Claims
- 1. A method for cancer treatment in a warm blooded vertebrate animal, comprising administering to the animal a treatment effective amount sufficient to inhibit cancer of a carboxylic acid secondary amide derivative of a compound, wherein:
(1) the derivative is selective for inhibition of cyclooxygenase-2, and (2) the compound (a) is a cyclooxygenase inhibitor but is absent selectivity for inhibition of cyclooxygenase-2 and (b) contains a carboxylic acid moiety or a pharmaceutically acceptable salt thereof.
- 2. The method of claim 1, wherein the cancer treatment is antiangiogenic treatment and the amount sufficient to inhibit cancer is sufficient to inhibit blood cells that feed cancer or blood vessel cells that feed cancer.
- 3. The method of claim 1, wherein the cancer treatment is antitumor treatment and the amount sufficient to inhibit cancer is sufficient to inhibit tumor growth.
- 4. The method of claim 3, further including the derivative possesses an analgesic, antiinflammatory, or antipyretic property as possessed by the compound and the treatment provides an analgesic, antiinflammatory, or antipyretic effect in the animal absent concomitant administration of another compound for providing such effect.
- 5. The method of claim 1, wherein the compound is a non-steroidal antiinflammatory drug.
- 6. The method of claim 5, wherein the non-steroidal antiinflammatory drug is selected from the group consisting of fenamic acids, indoles, phenylalkanoic acids, phenylacetic acids, pharmaceutically acceptable salts thereof, and combinations thereof.
- 7. The method of claim 5, wherein the non-steroidal antiinflammatory drug is selected from the group consisting of indomethacin, 6-methoxy-α-methyl-2-naphthylacetic acid, meclofenamic acid, diclofenac, flufenamic acid, niflumic acid, mefenamic acid, sulindac, tolmetin, suprofen, ketorolac, flurbiprofen, ibuprofen, aceloferac, alcofenac, amfenac, benoxaprofen, bromfenac, carprofen, clidanac, diflunisal, efenamic acid, etodolic acid, fenbufen, fenclofenac, fenclorac, fenoprofen, fleclozic acid, indoprofen, isofezolac, ketoprofen, loxoprofen, meclofenamate, naproxen, orpanoxin, pirprofen, pranoprofen, tolfenamic acid, zaltoprofen, zomopirac, pharmaceutically acceptable salts thereof, and combinations thereof.
- 8. The method of claim 1, wherein the secondary amide derivative is a secondary amide derivative of a non-steroidal antiinflammatory drug.
- 9. The method of claim 1, wherein the secondary amide derivative is selected from the group consisting of secondary amide derivatives of fenamic acids, indoles, phenylalkanoic acids, phenylacetic acids, and combinations thereof.
- 10. The method of claim 1, wherein the secondary amide derivative is selected from the group consisting of secondary amide derivatives of indomethacin, 6-methoxy-α-methyl-2-naphthylacetic acid, meclofenamic acid, diclofenac, flufenamic acid, niflumic acid, mefenamic acid, sulindac, tolmetin, suprofen, ketorolac, flurbiprofen, ibuprofen, aceloferac, alcofenac, amfenac, benoxaprofen, bromfenac, carprofen, clidanac, diflunisal, efenamic acid, etodolic acid, fenbufen, fenclofenac, fenclorac, fenoprofen, fleclozic acid, indoprofen, isofezolac, ketoprofen, loxoprofen, meclofenamate, naproxen, orpanoxin, pirprofen, pranoprofen, tolfenamic acid, zaltoprofen, zomopirac, and combinations thereof.
- 11. The method of claim 1, wherein the secondary amide derivative is selected from the group consisting of indomethacin-N-methyl amide, indomethacin-N-ethan-2-ol amide, indomethacin-N-octyl amide, indomethacin-N-nonyl amide, indomethacin-N-(2-methylbenzyl) amide, indomethacin-N-(4-methylbenzyl) amide, indomethacin-N-((R)-,4-dimethylbenzyl) amide, indomethacin-N-((S)-,4-dimethylbenzyl) amide, indomethacin-N-(2-phenethyl) amide, indomethacin-N-(4-fluorophenyl) amide, indomethacin-N-(4-chlorophenyl) amide, indomethacin-N-(4-acetamidophenyl) amide, indomethacin-N-(4-methylmercapto)phenyl amide, indomethacin-N-(3-methylmercaptophenyl) amide, indomethacin-N-(4-methoxyphenyl) amide, indomethacin-N-(3-ethoxyphenyl) amide, indomethacin-N-(3,4,5-trimethoxyphenyl) amide, indomethacin-N-(3-pyridy) amide, indomethacin-N-5-((2-chloro)pyridyl) amide, indomethacin-N-5-((1-ethyl)pyrazolo) amide, indomethacin-N-(3-chloropropyl) amide, indomethacin-N-methoxycarbonylmethyl amide, indomethacin-N-2-(2-L-methoxycarbonylethyl) amide, indomethacin-N-2-(2-D-methoxycarbonylethyl) amide, indomethacin-N-(4-methoxycarbonylbenzyl) amide, indomethacin-N-(4-methoxycarbonylmethylphenyl) amide, indomethacin-N-(2-pyrazinyl) amide, indomethacin-N-2-(4-methylthiazolyl) amide, indomethacin-N-(4-biphenyl) amide, and combinations thereof.
- 12. The method of claim 1, wherein the treatment effective amount sufficient to inhibit cancer ranges from about 0.5 milligram to about 7.0 milligrams per kilogram of body weight of the animal per day.
- 13. The method of claim 1, wherein the treatment effective amount sufficient to inhibit cancer ranges from about 1.5 milligrams to about 6.0 milligrams per kilogram of body weight of the animal per day.
- 14. The method of claim 1, wherein the treatment effective amount sufficient to inhibit cancer ranges from about 2.0 milligrams to about 5.0 milligrams per kilogram of body weight of the animal per day.
GOVERNMENT INTEREST
[0001] This research was funded by a research grant from the National Institutes of Health (Research Grant No. CA47479). Thus, the United States government has certain rights in the invention.
Continuations (1)
|
Number |
Date |
Country |
Parent |
09226693 |
Jan 1999 |
US |
Child |
09818201 |
Mar 2001 |
US |