Ambulatory reflux monitoring system

Information

  • Patent Grant
  • 5833625
  • Patent Number
    5,833,625
  • Date Filed
    Tuesday, December 19, 1995
    28 years ago
  • Date Issued
    Tuesday, November 10, 1998
    25 years ago
Abstract
An ambulatory system for recording and analyzing gastroesophageal reflux is presented. The system includes a digital recorder, an analysis software package and a catheter for measurement of changes in esophageal impedance. For the first time, gastroesophageal reflux can be detected with a pH above 4 (called alkaline reflux), which is the normal pH environment of the healthy esophagus. In addition, one embodiment of the invention allows for the determination of the direction of flow of the detected material in the esophagus, thus enabling the system to distinguish between swallowed saliva and alkaline gastroesophageal reflux. In yet a further embodiment, the present invention allows for recording and analysis of reflux on a non-invasive basis, by using pairs of externally worn impedance sensors. In another embodiment, the invention measures impedance simultaneously with other bio-parameters, such as pH or pressure.
Description

FIELD OF INVENTION
The present invention is an ambulatory recording and analysis system for use in the gastrointestinal tract. More particularly, the present invention records and analyzes gastroesophageal reflux. Specifically, this is done by reading and recording changes in esophageal impedance with sensors. This allows recording and analysis of reflux when it is impossible with the prior art, that is when the refluxed material has a pH above 4 (called alkaline reflux). The present invention can be used in both intraesophageal and non-invasive applications.
BACKGROUND
Certain methods and apparatus are known in the prior art for 24 hour monitoring of intraesophageal pH in patients with suspected reflux disease or other esophageal disorders. An example of a system for ambulatory 24 hour recording of gastroesophageal reflux is the Digitrapper.TM. System (manufactured by Synectics Medical AB, in Stockholm, Sweden) used with glass or Monocrystant.TM. pH catheters (as described in U.S. Pat. No. 4,119,498) and with the analysis software EsopHogram.TM. (by Gastrosoft, Inc. in Dallas, Tex.). These prior art systems typically measure pH in the esophageal tract with an intraesophageal catheter and generate reports regarding esophageal exposure of gastric juice. However, these systems measure pH values in the esophagus below 4, and do not work to detect pH values that are higher than 4.
Normally, pH values in the stomach are below 4 and in the esophagus are between 4 and 7. Hence, these prior art systems are designed to detect and measure the presence of gastric juice in the esophagus by measuring esophagus pH below 4. However, gastric juice does at times, and particularly in the early morning, become more alkaline, with a pH above 4. Hence, the prior art systems cannot detect gastroesophageal reflux of gastric juice of this type at these times, with a pH above 4.
Efforts have been made to define and report as reflux rapid changes of intraesophageal pH, while the pH remains within the normal esophageal range of pH, which is between 4 and 7. Such changes, however, can be difficult to prove to be caused by true gastroesophageal reflux, and in some instances may not be caused by reflux.
Others have measured alkaline reflux with radioisotope techniques. With these techniques, a radioisotope is administered to the patient and accumulates in the bile. With a gamma camera sensor placed externally on the patient's chest or internally within the esophagus, it is possible to detect gastroesophageal reflux containing the isotope, regardless of pH. The use of radioactive material and the expense of stationary or ambulatory gamma cameras make the radioisotope method for detection of alkaline reflux unattractive.
Intestinal impedance measurement has previously been used in measurements of gastric emptying into the intestines. In such studies, a liquid or solid meal is administered to a patient and changes in intestinal impedance are monitored from external electrodes around the abdomen. However, the prior art has not taught a system for analyzing gastroesophageal reflux by means of recording changes in esophageal impedance, nor of a system for ambulatory measurement of the same.
Impedance measurements have also been used for monitoring chest movements as a means of monitoring respiration in patients at risk for apnea. Other impedance monitors are used to detect urine leakage in the urethra in urodynamic procedures. Yet other impedance monitors are used for measurement of body fat and for phletysmography.
However, the prior art does not teach using changes in impedance for detection of gastroesophageal reflux, on an ambulatory basis or otherwise.
Since the prior art does not teach how to record and analyze alkaline reflux, it is not surprising that it also does not teach how to distinguish detection of alkaline reflux from detection of swallowed saliva. This is a matter of importance, since alkaline reflux may have a pH and an impedance that is similar to swallowed saliva, which is commonly found in any esophagus.
It is an object with the present invention to provide an ambulatory system that provides the possibility to detect gastroesophageal reflux regardless of its pH value by means of recording and analyzing esophageal impedance. It is a further object with the present invention to provide a system that can detect the direction of flow of matter in the esophagus, thus being able to separate alkaline gastroesophageal reflux from swallowed saliva. It is yet a further object of the present invention to provide presently used intraesophageal pH and pressure catheters with the means to detect gastroesophageal reflux according to the present invention. It is yet a further object with the present invention to provide a system that can be used noninvasively with a number of sensors for impedance measurements placed on and around the chest of the patient for ambulatory recording of reflux.
SUMMARY OF THE INVENTION
An ambulatory system for recording and analyzing gastroesophageal reflux is presented. The system comprises a digital recorder, an analysis software package and a catheter for measurement of changes in esophageal impedance. For the first time, gastroesophageal reflux can be detected with a pH above 4 (called alkaline reflux), which is the normal pH environment of the healthy esophagus. In addition, one embodiment of the invention allows for the determination of the direction of flow of the detected material in the esophagus, thus enabling the system to distinguish between swallowed saliva and alkaline gastroesophageal reflux. In yet a further embodiment, the present invention allows for recording and analysis of reflux on a non-invasive basis, by using pairs of externally worn impedance sensors.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a schematic view of the system of one embodiment of the present invention, and the projected graphic data developed by the system.
FIG. 2 shows a side view of the catheter of the present invention.
FIG. 3 shows one possible pattern of the placement of pairs of external electrodes, each pair constituting an impedance sensor, on the chest of the patient.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows an embodiment of the present invention with an ambulatory digital recorder 1 connected to an intraesophageal catheter 2. The recorder can contain software to analyze the data and prepare a graphic projection 44 of the data. The data and analysis can be projected on a display 45 on the recorder, or the recorder can be connected to a printer 46 to print out hard copy of the data, the analysis, and the graphic projection. The hard copy can be used for visual analysis, manual analysis, or otherwise. Also, the recorder may be connected to a modem 47 to communicate the data to a personal computer 3, or the recorder can be connected directly to the personal computer 3. Where a computer is used, software resident in the computer, instead of in the recorder, may be used for analysis of the recorded data. The computer also can print out hard copy for visual graphic analysis, manual analysis, or otherwise, in a manner similar to when the recorder directly communicates to a printer 46.
FIG. 2 shows one embodiment of the catheter 2 with tubing 4 made of PVC (poly-vinyl-chloride) with a proximal end 5 and a distal end 6. A first 0.2 mm wide metal ring of gold 7 encloses tubing 4 at a distance 6 cm from distal end 6. A first conducting lead 8 is connected to said metal ring 7 and runs internally inside tubing 4 along the catheter and out through proximal end 5, ending in connector means 9. A second gold ring 10 is positioned 2 mm distal to first ring 7 and a second lead 11 is connected to the second ring and runs inside along tubing 4 out through its proximal end 5, ending in connector means 9. It has been found by the inventor that such close placement of the rings 7 and 10, only 2 mm from each other, provides for more accurate impedance readings than possible when the rings are placed farther apart. Connector means 9 with leads 8 and 11 of catheter 2 is connected to recorder 1. Preamplifier 20 in recorder 1 supply leads 8 and 9 with 50 mV at 1.5 kHz AC. In addition, preamplifier 20 includes means to detect changes in impedance between metal ring 7 and 10. Such changes in impedance occur when gastroesophageal reflux reaches up to the rings.
In another embodiment of catheter 2 of the present invention, an additional set of two metal rings 14 and 15 are placed around the outer surface of catheter 2, spaced 2 mm apart from each other as are rings 7 and 10, and placed 1 cm toward the proximal end of the catheter from ring 10. The additional rings 14 and 15 are connected to leads 16 and 17, respectively, which both run inside catheter 2 to the proximal end 5 of catheter 2, where they end in connector means 9. The additional set of metal rings may be used to measure impedance changes in an additional channel.
By analyzing which pair of rings first show a change in impedance, the direction of flow of the measured material in the esophagus can be determined. This allows distinguishing between a swallow of saliva, which is alkaline and moves down the esophagus, and alkaline gastroesophageal reflux, which moves up the esophagus. When gastric juice breaks the barrier of the lower esophageal sphincter and rises in the esophagus, the change in impedance is first registered between rings 7 and 10 and subsequently between the next set of rings 14 and 15 proximal to, and higher up the esophagus than, the first said set of rings 7 and 10. On the other hand, swallowed saliva moving down the esophagus will first reach the higher set of rings 14 and 15 and will cause a change in impedance between these rings, before a change in impedance between the lower rings 7 and 10 can be seen. It is in this way possible to determine the direction of flow of material in the esophagus. In this way is distinguished gastroesophageal reflux, which moves up the esophagus, from swallowed saliva, which moves down the esophagus, regardless of the pH of either of such materials.
In yet another embodiment of catheter 2, rings 7 and 10 are complemented with only one additional ring 18 placed proximal to ring 7. Said additional ring is connected by lead 19 which runs inside catheter 2 towards the proximal end 5 and to connector means 9. By using ring 7 and 10 on one hand and 7 and 18 on the other hand 2 sets of two rings can be created for independent measurement and confirmation of impedance.
The rings encircling the catheter may be of any conductive material. Metal is usually used. Stainless steel is commonly used. Gold is also used.
In FIG. 1, preamplifier 20 in recorder 1 supplies catheter 2 with an alternating current of 50 mV at 1.5 kHz to rings 7 and 10 through leads 8 and 11, and to other sets of rings if used. The preamplifier 20 includes means for recording changes in impedance between rings 7 and 10 and between other sets of rings if available. The changes in impedance are measured and stored in recorder 1.
FIG. 3 shows a further embodiment of the present invention where several external pairs 30, 31, 32, 33, 34, 35, 36, of electrodes are attached to the skin of the patient for non-invasive recording of gastroesophageal reflux. When the impedance sensors, which are formed by pairs of electrodes, are placed on the chest of the patient, each sensor can be used to generate electric signals measuring impedance at a location in, on, or around an esophagus, or at a location in, on and around an esophagus. Each such pair of electrodes can be used to sense impedance between the pair, and together each such pair constitutes an impedance sensor. The sensors are connected to an multichannel MicroDigitrapper.TM. recorder (European patent number 88/850,292.9) for measuring and recording impedance around and at different levels of the esophagus. Each pair of electrodes over the esophagus will sense changes of impedance in the esophagus directly under that pair. Hence in a reflux situation, pair 31 would detect a change of impedance before the higher pair 35. In the case of swallowed saliva, pair 36 would detect an impedance change before the lower pair 35, which would detect the change before the still lower pair 31. Hence, this embodiment can distinguish between alkaline reflux, which goes up, and swallowed saliva, which goes down, regardless of the pH of the reflux, in much the same manner as discussed above regarding the additional rings 14 and 15. In an alternative placement pattern of electrodes, the individual electrodes are placed around the body at the level of the esophagus. Impedance may then be measured between any pairing of electrodes, and electrode pairs with the esophagus in between are especially significant locations.
The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known by the inventor to make and use the invention. Nothing in the specification should be considered as limiting the scope of the present invention. Changes could be made by those skilled in the art to produce equivalent systems without departing from the invention. The present invention should only be limited by the following claims and their legal equivalents.
For example, other embodiments of the catheter in accordance with the present invention may include rings of conductive material other than gold, and more rings for measurement of impedance in more locations simultaneously. Also, the catheter 2 may use additional sensors commonly used by themselves for esophageal measurements, such as a pH sensor 51, or a pressure sensor 52, communicating with connector 9 by electric wires 61 and 62 respectively. This latter embodiment would allow conventional esophageal catheters, such as pH and pressure catheters, to be modified to simultaneously record and monitor alkaline reflux. Also, a water perfusion pressure sensor could be used in place of an electrical pressure sensor 52.
As a further example, a wide variety of placement patterns can be used for the external electrode placement, as shown in one embodiment in FIG. 3. Likewise, the exact locations of the placement of the impedance sensors, the other biosensors, and the catheter, can be varied in the esophagus and stomach.
Claims
  • 1. A system for monitoring gastroesophageal reflux comprising:
  • (a) a gastroesophageal catheter with a distal end and a proximal end, with a first impedance sensor attached to the catheter near the distal end, such sensor electrically communicating with an electrical connector at the proximal end,
  • (b) an ambulatory recorder connected to such electrical connector adapted to record impedance data generated by such sensor and communicated to the recorder through such connector,
  • (c) executable software, resident in the recorder, adapted to analyze and graphically project impedance data generated by such first sensor and communicated to such recorder through such connector,
  • (d) an output device for the data recorded in the recorder, the output device being any of (1) a display on the recorder, (2) a printer electrically connected to the recorder, (3) a modem electrically connected to the recorder, and (4) a connector electrically connected to the recorder, and
  • (e) a second impedance sensor attached to the catheter, near to the first sensor but closer to the proximal end of the catheter than the first sensor, such second sensor electrically communicating with the electrical connector,
  • (f) said software further being adapted to analyze and graphically project impedance data generated by such second sensor and communicated to such recorder through such connector,
  • (g) said recorder being further adapted to record impedance data generated by such second sensor and communicated through such connector,
  • (h) the first sensor and the second sensor further comprising a pair of metal rings encircling the outer surface of the catheter, about 2 mm apart, each metal ring electrically communicating to the electrical connector through a wire,
  • (i) the first sensor being separated from the second sensor by about 1 cm,
  • (j) said recorder being further adapted to record impedance data generated by the metal rings in the sensors and communicated through such connectors, and
  • (k) said software being further adapted to analyze and graphically project impedance data generated by each such sensor and communicated to such recorder through such connector.
  • 2. The invention in claim 1, further comprising:
  • (a) a single metal ring, encircling the outer surface of the catheter, about 2 mm closer to the proximal end of the catheter than said first sensor, and electrically communicating to such electrical connector through a wire, and adapted to act variously as a pair with the first ring of the first sensor or the second ring of the first sensor as an alternate configuration of such first sensor, wherein the single metal ring may be of a material selected from (1) gold and (2) stainless steel.
  • 3. The invention in claim 1, where:
  • (a) the pair of metal rings may be of a material selected from (a) gold and (2) stainless steel.
  • 4. A system for monitoring gastroesophageal reflux comprising:
  • (a) a gastroesophageal catheter with a distal end and a proximal end, with a first impedance sensor attached to the catheter near the distal end, such sensor electrically communicating with an electrical connector at the proximal end,
  • (b) an ambulatory recorder connected to such electrical connector adapted to record impedance data generated by such sensor and communicated to the recorder through such connector,
  • (c) executable software, resident in the recorder, adapted to analyze and graphically project impedance data generated by such first sensor and communicated to such recorder through such connector,
  • (d) an output device for the data recorded in the recorder,
  • (e) a second impedance sensor attached to the catheter, near to the first sensor but closer to the proximal end of the catheter than the first sensor, such second sensor electrically communicating with the electrical connector,
  • (f) said software further being adapted to analyze and graphically project impedance data generated by such second sensor and communicated to such recorder through such connector, and
  • (g) said software being further adapted to analyze and graphically project impedance data generated by each such sensor and communicated to such recorder through such connector.
  • 5. The invention in claim 4, further comprising:
  • (a) a single metal ring, encircling the outer surface of the catheter, about 2 mm closer to the proximal end of the catheter than said first sensor, and electrically communicating to such electrical connector through a wire, and adapted to act variously as a pair with the first ring of the first sensor or the second ring of the first sensor as an alternate configuration of such first sensor, wherein the single metal ring may be of a material selected from (1) gold and (2) stainless steel,
  • (b) the output device being any of (1) a display on the recorder, (2) a printer electrically connected to the recorder, (3) a modem electrically connected to the recorder, and (4) a connector electrically connected to the recorder,
  • (c) said recorder being further adapted to record impedance data generated by such second sensor and communicated through such connector,
  • (d) the first sensor and the second sensor further comprising a pair of metal rings encircling the outer surface of the catheter, about 2 mm apart, each metal ring electrically communicating to the electrical connector through a wire,
  • (e) the first sensor being separated from the second sensor by about 1 cm, and
  • (f) said recorder being further adapted to record impedance data generated by the metal rings in the sensors and communicated through the such connectors.
  • 6. The invention in claim 4 wherein:
  • (a) the pair of metal rings may be of a material selected from (1) gold and (2) stainless steel.
Parent Case Info

This is a continuation-in-part of application Ser. No. 08/139,117, filed Oct. 21, 1993, now U.S. Pat. No. 5,479,935.

US Referenced Citations (90)
Number Name Date Kind
2162656 Warrington Jun 1939
2168867 George, III Aug 1939
2857915 Sheridan Oct 1958
3373735 Gallagher Mar 1968
3480003 Crites Nov 1969
3669095 Kobayashi et al. Jun 1972
3690309 Pluzhnikov et al. Sep 1972
3817241 Grausz Jun 1974
3905889 Macur et al. Sep 1975
3923626 Niedrach et al. Dec 1975
4016866 Lawton Apr 1977
4063548 Klatt et al. Dec 1977
4073287 Bradley et al. Feb 1978
4119498 Edwall et al. Oct 1978
4176659 Rolfe Dec 1979
4197852 Schindler et al. Apr 1980
4208588 Rudin Jun 1980
4214593 Imbruce et al. Jul 1980
4265249 Schindler et al. May 1981
4299929 Sakano et al. Nov 1981
4381011 Somers, III et al. Apr 1983
4442841 Uehara et al. Apr 1984
4471779 Antoshkiw et al. Sep 1984
4476871 Hon Oct 1984
4478222 Koning et al. Oct 1984
4486290 Cahalan et al. Dec 1984
4487206 Aagard Dec 1984
4503859 Petty et al. Mar 1985
4508103 Calisi Apr 1985
4577640 Hofmeister Mar 1986
4593701 Kobayashi et al. Jun 1986
4600015 Evans et al. Jul 1986
4618929 Miller et al. Oct 1986
4631061 Martin Dec 1986
4632119 Reichstein Dec 1986
4642104 Sakamoto et al. Feb 1987
4655225 Dahne et al. Apr 1987
4681116 Settler Jul 1987
4682596 Bales et al. Jul 1987
4691708 Kane Sep 1987
4696672 Mochizuki et al. Sep 1987
4700709 Kraig Oct 1987
4700799 Kawano Oct 1987
4703757 Cohen Nov 1987
4705503 Dorman et al. Nov 1987
4729384 Bazenet Mar 1988
4748113 Marshall May 1988
4748562 Miller et al. May 1988
4757194 Simms Jul 1988
4776347 Matthews Oct 1988
4796629 Grayzel Jan 1989
4803992 Lemelson Feb 1989
4815471 Stobie Mar 1989
4834101 Collison et al. May 1989
4850371 Broadhurst et al. Jul 1989
4873990 Holmes et al. Oct 1989
4887610 Mittal Dec 1989
4892101 Cheung et al. Jan 1990
4901731 Millar Feb 1990
4924877 Brooks May 1990
4966161 Wallace et al. Oct 1990
4975581 Robinson et al. Dec 1990
4976265 Falcial et al. Dec 1990
4981470 Bombeck, IV Jan 1991
4986671 Sun et al. Jan 1991
4991590 Shi Feb 1991
4996161 Conners et al. Feb 1991
5005584 Little Apr 1991
5007427 Suzuki et al. Apr 1991
5018529 Tenerz May 1991
5022396 Watanabe Jun 1991
5025786 Siegel Jun 1991
5046497 Millar Sep 1991
5047627 Yim et al. Sep 1991
5054487 Clarke Oct 1991
5103835 Yamada et al. Apr 1992
5105812 Corman Apr 1992
5108364 Takezawa et al. Apr 1992
5117827 Stuebe et al. Jun 1992
5119498 McNeill et al. Jun 1992
5151598 Denen Sep 1992
5158083 Sacristan et al. Oct 1992
5184619 Austin Feb 1993
5199443 Maurer et al. Apr 1993
5207226 Bailin et al. May 1993
5222594 Sumino Jun 1993
5280786 Wlodarczyk et al. Jan 1994
5291884 Heinemann et al. Mar 1994
5301673 Rabito et al. Apr 1994
5314804 Boguslaski et al. May 1994
Foreign Referenced Citations (13)
Number Date Country
0073558 Mar 1983 EPX
0080680 Jun 1983 EPX
0241644 Oct 1987 EPX
0356603 Nov 1993 EPX
79-09689 Nov 1980 FRX
2162656 Jun 1973 DEX
3140265 Apr 1983 DEX
221635 May 1985 DEX
3523987 Jan 1987 DEX
7707275 Jan 1979 NLX
178028 Nov 1966 SUX
272477 May 1968 SUX
1502004 Aug 1989 SUX
Non-Patent Literature Citations (12)
Entry
"Clinical relevance of ambulatory 24-hour . . . ", Vogten, et al., 1987, pp. 21-31 in Netherlands Journal of Medicine.
Computerized Axial Manometry of the Esophagus, Bombeck, et al. in Annals of Surgery, vol. 206, No. 4, pp. 465-472, Oct. 1987.
"The laser motility sensor for long-term study of intraesophageal pressure", Schneider et al., in Primary Motility Disorder of the Esophagus, Giuli et al., eds., pp. 64-69 1991.
Kim et al., American Journal of Clinical Pathology, 1990, vol. 94, , pp. 187-191, The Gastric Juice Urea and Ammonia . . . .
Butcher et al., Digestion, 1992, vol. 53, pp. 142-148, Use of an Ammonia Electrode for Rapid Quantification of Helicobacter pylori Urease: Its use in the Endoscopy Room and in the . . . .
The New Yorker, Sep. 20, 1993, T. Monmaney, "Marhsall's Hunch".
"Oesophageal multipurpose monitoring probe", Baker et al., Anaesthesia, 1983, vol. 38, pp. 892-897.
Digestive Diseases, Reprint, vol. 8, Suppl. 1, pp. 60-70, 1990, Scarpignato et al., "Simultaneous Measurement and Recording . . . ".
Hojgaard et al., "A New Method for Measurement of the Electrical Potential Difference Across the Stomach Wall", 1991. pp. 847-858.
"Ambulatory Monitoring of Gastric Emptying", Hoeft et al., 1993, American Assoc. of the Study of Live Diseases.
J. Silny et al., "Novel Procedure to Study Bolus Movement by Intraluminal Electrical Impedance Measurements," prior to Apr. 20, 1994, pp. 197-208.
J. Silny et al., "Verification of the intraluminal multiple electrical impedance measurement for the recording of gastrointestinal motility," J. Gastrointest. Mot., Jun. 1993, vol. 5, pp. 107-122.
Continuation in Parts (1)
Number Date Country
Parent 139117 Oct 1993