This invention relates to wireless communication and, more particularly, to wireless communication in an environment where transmission channel characteristics change relatively rapidly.
The explosive growth of wireless communications is creating a demand for high-speed, reliable, and spectrally efficient communications. There are several challenges to overcome in attempting to satisfy this growing demand, and one of them relates to the time variations in the transmission of multicarrier-modulated signals.
Multicarrier transmission for wireless channels has been well studied. The main advantage of orthogonal frequency division multiplexing (OFDM) transmission stems from the fact that the Fourier basis forms an eigenbasis for time-invariant channels. This simplifies the receiver, which leads to an inexpensive hardware implementations, since the equalizer is just a single-tap filter in the frequency domain—as long as the channel is time invariant within a transmission block. Combined with multiple antennas, OFDM arrangements are attractive for high data rate wireless communication, as shown, for example, in U.S. patent application Ser. No. 09/213,585, filed 17 Dec. 1998.
Time invariability within a transmission block cannot be guaranteed at all times, however, for example, with the receiving unit moves at a high speed, and that leads to impairments because the Fourier basis at such times no longer forms the eigenbasis, and the loss of orthogonality at the receiver results in inter-carrier interference (ICI). Depending on the Doppler spread in the channel, and the block length, ICI can potentially cause severe deterioration of quality of service
An advance in the art is realized with an arrangement wherein a receiver that is responsive to transmissions of blocks of symbols includes a filter that, based on knowledge of the transmission channel that is gained through pilot tones, is caused to have filter coefficients that minimize inter-carrier interference due to intra-block time variations in the transmission channels. The channel coefficients are determined through interpolation of the coefficients determined from the pilot tones. In some embodiments, channel coefficients estimates are improved by employing estimates from previous blocks.
In an OFDM system, the pilot signals are advantageously selected to be in clusters that are equally spaced from each other in the time or the frequency domains. This approach applies to multiple antenna, as well as to single antenna arrangements, and to arrangements that do, or do not use space-time coding.
When considering only a single transmitting antenna and a single receiving antenna, the received signal y, at time t, can be expressed by
y(t)=∫b(t,τ)s(t−τ)dτ+z(t) (1)
where b(t, τ) is the impulse response of the time-varying channel between the transmitting antenna and the receiving antenna, as a function of τ, at time t, and s(t−τ) is the transmitted signal at time t−τ. When sampled at a sufficiently high rate (above 2Wt+2Ws, where Wt is the input bandwidth and Ws is the bandwidth of the channel's time variation), equation (1) can be written in discrete form; and when the transmission channel between the transmitting antenna and the receiving antenna is represented by a discrete, finite, impulse response corresponding, for example, to a tapped filter having ν samples of memory, then equation (1) can be expressed as
where y(k) and z(k) are the received signal and the received noise at sample time k, h(k,l) represents the sampled (time-varying) channel impulse response that combines the transmit filter g1 with the channel response b1, and x(k-l) is the input signal at sample time k-l.
When there are Mr receiving antennas, and Mt transmitting antennas, equation (2) generalizes to
where y(k) is an Mr-element vector corresponding to the signals received at the receiving antennas (31, 32, 33) at sample time k, H(k,l) is an Mr by Mt matrix of the lth tap of the transmission medium filter at sample time k (k is a parameter because the transmission medium varies with time), x(k-l) is an Mt-element input vector at sample time k-l that corresponds to the signals of transmitting antennas 21, 22, 23, and z(k) is the Mr-element noise vector at sample time k.
When considering the transmission of information from transmitter 10 to receiver 20 in blocks, one has to realize that the memory/delay of the transmission medium will cause interference between one block and the next, unless a guard-time interval is provided that corresponds to at least the delay introduced by the transmission medium. One can simply send no signals during this interval, but one can also send a symbol sequence, of any length greater than the memory/delay of the transmission medium, i.e., ν or more symbols. Thus, one can send a block of N symbols from antenna 12-1 with a prefix of ν symbols, as shown in
y=Hx+z (4)
where y is a vector with elements y(k), y(k+1), . . . y(k+N−1), x is a vector with elements x(k−ν), x(k−ν+1), . . . x(k−1), x(k), x(k+1). . . x(k+N−1), and H is a N by N+ν element matrix (channel coefficients between the transmitting antenna and the receiving antenna during the N symbol intervals when the receiving antenna pays attention to the signal). When the prefix is selected so that
x(−ν+i)=x(N−1+i) for i=1,2, . . . ν−1, (5)
then the x vector reduces to an N element vector, and H reduces to a N by N element matrix.
When the full complement of Mt transmitting antennas and Mr receiving antennas are considered, equation (4) holds, but H becomes an N·Mr by N·Mt matrix, y and z become N·Mr-element vectors, and x becomes an N·Mt-element vector.
It may be noted that there is no loss of generality in assuming that Mt=Mr=M, which makes H a square matrix of size NM. In the treatment below, therefore, this assumption is made, but it should be understood that the principles disclosed herein apply to situations where Mt is not necessarily equal to Mr.
At a particular receiving antenna, for example 21-j, the received signal can be expressed by equation (4) where H is an N by NM matrix. H can also be considered as an M element vector, where each element is an N by N matrix of H1j of transfer coefficients between transmitting antenna i and receiving antenna j, i.e., vector [H1j, H2,j, . . . HMj].
In an OFDM system like the one shown in
x=QHX, (6)
which in the case of an arrangement where there are M transmitting antennas and M receiving antennas, QH is the Hermitian of Q, and Q is an NM by NM matrix with elements {tilde over (Q)} on the diagonal, and 0s elsewhere, where {tilde over (Q)} is the N-point DFT transform matrix
In the case of a single transmitting antenna and a single receiving antenna, equation (6) is simply x={tilde over (Q)}HX.
At the receiver, the signal of each antenna 21-j is applied to element 24-j, which performs a N-point DFT, generating an N-element vector Yj. This can be expressed by
where H1j is the N by N matrix of coefficients between transmitting antenna I and receiving antenna j, and Xl is an N-element vector applied to inverse FFT element 13-i (advantageously, N is a power of 2 integer). The signal at the output of element 24-i at clock interval p (within a block) can be written as
where Z(p) is the transformed noise at clock interval p, Xl(q) is the signal at clock interval q of the block applied to inverse FFT element 13-l, and Glj(p,q) is the (p,q)th element of matrix
Glj={tilde over (Q)}Hlj{tilde over (Q)} (10)
Equation (9) can also be written as
and generalizing to the multiple receiving antenna case, equation (11) can be expressed by
When the transmission medium coefficients do not vary with time, matrix H of equation (4) becomes a circulant matrix, and it can be shown that when H is circulant, {tilde over (Q)}H{tilde over (Q)}H is a diagonal matrix. However, when H does vary with time, {tilde over (Q)}H{tilde over (Q)}H is no longer a diagonal matrix, and consequently, signal ZICI(p) of equation (12) is non-zero. Stated in other words, when the transmission coefficients do vary with time, the received signal contains inter-carrier interference. If the ZICI(p) were to be eliminated, however, then a conventional decision circuit can be used to arrive at the N elements of Y(p) that form the received block of information signals. Obviously, therefore, it is desirable to eliminate—the inter-carrier interference signals, but in order to do that one must know the values of all of the coefficients of matrix H.
In the time span of N symbol intervals, i.e., in a block, it is possible for each coefficient to change with each sample interval. The matrix Hlj between any transmitting antenna i and any receiving antenna j (in the time span of a block) is an N by N matrix (as demonstrated by above), but only ν terms in each row are non-zero. Consequently, only Nv coefficients need to be ascertained for each H matrix between a transmitting antenna and a receiving antenna (rather than N2 coefficients). Nevertheless, this number is still much too large to ascertain, because only N signals are transmitted in a block and, therefore, it is not possible to estimate Nv coefficients, even if all N sample intervals in a block were devoted to known (pilot) signals—which, of course, one would not want to do because it would leave no capacity for communicating any information.
The disclosure below presents a novel approach for developing the necessary coefficients of Hlj, but alas, some of those coefficients are likely to be inexact. Consequently, one can only reduce the inter-carrier interference to some minimum level, rather than completely eliminate it. Still, while recognizing that the channel coefficients that are available in receiver 20 are not all totally accurate, in the treatment below it is assumed that all coefficients of matrix Hlj are known.
To reduce this inter-carrier interference in accord with the principles disclosed herein, a filter element 25 with transfer function W is interposed between the receiving antennas and the FFT elements 24-j (where index j ranges from 1 to Mr), as shown in the
where Q, W, and H are NM by NM matrices, and X and z are NM-element vectors. Defining em, as an NM-element vector with a 1 in the mth element and zeros elsewhere, then vector qm=QHem, represents the mth column of matrix QH, which is an NM element vector, comprising M concatenated sets of values
for 0≦k≦N−1.
Defining hm=Hqm, wm=WHqm, and Rm=HHH−hmhmH and further, assuming that wmHwm=1 for 0≦m≦N−1, it can be shown that the optimum vector at symbol interval m, (i.e., for frequency bin m), wm, is one that results from solving the optimization problem
maxm wmHhmhmHwm subject to
It can be shown that by defining
and computing the inverse matrix Ryy−1, the optimum vector for frequency bin m is
Repeating the computations leading to equation 15 for all values of m=0,1, . . . NM yields the various vectors that correspond to the columns of matrix WHQH, by definitions of the relationships wm=WHqm and qm=QHem. Forming the matrix, post-multiplying it by Q and taking the Hermitian of the result yields the matrix W.
In the
As indicated above, computation of the optimum filter that is placed following each antenna requires knowledge of the channel coefficients. The following discloses a method and corresponding apparatus that ascertains a selected number of coefficients of H through the use of pilot signals, and obtains the remaining coefficients of H through interpolation. For sake of simplicity of the mathematical treatment, it is assumed that M=1 because the generality of the treatment is not diminished by this assumption. Also, in accord with the principles disclosed herein, it is assumed that the H matrix coefficients in the course of transmitting a number of adjacent symbols within a block do not vary significantly and that, therefore, if two rows of coefficients of matrix H that are fairly close to each other are known, then the coefficient rows between them can be obtained through linear interpolation of the known rows.
A row of coefficients effectively defines the channel at the clock interval corresponding to the row, and in the treatment below it is designated by h(n,l), where index n corresponds to the row within matrix H (i.e., an integer between 1 and N, inclusively) and index l corresponds to the ν potentially non-zero coefficients on a row of H.
Extending this thought, if the channel coefficients are known at P clock intervals, where P is any selected number, i.e., if P rows of H are known, then the remaining rows of H can be obtained by interpolation of the P known rows. Intuitively it is apparent that the error in estimating the coefficients of H decreases as the value of P is increased (i.e., more rows of H are known). Stating the interpolation mathematically, generally, a row h(n,l) can be obtained from
where coefficients αnl are members of a set of coefficients αn and h(mi,l) is the ith known set of channel coefficients. In vector notation,
h(n,l)=anP (18)
where P is a P-element vector P=[h(m1,l)h(m2,l). . . h(mp,l)]T, and an is a vector with elements αnl. If HC(i) designates the N by N H matrix if it were not time variant and had the coefficients of the ith channel that is known, i.e., channel h(m1,l), then, the channel estimate, {tilde over (H)}, can be expressed by
where Al is an N by N diagonal matrix with elements
that is equal to 1 when n corresponds to the known channel h(m1,l), i.e., when n equals m(i), is equal to 0 when n corresponds to the other P−1 known channels, and is equal to αn1 otherwise.
To illustrate, suppose N=5, and rows 1, 3 and 5 of H are known through detection of pilot signals at that are send during clock intervals 1, 3 and 5. That is, index i has values 1, 3, and 3, and m(i) has values 1, 3 and 5. From the known rows we can then construct HC(m1) from h(1,l), HC(m2) from h(3,l), and HC(m3) from h(5,l). For the two missing rows, we have vector a2 that has three elements, α21, α22, α23, for example [0.2, 0.3, 0.5] and vector a4 that has three elements, for example, [0.1, 0.2, 0.7]. According to the above,
and
{tilde over (H)}=A1Hc(1)+A3Hc(3)+A5Hc(5). (23)
Two remaining considerations are the placement of the pilot tones, and the values employed in the an vectors, for n=1, 2, . . . ,P.
It can be shown that for time-selective channels, pilot tones should be grouped together. On the other hand, in frequency selective time-invariant channels, placing the pilot tones equally spaced on the FFT grid is the optimal scheme. Therefore, for purposes of the
As for the values employed in the an vectors, without imposing any assumptions on the underlying channel variations, linear interpolation appears to be the simplest method for choosing the weight vectors. On the other hand, if apriori knowledge about the underlying channel model is available, more sophisticated channel interpolation schemes can be devised.
In the case of the linear interpolation, each an vector consists of two non-zero terms that correspond to the two closest known rows of H (one on either side), and the values of the two non-zero terms reflect the relative distance of the row corresponding to n to the two known rows. For example, if H contains 48 rows and rows 1, 2, 3, 16, 17, 18, 31, 32, 33, 46, 47 and 48 are known, the a4 vector is {0,0, ½, 11/12, 0,0,0,0,0,0,0,0}
To give an example of a situation where apriori knowledge bout the channel is available assume, for example that the channels follow the Jakes model (see W. C. Jakes, Microwave Mobile Communications, John Wiley & Sons, Inc. 1994) where E[(h(m,l)hH(n,l)]=J0(2πfd(m−n)T) with fd denoting the Doppler frequency, and T denoting the symbol period, then the calculation of the interpolation weights is straightforward. For example if we fix rows h1, hN/2, hN, the set of weights an=[αn(1), αn(N/2), an αn(N)] that minimizes E[|h(n,l)−anH{tilde over (h)}(l)|2] where {tilde over (h)}(l)=[h(1,l), h(N/2,l), h(N,l)]T can be obtained using the orthogonality principle
αnH=Rh
where
Rh
and
with J0(n) being equal to J0(2πfdnT). Typically, however, for Doppler values of practical importance, there is little to be gained by adopting the Jakes-based estimator in place of the linear interpolator. Hence, from an implementation point of view, the linear estimator appears to be an attractive solution, as it dispenses with the estimation of the Doppler frequency, without sacrificing performance.
An additional enhancement is achieved through channel tracking. In channel tracking, it is assumed that matrix H of one block is related to matrix H of the previous blocks and, therefore, given a matrix Ĥμ-1 that is used during block μ−1, and an estimate of the H matrix derived from the pilot signals for block μ, {tilde over (H)}μ, a matrix to be employed during block 1 is obtained from
Ĥμ=α{tilde over (H)}μ+(1−α)Ĥμ-1 (26)
where α is a preselected constant less than 1.
It should be noted that the above-disclosed approach could be used in conjunction with any coding technique in coder 13-0 of
It should also be realized that the receiver embodiment shown in
This invention claims priority from provisional application No. 60/307,759, filed Jul. 25, 2001.
Number | Name | Date | Kind |
---|---|---|---|
6711124 | Khayrallah et al. | Mar 2004 | B1 |
6898250 | Lee et al. | May 2005 | B1 |
6904107 | Rached et al. | Jun 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
60307759 | Jul 2001 | US |