This disclosure relates to the addition of carboxamides to vinyl pyridines.
N-substituted p-menthane carboxamides are well known in the art as compounds that impart a cooling sensation to the skin or the mucous membranes of the body. Typical examples of such compounds are described in, for example, British Patent GB 1,421,744.
In International Application PCT/CH2006/000427 there are disclosed compounds of the general formula I
in which X, Y, Z, R1, R2, R3 and m are as defined in that document. In particular examples, at least two of R1, R2, R3 together form a cyclic radical.
These compounds have usually been prepared by the reaction of a menthane carboxylic acid chloride with a suitable monoamine. One example of this is the following reaction:
Although efficient, this reaction involves the use of expensive materials.
It has now been found that it is possible to prepare such compounds by a simple, inexpensive process. There is therefore provided a method of making a compound of formula II
comprising the reaction of a compound of the formula RCONH2 with a compound of formula III
R being a moiety having between 1 and 15 carbon atoms and optionally from 1 to 5 heteroatoms independently selected from oxygen, nitrogen and sulfur, and X and Y being independently selected from the group consisting of H, methyl (Me), ethyl (Et), OMe, OEt and mixtures thereof;
the reaction being performed in a solvent in the presence of a base.
There is also provided a compound of the formula II as hereinabove defined, prepared by a process as hereinabove defined.
The compounds of formula III are vinyl pyridines, optionally substituted. Either the 2- or the 4-vinyl pyridine or derivatives thereof may be used.
The solvent may be any suitable solvent. It may be capable of dissolving all the reactants and the reaction product. Useful solvents include oxygen- and nitrogen-containing non-reactive solvents and aromatic hydrocarbons. Non-limiting examples of solvents include xylene, toluene, dimethyl formamide and tetrahydrofuran (THF).
The quantity of solvent present is any suitable quantity.
The base for use in the process may be any suitable base. Typical examples of suitable bases include sodium methoxide, potassium tert-butoxide, lithium diisopropyl amine, sodium hydride, sodium hydroxide and potassium hydroxide. A acceptable concentration range is from about 0.01 to about 0.5 equivalents.
Particular examples of bases include sodium hydroxide, potassium hydroxide and potassium tert-butoxide. These may be used at concentration ranges of from about 0.05 to about 0.25 equivalents.
In particular embodiments involving the use of sodium or potassium bases, the mixture may comprise a chelating agent. This permits higher yields and faster reaction limes. Examples of suitable chelating agents include crown ethers, such as 18-crown-6, particularly in combination with bases such as potassium, hydroxide and potassium tert-butoxide.
Alternatively, the solvent itself may be selected such that it has chelating properties. If such solvents are used, a separate chelating agent may be used in a reduced quantity or even omitted altogether. Solvents that are useful in this regard include dimethyl formamide (DMF), N-methylpyrrolidone (NMP). Combinations of all or any these solvents may be used in any desired proportions.
In a particular embodiment, the reaction is heated or performed under pressure, for example, in a bomb or in a sealed microwave vessel. While it is generally not essential to do this, the use of such measures can lead to higher yields and faster reaction times. A particular temperature range for heating is at least about 50° C., more particularly from about 100° to about 200° C. Naturally, the use of higher temperatures will have an effect on the selection of solvent, but the skilled person will be able to select suitable solvents for each case.
Particular embodiments of the compound are those in which R is selected according to the description hereinafter provided.
In particular embodiments, R is selected from arylalkenyl, heteroarylalkenyl, arylalkyl, heteroarylalkyl, alkyl, alkoxy-alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl and heteroaryl moieties, and mixtures thereof.
Particular examples of R include (but are not limited to) 2,4-dimethylpent-3-yl, 2,3,4-dimethylpent-3-yl, adamantyl and 2-isopropyl-5-methyl-cyclohexyl-1-yl (in particular embodiments, the (1R, 2S, 5R) form).
In a certain embodiment, the process is particularly useful for producing the compounds of International Application PCT/CH2006/000427 hereinabove described. In such a case, R is a moiety of formula IV
in which R1, R2 and R3 together comprise at least 6 carbons, and are selected such that
Examples of cyclic radicals as described under (b) above include 3-para-menthyl, bornyl and adamantyl.
A particular example of Formula IV is 2-isopropyl-5-methyl-cyclohexyl-1-yl (in a particular embodiment, the (1R, 2S, 5R) variant).
The method is now described with reference to the following non-limiting examples.
In a 15 mL round bottom flask, fitted with magnetic stirrer and reflux condensor, 0.368 g of p-menthanecarboxamide, 4 mL of toluene, 0.32 mL of 2-vinyl pyridine, 0.027 g of 18-crown-6 and 0.12 ml, of potassium tert-butoxide (20% in THF) were added. The mixture was heated at 110° C. for 3 hours, yielding 97% conversion by GC.
In a 5 mL Biotage microwave vial, fitted with magnetic stirrer, 0.1 g of p-menthanecarboxamide, 0.55 mL of toluene, 0.45 mL of NMP, 0.086 g of 2-vinyl pyridine and 3.1 mg of KOH were added. The vial was sealed and heated in the Biotage microwave instrument at 150° C. for 10 min, yielding 90.9% conversion by GC.
In a 5 mL Biotage microwave vial, fitted with magnetic stirrer, 0.1 g of p-menthanecarboxamide, 1.0 mL of THF, 0.086 g of 2-vinyl pyridine and 0.1 eq. of potassium tert-butoxide (KOtBu) (20% in THF) were added. The vial was sealed and heated in the Biotage microwave instrument at 160° C. for 20 min, yielding 88% conversion by GC.
In a 5 mL Biotage microwave vial, fitted with magnetic stirrer, 0.1 g of p-menthanecarboxamide, 1.0 mL of NMP, 0.086 g of 2-vinyl pyridine and 0.1 eq. of KOtBu (20% in THF) were added. The vial was sealed and heated in the Biotage microwave instrument at 150° C. for 10 min, yielding 95.3% conversion by GC.
In a 5 mL Biotage microwave vial, fitted with magnetic stirrer, 0.1 g of p-menthanecarboxamide, 1.0 mL of NMP, 0.086 g, of 2-vinyl pyridine and 2.2 mg of NaOH were added. The vial was sealed and heated in the Biotage microwave instrument at 150° C. for 10 min, yielding 85.7% conversion by GC.
In a 5 mL Biotage microwave vial, fitted with magnetic stirrer, 0.1 g of p-menthanecarboxamide, 0.05 mL of NMP, 0.95 mL of toluene, 0.082 mL of 2-vinyl pyridine and 3.1 mg of KOH were added. The vial was sealed and heated in the Biotage microwave instrument at 150° C. for 10 min, yielding 74.6% conversion by GC.
In a 100 mL round bottom flask, fitted with magnetic stirrer and reflux stirrer, 5.0 g of p-menthanecarboxamide, 10 mL of NMP, and 150 mg of KOH were added. The mixture was heated for 1 hour at 120° C.
The mixture was cooled to room temperature and 60 mL of water were added slowly under stirring, while crystals separated from the mixture. The mixture was cooled to 0° C., filtered and the crystals were washed limes with ice cold water. The crude product was re-crystallized from ethyl acetate and hexane, yielding 3.96 g of white crystals (50% yield).
MS: 288 ([M+•]), 273, 245, 149, 121, 95
1H NMR (300 MHz; DMSO) δ: 8.53 (d, 111), 7.62 (td, 1H), 7.16 (m, 2H), 6.43 (s, 1H), 3.67 (nontuplet, 2H), 3.00 (t, 2H), 1.95 (td, 1H), 1.84-1.53 (m, 4H), 1.47 (broad t, 1H), 1.4-1.1 (m, 2H), 0.87 (d, 3H), 0.84 (d, 3H), 0.66 (d, 3H)
13C NMR (75 MHz; DMSO) δ: 175.8, 159.7, 148.9, 136.7, 123.6, 121.55, 49.8, 44.3, 39.4, 38.35, 36.9, 34.6, 32.3, 28.55, 23.9, 22.3, 21.3, 15.95
In a 5 mL Biotage microwave vial, fitted with magnetic stirrer, 0.1 g of p-menthanecarboxamide, 1 mL of NMP, 0.082 mL of 4-vinyl pyridine and 3.1 mg of KOH were added. The vial was sealed and heated in the Biotage microwave instrument at 150° C. for 10 min, yielding 54% conversion by GC.
MS: 260 ([M+•]), 217, 149, 121, 95
In a 20 mL Biotage microwave vial, fitted with magnetic stirrer, 1.0 g of 2-isopropyl-2,3-dimethylbutanamide, 10 mL of toluene, 1.0 g of 2-vinyl pyridine, 0.027 g of 18-crown-6 and 0.18 g of potassium tert-butoxide (20% in THF) were added. The vial was sealed and heated in the Biotage microwave instrument at 200° C. for 30 min.
The mixture was acidified with 100 mL of HCl (1N in water) and 2 times extracted with MTBE. The aqueous layer was treated with 150 mL of NaOH (1N in water) and extracted 2 times with MTBE. The organic layer was dried over magnesium sulfate, concentrated and purified by column chromatography. 1.17 g of white crystals were obtained (70% yield).
Mp: 60-61° C.
MS: 262 ([M+]), 220, 205, 149, 121, 106, 93
1H NMR (300 MHz; CDCl3) 8.53 (d, 1H), 7.63 (t, 1H), 7.16 (m, 2H), 6.69 (s, 1H), 3.67 (dd, 2H), 2.99 (t, 2H), 1.96 (m, 2H), 0.96 (s, 3H), 0.85 (d, 6H), 0.79 (d, 6H)
13C (75 MHz; CDCL3) 175.6, 160.0, 149.1, 136.6, 123.4, 121.5, 51.4, 38.4, 36.9, 32.6, 18.1, 17.4, 14.1
In a 10 mL Biotage microwave vial, fitted with magnetic stirrer, 2.5 g of 2-phenylbutyramide, 3 mL of NMP, 1.6 g of 2-vinyl pyridine, 0.1 g of KOH were added. The vial was sealed and heated in the Biotage microwave instrument at 150° C. for 10 min.
The mixture poured on ice, the pH was adjusted with NaOH (1N in water) to pH 12 and extracted with MTBE. The organic layer was washed with brine, dried over magnesium sulfate, concentrated and purified by column chromatography. 2.3 g of beige oil were obtained (56% yield).
MS: 266 ([M+]), 253, 240, 149, 121, 106, 91, 78, 65
1H NMR (300 MHz; CDCl3) 8.40 (m, 1H), 7.50 (dt, 1H), 7.3-7.2 (m, 5H), 7.1 (dt, 1H), 7.0 (d, 1H), 6.35 (s, 1H), 3.60 (dd, 2H), 3.20 (t, 1H), 2.90 (t, 2H), 2.2-2.1 (m, 1H), 1.8-1.7 (m, 1H), 0.84 (t, 3H)
13C (75 MHz; CDCl3) 173.5, 159.6, 149.1, 140.0, 136.5, 128.6, 128.1, 127.0, 123.4, 121.4, 55.4, 38.8, 36.8, 26.1, 12.3
In a 10 mL Biotage microwave vial, fitted with magnetic stirrer, 2.5 g of 2-(2-methoxybenzylamino)acetamide, 3 mL of NMP, 1.6 g of 2-vinyl pyridine, 0.1 g of KOH were added. The vial was sealed and heated in the Biotage microwave instrument at 150° C. for 10 min.
The mixture poured on ice, the pH was adjusted with NaOH (1N in water) to pH 12 and extracted with MTBE. The organic layer was washed with brine, dried over magnesium sulfate, concentrated and purified by column chromatography. 1.05 g of beige oil were obtained (27% yield).
MS: 299 ([M+]), 178, 164, 150, 136, 121, 106, 91, 78, 65, 51
1H NMR (300 MHz; CDCl3) 8.50 (m, 1H), 7.80 (s, 1H), 7.6 (dt, 1H), 7.3-7.1 (m, 4H), 7.0-6.8 (m, 2H), 3.82 (s, 3H), 3.75-3.65 (m, 2H), 3.65 (s, 2H), 3.23 (s, 2H), 3.05 (t, 2H), 1.95 (s, 1H)
13C (75 MHz; CDCL3) 171.8, 159.4, 157.6, 149.4, 136.4, 129.9, 128.6, 123.4, 121.5, 120.5, 110.3, 55.2, 51.8, 49.4, 38.3, 37.6
These examples are for the purpose of illustration only and it is understood that variations and modifications can be made by one skilled in the an without departing from the spirit and the scope of the invention. It should be understood that the embodiments described are not only in the alternative, but, can be combined.
This application claims the benefits of the filing date of U.S. Provisional Application for Patent Ser. No. 60/961,656, filed Jul. 23, 2007, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3516943 | Brynko et al. | Jun 1970 | A |
4150052 | Watson et al. | Apr 1979 | A |
4285984 | Huber | Aug 1981 | A |
5759599 | Wampler et al. | Jun 1998 | A |
6039901 | Soper et al. | Mar 2000 | A |
6045835 | Soper et al. | Apr 2000 | A |
6056949 | Menzi et al. | May 2000 | A |
6106875 | Soper et al. | Aug 2000 | A |
6123974 | Gautschi et al. | Sep 2000 | A |
6222062 | Anderson et al. | Apr 2001 | B1 |
6306818 | Anderson et al. | Oct 2001 | B1 |
6325859 | De Roos et al. | Dec 2001 | B1 |
6325951 | Soper et al. | Dec 2001 | B1 |
6335047 | Daniher et al. | Jan 2002 | B1 |
6348618 | Anderson et al. | Feb 2002 | B1 |
6387431 | Gautschi | May 2002 | B1 |
6426108 | Gautschi | Jul 2002 | B1 |
6436461 | Bouwmeesters et al. | Aug 2002 | B1 |
6440912 | McGee et al. | Aug 2002 | B2 |
6451366 | Daniher et al. | Sep 2002 | B1 |
6482433 | DeRoos et al. | Nov 2002 | B1 |
6610346 | Acuna et al. | Aug 2003 | B1 |
6689740 | McGee et al. | Feb 2004 | B1 |
6805893 | Acuna et al. | Oct 2004 | B2 |
6869923 | Cunningham et al. | Mar 2005 | B1 |
20010008635 | Quellet et al. | Jul 2001 | A1 |
20020081370 | Daniher et al. | Jun 2002 | A1 |
20030082272 | Bouwmeesters et al. | May 2003 | A1 |
20030165587 | Binggeli et al. | Sep 2003 | A1 |
20040047960 | Acuna et al. | Mar 2004 | A1 |
20050214337 | McGee et al. | Sep 2005 | A1 |
20050227906 | Schudel et al. | Oct 2005 | A1 |
20050233042 | Galopin et al. | Oct 2005 | A1 |
20060035008 | Virgallito et al. | Feb 2006 | A1 |
20060276667 | Galopin et al. | May 2006 | A1 |
20060154850 | Quellet et al. | Jul 2006 | A1 |
20060172917 | Vedantam et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
1351761 | May 1974 | GB |
1351762 | May 1974 | GB |
WO0103825 | Jan 2001 | WO |
WO 2004034791 | Apr 2004 | WO |
WO 2005049553 | Jun 2005 | WO |
WO 2006056096 | Jun 2006 | WO |
WO 2007019719 | Feb 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090030042 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60961656 | Jul 2007 | US |