The invention relates to novel amino acid derivatives, to cosmetic or dermatological compositions containing them and to their use as agents for treating human perspiration in a cosmetic composition.
The invention also relates to a cosmetic process for treating perspiration and possibly the body odour associated with human perspiration, especially underarm odour.
In the cosmetics field, it is well known to use in topical application, as antiperspirants, aluminum and/or zirconium salts, which have the effect of limiting or even preventing the flow of sweat. These products are generally available in the form of roll-ons, sticks, aerosols or sprays.
Metal salts of this type are efficient as antiperspirant active agents, but some people find that the application of such products causes skin irritation. Moreover, aluminum salts partly block perspiration via the formation of a partial plug in the sweat duct, giving the consumer the impression of unnatural control of perspiration. Furthermore, they also have a tendency to leave marks on clothing.
Patent application WO 2006/094 193 (Revance Therapeutics) discloses oligopeptides comprising a sequence Glu.Glu.Met.Gln.Arg.Arg, which are intended to be applied transdermally for a multitude of treatments, including the treatment of hyperhydrosis.
Research Disclosure Vol. 519, 07 2007, p. 685, discloses the peptide β-Ala-Pro-diaminobutyroylbenzylamide, such as the product sold by the company Pentapharm AG, which is used in the treatment of hyperhydrosis.
It has been proposed in patent application WO 2010/003 781, for the treatment of perspiration, to use peptides in lamellar-phase emulsions, especially oleosomes. Among the recommended peptides, the said document mentions peptides comprising a sequence Glu.Glu.Met.Gln.Arg.Arg, peptides comprising a sequence Tyr.Ala.Gly.Phe.Leu, and the peptide β-Ala-Pro-diaminobutyroylbenzylamide.
These peptides are not entirely satisfactory for the treatment of human perspiration.
There is thus still a need to find novel formulations for treating perspiration that do not have the drawbacks encountered with those known hitherto, and which give good antiperspirant efficacy. There is thus a need to find novel antiperspirant active agents that can replace aluminum salts and aluminum/zirconium salts, and that are efficient, easy to formulate and well tolerated.
The Applicant has found, surprisingly, that amino acid derivatives of formula (I) that will be given in detail hereinbelow make it possible to achieve this objective and can be readily formulated in numerous products for reducing perspiration, without it being necessary to use standard astringent salts.
The invention concerns novel amino acid derivatives of formula (I) that will be given in detail hereinbelow.
The invention also concerns a composition comprising, in a cosmetically acceptable medium, at least one amino acid derivative of formula (I) that will be given in detail hereinbelow.
A subject of the invention is also the use of at least one amino acid derivative of formula (I) that will be given in detail hereinbelow, as an agent for treating human perspiration, in a composition comprising a cosmetically acceptable support.
A subject of the present invention is also a cosmetic process for treating human perspiration and optionally body odour, in particular underarm odour, which consists in applying to the surface of the skin a composition comprising, in a cosmetically acceptable medium, at least one amino acid derivative of formula (I) that will be given in detail hereinbelow.
The term “cosmetically acceptable” means compatible with the skin and/or its integuments, having a pleasant colour, odour and feel and not causing any unacceptable discomfort (stinging, tautness or redness) liable to discourage the consumer from using this composition.
The term “agent for treating perspiration” means any substance which has the effect of reducing the flow of sweat and/or of reducing the sensation of moisture associated with human sweat, and/or of masking human sweat.
Amino Acid Derivatives
The amino acid derivatives in accordance with the invention are chosen from those corresponding to formula (I) below, or a salt thereof, optical isomers, stereoisomers, enantiomers and diastereoisomers thereof, or a geometrical isomer thereof:
in which X denotes a group chosen from:
with n=1, 2 and m=1, 2, 3, 4,
with n=1, 2,
m=1, 2, 3, 4,
a denoting the point of attachment of the said radical to the carbonyl group and b denoting the point of attachment of the said radical with the group NH, in formula (I);
R1 denotes hydrogen, an aryl or benzyl or linear or branched saturated or unsaturated C1-C18 alkyl radical,
R2 denotes a radical —OR1 or —NR1′R2′;
R1′ and R2′, which may be identical or different, denote a hydrogen atom or a radical R1;
R3 denotes —OH or one of the following groups:
with n=1, 2, 3 (γ-aminobutyric acid in the case where n=2)
In formula (I), among the alkyl groups, mention may be made especially of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-octyl, 2-ethylhexyl, dodecyl and hexadecyl groups.
In formula (I), among the aryl groups, mention may be made especially of phenyl.
The acceptable salts of the compounds described in the present invention include conventional non-toxic salts of the said compounds, such as those formed from organic or mineral acids. Examples that may be mentioned include the salts of mineral acids, such as sulfuric acid, hydrochloric acid, hydrobromic acid or phosphoric acid. Mention may also be made of the salts of organic acids, which may comprise one or more carboxylic, sulfonic or phosphonic acid groups. They may be linear, branched or cyclic aliphatic acids, or alternatively aromatic acids. These acids may also include one or more heteroatoms chosen from O and N, for example in the form of hydroxyl groups. Mention may be made especially of propionic acid, acetic acid, terephthalic acid, citric acid, tartaric acid and lactic acid.
The salts of organic or mineral bases such as the ammonium salts, the alkanolamine salts such as those of triethanolamine or of aminopropanediol, and the salts of alkali metals such as sodium, potassium or calcium.
The preferred salts are those obtained from hydrochloric acid, sulfuric acid, acetic acid, tartaric acid, citric acid and lactic acid.
Among the compounds of formula (I), the compounds that will preferably be chosen are those corresponding to formula (I) or a salt thereof, optical isomers, stereoisomers, enantiomers and diastereoisomers thereof or geometrical isomers thereof for which X denotes the group
Among these compounds of formula (I), the compounds that will preferably be chosen are those for which R1 denotes a linear or branched, saturated or unsaturated C1-C12 alkyl radical.
Among these compounds of formula (I), the ones that will particularly be chosen are those for which
R1 denotes a linear or branched, saturated or unsaturated C1-C6 alkyl radical,
R2 denotes —OH or —NH2.
Among the compounds of formula (I), the compounds that will be chosen even more particularly are the following, or a salt thereof, optical isomers, stereoisomers, enantiomers and diastereoisomers thereof, or geometrical isomers thereof:
The amino acid derivatives of formula (I) according to the present invention are peptides that may be of natural origin or may be synthesized without difficulty by a person skilled in the art, using the conventional techniques of solid-phase or solution peptide synthesis (M. Bodanszky, Principles of Peptides Synthesis, 2nd Ed., 1993, Edition Springer-Verlag).
To prepare the compounds of formula (I) as a solution and/or salts thereof, several synthetic routes may be envisaged. For example, the peptide part may be constructed linearly from the N-terminal end to the C-terminal end or, conversely, from the C-terminal end to the N-terminal end. More specifically, the peptide chain may be synthesized by reacting an N-protected amino acid with a C-protected amino acid to generate an N- and C-protected dipeptide, which may itself lead to a tripeptide after deprotection of its N-terminal end and reaction of the NH2 function thus released with an N-protected amino acid, or after deprotection of its C-terminal end and reaction of the COOH function thus released with a C-protected amino acid. This principle is repeated as many times as necessary to obtain the desired peptide sequence.
The reaction between two amino acids that are N- and C-protected, respectively, may necessitate the use of an activation step and the employment of a coupling reagent. The standard activation or coupling reagents in peptide synthesis are, for example, carbodiimides such as DCC (=dicyclohexylcarbodiimide) or the water-soluble forms of carbodiimides such as EDC (=N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide hydrochloride), phosphonium salts such as BOP (=benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate), PyBOP (=(benzotriazol-1yloxy)tripyrrolidinophosphonium hexafluorophosphate), PyBROP (=bromotripyrrolidinophosphonium hexafluorophosphate), PyCloP (=chlorotripyrrolidinophosphonium hexafluorophosphate), or reagents such as PyCIU (=chloro-N,N,N′,N′-bis(tetramethylene)formamidinium hexafluorophosphate), N-hydroxysuccinimide, EEDQ (=1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline), CDI (=carbonyldiimidazole), or chloroformates such as ethyl chloroformate or isobutyl chloroformate. When the coupling is performed using coupling reagents such as carbodiimides, additives such as HOBt (=1-hydroxybenzotriazole) or N-hydroxysuccinimide may be added during the reaction to limit the racemization.
The protecting groups for amine functions are, for example:
The protecting groups for acid functions are, for example:
methyl; ethyl; benzyl; i-propyl; t-butyl esters
The protecting groups for the guanidine function of the arginine residues are, for example:
By way of illustration, the following scheme describes the case where the peptide chain is constructed according to this principle from the N-terminal end to the C-terminal end.
X is a sequence of 1 or 2 amino acids such that compound (D) is a C-protected peptide comprising 1 or 2 amino acids.
PG1 denotes an amine-function protecting group or R.
PG2, PG3, PG4, PG5 independently denote a carboxylic acid-function protecting group.
PG6, PG7 denote protecting groups for the guanidine function of arginine.
B1 and B2 each independently denote a radical R3 or a precursor of radical R3 as indicated later in the text.
In step 1, the glutamic acid derivative (A), N-substituted with a group PG1, is coupled to the C-protected glutamic acid derivative (B) to give the N- and C-substituted dipeptide (C). In step 2, after deprotection of the C-terminal end of (C), the compound obtained is coupled to the C-protected peptide (or amino acid) (D) to give the N- and C-substituted oligopeptide (E). In step 3, after deprotection of the C-terminal end of (E), the compound obtained is coupled to a C- and N,N′-protected arginine residue (F) to give the oligopeptide (G). In step 4, after deprotection of the C-terminal end of (G), the compound obtained is coupled to a C- and N,N′-protected arginine residue to give the oligopeptide (J).
Step 5 includes a sequential deprotection of the protecting groups, where appropriate. Depending on its nature, the protecting group PG1 of the peptide derivative (J) may be converted into the substituent R1 in step 5 as represented above, but also further upstream in the course of the synthesis. It is thus possible, for example, to have R1═PG1.
Similarly, depending on their nature, the radicals R3 may be introduced from B1 and/or B2, at the end of the reaction scheme, onto the desired terminated peptide sequence or further upstream in the course of the reaction scheme. It is thus possible to have, for example, R3═B1 and/or R3═B2. In the case where R3 is derived from an amino acid, these substituents may be introduced by coupling between the carboxylic acid function of the glutamic acid residues and the amine function of the appropriate C-protected amino acid under the conditions of a peptide coupling. This functionalization of the side chains of the glutamic acid residues may be performed before the assembly of the oligopeptide chain, during this assembly or at the end of the reaction scheme on the desired terminated peptide sequence.
If it comprises several amino acid residues, the precursor (D) may itself be obtained from appropriate, suitably protected amino acids, under peptide coupling conditions.
In certain cases, the oligopeptide sequence may be constructed linearly, by extending the peptide chain sequentially, by coupling the amino acids together one by one.
In certain cases, the peptide sequence may be constructed by reaction of a free acid function of an N-protected amino acid or peptide with the free amine function of a C-protected amino acid or peptide. For example, the hexapeptides may be constructed by coupling the free amine function of a C-protected dipeptide with the free acid function of an N-protected tetrapeptide. This N-protected tetrapeptide may itself be obtained by coupling the free amine function of a C-protected dipeptide with the free acid function of an N-protected dipeptide followed by deprotection of the C-terminal end.
In one preferred embodiment, the amino acids used according to the invention are synthetic peptides.
Preferably, the protecting groups are chosen so as to be removed, respectively, under separate operating conditions.
The amino acids used according to the invention may also be produced by microorganisms, using bioengineering methods. In this case, it may be necessary to extract and purify the peptide from the producing microorganisms, before formulation. Alternatively, the producing microorganism may be applied directly onto the site to be treated on the user.
In certain cases, the compound of formula (I) may be salified with a base or an acid, preferentially an organic or mineral base or acid.
The acceptable salts of the compounds described in the present invention include conventional non-toxic salts of the said compounds, such as those formed from organic or mineral acids. Examples that may be mentioned include the salts of mineral acids, such as sulfuric acid, hydrochloric acid, hydrobromic acid or phosphoric acid. Mention may also be made of the salts of organic acids, which may comprise one or more carboxylic, sulfonic or phosphonic acid groups. They may be linear, branched or cyclic aliphatic acids, or alternatively aromatic acids. These acids may also include one or more heteroatoms chosen from O and N, for example in the form of hydroxyl groups. Mention may be made especially of propionic acid, acetic acid, terephthalic acid, citric acid, tartaric acid and lactic acid.
The salts of organic or mineral bases such as the ammonium salts, the alkanolamine salts such as those of triethanolamine or of aminopropanediol, and the salts of alkali metals such as sodium or potassium, or of calcium.
The preferred salts are those obtained from hydrochloric acid, sulfuric acid, acetic acid, tartaric acid, citric acid and lactic acid.
The compounds of formula (I) in accordance with the invention are preferably used in amounts ranging from 0.001% to 20% of the total weight of the composition, more preferentially in an amount representing from 0.01% to 10% of the total weight of the composition, or, even more preferentially, 0.1% to 5%. The amounts of active agent will be adapted as a function of the galenical form of the composition containing them.
Another subject of the invention consists of a cosmetic composition comprising, in a cosmetically acceptable medium, at least one compound of formula (I) as defined previously.
Galenical Forms
The composition according to the invention may be in any galenical form conventionally used for topical application and especially in the form of aqueous gels, or aqueous or aqueous-alcoholic solutions. By adding a fatty or oily phase, it may also be in the form of dispersions of lotion type, emulsions of liquid or semi-liquid consistency of the milk type, obtained by dispersing a fatty phase in an aqueous phase (O/W) or conversely (W/O), or suspensions or emulsions of soft, semi-solid or solid consistency of the cream or gel type, or alternatively multiple emulsions (W/O/W or O/W/O), microemulsions, vesicular dispersions of ionic and/or nonionic type, or wax/aqueous phase dispersions. These compositions are prepared according to the usual methods.
The invention also relates to compositions conditioned in pressurized form in an aerosol device or in a pump-dispenser bottle; conditioned in a device equipped with a perforated wall, especially a grille; conditioned in a device equipped with a ball applicator (“roll-on”); characterized in that they contain at least perlite particles as defined previously. In this regard, they contain the ingredients generally used in products of this type, which are well known to those skilled in the art.
According to one particular form of the invention, the compositions according to the invention may be anhydrous.
The term “anhydrous composition” means a composition containing less than 2% by weight of water, or even less than 0.5% water, and especially free of water, the water not being added during the preparation of the composition but corresponding to the residual water provided by the mixed ingredients.
The antiperspirant compositions according to the invention may also be in the form of sticks.
According to one particular form of the invention, the compositions for treating perspiration according to the invention may also be in the form of loose or compacted powder.
The compositions according to the invention intended for cosmetic use may comprise at least one aqueous phase. They are especially formulated as aqueous lotions or as water-in-oil or oil-in-water emulsions or as multiple emulsions (oil-in-water-in-oil or water-in-oil-in-water triple emulsion (such emulsions are known and described, for example, by C. Fox in “Cosmetics and Toiletries”—November 1986—Vol. 101—pages 101-112)).
Aqueous Phase
The aqueous phase of the said compositions contains water and generally other water-soluble or water-miscible solvents. The water-soluble or water-miscible solvents comprise monoalcohols with a short chain, for example of C1-C4, such as ethanol or isopropanol; diols or polyols, for instance ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, hexylene glycol, diethylene glycol, dipropylene glycol, 2-ethoxyethanol, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether and sorbitol. Propylene glycol and glycerol, propane-1,3-diol, will be used more particularly.
Emulsifiers
a) Oil-in-Water Emulsifiers
As emulsifiers that may be used in the oil-in-water emulsions or oil-in-water-in-oil triple emulsions, examples that may be mentioned include nonionic emulsifiers such as oxyalkylenated (more particularly polyoxyethylenated) fatty acid esters of glycerol; oxyalkylenated fatty acid esters of sorbitan; oxyalkylenated (oxyethylenated and/or oxypropylenated) fatty acid esters; oxyalkylenated (oxyethylenated and/or oxypropylenated) fatty alcohol ethers; sugar esters such as sucrose stearate; and mixtures thereof, such as the mixture of glyceryl stearate and PEG-40 stearate.
Mention may also be made of fatty alcohol/alkylpolyglycoside emulsifying mixtures as described in patent applications WO 92/06778, WO 95/13863 and WO 98/47610, for instance the commercial products sold by the company SEPPIC so under the name Montanov®.
b) Water-in-Oil Emulsifiers
Among the emulsifiers that may be used in the water-in-oil emulsions or water-in-oil-in-water-in-oil triple emulsions, examples that may be mentioned include alkyl dimethicone copolyols corresponding to formula (I) below
in which:
R1 denotes a linear or branched C12-C20 and preferably C12-C18 alkyl group;
R2 denotes the group: —CnH2n—(—OC2H4—)x—(—OC3H6—)y—O—R3,
R3 denotes a hydrogen atom or a linear or branched alkyl radical comprising from 1 to 12 carbon atoms;
a is an integer ranging from 1 to about 500;
b is an integer ranging from 1 to about 500;
n is an integer ranging from 2 to 12 and preferably from 2 to 5;
x is an integer ranging from 1 to about 50 and preferably from 1 to 30;
y is an integer ranging from 0 to about 49 and preferably from 0 to 29, with the proviso that when y is other than zero, the ratio x/y is greater than 1 and preferably ranges from 2 to 11.
Among the alkyl dimethicone copolyol emulsifiers of formula (I) that are preferred, mention will be made more particularly of cetyl PEG/PPG-10/1 Dimethicone and more particularly the mixture Cetyl PEG/PPG-10/1 Dimethicone and Dimethicone (INCI name), for instance the product sold under the trade name Abil EM90 by the company Goldschmidt, or alternatively the mixture (Polyglyceryl-4-stearate and Cetyl PEG/PPG-10 (and) Dimethicone (and) Hexyl Laurate), for instance the product sold under the trade name Abil WE09 by the same company.
Among the water-in-oil emulsifiers, mention may also be made of the dimethicone copolyols corresponding to formula (II) below
in which
R4 denotes the group: —CmH2m—(—OC2H4—)s—(—OC3H6—)t—O—R5,
R5 denotes a hydrogen atom or a linear or branched alkyl radical comprising from 1 to 12 carbon atoms,
c is an integer ranging from 1 to about 500;
d is an integer ranging from 1 to about 500;
m is an integer ranging from 2 to 12 and preferably from 2 to 5;
s is an integer ranging from 1 to about 50 and preferably from 1 to 30;
t is an integer ranging from 0 to about 50 and preferably from 0 to 30; with the proviso that the sum s+t is greater than or equal to 1.
Among these preferential dimethicone copolyol emulsifiers of formula (II), use will particularly be made of PEG-18/PPG-18 Dimethicone and more particularly the mixture Cyclopentasiloxane (and) PEG-18/PPG-18 Dimethicone (INCI name), such as the product sold by the company Dow Corning under the trade name Silicone DC5225 C or KF-6040 from the company Shin-Etsu.
According to one particularly preferred form, use will be made of a mixture of at least one emulsifier of formula (I) and of at least one emulsifier of formula (II).
Use will be made more particularly of a mixture of PEG-18/PPG-18 Dimethicone and Cetyl PEG/PPG-10/1 Dimethicone and even more particularly a mixture of (Cyclopentasiloxane (and) PEG-18/PPG-18 Dimethicone) and of Cetyl PEG/PPG-10/1 Dimethicone and Dimethicone or of (Polyglyceryl-4-stearate and Cetyl PEG/PPG-10 (and) Dimethicone (and) Hexyl Laurate).
Among the water-in-oil emulsifiers, mention may also be made of nonionic emulsifiers derived from fatty acids and polyol, alkylpolyglycosides (APG) and sugar esters, and mixtures thereof.
As nonionic emulsifiers derived from fatty acids and polyol, use may be made especially of fatty acid esters of polyol, the fatty acid especially containing a C8-C24 alkyl chain, and the polyols being, for example, glycerol and sorbitan.
Fatty acid esters of polyol that may especially be mentioned include isostearic acid esters of polyols, stearic acid esters of polyols, and mixtures thereof, in particular isostearic acid esters of glycerol and/or sorbitan.
Stearic acid esters of polyols that may especially be mentioned include the polyethylene glycol esters, for instance PEG-30 Dipolyhydroxystearate, such as the product sold under the name Arlacel P135 by the company ICI.
Glycerol and/or sorbitan esters that may be mentioned, for example, include polyglyceryl isostearate, such as the product sold under the name Isolan GI 34 by the company Goldschmidt; sorbitan isostearate, such as the product sold under the name Arlacel 987 by the company ICI; sorbitan glyceryl isostearate, such as the product sold under the name Arlacel 986 by the company ICI, the mixture of sorbitan isostearate and polyglyceryl isostearate (3 mol) sold under the name Arlacel 1690 by the company Uniqema, and mixtures thereof.
The emulsifier may also be chosen from alkylpolyglycosides with an HLB of less so than 7, for example those represented by the general formula (1) below:
R—O-(G)x (1)
in which R represents a branched and/or unsaturated alkyl radical comprising from 14 to 24 carbon atoms, G represents a reduced sugar comprising 5 or 6 carbon atoms, and x is a value ranging from 1 to 10 and preferably from 1 to 4, and G especially denotes glucose, fructose or galactose.
The unsaturated alkyl radical may comprise one or more ethylenic unsaturations, and in particular one or two ethylenic unsaturations.
As alkylpolyglycosides of this type, mention may be made of alkylpolyglucosides (G=glucose in formula (I)), and especially the compounds of formula (I) in which R more particularly represents an oleyl radical (unsaturated C18 radical) or isostearyl (saturated C18 radical), G denotes glucose, x is a value ranging from 1 to 2, especially isostearyl glucoside or oleyl glucoside, and mixtures thereof. This alkylpolyglucoside may be used as a mixture with a coemulsifier, more especially with a fatty alcohol and especially a fatty alcohol containing the same fatty chain as that of the alkylpolyglucoside, i.e. comprising from 14 to 24 carbon atoms and containing a branched and/or unsaturated chain, for example isostearyl alcohol when the alkylpolyglucoside is isostearyl glucoside, and oleyl alcohol when the alkylpolyglucoside is oleyl glucoside, optionally in the form of a self-emulsifying composition, as described, for example, in document WO-A-92/06778. Use may be made, for example, of the mixture of isostearyl glucoside and isostearyl alcohol, sold under the name Montanov WO 18 by the company SEPPIC, and also the mixture octyldodecanol and octyldodecyl xyloside sold under the name Fludanov 20X by the company SEPPIC.
Mention may also be made of succinic-terminated polyolefins, for instance esterified succinic-terminated polyisobutylenes and salts thereof, especially the diethanolamine salts, such as the commercial products sold under the names Lubrizol 2724, Lubrizol 2722 and Lubrizol 5603 by the company and Lubrizol or the commercial product Chemcinnate 2000.
The total amount of emulsifiers in the composition will preferably be, in the composition according to the invention, in active material contents ranging from 1% to 8% by weight and more particularly from 2% to 6% by weight relative to the total weight of the composition.
Fatty Phase
The compositions according to the invention may contain at least one water-immiscible organic liquid phase. This phase generally comprises one or more hydrophobic compounds that make the said phase water-immiscible. The said phase is liquid (in the absence of structuring agent) at room temperature (20-25° C.). Preferentially, the water-immiscible organic-liquid organic phase in accordance with the invention generally comprises at least one volatile oil and/or non-volatile oil and optionally at least one structuring agent.
The term “oil” means a fatty substance that is liquid at room temperature (25° C.) and atmospheric pressure (760 mmHg, i.e. 106 Pa). The oil may be volatile or non-volatile.
For the purposes of the invention, the term “volatile oil” means an oil that is capable of evaporating on contact with the skin or the keratin fibre in less than one hour, at room temperature and atmospheric pressure. The volatile oils of the invention are volatile cosmetic oils, which are liquid at room temperature, having a non-zero vapour pressure, at room temperature and atmospheric pressure, ranging in particular from 0.13 Pa to 40 000 Pa (10−3 to 300 mmHg), in particular ranging from 1.3 Pa to 13 000 Pa (0.01 to 100 mmHg) and more particularly ranging from 1.3 Pa to 1300 Pa (0.01 to 10 mmHg).
The term “non-volatile oil” means an oil that remains on the skin or the keratin fibre at room temperature and atmospheric pressure for at least several hours, and that especially has a vapour pressure of less than 10−3 mmHg (0.13 Pa).
The oil may be chosen from any physiologically acceptable oil and in particular cosmetically acceptable oil, especially mineral, animal, plant or synthetic oils; in particular volatile or nonvolatile hydrocarbon-based oils and/or silicone oils and/or fluoro oils, and mixtures thereof.
More precisely, the term “hydrocarbon-based oil” means an oil mainly comprising carbon and hydrogen atoms and optionally one or more functions chosen from hydroxyl, ester, ether and carboxylic functions. Generally, the oil has a viscosity of from 0.5 to 100 000 mPa·s, preferably from 50 to 50 000 mPa·s and more preferably from 100 to 300 000 mPa·s.
As examples of volatile oils that may be used in the invention, mention may be made of:
Mention may also be made of linear volatile alkyltrisiloxane oils of general formula (I):
in which R represents an alkyl group containing from 2 to 4 carbon atoms, of which one or more hydrogen atoms may be substituted with a fluorine or chlorine atom.
Among the oils of general formula (I) that may be mentioned are:
3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane,
3-propyl-1,1,1,3,5,5,5-heptamethyltrisiloxane, and
3-ethyl-1,1,1,3,5,5,5-heptamethyltrisiloxane,
corresponding to the oils of formula (I) for which R is, respectively, a butyl group, a propyl group or an ethyl group.
As examples of nonvolatile oils that may be used in the invention, mention may be made of:
Structuring Agent
The compositions according to the invention comprising a fatty phase may also contain at least one agent for structuring the said fatty phase, which may preferably be chosen from waxes, pasty compounds, and mineral or organic lipophilic gelling agents, and mixtures thereof.
It is understood that the amount of these compounds may be adjusted by a person skilled in the art so as not to harm the desired effect in the context of the present invention.
Wax(es)
The wax is in general a lipophilic compound that is solid at room temperature (25° C.), with a solid/liquid reversible change of state, having a melting point of greater than or equal to 30° C., which may be up to 200° C. and in particular up to 120° C.
In particular, the waxes that are suitable for the invention may have a melting point of greater than or equal to 45° C. and in particular greater than or equal to 55° C.
For the purposes of the invention, the melting point corresponds to the temperature of the most endothermic peak observed on thermal analysis (DSC) as described in standard ISO 11357-3; 1999. The melting point of the wax may be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name MDSC 2920 by the company TA Instruments.
The Measuring Protocol is as Follows:
A sample of 5 mg of wax placed in a crucible is subjected to a first temperature rise ranging from −20° C. to 100° C., at a heating rate of 10° C./minute, it is then cooled from 100° C. to −20° C. at a cooling rate of 10° C./minute and is finally subjected to a second temperature increase ranging from −20° C. to 100° C. at a heating rate of 5° C./minute. During the second temperature increase, the variation of the difference in power absorbed by the empty crucible and by the crucible containing the sample of wax is measured as a function of the temperature. The melting point of the compound is the temperature value corresponding to the top of the peak of the curve representing the variation in the difference in power absorbed as a function of the temperature.
The waxes that may be used in the compositions according to the invention are chosen from waxes that are solid at room temperature of animal, plant, mineral or synthetic origin, and mixtures thereof.
As illustrations of waxes that are suitable for the invention, mention may be made especially of hydrocarbon-based waxes, for instance beeswax, lanolin wax, Chinese insect waxes, rice bran wax, carnauba wax, candelilla wax, ouricurry wax, esparto grass wax, berry wax, shellac wax, Japan wax and sumach wax; montan wax, orange wax and lemon wax, refined sunflower wax sold under the name Sunflower Wax by Koster Keunen, microcrystalline waxes, paraffins and ozokerite; polyethylene waxes, the waxes obtained by Fischer-Tropsch synthesis and waxy copolymers, and also esters thereof.
Mention may also be made of waxes obtained by catalytic hydrogenation of animal or plant oils containing linear or branched C8-C32 fatty chains. Among these waxes that may especially be mentioned are isomerized jojoba oil such as the trans-isomerized partially hydrogenated jojoba oil manufactured or sold by the company Desert Whale under the commercial reference Iso-Jojoba-50®, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil, hydrogenated lanolin oil and bis(1,1,1-trimethylolpropane)tetrastearate sold under the name Hest 2T-4S® by the company Heterene.
Mention may also be made of silicone waxes (C30-45 alkyl dimethicone) and fluoro waxes.
The waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol, sold under the names Phytowax ricin 16L64® and 22L73® by the company Sophim, may also be used. Such waxes are described in patent application FR-A-2 792 190.
A wax that may be used is a C20-C40 alkyl(hydroxystearyloxy)stearate (the alkyl group containing from 20 to 40 carbon atoms), alone or as a mixture.
Such a wax is especially sold under the names Kester Wax K 82 P®, Hydroxypolyester K 82 P® and Kester Wax K 80 P® by the company Koster Keunen.
As microwaxes that may be used in the compositions according to the invention, mention may be made especially of carnauba microwaxes, such as the product sold under the name MicroCare 350® by the company Micro Powders, synthetic microwaxes, such as the product sold under the name MicroEase 114S® by the company Micro Powders, microwaxes consisting of a mixture of carnauba wax and polyethylene wax, such as the products sold under the names Micro Care 300® and 310® by the company Micro Powders, microwaxes consisting of a mixture of carnauba wax and of synthetic wax, such as the product sold under the name Micro Care 325® by the company Micro Powders, polyethylene microwaxes, such as the products sold under the names Micropoly 200®, 220®, 220L® and 250S® by the company Micro Powders, the commercial products Performalene 400, Polyethylene and Performalene 500-L Polyethylene from New Phase Technologies, Performalene 655, Polyethylene or paraffin waxes, for instance the wax having the INCI name Microcrystalline Wax and Synthetic Wax and sold under the trade name Microlease by the company Sochibo; polytetrafluoroethylene microwaxes such as those sold under the names Microslip 519® and 519 L® by the company Micro Powders.
The composition according to the invention may preferably comprise a content of wax(es) ranging from 3% to 20% by weight relative to the total weight of the composition, in particular from 5% to 15% and more particularly from 6% to 15% thereof.
Pasty Compounds
For the purposes of the present invention, the term “pasty compound” is intended to denote a lipophilic fatty compound that undergoes a reversible solid/liquid change of state and that comprises, at a temperature of 23° C., a liquid fraction and a solid fraction.
The pasty compound is preferably chosen from synthetic compounds and compounds of plant origin. A pasty compound may be obtained by the synthesis from starting materials of plant origin.
The pasty compound may be advantageously chosen from:
Among the esters, the following are especially preferred:
Among the pasty compounds of plant origin that will preferably be chosen is a mixture of oxyethylenated (5 OE) oxypropylenated (5 OP) soybean sterols and pentaerythritol, sold under the reference Lanolide by the company Vevy.
Lipophilic Gelling Agents
Mineral Gelling Agents
Mineral lipophilic gelling agents that may be mentioned include optionally modified clays, for instance hectorites modified with a C10-C22 ammonium chloride, for instance hectorite modified with distearyldimethylammonium chloride, for instance the product sold under the name Bentone 38V® by the company Elementis.
Mention may also be made of fumed silica optionally subjected to a hydrophobic surface treatment, the particle size of which is less than 1 μm. Specifically, it is possible to chemically modify the surface of the silica, by chemical reaction generating a reduced number of silanol groups present at the surface of the silica. It is especially possible to substitute silanol groups with hydrophobic groups: a hydrophobic silica is then obtained. The hydrophobic groups may be trimethylsiloxyl groups, which are obtained especially by treating fumed silica in the presence of hexamethyldisilazane. Silicas thus treated are known as “silica silylate” according to the CTFA (8th Edition, 2000). They are sold, for example, under the references Aerosil R812® by the company Degussa, Cab-O-Sil TS-530® by the company Cabot, dimethylsilyloxyl or polydimethylsiloxane groups, which are obtained especially by treating fumed silica in the presence of polydimethylsiloxane or dimethyldichlorosilane. Silicas thus treated are known as “silica dimethyl silylate” according to the CTFA (8th Edition, 2000). They are sold, for example, under the references Aerosil R972® and Aerosil R974® by the company Degussa, and Cab-O-Sil TS-610® and Cab-O-Sil TS-720® by the company Cabot.
The hydrophobic fumed silica preferably has a particle size that may be nanometric to micrometric, for example ranging from about 5 to 200 nm.
Organic Gelling Agents
The polymeric organic lipophilic gelling agents are, for example, partially or totally crosslinked elastomeric organopolysiloxanes of three-dimensional structure, for instance those sold under the names KSG6®, KSG16® and KSG18® from Shin-Etsu, Trefil E-505C® or Trefil E-506C® from Dow Corning, Gransil SR-CYC®, SR DMF10®, SR-DC556®, SR 5CYC gel®, SR DMF 10 gel® and SR DC 556 gel® from Grant Industries and SF 1204® and JK 113® from General Electric; ethylcellulose, for instance the product sold under the name Ethocel® by Dow Chemical; galactomannans comprising from one to six and in particular from two to four hydroxyl groups per saccharide, substituted with a saturated or unsaturated alkyl chain, for instance guar gum alkylated with C1 to C6, and in particular C1 to C3, alkyl chains, and mixtures thereof. Block copolymers of “diblock”, “triblock” or “radial” type, of the polystyrene/polyisoprene or polystyrene/polybutadiene type, such as the products sold under the name Luvitol HSB® by the company BASF, of the polystyrene/copoly(ethylene-propylene) type, such as the products sold under the name Kraton® by the company Shell Chemical Co., or of the polystyrene/copoly(ethylene-butylene) type, and mixtures of triblock and radial (star) copolymers in isododecane, such as those sold by the company Penreco under the name Versagel®, for instance the mixture of butylene/ethylene/styrene triblock copolymer and of ethylene/propylene/styrene star copolymer in isododecane (Versagel M 5960).
Lipophilic gelling agents that may also be mentioned include polymers with a weight-average molecular mass of less than 100 000, comprising a) a polymer backbone with hydrocarbon-based repeating units containing at least one heteroatom, and optionally b) at least one optionally functionalized pendent fatty chain and/or terminal fatty chain, containing from 6 to 120 carbon atoms and being linked to these hydrocarbon-based units, as described in patent applications WO-A-02/056 847 and WO-A-02/47619, the content of which is incorporated by reference; in particular, polyamide resins (especially comprising alkyl groups containing from 12 to 22 carbon atoms) such as those described in U.S. Pat. No. 5,783,657, the content of which is incorporated by reference.
Among the lipophilic gelling agents that may be used in the compositions according to the invention, mention may also be made of fatty acid esters of dextrin, such as dextrin palmitates, especially the products sold under the name Rheopearl TL® or Rheopearl KL® by the company Chiba Flour.
Silicone polyamides of the polyorganosiloxane type may also be used, such as those described in documents U.S. Pat. No. 5,874,069, U.S. Pat. No. 5,919,441, U.S. Pat. No. 6,051,216 and U.S. Pat. No. 5,981,680.
These silicone polymers may belong to the following two families:
Aluminum and/or Zirconium Salts or Complexes
The compositions according to the invention may also contain one or more aluminum and/or zirconium salts or complexes.
The antiperspirant salts or complexes in accordance with the invention are generally chosen from aluminum and/or zirconium salts or complexes. They are preferably chosen from aluminum halohydrates; aluminum zirconium halohydrates, complexes of zirconium hydroxychloride and of aluminum hydroxychloride with or without an amino acid, such as those described in patent U.S. Pat. No. 3,792,068.
Among the aluminum salts, mention may be made in particular of aluminum chlorohydrate in activated or unactivated form, aluminum chlorohydrex, the aluminum chlorohydrex-polyethylene glycol complex, the aluminum chlorohydrex-propylene glycol complex, aluminum dichlorohydrate, the aluminum dichlorohydrex-polyethylene glycol complex, the aluminum dichlorohydrex-propylene glycol complex, aluminum sesquichlorohydrate, the aluminum sesquichlorohydrex-polyethylene glycol complex, the aluminum sesquichlorohydrex-propylene glycol complex, aluminum sulfate buffered with sodium aluminum lactate.
Among the aluminum-zirconium salts, mention may be made in particular of aluminum zirconium octachlorohydrate, aluminum zirconium pentachlorohydrate, aluminum zirconium tetrachlorohydrate and aluminum zirconium trichlorohydrate.
The complexes of zirconium hydroxychloride and of aluminum hydroxychloride with an amino acid are generally known as ZAG (when the amino acid is glycine). Among these products, mention may be made of the complexes aluminum zirconium octachlorohydrex glycine, aluminum zirconium pentachlorohydrex glycine, aluminum zirconium tetrachlorohydrex glycine and aluminum zirconium trichlorohydrex glycine.
The antiperspirant salts or complexes may be present in the composition according to the invention in a proportion from about 0.5% to 25% by weight relative to the total weight of the composition.
Deodorant Active Agents
The compositions according to the invention may also contain one or more deodorant active agents.
The deodorant active agents may be bacteriostatic agents or bactericides that act on underarm odour microorganisms, such as 2,4,4′-trichloro-2′-hydroxydiphenyl ether (®Triclosan), 2,4-dichloro-2′-hydroxydiphenyl ether, 3′,4′,5′-trichlorosalicylanilide, 1-(3′,4′-dichlorophenyl)-3-(4′-chlorophenyl)urea (®Triclocarban) or 3,7,11-trimethyldodeca-2,5,10-trienol (®Farnesol); quaternary ammonium salts such as cetyltrimethylammonium salts, cetylpyridinium salts, DPTA (1,3-diaminopropanetetraacetic acid), 1,2-decanediol (Symclariol from the so company Symrise), glycerol derivatives, for instance caprylic/capric glycerides (Capmul MCM from Abitec), glyceryl caprylate or caprate (Dermosoft GMCY and Dermosoft GMC, respectively from Straetmans), polyglyceryl-2 caprate (Dermosoft DGMC from Straetmans), and biguanide derivatives, for instance polyhexamethylene biguanide salts.—chlorhexidine and salts thereof; 4-phenyl-4,4-dimethyl-2-butanol (Symdeo MPP from Symrise).
Among the deodorant active agents in accordance with the invention, mention may also be made of
In the event of incompatibility or to stabilize them, some of the active agents mentioned above may be incorporated into spherules, especially ionic or nonionic vesicles and/or nanoparticles (nanocapsules and/or nanospheres).
The deodorant active agents may be present in the composition according to the invention in a proportion from about 0.01% to 5% by weight relative to the total weight of the composition.
Suspension Agents
In order to improve the homogeneity of the product, it is also possible to use one or more suspension agents preferably chosen from hydrophobic modified montmorillonite clays such as hydrophobic modified bentonites or hectorites. Examples that may be mentioned include the product Stearalkonium Bentonite (CTFA name) (product of reaction of bentonite and the quaternary ammonium stearalkonium chloride) such as the commercial product sold under the name Tixogel MP 250 by the company Süd Chemie Rheologicals, United Catalysts Inc. or the product Disteardimonium Hectorite (CTFA name) (product of reaction of hectorite and distearyldimonium chloride) sold under the name Bentone 38 or Bentone Gel by the company Elementis Specialities.
The suspension agents are preferably present in amounts ranging from 0.1% to 5% by weight and more preferentially from 0.2% to 2% by weight relative to the total weight of the composition.
Organic Powder
According to one particular form of the invention, the antiperspirant compositions according to the invention will also contain an organic powder.
In the present patent application, the term “organic powder” means any solid that is insoluble in the medium at room temperature (25° C.).
As organic powders that may be used in the composition of the invention, examples that may be mentioned include polyamide particles and especially those sold under the name Orgasol by the company Atochem; polyethylene powders; microspheres based on acrylic copolymers, such as those made of ethylene glycol dimethacrylate/lauryl methacrylate copolymer, sold by the company Dow Corning under the name Polytrap; polymethyl methacrylate microspheres, sold under the name Microsphere M-100 by the company Matsumoto or under the name Covabead LH85 by the company Wackherr; hollow polymethyl methacrylate microspheres (particle size: 6.5-10.5 μm) sold under the name Ganzpearl GMP 0800 by Ganz Chemical; methyl methacrylate/ethylene glycol dimethacrylate copolymer microbeads (size: 6.5-10.5 μm) sold under the name Ganzpearl GMP 0820 by Ganz Chemical or Microsponge 5640 by the company Amcol Health & Beauty Solutions; ethylene-acrylate copolymer powders, such as those sold under the name Flobeads by the company Sumitomo Seika Chemicals; expanded powders such as hollow microspheres and especially microspheres formed from a terpolymer of vinylidene chloride, acrylonitrile and methacrylate and sold under the name Expancel by the company Kemanord Plast under the references 551 DE 12 (particle size of about 12 μm and mass per unit volume of 40 kg/m3), 551 DE 20 (particle size of about 30 μm and mass per unit volume of 65 kg/m3), 551 DE 50 (particle size of about 40 μm), or the microspheres sold under the name Micropearl F 80 ED by the company Matsumoto; powders of natural organic materials such as starch powders, especially of crosslinked or non-crosslinked corn, wheat or rice starch, such as the powders of starch crosslinked with octenylsuccinic anhydride, sold under the name Dry-Flo by the company National Starch; silicone resin microbeads such as those sold under the name Tospearl by the company Toshiba Silicone, especially Tospearl 240; amino acid powders such as the lauroyllysine powder sold under the name Amihope LL-11 by the company Ajinomoto; particles of wax microdispersion, which preferably have mean sizes of less than 1 μm and especially ranging from 0.02 μm to 1 μm, and which are formed essentially from a wax or a mixture of waxes, such as the products sold under the name Aquacer by the company Byk Cera, and especially: Aquacer 520 (mixture of synthetic and natural waxes), Aquacer 514 or 513 (polyethylene wax), Aquacer 511 (polymeric wax), or such as the products sold under the name Jonwax 120 by the company Johnson Polymer (mixture of polyethylene wax and paraffin wax) and under the name Ceraflour 961 by the company Byk Cera (micronized modified polyethylene wax); and mixtures thereof.
Additive
The cosmetic compositions according to the invention may also comprise cosmetic adjuvants chosen from softeners, antioxidants, opacifiers, stabilizers, moisturizers, vitamins, bactericides, preserving agents, polymers, fragrances, thickeners, propellants or any other ingredient usually used in cosmetics for this type of application.
Needless to say, a person skilled in the art will take care to select this or these optional additional compounds such that the advantageous properties intrinsically associated with the cosmetic composition in accordance with the invention are not, or are not substantially, adversely affected by the envisaged addition(s).
The thickeners, which are preferably nonionic, may be chosen from modified or unmodified guar gums and celluloses such as hydroxypropyl guar gum, cetylhydroxyethylcellulose, silicas, for instance Bentone Gel MIO sold by the company NL Industries or Veegum Ultra sold by the company Polyplastic.
The thickeners may also be cationic, for instance Polyquaternium-37 sold under the name Salcare SC95 (Polyquaternium-37 (and) Mineral Oil (and) PPG-1 Trideceth-6) or Salcare SC96 (Polyquaternium-37 (and) Propylene Glycol Dicaprylate/Dicaprate (and) PPG-1 Trideceth-6) or other crosslinked cationic polymers, for instance those of the CTFA name Ethyl Acrylate/Dimethylaminoethyl Methacrylate Cationic Copolymer In Emulsion.
The amounts of these various constituents that may be present in the cosmetic composition according to the invention are those conventionally used in compositions for treating perspiration.
Aerosols
The compositions according to the invention may also be pressurized and may be conditioned in an aerosol device formed by:
(A) a container comprising an antiperspirant composition as defined previously,
(B) at least one propellant and a means for dispensing the said aerosol composition.
The propellants generally used in products of this type and that are well known to those skilled in the art are, for instance, dimethyl ether (DME); volatile hydrocarbons such as n-butane, propane, isobutane and mixtures thereof, optionally with at least one chlorohydrocarbon and/or fluorohydrocarbon; among these derivatives, mention may be made of the compounds sold by the company DuPont de Nemours under the names Freon® and Dymel®, and in particular monofluorotrichloromethane, difluorodichloromethane, tetrafluorodichloroethane and 1,1-difluoroethane sold especially under the trade name Dymel 152 A by the company DuPont. Carbon dioxide, nitrous oxide, nitrogen or compressed air may also be used as propellant.
The compositions containing perlite particles as defined previously and the propellant(s) may be in the same compartment or in different compartments in the aerosol container. According to the invention, the concentration of propellant generally ranges from 5% to 95% by weight of pressurized composition, and more preferentially from 50% to 85% by weight relative to the total weight of the pressurized composition.
The dispensing means, which forms a part of the aerosol device, is generally formed by a dispensing valve controlled by a dispensing head, which itself comprises a nozzle via which the aerosol composition is vaporized. The container containing the pressurized composition may be opaque or transparent. It may be made of glass, a polymer or a metal, optionally coated with a protective varnish coat.
The examples that follow serve to illustrate the present invention. The amounts are given as mass percentages relative to the total weight of the composition.
Procedure:
The cyclopentasiloxane is heated to 65° C. The other ingredients are added (one by one), while remaining at 65-70° C. The whole is homogenized (transparent solution) for 15 minutes. The perlite or the superabsorbent polymer is added. The mixture is cooled to about 55° C. (a few degrees above the thickening point of the mixture) and is poured into sticks. The sticks are placed at 4° C. for 30 minutes.
Number | Date | Country | Kind |
---|---|---|---|
1054799 | Jun 2010 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/059532 | 6/8/2011 | WO | 00 | 3/8/2013 |
Number | Date | Country | |
---|---|---|---|
61357375 | Jun 2010 | US |