1. Field of the Invention
This invention relates generally to methods and apparatus for alleviating pain due to abnormalities associated with, but not limited to, body weight, internal organs, muscles and various spinal infractions, and more particularly, to a method and apparatus for implementing ambulatory spinal unloading.
2. Description of the Prior Art
Traction has long been the treatment of choice for alleviating pain due to certain bodily abnormalities associated with, but not necessarily limited to, internal organs, muscles, body and various spinal infractions. U.S. Pat. No. 6,749,579 B1, entitled Traction Garment, issued Jun. 15, 2004 to Schroder, for example, discloses a non-stationary or ambulatory traction garment that includes a plurality of tension spreaders to provide injury-specific traction while restricting unwanted and potentially injurious motions.
Other U.S. patents, e.g. U.S. Pat. No. 5,704,904, issued Jan. 6, 1998 to Dunfee; U.S. Pat. No. 5,724,993, issued Mar. 10, 1998; and U.S. Pat. No. 5,950,628, issued Sep. 14, 1999 to Dunfee, the inventor of the present invention, each disclose use of an ambulatory, wearable support for applying an extending force or traction to a portion of the human anatomy while being worn. These wearable supports employ a plurality of extender sets having at least one selectively inflatable bladder.
U.S. Pat. No. 6,689,082 B2, and U.S. Pat. No. 6,776,767 B2, issued Feb. 10, 2004 and Aug. 17, 2004 respectively to Reinecke et al., disclose an ambulatory traction device that employs one or more lifting mechanisms configured to apply a decompressive force to a portion of a user's body when positioned around the user's body.
A flexible fluidic force generator capable of applying both an extending (traction) force and a compressive force to a portion of the human anatomy while being worn is disclosed in U.S. Pat. No. 6,237,602 B1, entitled Flexible Fluidic Force Generator, issued May 29, 2001, to Nickels et al.
While all of the devices described herein above have provided some advances in the field of ambulatory traction devices, they remain deficient in providing an effective residual spinal cushioning or spinal unloading condition, without restrictively binding at least a portion of a user's thorasic region, in the absence of a biased tensioning and/or compressive force.
In view of the foregoing, it would be desirable and advantageous in the art to provide a method and apparatus for implementing ambulatory spinal unloading, without restrictively binding any portion of a user's thorasic region, even in the absence of a biased tensile or traction force to those areas to relieve a portion of the compressive load on the spine to alleviate pain, and to optionally allow proper healing of bodily injuries.
The present invention is directed to an ambulatory spinal unloading method and apparatus that are implemented by defining a set of desired human characteristics and/or parameters and then implementing an ambulatory traction and cushioning apparatus structure based on the set of human characteristics/parameters to achieve a desired minimum level of residual cushioning, without restrictively or tightly binding any portion of a user's thorasic region, upon deactivating the bias applied to the associated apparatus tensioning and/or compression mechanism(s). The method and apparatus eliminate the absolute necessity for trial and error testing by an end user, and further allow the ambulatory spinal unloading apparatus to be optimized to the desired human characteristic(s) and/or parameter(s). A substantial benefit provided by this optimized apparatus is the avoidance of further inadvertent injuries experienced by an end user due to undesirable trial and error techniques such as those generally associated with apparatus that are already known in the related art. Further, the optimized apparatus will allow an end user in many instances, to wear the apparatus for much longer periods of time than that achievable using known apparatus, without experiencing fatigue. This feature is particularly desirable since it will decrease the level of discomfort generally associated with bodily injuries and thereby benefit a user who is wearing the optimized spinal unloading apparatus. This method and apparatus therefore importantly allows a doctor to prescribe both a tension time period and a compression (non-biased) time period, to yield long term spinal relief. The desired human characteristics and/or parameters may include, but are not limited to, height, weight, percent of body fat, a plurality of desired circumferential measurements, relative location of human anomaly(s), period of time in traction, amount or percent of body weight, desired traction level(s), and length of time and percent of body weight to be subjected to spinal cushioning apparatus, and so on.
In one aspect of the invention, an ambulatory spinal unloading apparatus absorbs undesirable pressure caused by degenerative disc or nerve faucets, using both compression and expansion features provided via a lifter assembly or mechanism.
In another aspect of the invention, an ambulatory spinal unloading apparatus eliminates the necessity to develop time tables and data necessary to formulate correct orthotic belts.
In yet another aspect of the invention, an ambulatory spinal unloading apparatus provides flexible stabilizing effects to yield a desired level of user comfort, without restrictively binding any portion of a user's thorasic region, even in the absence of activation or biasing of any lifter mechanism(s).
One embodiment of the invention provides a spinal unloading apparatus comprising:
a biased spinal unloading mechanism; and
an unbiased spinal unloading mechanism, wherein the unbiased spinal unloading mechanism is configured in combination with the biased spinal unloading mechanism, to provide a desired residual cushioning effect, without restrictively binding any portion of a user's thorasic region, in the absence of a bias applied to the biased spinal unloading mechanism.
Another embodiment of the invention provides a spinal unloading apparatus comprising:
means for unloading a user's spine in response to a biasing force; and
means for providing a desired level of residual spinal unloading, without restrictively binding any portion of a user's thorasic region, in the absence of a biasing force applied to the biased spinal unloading mechanism.
Yet another embodiment of the invention provides a method of configuring a spinal unloading apparatus, the method comprising the steps of:
selecting at least one desired body characteristic;
configuring a biased spinal unloading mechanism to accommodate the at least one selected desired body characteristics; and
configuring an unbiased spinal unloading mechanism to accommodate the at least one selected desired body characteristic such that the unbiased spinal unloading mechanism provides a desired level of residual cushioning, without restrictively binding any portion of a user's thorasic region, in the absence of a bias applied to the biased spinal unloading mechanism.
Other aspects, features and advantages of the present invention will be readily appreciated as the invention becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing figures wherein:
a-5c illustrate a side view comparison of three lifter mechanisms suitable for implementing an ambulatory spinal unloading apparatus in accordance with the present invention;
a illustrates a lifter mechanism that employs a spring piston suitable to form an ambulatory spinal unloading apparatus;
b illustrates a spring piston suitable for use to implement the lifter mechanism shown in
c illustrates another lifter mechanism that can employ the spring piston depicted in
While the above-identified drawing figures set forth particular embodiments, other embodiments of the present invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.
An ambulatory spinal unloading method and apparatus are implemented, as stated herein before, by defining a set of desired human characteristics and/or parameters and then implementing an ambulatory traction and cushioning apparatus structure based on the set of human characteristics/parameters to achieve a desire minimum level of residual cushioning, without restrictively or tightly binding any portion of a user's thorasic region, upon deactivating the associated apparatus biasing mechanism(s). These desired human characteristics/parameters may include, but are not limited to, height, weight, percent of body fat, a plurality of desired circumferential measurements, relative location of human anomaly/anomalies, period of time in traction, amount or percent of body weight to be subjected to spinal cushioning apparatus, desired traction levels, and so on. The ambulatory spinal unloading apparatus is configured to absorb an intermittent and/or unexpected shock and/or vibration using compression and expansion features provided via a lifter assembly such as described herein below with reference to
Looking first at
The embodiments described herein below with reference to the figures were found by the present inventors to eliminate the necessity to develop time tables and data necessary to formulate acceptable known orthotic belts. Modern ambulatory traction apparatus and devices, for example, are most often designed and manufactured using rigid and narrow semi-circular belts which results in too much pressure on any one point of a person's body, and also do not allow enough material area to dissipate large amounts of a person's body weight.
It is noteworthy that, unlike known ambulatory spinal traction/support devices, structures implemented in accordance with the principles described herein make use of mathematical computations associated with human characteristics and/or parameters that may include, for example, but are not limited to, percent of body fat to determine structural related data such as strength, size and length of lift required. This technique then allows for a “one size fits all” lifter structure that may, for example, utilize a pneumatic biasing mechanism.
Unlike common modern ambulatory traction devices that use various rigid lifter(s) such as assemblies that employ pneumatic pistons, which when unbiased, maintain a rigid device around a person's thorasic region which makes the device difficult to wear when not biased, the embodiments described herein deliver a desired residual amount of cushioning, without restrictively binding any portion of a user's thorasic region, upon deactivation of the lifter(s)/lifter assemblies.
The cushioned lifter mechanism(s), assemblies and devices described herein with reference to the figures can employ numerous structural materials, such as, but not limited to, metals, plastics and rubbers, to provide a lifter embodiment having both compressive and expansion characteristics such that the inventive ambulatory spinal unloading method and apparatus will provide a flexible stabilizing effect that yields a desired level of user comfort, without restrictively binding any portion of a user's thorasic region, even when the cushioned lifter mechanism(s) is not activated or biased. Although particular embodiments are described herein using springs, the present invention is not so limited, and it shall be understood that the desired residual cushioning could just as easily be implemented using particular materials that are commonly employed by those skilled in the mechanical engineering arts and versed in the structural, shock and vibration arts to implement elastomeric damping structures. Such materials may include, but are not limited to, natural rubbers, synthetic resins such as polyvinyl chlorides, polyurethanes, polyamides, polystyrenes, copolymerized polyvinyl chlorides, polyolefin synthetic rubbers, as well as urethanes, EPDM, styrene-butadiene rubbers, nitrites, isoprene, chloroprenes, polypropylene, and silicones.
Moving now to
Looking now at
In summary explanation, an ambulatory spinal unloading method and apparatus are implemented by defining a set of desired human characteristics and/or parameters and then implementing an ambulatory traction and cushioning apparatus structure based on the set of human characteristics/parameters to achieve a desired minimum level of residual cushioning, without restrictively binding any portion of a user's thorasic region, upon deactivating the bias applied to the associated apparatus tensioning and/or compression mechanism(s). This technique eliminates the need for trial and error testing by an end user, and further allows the ambulatory spinal unloading apparatus to be optimized to the desired human characteristic(s) and/or parameter(s). A substantial benefit provided by this optimized apparatus is the avoidance of further inadvertent injuries experienced by an end user due to undesirable trial and error methods associated with apparatus that is already known in the related art. Further, the optimized apparatus will allow an end user in many instances, to wear the apparatus for much longer periods of time than that achievable using known apparatus, without experiencing fatigue. This feature is particularly desirable since it will enhance the healing time associated with bodily injuries that will benefit from wearing the optimized spinal unloading apparatus. The desired human characteristics and/or parameters may include, but are not limited to, height, weight, percent of body fat, a plurality of desired circumferential measurements, relative location of human anomaly(s), period of time in traction, amount or percent of body weight, desired traction level(s), and length of time and percent of body weight to be subjected to spinal cushioning apparatus, and so on.
In view of the above, it can be seen the present invention presents a significant advancement in the art of spinal unloading. Further, this invention has been described in considerable detail in order to provide those skilled in the mechanical engineering and orthotic arts with the information needed to apply the novel principles and to construct and use such specialized components as are required. In view of the foregoing descriptions, it should be apparent that the present invention represents a significant departure from the prior art in construction and operation. However, while particular embodiments of the present invention have been described herein in detail, it is to be understood that various alterations, modifications and substitutions can be made therein without departing in any way from the spirit and scope of the present invention, as defined in the claims which follow. The complete disclosure of all patents, patent documents, and publications are incorporated herein by reference as if individually incorporated.