of the arm rest assemblies 50. Recline handle 70 is pivotably mounted to arm rest assembly 50 at a position beneath arm rest 52 and extends forwardly therefrom, as shown in
Movement of recline handle 70 to the releasing position allows back, seat, leg, and foot sections 34, 38, 42, 46 to be moved between a sitting-up position shown in
A push bar 64 having a generally horizontal grip 65 is mounted to back section 34 and a tilt lever 66 is pivotably mounted to push bar 64 as shown in
Hereinafter, components of chair 20 will be described as tilting “forwardly” when each referred-to component is rotated about an axis so that front end 22 of the component is lowered and rear end 24 of the component is raised. Likewise, components of chair 20 will be described as tilting “rearwardly” when each referred-to component is rotated about an axis so that rear end 24 of the component is lowered and front end 22 of the component is raised. Patient support 32 can be tilted forwardly and rearwardly when back, seat, leg, and foot sections 34, 38, 42, 46 are locked in the sitting-up position, the table position, or any position therebetween.
When back, seat, leg, and foot sections 34, 38, 42, 46 are locked in the sitting-up position, patient support 32 can be tilted forwardly from a generally horizontal “home” position, shown in
When back, seat, leg, and foot sections 34, 38, 42, 46 are locked in the table position, patient support 32 can be placed in the home position as shown in FIG. 3. In the home position, front end 22 of patient-support surface 30 is spaced apart from floor 62 by a distance 324, rear end 24 of patient-support surface 30 is spaced apart from floor 62 by a distance 326, and distances 324, 326 are generally equal so that patient-support surface 30 is generally level. In addition, when patient support 32 is locked in the table position, patient support 32 can be tilted rearwardly to a Trendelenburg position having front end 22 of patient-support surface 30 spaced apart from floor 62 a distance 328 and rear end 24 of patient-support surface 30 spaced apart from floor 62 a distance 330 that is less than distance 328, as shown in FIG. 4. Patient support 32 also can be tilted forwardly to a reverse Trendelenburg position having rear end 24 of patient-support surface 30 spaced apart from floor 62 a distance 332 and front end 22 of patient-support surface 30 spaced apart from floor 62 a distance 334 that is less than distance 332, as also shown in
An arm rest release handle 72 is mounted to each arm rest assembly 50 as shown in
Movement of release handle 72 from the locking position to the releasing position allows the corresponding arm rest 52 to move between a raised position shown in
Each arm rest 52 can be locked in an infinite number of positions between the raised position and the lowered position by moving the corresponding release handle 72 to the locking position when selected arm rest 52 is at a desired position between the upward raised position and the downward lowered position. Although arm rests 52 are adjacent to seat section 38 when in the lowered position so that each arm-support surface 74 is generally coplanar with seat-support surface 40, it is within the scope of the invention as presently perceived to provide arm rest assemblies 50 for which arm-support surfaces 74 are vertically beneath the level of seat support surface 40 when arm rests 52 are in the lowered position.
Chair 20 also includes a leg section deployment handle 76, as shown in
Handle 76 can also be pulled axially away from patient support 32 along axis 78 from a driving state coupled to leg section 42 to a decoupled state connected to patient support 32 but decoupled from the leg section 42. Leg section 42 moves relative to seat section 38 in response to pivoting movement of handle 76 when handle 76 is in the driving state and leg section 42 remains stationary relative to seat section 38 in response to pivoting movement of handle 76 when handle 76 is in the decoupled state. When disengaged from leg section 42, handle 76 can be pivoted forwardly or rearwardly to be positioned below seat-support surface 40 in an infinite number of down-out-of-the-way positions, one of which is shown in FIG. 5. When handle 76 is in the down-out-of-the-way position and arm rests 52 are in the lowered position, the caregiver will have unobstructed access to patient-support surface 30 so that the patient supported by chair 20 can be easily moved from chair 20 to another patient-support device without interference from arm rests 52 or handle 76.
As previously described, chair 20 includes foot section 46 having foot-support surface 48. Foot section 46 is mounted to leg section 42 as shown best in
When leg and foot sections 42, 46 are in the extended position, leg and foot sections 42, 46 automatically deploy to the table position when back section 34 moves from the sitting-up position to the table position. When leg and foot sections 42, 46 move to the table position and handle 76 is in the driving state engaged with leg section 42, handle 76 automatically rotates to a generally horizontal position, shown in
Chair 20 also includes a pair of brake-steer butterfly pedals 80 mounted to first and second sides 26, 28 of chair 20 and coupled to base frame 54. Pedals 80 are fixed to a brake-steer shaft 86 that is mounted to base frame 54 to rotate about a transversely-extending pivot axis 88. Shaft 86 is coupled to rear casters 60 and is coupled to a center wheel 82 so that movement of pedals 80 controls braking and releasing of rear casters 60 and controls movement of center wheel 82 between a downward brake-steer position engaging floor 62 as shown in
When pedals 80 are tilted rearwardly to a braking position as shown in
A pump pedal 90 is pivotably mounted to each side 26, 28 of chair 20 to control the raising and lowering of patient support 32 relative to floor 62. Pump pedals 90 are normally in a middle locking position shown in
Thus, chair 20 includes articulated patient support 32 having back, seat, leg, and foot sections 34, 38, 42, 46 that are movable and lockable between the sitting-up position, as shown in
As can be seen, chair 20 is especially useful in a patient care facility such as a hospital for use by patients receiving emergency care, outpatient surgery, and other same day surgical procedures. A patient can be queued and then transported on chair 20 from a waiting room to an operating room while sitting upright with chair 20 in the sitting-up position. Once in the operating room, chair 20 can be moved to the fully flat table position, arm rests 52 can be moved to the lowered positions, and, if desired, patient-support surface 30 can be raised or lowered and the patient can be transferred from patient-support surface 30 to an operating table. After the procedure is complete, the patient can recover on chair 20 which can be moved to the Trendelenburg position if required and which can be moved to assist patient egress from chair 20 as shown in FIG. 6.
Base frame 54 of chair 20 includes a lower frame 92 having casters 58, 60 engaging floor 62, a U-shaped staging frame 94 above lower frame 92, and an elevation mechanism 96 mounting staging frame 94 above lower frame 92 for upward and downward movement with respect thereto, as shown in
Lower frame 92 of chair 20 includes a transversely-extending front member 146, a transversely extending rear member 148, and first and second spaced-apart side members 79 connecting front and rear members 146, 148 as shown best in FIG. 7. Each side member 79 includes an upwardly-extending front tube 124 at front end 22 of side member 79 and an upwardly-extending rear tube 126 at rear end 24 of side member 79. Front casters 58 are mounted to and extend downwardly from front tubes 124 and rear casters 60 are mounted to and extend downwardly from rear tubes 126. Side panels 56 are mounted to front and rear tubes 124, 126 to shield lower frame 92 and portions of elevation mechanism 96 from view and to prevent foreign objects from being inadvertently inserted underneath seat section 38 from either side 26, 28 of chair 20.
Each rear tube 126 of lower frame 92 is formed to include apertures 128 and shaft 86 is received by apertures 128 for rotation relative to lower frame 92 about pivot axis 88 as shown in FIG. 7. Portions of shaft 86 extend transversely outwardly past each rear tube 126 to define outwardly-extending portions of shaft 86. Pedals 80 are fixed to the outwardly-extending portions of shaft 86 so that pivoting either of pedals 80 about axis 88 rotates shaft 86 about axis 88.
Each pedal 80 includes a braking portion 130 and a steering portion 132 as shown in FIG. 7. Applying a downward contact force to braking portion 130 of either pedal 80 rotates shaft 86 about pivot axis 88 in a braking direction indicated by arrow 134 shown in
Shaft 86 is coupled to each rear caster 60 by a conventional braking mechanism (not shown) well-known to those skilled in the art. When pedal 80 is in the braking position, the braking mechanism moves to a braking position braking rear casters 60 and preventing rear casters 60 from rotating and swivelling. When pedal 80 is in the steering position, the braking mechanism moves to a releasing position releasing rear casters 60 so that rear casters 60 can freely rotate and swivel. Each braking mechanism is attached to shaft 86 and is positioned to lie inside a corresponding rear tube 126.
A center wheel deployment assembly 138 couples shaft 86 to center wheel 82 so that rotation of shaft 86 about axis 88 moves center wheel 82 relative to floor 62 between the neutral position and the brake-steer position. Center wheel deployment assembly 138 includes a pivot link 140 attached to shaft 86 and an elongated fork 142 coupling pivot link 140 to center wheel 82 as shown in
Elevation mechanism 96 of chair 20 for raising and lowering patient support 32 relative to floor 62 includes a pair of spaced-apart parallelogram linkages 112, each of which includes parallel upper and lower links 164, 165 as shown in
Two pairs of flanges 152 are rigidly attached to front member 146 of lower frame 92 as shown in
In addition, upper ends of links 164, 165 are connected to staging frame 94 by spaced-apart first and second flanges 158 extending generally vertically downwardly from staging frame 94 as shown in
Apertures 154, 156 of flanges 152 on lower frame 92 and apertures 160, 162 of flanges 158 of staging frame 94 are arranged so that vertical flanges 158 remain vertically oriented during upward and downward pivoting movement of parallel links 164, 165 relative to lower frame 92. As a result, a top surface 167 of staging frame 94 is maintained in a horizontal orientation as staging frame 94 is raised and lowered relative to lower frame 92.
It will be appreciated that various mechanical and electromechanical actuators and drivers may be used to raise and lower staging frame 94 relative to lower frame 92 without exceeding the scope of the invention as presently perceived. It is well known in the hospital bed art that electric drive motors with various types of transmission elements including lead screw drives and various types of mechanical linkages may be used to cause relative movement of portions of hospital stretchers, beds, and chairs. As a result, the terms “drive mechanism” and “drive means” in the specification and in the claims is intended to cover all types of mechanical, electromechanical, hydraulic, and pneumatic mechanisms, including manual cranking mechanisms of all types and including combinations of the above elements for raising and lowering portions of chair 20.
For example, hydraulic cylinder 114 may be the drive mechanism. Hydraulic cylinder 114 includes a piston 113 and a pump 115 for pressurizing hydraulic fluid and controlling the flow of hydraulic fluid into and out of an interior region (not shown) of hydraulic cylinder 114. For example, when pump 115 forces hydraulic fluid into the interior region of hydraulic cylinder 114, piston 113 will extend and push parallelogram linkages 112 upwardly moving staging frame 94 upwardly away from lower frame 92. Although pump 115 is illustratively a hydraulic pump that pumps hydraulic fluid in response to manual movement of pump pedal 90, it is within the scope of the invention as presently perceived for an electric pump to be used to control the movement of hydraulic fluid.
Chair 20 includes a pump pedal arm 118 pivotably coupling pump 115 to pump pedals 90 as shown in
Pumping pump pedals 90 between the locking position and the pumping position causes pump 115 to pressurize hydraulic fluid and forces hydraulic fluid into the interior region of hydraulic cylinder 114 to move staging frame 94 upwardly relative to lower frame 92 away from the lowered position and toward the raised position as previously described. Lifting pump pedals 90 upwardly past the locking position to the releasing position allows hydraulic fluid to escape from the interior region of hydraulic cylinder 114 so that piston 113 retracts into hydraulic cylinder 114 and parallelogram linkages 112 pivot downwardly toward the lowered position, lowering staging frame 94 relative to lower frame 92 toward the lowered position.
A pair of upwardly-extending spaced-apart boxes 168 are attached to top surface 167 of staging frame 94 as shown in FIG. 7. Each box 168 is formed to include apertures 170. Apertures 170 support bearings (not shown) and are collinear so that apertures 170 define axis 68.
A first main journal 174 is rigidly attached to a first side strut 172 of intermediate frame 98 and a second main journal 175 is rigidly attached to a second side strut 173 of intermediate frame 98 as shown in FIG. 7. Journals 174, 175 each include an inwardly-extending portion 176 extending inwardly from intermediate frame 98 and an outwardly-extending portion 178 extending outwardly from intermediate frame 98. Inwardly-extending portions 176 of journals 174, 175 are received by the bearings of corresponding apertures 170 of boxes 168 so that intermediate frame 98 pivots about axis 68 relative to staging frame 94 between the forward tilt position and the rearward tilt position.
A locking mechanism 180 connects intermediate frame 98 to staging frame 94 as shown in
Gas spring 180 includes a housing and a piston slidably received in the housing. Gas spring 180 can be locked so that the piston is generally fixed relative to the housing and can neither extend further out of the housing nor retract into the housing, thereby preventing intermediate frame 98 from pivoting relative to staging frame 94.
Although locking mechanism 180 is a gas spring for locking intermediate frame 98 relative to staging frame 94, it is within the scope of the invention as presently perceived for locking mechanism 180 to include any locking mechanism that can extend and retract and that can be locked blocking the movement of the locking mechanism and that can be released allowing the movement of the locking mechanism. Thus, the terms locking mechanism and locking means as used in this specification and in the claims includes a gas spring, a spring clutch, a ball screw, a hydraulic cylinder, a pneumatic cylinder, or any other suitable latching or locking mechanism.
A bowden wire 184 including a flexible control cable 188 enclosed in a sheath as shown in
Gas spring 180 is yieldably biased into its locked mode and, as a result, gas spring 180 yieldably biases tilt lever 66 toward the locking position. When tilt lever is moved to the releasing position, intermediate frame 98 and patient support 32, which is mounted to intermediate frame 98, can be tilted to a desired position. Tilt lever 66 can be released once intermediate frame is tilted to the desired position so that gas spring 180 locks, thereby locking intermediate frame 98 relative to staging frame 94 and automatically moving control cable 188 of bowden wire 184 and tilt lever 66 to the locking position.
As previously described, assembly 100 is carried by intermediate frame 98 and is coupled to patient support 32 to control pivoting movement of back, seat, leg, and foot sections 34, 38, 42, 46 relative to intermediate frame 98. Back section 34 is defined by transversely spaced-apart back section frame members 226, seat section 38 is defined by transversely spaced-apart seat section frame members 224 pivotably coupled to back section frame members 226 and movably coupled to intermediate frame 98 by control plates 110, 111, leg section 42 is defined by a U-shaped leg section frame 290 pivotably coupled to seat section frame members 224, and foot section 46 is supported by transversely spaced-apart foot section links 280 pivotably coupled to frame 290 of leg section 42 as shown in FIG. 7.
Assembly 100 includes control plate 110 rotatably coupled to intermediate frame 98 adjacent to first side 26 of chair 20 as shown in
Assembly 100 includes first and second reclining linkage assemblies 198, 199 (hereinafter reclining assemblies 198, 199) as shown in
Reclining assemblies 198, 199 and leg deployment assemblies 200, 201 are pivotably coupled to control plates 110, 111, respectively, as shown in
A locking mechanism 210 connects assembly 100 to intermediate frame 98 as shown in FIG. 7. Locking mechanism 210 includes a front end 22 coupled to intermediate frame 98 and a rear end 24 coupled to a tab 214 that is rigidly fixed to control plate 111 as shown in FIG. 7. Locking mechanism 210 can be locked locking front end 22 of locking mechanism 210 relative to rear end 24 and locking mechanism 210 can be released allowing movement of front end 22 relative to rear end 24 so that locking mechanism 210 can extend and retract. When front end 22 of locking mechanism 210 is locked relative to rear end 24, locking mechanism 210 blocks movement of control plate 111 relative to intermediate frame 98.
Locking mechanism 210 includes a spring clutch having a clutch housing 216 and a rod 218 slidably received by clutch housing 216. Locking mechanism 210 hereinafter is referred to alternatively as locking mechanism 210 and spring clutch 210. Rod 218 can be locked in an infinite number of positions relative to housing 216. As a result, control plate 111 can be locked in an infinite number of positions relative to intermediate frame 98 and patient support 32 can be locked in an infinite number of positions relative to intermediate frame 98 between the sitting-up position and the table position.
Spring clutch 210 includes a coil gripping spring (not shown) received in clutch housing 216 and defining an interior region receiving a portion of rod 218. When locking mechanism 210 is locked, the gripping spring constricts around rod 218 preventing rod 218 from sliding relative to the spring and to clutch housing 216. Although locking mechanism 210 includes a spring clutch, it is within the scope of the invention as presently perceived for locking mechanism 210 to include any locking mechanism as described above with reference to locking mechanism 180 which is suitable for locking control plate 111 relative to intermediate frame 98.
A bowden wire 220 including a flexible control cable 222 enclosed in a sheath is coupled to the spring and is configured so that control cable 222 can be moved to loosen the spring around rod 218 thereby releasing spring clutch 210 so that rod 218 can slide relative to the spring and relative to clutch housing 216. Bowden wire 220 extends from clutch housing 216 through one of arm rest assemblies 50 to recline handle 70. Control cable 222 is connected to recline handle 70 so that when recline handle 70 is in the locking position, the spring constricts rod 218 and rod 218 is locked relative to clutch housing 216. Locking mechanism 210 is yieldably biased toward its locked position biasing recline handle 70 toward the locking position. When recline handle 70 pivots from the locking position to the releasing position, recline handle 70 moves control cable 222, loosens the spring, and releases locking mechanism 210 allowing rod 218 to slide relative to clutch housing 216. When recline handle 70 is released, locking mechanism 210 automatically locks locking patient support 32 relative to intermediate frame 98 and automatically moving control cable 222 and recline handle 70 to the locking position.
As previously described, assembly 100 includes control plate 110, reclining assembly 198, and leg deployment assembly 200 on first side 26 of chair 20 and control plate 111, reclining assembly 199, and leg deployment assembly 201 on second side 28 of chair 20 that are similar to corresponding elements on first side 26 of chair 20 except that the portion of assembly 100 mounted on second side 28 is a mirror image of the portion of assembly 100 mounted on first side 26. Control plate 110, reclining assembly 198, and leg deployment assembly 200 and the operation thereof are substantially similar to control plate 111, reclining assembly 199, and leg deployment assembly 201, respectively. Thus, the description herein of control plate 110, reclining assembly 198, and leg deployment assembly 200 applies as well to control plate 111, reclining assembly 199, and leg deployment assembly 201, respectively, unless specifically noted otherwise.
Patient support 32 includes longitudinally extending and laterally spaced-apart back section frame members 226 of back section 34, longitudinally extending and laterally spaced-apart seat section frame members 224 of seat section 38, and leg section frame 290 including longitudinally extending and laterally spaced-apart leg section frame members 292. Reclining assembly 198 connects control plate 110 and intermediate frame 98 to back section 34 and seat section 38 as shown in
Reclining assembly 198 includes a seat section link 234 fixed to rear end 24 of seat section frame member 224 and connecting seat section frame member 224 both to control plate 110 and to back section frame member 226 as shown in
Tilt link 230 has a first end pivotably coupled to a flange 269 depending from seat section frame member 224 and a second end pivotably coupled to a set 271 of flanges depending from intermediate frame 98, as shown best in FIG. 7. Flange 269 is positioned to lie approximately mid-way between front end 22 and rear end 24 of seat section frame member 224 and set 271 of flanges is positioned to lie adjacent to front end 22 of intermediate frame 98. Thus, tilt link 230 connects seat section 38 to intermediate frame 98 and seat section link 234 connects seat section 38 to both back section 34 and to intermediate frame 98 through control plate 110 for movement relative thereto.
Reclining assembly 198 also includes a back section strut 238 fixed to back section frame member 226 and extending generally downwardly therefrom as shown in
When back section 34 and seat section 38 are in the sitting-up position, control plate 110 has a first orientation extending generally rearwardly from axis 68 as shown in
For example, when patient support 32 is locked in the sitting-up position as shown in
Seat section link 234 cooperates with tilt link 230 to restrict the range of movement of front end 22 of seat section 38 so that as patient support 32 moves from the sitting-up position of
When back, seat, leg, and foot sections 34, 38, 42, 46 are locked in the table position of
Chair stop link 228 includes a front portion 260 extending generally forwardly from pin 256 as shown best in
As previously described, leg deployment assembly 200 of assembly 100 controls the movement of leg section 42 and foot section 46 relative to seat section 38 as shown in
Leg deployment assembly 200 includes a handle assembly 348 including handle 76 and components that couple handle 76 to leg section 42 as shown in FIG. 12. Leg deployment assembly 200 also includes a clutch assembly 347 coupling control plate 110 to handle assembly 348 and allowing movement of handle 76 independent of control plate 110 when handle 76 is used to move leg section 42 between the stored position and the extended position. A hinge shaft 298 having a nonround transverse cross section is connected to handle assembly 348 so that movement of handle 76 about axis 78 causes rotation of shaft 298 about axis 78 which is defined by hinge shaft 298 as shown in
An elongated deployment link 270 couples control plate 110 to leg section frame 290 through an aligning link 272 and a leg section link 278 as shown in
Leg section links 278 of leg deployment assemblies 200, 201 are each formed to include attachment plates 318 as shown in
Leg deployment assembly 200 also includes a driven link 274 having a first end 273 formed to include a square-shaped aperture 312 that receives a square-shaped hub 344 of a clutch inner disk 342 of clutch assembly 347 as shown in FIG. 12. Inner disk 342 is formed to include a non-round aperture 346 that drivingly receives shaft 298 so that rotation of shaft 298 causes rotation of inner disk 342 and driven link 274. Shaft 298 has a hexagonal cross section and aperture 346 has a corresponding hexagonal shape. However, it is within the scope of the invention as presently perceived to provide aperture 346 and shaft 298 with a cross section having any non-circular shape so long as inner disk 342 rotates with shaft 298.
Leg section link 278 includes a first end 277 having a square-shaped aperture 296 that receives a square-shaped hub 338 of a clutch outer disk 336 of clutch assembly 347 as shown best in FIG. 12. Outer disk 336 is formed to include an “oversized” aperture 340 that receives hinge shaft 298 so that hinge shaft 298 can rotate relative to outer disk 336 and leg section link 278. Inner disk 342 and outer disk 336 are positioned to lie between leg section link 278 and driven link 274 as shown in FIG. 12 and inner and outer disks 342, 336 slidably engage one another so that shaft 298, inner disk 342, and driven link 274 can rotate relative to outer disk 336, leg section link 278, frame 290, and leg section 42.
A connecting link 276 of leg deployment assembly 200 is pivotably coupled to a second end 275 of driven link 274 as shown in
A slotted link 282 connects aligning link 272 to driven link 274 as shown best in
When leg section 42 and foot section 46 are in the stored position and back section 34 and seat section 38 are locked in the sitting-up position, handle 76 can be manually pivoted about axis 78 from the retracting position to the extending position. When handle 76 pivots, shaft 298, inner disk 342, and driven link 274 rotate about pivot axis 78 and leg section link 278, leg section frame 290, and leg section 42 also pivot about axis 78 due to driving engagement of inner disk 342 with outer disk 336. In addition, when leg section link 278 moves forwardly and upwardly, leg section link 278 pivots aligning link 272 forwardly about a pivot axis 288 relative to deployment link 270 from a generally vertical orientation, as shown in
During forward pivoting movement of aligning link 272, pin 322 of aligning link 272 slides within slot 320 away from edge 319 of slotted link 282 and toward edge 321 while axis 288 of aligning link moves downwardly from a raised position shown in
When aligning link 272 and deployment link 270 reach the in-line configuration, a stop peg 300 appended to aligning link 272 engages a barb 310 appended to front end 22 of deployment link 270 as shown in FIG. 9. Engagement of stop peg 300 with barb 310 blocks further upward pivoting movement of aligning link 272 about axis 288 relative to deployment link 270 thereby blocking upward movement of leg section 42 past the extended position when back section 34 and seat section 38 are in the sitting-up position. It can be seen that when aligning link 272 and deployment link 270 are in the in-line configuration, an “over-center condition” exists in which aligning link 272 cooperates with deployment link 270 to lock leg deployment assembly 200 blocking downward movement of leg section 42 when leg section 42 is in the extended position.
As described above, inner disk 342 drivingly engages outer disk 336 during movement of leg section 42 from the stored position to the extended position so that outer disk 336, leg section link 278, and leg section 42 move together with inner disk 342 and driven link 274. However, outer disk 336 includes a stop face 341 and a ramp surface 343 which define an arcuate recess 337. A drive pin 335 is appended to inner disk 342 and extends into recess 337 of outer disk 336 as shown in FIG. 12. During initial movement of handle 76 from the retracting position toward the extending position, inner disk 342 and outer disk 336 are drivingly coupled together and during later movement of handle 76 toward the extending position, inner disk 342 moves independent of outer disk 336. As a result, the movement of leg and foot sections 42, 46 from the stored position to the extended position occurs in two stages. During the first stage, foot section 46 moves together with leg section 42 until leg section reaches its extended position, thus allowing foot section 46 to “clear” floor 62. During the second stage, foot section 46 moves relative to leg section 42 and uncurls from underneath leg section 42 until foot and leg sections 46, 42 are generally coplanar in the extended position.
When leg section 42 is at the stored position, drive pin 335 engages stop face 341 of outer disk 336. As handle 76 is pivoted in direction 302 to move leg section 42 from the stored position to the extended position, a spring 345 coiled about hinge shaft 298 and compressed between seat section frame member 224 and driven link 274, axially biases inner disk 342 through driven link 274 into engagement with outer disk 336, which is held against axial movement by leg section link 278, so that drive pin 335 of inner disk 342 engages ramp surface 343 of outer disk 336 with sufficient force to rotate outer disk 336 and inner disk 342 together about axis 78 through equivalent angular displacements resulting in foot section 46 pivoting together with leg section 42. Thus, when leg section 42 first reaches its extended position, foot section 46 is still curled beneath leg section 42.
When leg section 42 reaches its extended position, deployment link 270 and aligning link 272 are in the in-line configuration preventing leg section link 278 from pivoting past the extended position toward the table position when back section 34 and seat section 38 are in the sitting up position, as previously described. Continued movement of handle 76 toward the extending position rotates shaft 298, inner disk 342, and driven link 274 about axis 78 independent of outer disk 336, leg section link 278, and leg section 42 which are prevented from moving about axis 78 by links 270, 272. Driven link 274 pushes connecting link 276 and connecting link 276 pushes foot section link 280 pivoting foot section link 280 and foot section 46 relative to leg section 42 until foot section 46 is generally coplanar with leg section 42.
During independent movement of foot section 46 into coplanar relation with leg section 42, shaft 298 rotates within oversized aperture 340 relative to outer disk 336 and leg section link 278. In addition, drive pin 335 separates away from stop face 341 and rides on ramp surface 343 out of recess 337 resulting in axial movement of inner disk 342 and end 273 of driven link 274 along axis 78 toward seat section frame member 224 further compressing spring 345. Handle 76 can be used to rotate shaft 298, inner disk 342, and driven link 274 relative to outer disk 336 and leg section link 278 until second end 275 of driven link engages plate 318, as shown in
When leg section 42 and foot section 46 are in the extended position, handle 76 can be manually pivoted about axis 78 from the extending position to the retracting position to move leg section 42 and foot section 46 from the extended position to the stored position. Movement of handle 76 in this manner rotates shaft 298, inner disk 342, and driven link 274 counter clockwise in direction 304 as shown in
The remaining movement of leg section 42, foot section 46, and leg deployment assembly 200 to the stored position is similar, but opposite to, the movement of leg section 42, foot section 46, and leg deployment assembly 200 from the stored position to the extended position described above. For example, as assembly 200 moves toward the stored position, aligning link 272 pivots rearwardly and downwardly about axis 288 relative to deployment link 270 from the generally horizontal orientation to the generally vertical orientation and upward movement of aligning link 272 and deployment link 270 at axis 288 pivots leg section link 278 downwardly about axis 78 relative to seat section 40.
Once leg section 42 and foot section 46 are moved to the extended position, leg and foot sections 42, 46 can be moved to the table position by pivoting back section 34 downwardly about axis 250 toward floor 62 as described above with reference to
As control plate 110 rotates about axis 68 in direction 102, pin 284 connecting deployment link 270 to control plate 110 moves about axis 68 and pushes deployment link 270 generally forwardly as shown in FIG. 9. Since aligning link 272 and deployment link 270 are in the in-line configuration when leg and foot sections 42, 46 are in the extended position, aligning link 272 is pushed generally forwardly as well.
Forward movement of aligning link 272 pivots leg section link 278 about axis 78 in direction 302 as shown in
When second end 275 of driven link 274 engages attachment plate 318, which occurs when leg section 42 and foot section 46 are in the extended position and all positions between the extended position and the table position maintaining the coplanar alignment of leg-support surface 44 and foot-support surface 48, driven link 274 and leg section link 278 pivot together about axis 78. Thus, when leg section 42 and foot section 46 are moved between the extended and table positions, inner disk 342 and outer disk 336 rotate together about axis 78 without any relative motion between them. As a result, handle 76 is moved automatically from the extending position to the down-out-of-the-way position when leg and foot sections are in the extended position and back section 34 is moved to the table position.
When foot section 46 and leg section 42 are in the extended position, the table position, and the positions therebetween, gravity urges foot section 46 and foot section link 280 to pivot downwardly about axis 316 relative to leg section 42. However, the engagement of second end 275 of driven link 274 with attachment plate 318 prevents such movement. Thus, driven link 274 engages attachment plate 318 to lock foot-support surface 48 relative to leg-support surface 44 in coplanar relation when foot section 46 and leg section 42 are in the extended position, the table position, or any position therebetween.
When leg section 42 and foot section 46 are in the table position, back section 34 can swing upwardly about axis 250 from the table position to the sitting-up position. As back section 34 swings to the sitting-up position, control plate 110 rotates from the second orientation toward the first orientation in direction 104 pulling deployment link 270 and aligning link 272 generally rearwardly moving leg section 42 and foot section 46 from the table position to the extended position shown in FIG. 10. The movement of leg section 42, foot section 46, and leg deployment assembly 200 from the table position to the extended position is similar, but opposite to, the movement of leg section 42, foot section 46, and leg deployment assembly 200 from the extended position to the table position described above.
As described above with reference to
Handle assembly 348 includes a coupling tube 350 rigidly attached to handle 76 and extending inwardly therefrom. A shaft end cap 352 includes a post 354 received inside of tube 350 and a coupling cylinder 356 appended to post 354, cylinder 356 being formed to include a hexagonal aperture 358 that drivingly receives shaft 298 as shown in
Cap 352 is formed to include an annular ring 360 appended to post 354 adjacent to a shoulder 362 defined by an outer end face 364 of cylinder 356. Ring 360 is formed to include a notch 366. A compression spring 368 is mounted on post 354 inside tube 350 to yieldably bias a ring 363 mounted on an end of post 354 adjacent handle 76 away from an internal shoulder (not shown) of tube 350, thus yieldably biasing ring 363 outwardly into contact with a C-ring 365 which is received in a circumferential groove 355 formed in an outer end of post 354. C-ring 365 prevents end ring 363 from pushing off of post 354. Spring 368 also yieldably biases handle 76 and tube 350 toward shoulder 362 of cylinder 356.
An inner end of tube 350 is formed to include an annular groove 361 and a lug 367. When lug 367 and notch 366 are aligned, spring 368 yieldably biases lug 367 into notch 366 so that ring 360 of post 354 is received by groove 361 of tube 350 and an inner end face 351 of tube 350 contacts shoulder 362 of cylinder 356. When lug 367 is received by notch 366 and inner end face 351 engages shoulder 362, lug 367 drivingly engages ring 360 and rotation of handle 76 about axis 78 rotates tube 350 which rotates ring 360 thereby rotating cap 352 and shaft 298 about axis 78.
When handle 76 is pulled axially outwardly so that inner end face 351 disengages from shoulder 362, spring 368 is further compressed and lug 367 separates from notch 366 and disengages from ring 360. Rotation of handle 76 about axis 78 when lug 367 is disengaged from ring 360 causes tube 350 to rotate about axis 78 relative to post 354. Spring 368 yieldably biases an inner end face 369 of lug 367 against an outer end face 359 of ring 360 when lug 367 and notch 366 are not in alignment and handle 76 is released so that handle 76 is decoupled from clutch assembly 347 and can rotate about axis 78 to a position beneath patient-support surface 32 without moving leg and foot sections 42, 46.
As previously described, chair 20 includes first arm rest assembly 50 mounted to first side 26 of chair 20 and second arm rest assembly 50 mounted to second side 28 of chair 20 as shown in
Arm rest assembly 50 includes a plate 370 extending generally downwardly from arm rest 52 as shown in FIG. 13. Arm rest assembly 50 also includes a lower housing 376 having an inner casing 375 cooperating with an outer casing 377 to define an interior region 379 receiving plate 370. Outer casing 377 is mounted to inner casing 375 and inner casing 375 is mounted to a side portion of seat section 38 by a mounting bracket 378.
A rearwardly-directed front guide rail 380 is appended to a front wall 384 of inner casing 375 and a forwardly-directed rear guide rail 382 is appended to a rear wall 386 of inner casing 375 as shown in FIG. 13. Front end 22 of plate 370 is formed to include a front guide track 372 and rear end 24 of plate 370 is formed to include a rear guide track 374. Front and rear guide rails 380, 382 are received by front and rear guide tracks 372, 374, respectively, and cooperate therewith to guide the upward and downward movement of plate 370 and arm rest 52 relative to lower housing 376 and seat section 38.
Arm rest assembly 50 additionally includes a locking mechanism 388 movable between a locking position blocking movement of arm rest 52 and plate 370 relative to lower housing 376 and seat section 38 and a releasing position allowing movement of arm rest 52 and plate 370 relative to lower housing 376 and seat section 38. Locking mechanism 388 includes a spring clutch having a clutch housing 392 and a rod 394 received by clutch housing 392 for sliding movement. Rod 394 is mounted to an inner wall 385 of inner casing 375 by a rod bracket 396 and extends generally upwardly from rod bracket 396 as shown in FIG. 13. Clutch housing 392 is mounted to an outer face 371 of plate 370 and rod 394 is received by clutch housing 392. The spring clutch is coupled to arm rest release handle 72 by a bowden wire 398 having a flexible control cable (not shown) surrounded by a sheath. Although locking mechanism 388 includes a spring clutch, it is within the scope of the invention as presently perceived for locking mechanism 388 to include any locking mechanism as described above with reference to locking mechanism 180 which is suitable for locking arm rest 52 relative to seat section 38.
When arm rest release handle 72 is in the downward locking position, locking mechanism 388 is locked blocking the sliding movement of rod 394 relative to clutch housing 392 and blocking the sliding movement of locking plate 370 and arm rest 52 relative to lower housing 376, thus blocking upward and downward movement of arm rest 52 and plate 370 relative to lower housing 376 and seat section 38. When the caregiver moves arm rest release handle 72 to the upward releasing position, the control cable of bowden wire 398 moves locking mechanism 388 to the releasing position so that rod 394 can slide relative to clutch housing 392 and plate 370 and arm rest 52 can move upwardly and downwardly relative to lower housing 376 and seat section 38.
A plate cover 399 attaches to plate 370 so that clutch housing 392 is shielded from view and encased between plate 370 and plate cover 399. Plate cover 399 and plate 370 are positioned to lie between inner casing 375 and outer casing 377 of lower housing 376 so that plate cover 399 and plate 370 telescope into and out of lower housing 376 when arm rest 52 is lowered and raised, respectively, relative to seat section 38.
Another embodiment of ambulatory care chair 400 includes an articulated patient support 420, as shown in
Chair 400 has a front end 410, a rear end 412, a first side 414, and a second side 416. As used in this description with reference to the second embodiment of ambulatory care chair 400, the phrase “front end 410” will be used to denote the end of any referred-to object that is positioned to lie nearest the front end 410 of chair 400 and the phrase “rear end 412” will be used to denote the end of any referred-to object that is positioned to lie nearest the rear end 412 of chair 400.
Chair 400 includes spaced-apart first and second arm rest assemblies 434 mounted to first side 414 and second side 416 of chair 400, respectively, as shown in FIG. 14. Each arm rest assembly 434 includes an arm rest 436 defining a generally horizontal and upwardly-facing arm-support surface 454 upon which the arms of a person carried by chair 400 can rest.
Chair 400 includes a base frame 438 as shown in
A recline handle 450 is mounted to one of the arm rest assemblies 434. Recline handle 450 is pivotably mounted to arm rest assembly 434 at a position beneath arm rest 436, as shown in
Movement of recline handle 450 to the releasing position allows back, seat, and leg sections 422, 426, 430 to be moved between a sitting-up position shown in
Leg section 430 includes a leg section frame 781 having a rim 783 and struts 780 and a cushion assembly 435 pivotably mounted to frame 781 for movement between a closed position shown in
Cushion assembly 435 is supported in the footrest position by a pair of cables 431 connecting back plate 427 to struts 780 of frame 781 as shown in FIG. 15. When cushion assembly 435 pivots upwardly about axis 429 from the footrest position to the closed position, a latch 458 mounted to a center top portion of rim 781 catches a latch plate 459 of cushion assembly 435 appended to back plate 427 locking cushion assembly 435 in the closed position. When cushion assembly 435 is in the closed position, back plate 427 abuts a cover plate 457 that shields portions of base frame 438 from view and prevents foreign objects from inadvertently being inserted underneath seat section 426 from front end 410 of chair 400.
A back cover 445 is mounted to back section 422 and back cover 445 is formed to include a recess 447, a portion of which is covered by a net 449 to provide a storage compartment in which objects (not shown) can be stored and transported with chair 400. A push bar 442 having a generally horizontal grip 443 is mounted to back section 422 and first and second forward tilt handles 444 are pivotably mounted to push bar 442 adjacent to first side 414 and second side 416 of chair 400 as shown in FIG. 14. In addition a U-shaped rearward tilt handle 446 is mounted to back section 422 adjacent to and above push bar 442.
Tilt handles 444, 446 each can move between a locking position and a releasing position. Movement of either forward tilt handle 444 to the releasing position allows patient support 420 to tilt forwardly about a horizontal transverse pivot axis 448 and movement of rearward tilt handle 446 to the releasing position allows patient support 420 to tilt rearwardly about axis 448.
Hereinafter, components of chair 400 will be described as tilting “forwardly” when each referred-to component is rotated about an axis so that front end 410 of the component is lowered and rear end 412 of the component is raised. Likewise, components of chair 400 will be described as tilting “rearwardly” when each referred-to component is rotated about an axis so that rear end 412 of the component is lowered and front end 410 of the component is raised. Patient support 420 can be forwardly or rearwardly tilted when back, seat, and leg sections 422, 426, 430 are locked in the sitting-up position, the table position, or any position therebetween.
When back, seat, and leg sections 422, 426, 430 of chair 400 are locked in the sitting-up position, patient support 420 can be placed in a generally horizontal “home” position, tilted forwardly from the home position to a forward egress position, and tilted rearwardly to a leanedback position. In addition, when back, seat, and leg sections 422, 426, 430 are locked in the table position, patient support 420 can be placed in a generally horizontal “home” position, tilted forwardly from the home position to a reverse Trendelenburg position, and tilted rearwardly from the home position to a Trendelenburg position.
An arm rest release handle 452 is mounted to each arm rest assembly 434 as shown in
Movement of release handle 452 from the locking position to the releasing position allows the corresponding arm rest 436 to move between a raised position and a lowered position. In their raised positions, arm rests 436 are elevated above seat section 426 and in their lowered positions arm rests 436 are adjacent to seat section 426 so that arm-support surface 454 of each arm rest 436 is generally coplanar with seat-support surface 428.
Each arm rest 436 can be locked in an infinite number of positions between the raised position and the lowered position by moving the corresponding release handle 452 to its locking position when selected arm rest 436 is at a desired position between the raised position and the lowered position. Although arm rests 436 are adjacent to seat section 426 when in the lowered position so that each arm-support surface 454 is generally coplanar with seat-support surface 428, it is within the scope of the invention as presently perceived to provide arm rest assemblies 434 for which arm-support surfaces 454 are vertically beneath the level of seat-support surface 428 when arm rests 436 are in the lowered position.
Chair 400 also includes a pair of brake-steer pedal wings 456 pivotably coupled to base frame 438 as shown best in
When pedal wings 456 are tilted rearwardly to a braking position, as shown in
Pump pedals 464 are pivotably mounted to sides 414, 416 of chair 400 to control the raising and lowering of patient support 420 relative to floor 62. Pump pedals 464 are normally in a middle locking position shown in
Thus, chair 400 includes articulated patient support 420 having back, seat, and leg sections 422, 426, 430 that are movable and lockable between the sitting-up position, as shown in
Base frame 438 of chair 400 includes a lower frame 492 having casters 58, 60 engaging floor 62, a staging frame 466, and an elevation mechanism 496 mounting staging frame 466 above lower frame 492 for upward and downward movement with respect thereto, as shown in
Lower frame 492 of chair 400 is substantially similar to lower frame 92 of chair 20 described above with reference to FIG. 7 and includes first and second spaced-apart side members 512, 514 connecting the front and rear members 146, 148 as shown best in FIG. 15. Each side member 512, 514 includes an upwardly-extending front tube 124 at front end 410 of side member 512, 514 and an upwardly-extending rear tube 126 at rear end 412 of side member 512, 514. Casters 58 are mounted to front tubes 124 and casters 60 are mounted to rear tubes 126.
Brake-steer shaft 460 is received by apertures 128 for rotation relative to lower frame 492 as shown in FIG. 15. Apertures 128 of rear tubes 126 are aligned to define pivot axis 462 and shaft 460 pivots about axis 462. Pedal wings 456 are fixed to and extend rearwardly from shaft 460 between rear tubes 126 so that pivoting pedal wings 456 about axis 462 rotates shaft 460 about axis 462. Each pedal wing 456 includes a generally upwardly-facing braking surface 493 and shaft 460 includes a bell crank-shaped steering portion 494 offset from axis 462 as shown in
Applying a contact force to braking surface 493 of either pedal wing 456 rotates shaft 460 about axis 462 in a braking direction indicated by arrow 497 shown in
Shaft 460 is coupled to each rear caster 60 by a conventional braking mechanism (not shown) so that when shaft 460 is in the braking position, the braking mechanism brakes rear casters 60 blocking the rotation and swivelling movement of rear casters 60. When shaft 460 is in the steering position, the braking mechanism allows rear casters 60 to rotate and swivel.
Center wheel deployment assembly 138 couples shaft 460 to center wheel 82 so that rotation of shaft 460 about axis 462 moves center wheel 82 relative to floor 62 between the neutral position and the brake-steer position. Center wheel deployment assembly 138 includes pivot link 140 attached to shaft 460 and elongated fork 142 coupling pivot link 140 to center wheel 82 as shown in
Elevation mechanism 496 includes first and second spaced-apart scissors linkages 476 as shown in
Each scissors linkage 476 includes a plurality of links 516 as shown in
A flange 520 depends downwardly from each side member 512, 514 of lower frame 492 near rear member 148 as shown in
A lower track 524 depends downwardly from each of side members 512, 514 of lower frame 492 near front member 146. Each lower track 524 includes a generally horizontal track plate 526. A roller 528 is mounted for rotation to a front bottom end 530 of each scissors linkage 476 and engages plate 526 of each lower track 524 as shown in FIG. 16. When drive mechanism 114 opens scissors linkages 476 lifting staging frame 466, rollers 528 roll rearwardly on plates 526 and when drive mechanism 114 closes scissors linkages 476 lowering staging frame 466, rollers 528 roll forwardly on plates 526.
Staging frame 466 of chair 400 includes a first side member 532 adjacent to first side 414 of chair 400, a second side member 534 adjacent to second side 416 of chair 400, and a front member 536 connecting first side member 532 and second side member 534 and extending transversely therebetween as shown in
Side members 532, 534 are each formed to include an upper track 544 having a horizontal track plate 546 as shown in
Each pin 540 is vertically aligned with a corresponding pin 522 and horizontally aligned with a corresponding roller 548 as shown in FIG. 16. In addition, each roller 548 is vertically aligned with a corresponding roller 528. As a result, staging frame 466 remains generally horizontal as it moves relative to lower frame 492 between the raised and the lowered positions.
It will be appreciated, as described above, that drive mechanism 114 can include various mechanical and electromechanical actuators and drivers to raise and lower staging frame 466 relative to lower frame 492, without exceeding the scope of the invention as presently perceived. Drive mechanism 114 of chair 400 is hydraulic cylinder 114 as described above with reference to
Chair 400 includes a pump pedal arm 482 pivotably coupling a pump (not shown) to pump pedals 464 shown in
Pumping pump pedals 464 causes the pump to pressurize hydraulic fluid and forces hydraulic fluid into the interior region of hydraulic cylinder 114 to move staging frame 466 upwardly relative to lower frame 492 away from the lowered position and toward the raised position as previously described. Lifting pump pedals 464 upwardly past the locking position to a releasing position allows hydraulic fluid to escape from the interior region of hydraulic cylinder 114 so that a piston 479 retracts into hydraulic cylinder 114 and scissors linkages 476 close downwardly toward the closed position, lowering staging frame 466 relative to lower frame 492 toward the lowered position.
Intermediate frame 468 includes a first side upper strut 556 and a second side upper strut 558 each of which is formed to include an aperture 560. Staging frame 466 is provided with an upwardly-extending box 552 attached to each side member 532, 534 of staging frame 466 as shown in FIG. 15. Each box 552 is formed to include main apertures 554.
Apertures 554 and apertures 560 support bearings 658, as shown in
A locking mechanism 564 connects intermediate frame 468 to staging frame 466 as shown in
Locking mechanism 564 includes a front gas spring 566 and a rear gas spring 568 as shown in
Front gas spring 566 includes a housing 563 and a piston 565 slidably received in housing 563 as shown best in
A first slot plate 574, shown best in
Rear end 412 of housing 563 of front gas spring 566 is positioned to lie in gas spring-receiving space 575 adjacent to front ends 410 of slot plates 574. A pin 578 is fixed to housing 563 and is slidably received by slots 576 as shown in
Intermediate frame 468 includes a front strut 572 and flanges 570 appended to front strut 572 as shown in
When intermediate frame 468 is in the generally horizontal home position shown in
Also, when intermediate frame 468 is in the home position, gas springs 566, 568 are each fully-extended relative to housings 563, 567, respectively, as shown in FIG. 17. When gas springs 566, 568 are thus positioned and locked, slot pin 578 engages innermost edge 592 blocking forward tilting of intermediate frame 468 relative to staging frame 466 and slot pin 588 engages innermost edge 596 blocking rearward tilting of intermediate frame 468 relative to staging frame 466.
Gas springs 566, 568 are yieldably biased to their locked modes and can be selectively and independently released. When either of front and rear gas springs 566, 568 are released, intermediate frame 468 can pivot about axis 448 relative to staging frame 466.
A first bowden wire 620 has a sheath and a flexible control cable 624 movable within the sheath and coupled to rear gas spring 586 so that control cable 624 can move relative to gas spring 568 within the sheath to unlock gas spring 568 allowing piston 569 to slide relative to housing 567. Control cable 624 of bowden wire 620 is also attached to rearward tilt handle 446 mounted to back section 422 so that moving handle 446 to the releasing position relative to back section 422 moves control cable 624 and unlocks gas spring 568. Similarly, a second bowden wire 622 having a sheath and a flexible control cable 626 movable within the sheath couples each of forward tilt handles 444 to front gas spring 566 so that gas spring 566 unlocks and piston 565 can slide relative to housing 563 when either forward tilt handle 444 is moved to the releasing position relative to push bar 442.
When intermediate frame 468 is locked in the home position, movement of rearward tilt handle 446 from the locking position to the releasing position pulls control cable 624 of bowden wire 620 coupled to gas spring 568 so that gas spring 568 unlocks and allows piston 569 to retract into housing 567 thereby allowing intermediate frame 468 to tilt rearwardly. As intermediate frame 468 tilts rearwardly about axis 448, pin 588 engages edge 596 while piston 569 retracts into housing 567 compressing gas located inside housing 567, the gas yieldably biasing piston 569 toward the extended position.
When piston 569 retracts into housing 567, a locking assembly 598 automatically locks pin 588 against edge 596 so that pin 588 and housing 567 cannot slide in slot 586. Locking assembly 598 includes a connecting link 600 pivotably coupled to flanges 580 and a locking link 602 having a hook 604, locking link 602 being pivotably coupled to front end 410 of connecting link 600 and to pin 588 as shown in
When piston 569 retracts into housing 567 and intermediate frame 468 tilts rearwardly, intermediate frame 468 pushes connecting link 600 generally forwardly thereby pivoting locking link 602 forwardly about pin 588 as shown in
When gas spring 568 is released and intermediate frame 468 moves in direction 607, pin 578 slides in front slot 576 away from edge 592 toward edge 590. Pin 578 engages edge 590 when intermediate frame 468 reaches the rearward tilt position shown in
Intermediate frame 468 can also move from the home position to the forward tilt position as shown
When piston 565 retracts into housing 563, a locking assembly 610 automatically locks pin 578 against edge 592 so that pin 578 and housing 563 cannot slide in slot 586. Locking assembly 610 includes a connecting link 612 pivotably coupled to flanges 570 and a locking link 614 having a hook 616, locking link 614 being pivotably coupled to rear end 412 of connecting link 612 and to pin 578 as shown in
When piston 565 retracts into housing 563 and intermediate frame 468 tilts forwardly, intermediate frame 468 pushes connecting link 612 generally rearwardly pivoting locking link 614 rearwardly about pin 578 as shown in
When gas spring 566 is released and intermediate frame 468 moves in direction 608, pin 588 slides in rear slot 586 away from edge 596 toward edge 594. Pin 588 engages edge 594 when intermediate frame 468 reaches the forward tilt position shown in
Thus, if the caregiver moves either tilt handle 444 to the releasing position when intermediate frame 468 is locked in the home position shown in
If the caregiver moves either tilt handle 444 to the releasing position when intermediate frame 468 is locked in the forward tilt position shown in
Assembly 470 includes a first control plate 472 rotatably coupled to strut 556 of intermediate frame 468 for rotation about axis 448 and a second control plate 474 rotatably coupled to strut 558 of intermediate frame 468 for rotation about axis 448. Axis 448 is defined by main control shaft 562. Shaft 562 includes a center rod 652 and end pieces 648 coupled to ends of center rod 652 as shown in FIG. 20. An axially-extending groove 654 is formed at each end of center rod 652 and each end piece 648 includes a tongue 656 extending into groove 654 as shown in
Control plates 472, 474 are each formed to include a D-shaped aperture 646 receiving shaft 562 as shown in
Outer end 650 of end piece 648 is formed to include an annular groove 660 carrying a C-ring 662 as shown in FIG. 20. C-ring 662 retains control plate 474 on shaft 562 adjacent to strut 558 of intermediate frame 468.
Assembly 470 includes a first reclining assembly 628 (hereinafter reclining assembly 628) adjacent to first side 414 of chair 400 and a second reclining assembly 630 (hereinafter reclining assembly 630) adjacent to second side 416 of chair 400 as shown in
Reclining assembly 628 and leg deployment assembly 632 are pivotably coupled to control plate 472 and shaft 562 as shown in
A locking mechanism 636 connects shaft 562 to intermediate frame 468 as shown in FIG. 15. Locking mechanism 636 has a rear end 412 pivotably coupled to a member 640 adjacent strut 582 and attached to side struts 556, 558 of intermediate frame 468 as shown in
Locking mechanism 636 includes a spring clutch having a clutch housing 644 and a rod 664 slidably received by clutch housing 644 for sliding movement. Locking mechanism 636 hereinafter is referred to alternatively as locking mechanism 636 and spring clutch 636. Rod 664 can be locked in an infinite number of positions relative to housing 644. As a result, control plate 472 can be locked in an infinite number of positions relative to intermediate frame 468 and patient support 420 can be locked in an infinite number of positions relative to intermediate frame 468 between the sitting-up position and the table position. Although locking mechanism 636 includes a spring clutch, it is within the scope of the invention as presently perceived for locking mechanism 636 to include any locking mechanism as described above with reference to locking mechanism 180 which is suitable for locking assembly 470 relative to intermediate frame 468.
A bowden wire 666 having a sheath surrounding a flexible control cable 668 is coupled to locking mechanism 636 so that control cable 668 can be moved to unlock locking mechanism 636, loosening a gripping spring (not shown) of spring clutch 636, thereby allowing rod 664 to slide relative to the spring and relative to clutch housing 644. Bowden wire 666 extends from clutch housing 644 through one of arm rest assemblies 434 to recline handle 450. Control cable 668 is connected to recline handle 450 so that when recline handle 450 is in the locking position, the spring constricts against rod 664 thereby locking rod 664 relative to clutch housing 644.
Locking mechanism 636 is yieldably biased toward its locking mode biasing recline handle 450 toward the locking position. When the caregiver pivots recline handle 450 from the locking position to the releasing position, recline handle 450 moves control cable 668 to unlock locking mechanism 636, loosening the spring, and allowing rod 664 to slide relative to clutch housing 644 so that the caregiver can move back, seat, and leg sections 422, 426, 430 relative to intermediate frame 468 between the sittingup position and the table position. Once the caregiver moves patient support 420 to the desired position and the caregiver releases recline handle 450, locking mechanism 636 automatically locks, locking center rod 562 and control plates 472, 474, thus locking patient support 420 relative to intermediate frame 468 in the desired position and automatically moving control cable 668 and recline handle 450 back to the locking position.
Although locking mechanism 636 is illustratively shown in
As previously described, assembly 470 includes control plate 472, reclining assembly 628, and leg deployment assembly 632 on first side 414 of chair 400 and control plate 474, reclining assembly 630, and leg deployment assembly 634 on second side 416 of chair 400 that are similar to corresponding elements on first side 414 of chair 400 except that the portion of assembly 470 mounted on second side 416 is a mirror image of the portion of assembly 470 mounted on first side 414. Control plate 472, reclining assembly 628, and leg deployment assembly 632 and the operation thereof are substantially similar to control plate 474, reclining assembly 630, and leg deployment assembly 634, respectively. Thus, the description herein of control plate 472, reclining assembly 628, and leg deployment assembly 632 applies as well to control plate 474, reclining assembly 630, and leg deployment assembly 634, respectively, unless specifically noted otherwise.
Patient support 420 includes laterally spaced apart back section links 672, back section 422 being fixed to back section links 672 and extending rearwardly therefrom when patient support 420 is in the table position as shown in
Reclining assembly 628 includes a short portion 680 connecting seat section frame member 670 both to control plate 472 and to back section link 672 as shown in
Back section link 672 is generally upside down U-shaped as shown in
Pivot pin 698 pivotably couples chair stop link 674 to rear portion 684 of back section link 672 and pivot pin 712 pivotably couples chair stop link 674 to control plate 472 so that chair stop link 674 and seat section frame member 670 are directly coupled control plate 472 and back section link 672 is indirectly coupled to control plate 472 through chair stop link 674 and short portion 680 of seat section frame member 670 as shown best in
Tilt link 676 has a first end pivotably coupled to a flange 726 depending from seat section frame member 670 and a second end pivotably coupled to a flange 728 depending from intermediate frame 468, as shown best in
When back section 422 and seat section 426 are in the sitting-up position, control plate 472 has a first orientation extending generally rearwardly from axis 448 as shown in
For example, when patient support 420 is locked in the sitting-up position shown in
Short portion 680 cooperates with tilt link 676 to restrict the range of movement of front end 410 of seat section 428 so that as patient support 420 moves from the sitting-up position of
When back, seat, and leg sections 422, 426, 430 are locked in the table position of
Chair stop link 674 includes a front portion 714 extending generally forwardly from pin 712 as shown best in
As previously described, leg deployment assembly 632 of control assembly 470 controls the movement of leg section 430 relative to seat section 426 and intermediate frame 468 as shown in
As described above, intermediate frame 468 includes transversely-extending front member 744 adjacent to front strut 572 and connecting first and second side struts 556, 558 of intermediate frame 468 as shown in
When the caregiver moves back section 422 away from the sitting-up position and toward the table position so that control plate 472 rotates in direction 732 about axis 448 and moves seat section frame member 670 generally forwardly relative to intermediate frame 468, cross member 742 travels generally forwardly along with seat section frame member 670 and moves away from frame member 744. Separation of cross member 742 from front intermediate frame member 744 causes leg deployment assembly 632 to automatically open from the closed position shown in
Leg deployment assembly 632 includes a swing link 746 pivotably mounted to stationary flange 748 for swinging movement between a downward closed position shown in FIG. 21 and an upward open position shown in FIG. 23. Leg deployment assembly 632 also includes a driven link 752 mounted to flange 754 of seat section 426 and connecting flange 754 to swing link 746 so that as seat section 426 moves between the sitting-up position and the table position, driven link 752 swings swing link 746 between the closed position and the open position, respectively. Stationary flange 748 is fixed to member 744 of intermediate frame 468 and flange 754 is attached to member 742 which is fixed to seat section 426 so that as front end 410 of seat section 426 moves away from front end 410 of intermediate frame 468 when patient support 420 moves to the table position, driven link 752 swings swing link 746 upwardly to the open position.
A first mobilizing link 758 of leg deployment assembly 632 couples front end 410 of swing link 746 to a first cross link 762 of leg deployment assembly 632 as shown in FIGS. 15 and 21-23. First cross link 762 has a first end pivotably coupled to front end 410 of flange 766 and a second end pivotably coupled to a second mobilizing link 784 connecting cross link 762 to strut 780 of leg section 430 so that as swing link 746 moves from the closed position to the open position, swing link 746 pushes first mobilizing link 758 upwardly, pivoting first cross link 762 upwardly, pushing second mobilizing link 784 upwardly, thereby moving leg section 430 from the sitting-up position upwardly to the table position.
A following link 770 of leg deployment assembly 632 is pivotably coupled to a rear end 412 of flange plate 766 spaced apart from first cross link 762 as shown in
When the caregiver moves recline handle 450 releasing locking mechanism 636 and then moves patient support 420 from the sitting-up position toward the table position, front end 410 of seat section 426 moves away from front end 410 of intermediate frame 468 and flanges 754, 766 move with seat section 426 away from flange 748 as shown in
As shown, for example, in
When back, seat, and leg sections 422, 426, 430 are locked in the table position and leg deployment assembly 632 is opened, the caregiver can release locking mechanism 636 and pull back section 422 upwardly and forwardly relative to seat section 426 in direction 423 toward the sitting-up position. Movement of back section 422 in direction 423 automatically moves front end 410 of seat section 426 downwardly toward front end 410 of intermediate frame 468 moving flanges 754, 766 toward flange 748.
As flanges 754, 766 of seat section 426 move toward flange 748 of intermediate frame 468, flange 754 pushes driven link 752 downwardly swinging swing link 746 rearwardly and downwardly, pulling mobilizing link 758, first cross link 762, and third mobilizing link 774 downwardly, thereby pulling leg section 430 downwardly from the table position-toward the sitting-up position. When the caregiver moves patient support 420 to the desired position, the caregiver releases handle 450 on arm rest assembly 434 and locking mechanism 636 locks, blocking further movement of patient support 420.
As previously described, chair 400 includes a first arm rest assembly 434 mounted to first side 414 of chair 400 and a second arm rest assembly 434 mounted to second side 416 of chair 400. Each arm rest assembly 434 includes an arm rest 436 having an upwardly-facing arm-support surface 454 and an arm rest release handle 452 for unlocking arm rest 436 for upward and downward movement relative to seat section 426. The description below of arm rest assembly 434 mounted to first side 414 of chair 400 and shown in
Arm rest assembly 434 includes arm rest 436 connected to a plate 812 extending generally downwardly from arm rest 436 as shown in
Support member 802 is formed to include front and rear guides 818, 820 receiving front and rear posts 814, 816, respectively. Front and rear guides 818, 820 cooperate with front and rear guide posts 814, 816 to guide the upward and downward movement of plate 812 and arm rest 436 relative to support member 802 and intermediate frame 468 as shown in FIG. 25.
Support member 802 is also formed to include a lower strut 808 as shown in FIG. 25. Front and rear guides 818, 820 are mounted to strut 808 and extend upwardly therefrom. A support strut 826 is spaced apart above strut 808 and is attached to front and rear guides 818, 820 to support front and rear guides 818, 820. A front connector 822 couples front end 410 of strut 826 and front end 410 of strut 808 to a corresponding front strut 572 of intermediate frame 468. A rear connector 824 is spaced apart behind front connector 822 and couples rear end 412 of strut 826 and rear end 412 of strut 808 to a corresponding rear strut 582 of intermediate frame 468. Front and rear connectors 822, 824 are attached to front and rear struts 572, 582, respectively, so that support member 802 is spaced apart from struts 556 of intermediate frame 468 sufficiently to allow room for the operation of reclining assembly 628 and control plate 472 without interference from arm rest assemblies 434.
Arm rest assembly 434 includes a locking mechanism 828 movable between a locking position blocking movement of plate 812 and arm rest 436 relative to support member 802 and intermediate frame 468 and a releasing position allowing movement of arm rest 436 and plate 812 relative to support member 802 and intermediate frame 468. Locking mechanism 828 includes a spring clutch having a clutch housing 830 and a rod 832 received by clutch housing 830 for sliding movement. Rod 832 is mounted to plate 812 and extends downwardly therefrom as shown in FIG. 25. Clutch housing 830 is mounted to a middle guide 834 of support member 802 and to a middle portion of strut 808 and rod 832 is received by clutch housing 830. The spring clutch is coupled to arm rest release handle 452 by a bowden wire 836 having a flexible control cable 837 surrounded by a sheath. Although locking mechanism 828 includes a spring clutch, it is within the scope of the invention as presently perceived for locking mechanism 828 to include any locking mechanism as described above with reference to locking mechanism 180 which is suitable for locking arm rest 436 to intermediate frame 468.
When arm rest release handle 452 is in the downward locking position, locking mechanism 828 is locked and blocking the sliding movement of rod 832 relative to clutch housing 830, thereby locking plate 812 and arm rest 436 relative to support member 802 and intermediate frame 468, blocking upward and downward movement of arm rest 436 and plate 812 relative to support member 802 and intermediate frame 468. When the caregiver moves arm rest release handle 452 to the upward releasing position, control cable 837 of bowden wire 836 moves locking mechanism 828 to the releasing position so that rod 832 can slide relative to clutch housing 830, and plate 812 and arm rest 436 can move upwardly and downwardly relative to support member 802 and intermediate frame 468.
Upper cover 839 is “segmented” having a top portion 838 and a bottom portion 840 appended to top portion 838. Upper and lower covers 839, 842 shield guides 818, 834, 820, posts 814, 816, and locking mechanism 828 from view as shown in
As previously described, first embodiment chair 20 and second embodiment chair 400 each include center wheel deployment assembly 138 that moves center wheel 82 into and out of contact with floor 62 as shown in
Center wheel deployment assembly 138 includes elongated fork 142 and pivot link 140 connecting fork 142 to shaft 86 as shown in
Rear member 148 of lower frame 92 is formed to include an opening 860 carrying a bushing 858 as shown in FIG. 26. Fork 142 is slidably received by bushing 858 for movement in longitudinal direction 844. Thus, link 140 pivots in-response to rotation of shaft 86 and fork 142 slides within bushing 858 in direction 844 relative to rear member 148 of lower frame 92. Movement of fork 142 in direction 844 actuates subassembly 848 moving center wheel 82 into and out of contact with floor 62.
When pedal 80 is in the generally horizontal neutral position, center wheel 82 is spaced apart from floor 62 as shown in FIG. 27 and fork 142 is in a neutral position having slot 850 positioned to lie generally underneath shaft 86. When the caregiver presses braking portion 130 of pedal 80, shaft 86 rotates about axis 88 in braking direction 134, link 140 pivots about axis 88 in direction 134, and pin 852 engages a front edge 862 of slot 850 pushing fork 142 forwardly. As fork 142 slides forwardly from the neutral position and link 140 continues to pivot in direction 134, pin 852 slides upwardly in slot 850. Once pedal 80 is in the braking position, fork 142 is in a forward position and subassembly 848 yieldably biases center wheel 82 against floor 62.
Similarly, when fork 142 is in the neutral position and the caregiver presses steering portion 132 of pedal 80, shaft 86 rotates about axis 88 in steering direction 136, link 140 pivots about axis 88 in direction 136, and pin 852 engages a rear edge 866 of slot 850 pulling fork 142 rearwardly. As fork 142 slides rearwardly from the neutral position and link 140 continues to pivot in direction 136, pin 852 slides upwardly in slot 850. Once pedal 80 is in the steering position, fork 142 is in a rearward position and subassembly 848 yieldably biases center wheel 82 against floor 62 as shown in
Center wheel deployment assembly 138 includes a roller track housing 868 cantilevered to front member 146 of lower frame 92 and extending rearwardly therefrom as shown in
Lifting subassembly 848 includes first and second rollers 876 each of which is rotatably mounted to front end 22 of a corresponding prong 874 as shown in
Lifting subassembly 848 also includes a transversely-extending lifting pin 882 and roller arms 878 couple each pin 880 to lifting pin 882 as shown best in FIG. 26. Lifting pin 882 is pivotably coupled to a top end 884 of a center wheel post 886 as shown in
Center wheel post 886 extends downwardly through aperture 892 and a center wheel bracket 888 is mounted to a bottom end 890 of center wheel post 886 underneath housing 868. Center wheel 82 is mounted to center wheel bracket 888 for rotation about a transversely-extending center wheel axle 896 as shown in
When pedal 80 is in the braking position and fork 142 is in the forward position, rollers 876 are positioned to lie in front of post 886 and roller arms 878 angle downwardly and forwardly from lifting pin 882 to axle pin 880 as shown in
When subassembly 848 is in the neutral position, rollers 876 are received by an indentation 910 defined by a bottom wall 912, a front ramp 914, and a rear ramp 916 of each roller track 872. Post 886 is yieldably biased downwardly so that rollers 876 firmly engage bottom walls 912 and front and rear ramps 914, 916 to lock rollers 876 and roller arms 878 in the vertical locking position thereby locking pedal 80 in the horizontal neutral position and locking center wheel 82 in the neutral position spaced apart from floor 62 as shown in FIG. 27.
When the caregiver presses braking portion 130 of pedal 80 pivoting pedal 80, shaft 86, and link 140 in direction 134 toward the braking position, fork 142 moves forwardly toward the forward position and rollers 876 roll forwardly away from bottom wall 912.
When rollers 876 move out of indentation 910 and past ramp 914, spring 900 urges rollers 876 forwardly and bracket 888, post 886, and center wheel 82 downwardly until center wheel 82 reaches the brake-steer position engaging floor 62.
Similarly, when the caregiver presses steering portion 132 of pedal 80 pivoting pedal 80, shaft 86, and link 140 in direction 136 toward the steering position, fork 142 moves rearwardly toward the rearward position and rollers 876 roll rearwardly away from bottom wall 912. When rollers 876 move out of indentation 910 and past ramp 916, spring 900 urges rollers 876 rearwardly and bracket 888, post 886, and center wheel 82 downwardly until center wheel 82 reaches the brake-steer position engaging floor 62.
When center wheel 82 engages floor 62, spring 900 biases center wheel 82 to a position past the plane of floor 62 and past the plane defined by the bottoms of front and rear caster 58, 60. Of course, floor 62 limits the downward movement of deployed center wheel 82. However, if floor 62 has a surface that is not planar or that is not coincident with the plane defined by the bottoms of front and rear casters 58, 60, spring 900 cooperates with roller track housing 868 and bracket 888 to maintain contact between center wheel 82 and floor 62. For example, when chair 20 passes over a threshold of a doorway, the plane defined by the bottoms of front and rear casters 58, 60 is not necessarily coplanar with floor 62. However, spring 900 maintains engagement of deployed center wheel 82 against floor 62.
Center wheel deployment assembly 138 can maintain engagement between deployed center wheel 82 and floor 62 when floor 62 beneath center wheel 82 is spaced apart up to approximately 0.75 inch (1.9 cm) beneath the plane defined by the bottoms of front and rear casters 58, 60. Additionally, center wheel deployment assembly 138 allows deployed center wheel 82 to pass over a threshold that is approximately 0.75 inch (1.9 cm) above the plane defined by the bottoms of front and rear casters 58, 60.
An alternative embodiment of a center wheel deployment assembly 920 that can be mounted to either lower frame 92 of chair 20 or lower frame 492 of chair 400 and operated to move center wheel 82 between the neutral position spaced apart from floor 62 and the brake-steer position engaging floor 62 is shown in
Assembly 920 includes a brake-steer shaft 922 mounted to rear tubes 126 of lower frame 492 for pivoting movement about a horizontal transverse pivot axis 924 as shown best in FIG. 28. Brake-steer shaft 922 includes a pair of spaced-apart horizontal tubes 926 extending transversely inwardly from respective rear tubes 126 and a generally U-shaped tube 928 connecting horizontal tubes 926. A brake pedal 930 having an upwardly-facing braking surface 932 is appended to each horizontal tube 926 and extends generally rearwardly therefrom. U-shaped tube 928 extends generally forwardly from tubes 926 and includes both a central offset portion 934 and a steer pedal 936 having an upwardly-facing steering surface 938 mounted to offset portion 934 as shown in FIG. 28.
Applying a downward contact force to braking surface 932 of either brake pedal 930 rotates shaft 922 about pivot axis 924 in a braking direction indicated by arrows 933 shown in
Shaft 922 is coupled to each rear caster 60 by a conventional braking mechanism (not shown) well-known to those skilled in the art. When shaft 922 is in the braking position, the braking mechanism moves to a braking position braking rear casters 60 and preventing rear casters 60 from rotating and swivelling. When shaft 922 is in either the neutral position or the steering position, the braking mechanism moves to a releasing position releasing rear casters 60 so that rear casters 60 can freely rotate and swivel. Each braking mechanism is attached to shaft 922 and is positioned to lie inside a corresponding rear tube 126.
Assembly 920 includes a generally H-shaped control truss 940 having a pair of spaced apart longitudinally-extending tubes 942 and a cross tube 944 extending transversely therebetween. Front end 410 of each tube 942 is mounted to frame member 148 of lower frame 492 for pivoting movement about a horizontal transverse pivot axis 950 by a pivot pin 948 which is coupled to a U-shaped bracket 946 depending from frame member 148 as shown in
Assembly 920 further includes a longitudinally-extending strut 980 connecting front frame member 146 and rear frame member 148 between side members 512, 514 of lower frame 492 as shown in
A spring 990 connects the front end 410 of each center wheel arm 982 to a respective bent flange 992 extending upwardly from a middle portion of strut 980 as shown best in FIG. 28. Springs 990 are held in tension so that center wheel 82 is biased toward floor 62 when center wheel 82 is in the neutral position and so that center wheel 82 is yieldably biased against floor 62 when center wheel 82 is in the brake-steer position to provide a frictional contact area with floor 62 about which chair 400 can be easily turned. In addition, springs 990 bias the exposed portion of axle pin 956 into contact with concave top surface 954 of scoop bar 952.
Control truss 940 is positioned to lie below brake-steer shaft 922 and is connected thereto by a pair of spaced apart coupling linkages 958. Each coupling linkage 958 includes a lower link 960 which is pivotably coupled to rear end 412 of a respective tube 942 by a pivot pin 962. Each coupling linkage 958 also includes an upper link 964 which is rigidly coupled to a corresponding horizontal tube 926 by a hexagonal-shaped pin 966 as shown in
Assembly 920 includes a pair of longitudinally-extending spaced-apart neutral pedals 976 each of which includes an upwardly-facing foot-engaging surface 978. Each neutral pedal 976 connects to the rear end 412 of a corresponding tube 942 of control truss 940 as shown in FIG. 28. Applying a contact force to either foot-engaging surface 978 of neutral pedals 976 moves control truss 940 to a generally horizontal neutral position and moves shaft 922 and center wheel 82 to their respective neutral positions through the operation of linkages 958.
When shaft 922 moves in braking direction 933, upper link 964 pivots forwardly moving coupling pin 974 forwardly in a direction indicated by arrow 973 shown in
When shaft 922 moves in steering direction 939, upper link 964 pivots rearwardly moving coupling pin 974 rearwardly in a direction indicated by arrow 975 shown in
When shaft 922 is in the braking position, applying a downward contact force to foot-engaging surface 978 of either neutral pedal 976 results in rearward tilting movement of control truss 940 about axis 950 in a direction indicated by arrow 993 shown in
When linkages 958 are in the in-line orientation shaft 922 is in the generally horizontal neutral position having center wheel 82 spaced apart from floor 62 and control truss 940 is in the generally horizontal neutral position as shown in
Springs 990 urge center wheel 82 downwardly and urge the exposed portion of axle pin 956 downwardly into contact with top surface 954 of scoop bar 952 when center wheel is in the neutral position, as previously described. Downward urging of axle pin 956 against scoop bar 954 urges control truss 940 to forwardly tilt about axis 950 thus urging top edge 994 of lower link 960 upwardly into engagement with stop edge 996 of upper link 964 as shown in FIG. 32. Engagement of top edge 994 with stop edge 996 under the urging of springs 990 “locks” control truss 940, shaft 922, and center wheel 82 in their respective neutral positions.
When linkages 958 are each in the in-line orientation, coupling pin 974 is adjacent to lower edge 970 of lower link 960 as shown in FIG. 32. When shaft 922 is moved in direction 933 or direction 939 thus moving coupling pin in direction 973 or direction 975, respectively, coupling pin 974 moves upwardly in slot 972 away from lower edge 970 into engagement with upper edge 968. In addition, stop edge 996 of upper link 964 separates away from top edge 994 of lower link 960 as shown, for example, in FIG. 33.
It can be seen that chairs 20, 400 facilitate improved caregiver efficiency and productivity by offering a variety of positions for patient examination and treatment. Each chair 20, 400 includes a “hydraulic hi-lo” activated by the caregiver using foot pedal 90, 464 located along the sides of chair 20, 400 allowing infinite height adjustment between the raised position and the lowered position. The range of height adjustment overlaps current stretcher and bed height adjustments so that the ease of surface-to-surface transfer is maximized. In addition, the hydraulic hi-lo allows the caregiver to position the patient at a comfortable working height for patient care and transfer while also enhancing seating comfort for short and tall patients.
The caregiver can move each chair 20, 400 to a “straight-line flat” position having back-support surfaces 36, 424 generally coplanar with seat support surface 40, 428, respectively. Caregivers can move chairs 20, 400 to the straight-line flat position using handles 70, 450, respectively, providing a “true” flat position for caregiver intervention such as small procedures, patient exams, and the like, which may eliminate the need to transfer the patient to another surface.
Chairs 20, 400 also provide Trendelenburg positioning and reverse Trendelenburg positioning in infinite adjustments. The caregiver can activate the Trendelenburg positioning of chair 20 using handle 66 and the caregiver can actuate the Trendelenburg position of chair 400 using handle 446. The Trendelenburg positions are locked until the caregiver is ready to reposition the patient.
Chairs 20, 400 also include infinite recline controls accessible to both the patient and the caregiver (handles 70, 450). The recline controls allow back 35 and leg sections 34, 42 and 422, 430 to recline relative to seat section 38, 426 at any selected position between the sitting-up position and the table position. Once the caregiver releases handles 70, 450, back, seat, and leg sections 34, 38, 42 and 422, 426, 430 remain fixed relative to one another, even when the patient moves.
Each chair 20, 400 also includes push bar 64, 442 which is grasped by the caregiver when the caregiver transports chair 20, 400 across floor 62. Each chair 20, 400 also includes center wheel 82 engaging floor 62 to assist with steering chair 20, 400 during transport of chair 20, 400 and to resist sideways movement of chair 20, 400 when chair 20, 400 is stationary. Brake-steer pedals 80, 456, 494 control the braking and releasing of rear casters 60 and movement of center wheel 82 into and out of engagement with floor 62.
The mechanisms of chairs 20, 400 that control vertical movement, tilting movement, and articulating movement of patient supports 32, 420, respectively, are compactly arranged so that the size of chairs 20, 400 can be minimized. For example, with reference to chair 400 as shown in
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and as defined in the following claims.
This application is a divisional application of U.S. Ser. No. 09/963,829, filed Sep. 26, 2001 now U.S. Pat. No. 6,565,112. U.S. Ser. No. 09/963,829 is itself a division of U.S. Ser. No. 09/546,548, filed Apr. 10, 2000, now U.S. Pat. No. 6,315,319. U.S. Ser. No. 09/546,548 is itself a division of U.S. Ser. No. 08/798,317, filed Feb. 10, 1997, now U.S. Pat. No. 6,089,593. All are assigned to the same assignee as this application.
Number | Name | Date | Kind |
---|---|---|---|
20376 | Smith | May 1858 | A |
93660 | Theaker | Aug 1869 | A |
346246 | Uhde | Jul 1886 | A |
825984 | Schmersahl | Jul 1906 | A |
1398203 | Schmidt | Nov 1921 | A |
2024170 | Kruse | Dec 1935 | A |
2308592 | Drexler et al. | Jan 1943 | A |
2766463 | Bendersky | Oct 1956 | A |
3038174 | Brown et al. | Jun 1962 | A |
3053568 | Miller | Sep 1962 | A |
3096121 | Knabusch et al. | Jul 1963 | A |
3099487 | Knabusch et al. | Jul 1963 | A |
3147039 | Smith et al. | Sep 1964 | A |
3210779 | Herbold | Oct 1965 | A |
3217340 | Durr | Nov 1965 | A |
3235304 | Glass | Feb 1966 | A |
3235307 | Knabusch et al. | Feb 1966 | A |
3304116 | Stryker | Feb 1967 | A |
3325210 | Knabusch et al. | Jun 1967 | A |
3336606 | Beitzel | Aug 1967 | A |
3357739 | Knabush et al. | Dec 1967 | A |
3406772 | Ahrent et al. | Oct 1968 | A |
3484132 | Biagi | Dec 1969 | A |
3484133 | White et al. | Dec 1969 | A |
3695701 | Knabusch et al. | Oct 1972 | A |
3711876 | Kirkland et al. | Jan 1973 | A |
3724004 | Behrens | Apr 1973 | A |
3793652 | Linehan et al. | Feb 1974 | A |
3801122 | Shoemaker et al. | Apr 1974 | A |
3848924 | Shoemaker et al. | Nov 1974 | A |
3965500 | Stein, Jr. | Jun 1976 | A |
4062075 | Stern et al. | Dec 1977 | A |
4079990 | McMunn et al. | Mar 1978 | A |
4092041 | Landry et al. | May 1978 | A |
4097939 | Peck et al. | Jul 1978 | A |
4119342 | Jones | Oct 1978 | A |
4153292 | White et al. | May 1979 | A |
4183109 | Howell | Jan 1980 | A |
4227269 | Johnston | Oct 1980 | A |
4285541 | Onishi | Aug 1981 | A |
4339013 | Weigt | Jul 1982 | A |
4367895 | Pacitti et al. | Jan 1983 | A |
4381571 | Elliott | May 1983 | A |
4385410 | Elliott et al. | May 1983 | A |
4407030 | Elliott | Oct 1983 | A |
4435862 | King et al. | Mar 1984 | A |
4451945 | Heinz et al. | Jun 1984 | A |
4453732 | Assanah et al. | Jun 1984 | A |
4555121 | Lockard et al. | Nov 1985 | A |
4592104 | Foster et al. | Jun 1986 | A |
4629242 | Schrager | Dec 1986 | A |
4632450 | Holdt | Dec 1986 | A |
4639954 | Speed | Feb 1987 | A |
4751754 | Bailey et al. | Jun 1988 | A |
4790599 | Goldman | Dec 1988 | A |
4862529 | Peck | Sep 1989 | A |
4894876 | Fenwick | Jan 1990 | A |
4918766 | Leonaggeo, Jr. | Apr 1990 | A |
4949410 | Failor et al. | Aug 1990 | A |
4974905 | Davis | Dec 1990 | A |
5011220 | LaPointe | Apr 1991 | A |
5023967 | Ferrand | Jun 1991 | A |
5033793 | Quintile | Jul 1991 | A |
5072463 | Willis | Dec 1991 | A |
5074000 | Soltani et al. | Dec 1991 | A |
5148562 | Borders et al. | Sep 1992 | A |
5195803 | Quintile | Mar 1993 | A |
5203610 | Miller | Apr 1993 | A |
5220698 | Hannant | Jun 1993 | A |
5222567 | Broadhead et al. | Jun 1993 | A |
5230113 | Foster et al. | Jul 1993 | A |
5242179 | Beddome et al. | Sep 1993 | A |
5279010 | Ferrand et al. | Jan 1994 | A |
5282395 | LaPointe et al. | Feb 1994 | A |
5288126 | Saul et al. | Feb 1994 | A |
5294141 | Mentessi et al. | Mar 1994 | A |
5299334 | Gonzalez | Apr 1994 | A |
5315726 | Borenstein | May 1994 | A |
5377372 | Rudolf et al. | Jan 1995 | A |
5398357 | Foster | Mar 1995 | A |
5421598 | Robertson et al. | Jun 1995 | A |
5479666 | Foster et al. | Jan 1996 | A |
5547245 | Knouse | Aug 1996 | A |
5645313 | Best et al. | Jul 1997 | A |
5651422 | Casali | Jul 1997 | A |
5678894 | Eley | Oct 1997 | A |
5715548 | Weismuller et al. | Feb 1998 | A |
5862549 | Morton et al. | Jan 1999 | A |
5865457 | Knabusch et al. | Feb 1999 | A |
5868461 | Brotherston | Feb 1999 | A |
5996150 | Blevins et al. | Dec 1999 | A |
6089593 | Hanson et al. | Jul 2000 | A |
6163903 | Weismiller et al. | Dec 2000 | A |
6305644 | Beroth | Oct 2001 | B1 |
6315319 | Hanson et al. | Nov 2001 | B1 |
6336235 | Ruehl | Jan 2002 | B1 |
6352309 | Beroth | Mar 2002 | B1 |
6353949 | Falbo | Mar 2002 | B1 |
6412870 | Higgins et al. | Jul 2002 | B1 |
6505365 | Hanson et al. | Jan 2003 | B1 |
6601251 | Paul | Aug 2003 | B2 |
6622324 | VanSteenburg | Sep 2003 | B2 |
20010000639 | Park et al. | May 2001 | A1 |
20010015566 | Park et al. | Aug 2001 | A1 |
20010047547 | Paul | Dec 2001 | A1 |
20030085597 | Ludeke et al. | May 2003 | A1 |
20030145383 | Schwaegerle | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
58-63575 | Apr 1983 | JP |
Number | Date | Country | |
---|---|---|---|
20030015853 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09963829 | Sep 2001 | US |
Child | 10247666 | US | |
Parent | 09546548 | Apr 2000 | US |
Child | 09963829 | US | |
Parent | 08798317 | Feb 1997 | US |
Child | 09546548 | US |