Aminobenzimidazoles and benzimidazoles as inhibitors of respiratory syncytial virus replication

Abstract
Aminobenzimidazoles and benzimidazoles having inhibitory activity on RSV replication and having the formula the prodrugs, N-oxides, addition salts, quaternary amines, metal complexes and stereochemically isomeric forms thereof, wherein G is a direct bond or C1-10alkanediyl optionally substituted with one or more hydroxy, C1-6alkyloxy, Ar1C1-6alkyloxy, C1-6alkylthio, Ar1C1-6alkylthio, HO(—CH2—CH2—O)n—, C1-6alkyloxy(—CH2—CH2—O)n— or Ar1C1-6alkyloxy(—CH2—CH2—O)n—; R1 is Ar1 or a monocyclic or bicyclic heterocycle; Q is hydrogen, amino or mono- or di(C1-4alkyl)amino; one of R2a and R3a is selected from halo, optionally mono- or polysubstituted C1-6alkyl, optionally mono- or polysubstituted C2-6alkenyl, nitro, hydroxy, Ar2, N(R4aR4b), N(R4aR4b)sulfonyl, N(R4aR4b)carbonyl, C1-6alkyloxy, Ar2oxy, Ar2C1-6alkyloxy, carboxyl, C1-6alkyloxycarbonyl, or —C(═Z)Ar2; and the other one of R2a and R3a is hydrogen; in case R2a is different from hydrogen then R2b is hydrogen, C1-6alkyl or halogen and R3b is hydrogen; in case R3a is different from hydrogen then R3b is hydrogen, C1-6alkyl or halogen and R2b is hydrogen. Compositions containg these compounds as active ingredient and processes for preparing these compounds and compositions.
Description

The present invention concerns aminobenzimidazoles and benzimidazoles having antiviral activity, in particular, having an inhibitory activity on the replication of the respiratory syncytial virus (RSV). It further concerns the preparation thereof and compositions comprising these compounds.


Human RSV or Respiratory Syncytial Vrrus is a large RNA virus, member of the family of Paramyxoviridae, subfamily pneumoviridae together with bovine RSV virus. Human RSV is responsible for a spectrum of respiratory tract diseases in people of all ages throughout the world. It is the major cause of lower respiratory tract illness during infancy and childhood. Over half of all infants encounter RSV in their first year of life, and almost all within their first two years. The infection in young children can cause lung damage that persists for years and may contribute to chronic lung disease in later life (chronic wheezing, asthma). Older children and adults often suffer from a (bad) common cold upon RSV infection. In old age, susceptibility again increases, and RSV has been implicated in a number of outbreaks of pneumonia in the aged resulting in significant mortality.


Infection with a virus from a given subgroup does not protect against a subsequent infection with an RSV isolate from the same subgroup in the following winter season. Re-infection with RSV is thus common, despite the existence of only two subtypes, A and B.


Today only three drugs have been approved for use against RSV infection. A first one is ribavirin, a nucleoside analogue, provides an aerosol treatment for serious RSV infection in hospitalized children. The aerosol route of administration, the toxicity (risk of teratogenicity), the cost and the highly variable efficacy limit its use. The other two drugs, RespiGam® and palivizumab, polyclonal and monoclonal antibody immunostimulants, are intended to be used in a preventive way.


Other attempts to develop a safe and effective RSV vaccine have all met with failure thus far. Inactivated vaccines failed to protect against disease, and in fact in some cases enhanced disease during subsequent infection. Life attenuated vaccines have been tried with limited success. Clearly there is a need for an efficacious non-toxic and easy to administer drug against RSV replication.


Previously, benzimidazoles and imidazopyridines as inhibitors of RSV replication have been described in WO 01/00611, WO 01/00612 and WO 01/00615.


The present invention concerns inhibitors of RSV replication, which can be represented by formula (I)
embedded image

their prodrugs, N-oxides, addition salts, quaternary amines, metal complexes and stereochemically isomeric forms wherein


G is a direct bond or C1-10alkanediyl optionally substituted with one or more substituents independently selected from the group of substituents consisting of hydroxy, C1-6alkyloxy, Ar1C1-6alkyloxy, C1-6alkylthio, Ar1C1-6alkylthio, HO(—CH2—CH2—O)n—, C1-6alkyloxy(—CH2—CH2—O)n— or Ar1C1-6alkyloxy(—CH2—CH2—O)n—;


each n independently is 1, 2, 3 or 4;


R1 is Ar1 or a monocyclic or bicyclic heterocycle being selected from piperidinyl, piperazinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, iranyl, tetrahydro-furanyl, thienyl, pynrolyl, thiazolyl, oxazolyl, imidazolyl, isothiazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, quinolinyl, quinoxalinyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzhiazolyl, pyridopyridyl, naphihiridinyl, 1H-idazo[4,5-b]pyridinyl 3H-imidazo[4,5-b]pyridinyl, imidazo[1,2-a]-pyridinyl, 2,3dihydro-1,4-dioxino[2,3-b]pyridyl or a radical of formula
embedded image

wherein each of said monocyclic or bicyclic heterocycles may optionally be substituted with 1 or where possible more, such as 2, 3, 4 or 5, substituents independently selected from the group of substituents consisting of halo, hydroxy, amino, cyano, carboxyl, C1-6alkyl, C1-6alkyloxy, C1-6alkylthio, C1-6alkyloxyC1-6alkyl, Ar1, Ar1C1-6alkyl, Ar1C1-6alkyloxy, hydroxyC1-6alkyl, mono-or di(C1-6alkyl)amino, mono-or di(C1-6alkyl)aminoC1-6alkyl, polyhaloC1-6alkyl, C1-6alkylcarbonylamino, C1-6alkyl—SO2—NR5c—, Ar1—SO2—NR5c—, C1-6alkyloxycarbonyl, —C(═O)—NR5cR5d, HO(—CH2—CH2—O)n—, halo(—CH2—CH2—O)n—, C1-6alkyloxy(—CH2—CH2—O)n—, Ar1C1-6alkyloxy(—CH2—CH2—O)n— and mono-or di(C1-6alkyl)amino(—CH2—CH2—O)n—;


each m independently is 1 or 2;


each p independently is 1 or 2;


each t independently is 0, 1 or 2;


Q is hydrogen, amino or mono- or di(C1-4aklyl)amino;


one of R2a and R3a is selected from halo, optionally mono- or polysubstituted C1-6alkyl, optionally mono- or polysubstituted C2-6alkenyl, nitro, hydroxy, Ar2, N(R4aR4b), N(R4aR4b)sulfonyl, N(R4aR4b)carbonyl, C1-6alkyloxy, Ar2oxy, Ar2C1-6alkyloxy, carboxyl, C1-6alkyloxycarbonyl, or —C(═Z)Ar2; and the other one of R2a and R3a is hydrogen;


wherein






    • ═Z is ═O, ═CH—C(═O)—NR5aR5b, ═CH2, ═CH—C1-6aklyl, ═N—OH or ═N—O—C1-6alkyl; and

    • the optional substituents on C1-6alkyl and C2-6alkenyl can be the same or can be different relative to one another, and are each independently selected from the group of substituents consisting of hydroxy, cyano, halo, nitro, N(R4aR4b), N(R4aR4b)sulfonyl, Het, Ar2, C1-6alkyloxy, C1-6alkyl—S(═O)t, Ar2oxy, Ar2—S(═O)t, Ar2C1-6alkyloxy, Ar2C1-6alkyl—S(═O)t, Het-oxy, Het—S(═O)t, HetC1-6alkyloxy, HetC1-6alkyl—S(═O)t, carboxyl, C1-6alkyloxycarbonyl and —C(═Z)Ar2;


      in case R2a is different from hydrogen then R2b is hydrogen, C1-6alkyl or halogen and R3b is hydrogen;





in case R3a is different from hydrogen then R3b is hydrogen, C1-6alkyl or halogen and R2b is hydrogen;


R4a and R4b can be the same or can be diffirent relative to one another, and are each independently selected from the group of substituents consisting of hydrogen, C1-6alkyl, Ar2C1-6alkyl, (Ar2)(hydroxy)C1-6aklyl, Het—C1-6alkyl, hydroxyC1-6alkyl, mono- and di-(C1-6alkyloxy)C1-6alkyl, (hydroxyC1-6alkyl)oxyC1-6alkyl, Ar1C1-6alkyloxy-C1-6alkyl, dihydroxyC1-6alkyl, (C1-6alkyloxy)(hydroxy)C1-6alkyl, (Ar1C1-6alkyloxy)(hydroxy)C1-6alkyl, Ar1oxy-C1-6alkyl, (Ar1oxy)(hydroxy)- C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)amino-C1-6alkyl, carboxyl-C1-6aklyl, C1-6alkyloxycarbonylC1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl, C1-6alkylcarbonylC1-6alkyl, (C1-4alkyl-oxy)2—P(═O)—C1-6alkyl, (C1-4_alkyloxy)2P(═O)—O—C1-6alkyl, aminosulfonyl—C1-6aklyl, mono- and di(C1-6alkyl)aminosulfonyl— C1-6alkyl, C1-6alkylcarbonyl, Ar2carbonyl, Het-carbonyl, Ar2C1-6aklylcarbonyl, Het-C1-6alkylcarbonyl, C1-6alkylsulfonyl, aminosulfonyl, mono- and di(C1-6alkyl)aminosulfonyl, Ar2sulfonyl, Ar2C1-6alkylsulfonyl, Ar2, Het, Het-sulfonyl, HetC1-6alkylsulfonyl;


R5a and R5b can be the same or can be different relative to one another, and are each independently hydrogen or C1-6alkyl; or


R5a and R5b taken together may form a bivalent radical of formula —(CH2)s— wherein s is 4 or 5;


R5c and R5d can be the same or can be different relative to one another, and are each independently hydrogen or C1-6alkyl; or


R5c and R5d taken together may form a bivalent radical of formula —(CH2)s— wherein s is 4 or 5;


R6a is hydrogen, C1-6alkyl, Ar1, Ar1C1-6alkyl, C1-6alkylcarbonyl, Ar1carbonyl, Ar1C1-6alkylcarbonyl, C1-6alkylsulfonyl, Ar1sulfonyl, Ar1C1-6alkylsulfonyl, C1-6alkyloxyC1-6alkyl, aminoC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, hydroxyC1-6alkyl, (carboxyl)—C1-6alkyl, (C1-6alkyloxycarbonyl—C1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl, aminosulfonyl—C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonyl—C1-6alkyl, Het, Het—C1-6alkyl, Het-carbonyl, Het-sulfonyl, Het-C1-6alkylcarbonyl;


R6c is hydrogen, C1-6alkyl, Ar1 or Ar1C1-6alkyl;


R6c is C1-6alkyl, Ar1 or Ar1C1-6alkyl;


Ar1 is phenyl or phenyl substiued with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C1-6alkyl, hydroxyC1-6alkyl, polyhaloC1-6alkyl, and C1-6alkyloxy;


Ar2 is phenyl, phenyl annelated with C5-7cycloalkyl, or phenyl substitted with 1 or more, such as 2, 3, 4 or 5, substituents selected from halo, cyano, C1-6alkyl, Het-C1-6alkyl, Ar1—C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, R6b—O—C3-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C3-6aklynyl, Ar1, Het, r6b—O—, R6b—S—, R6c—SO2—, R6b—O—C1-6alkyl—SO2—, —N(R6aR6b), polyhalo-C1-6alkyl, polyhaloC1-6alkyloxy, polyhaloC1-6alkylthio, R6c—C(═O)—, R6b—O—C(═O)—, N(R6aR6b)—C(═O)—, R6b—O—C1-10alkyl, R6c—S—C1-6alkyl, R6c—S(═O)2—C1-6alkyl, N(R6aR6b)—C1-6alkyl, R6c—C(═O)—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, N(R6aR6b)—C(═O)—C1-6alkyl, R6c—C(═O)—NR6b—, R6c—C(═O)—O—, R6c—C(═O)—NR6b—C1-6alkyl, R6c—C(═O)—O—C1-6alkyl, N(R6aR6b)—S(═O)2—, H2N—C(═NH)—;


Het is a heterocycle being selected from tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyt, pyrrolidinonyl, furanyl, thienyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, isotluazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, tetrahydroquinolinyl, quinolinyl, isoquinolinyl, benzodioxanyl, benzodioxolyl, indolinyl, indolyl, each of said heterocycle may optionally be substituted with oxo, amino, Ar1, C1-4alkyl, aminoC1-4alkyl, Ar1C1-4alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, mono- or di(C1-6alkyl)amino, (hydroxyC1-6alkyl)amino, and optionally further with one or two C1-4alkyl radicals.


The invention further relates to the use of a compound of formula (I), or a prodrug, N-oxide, addition salt, quaternary amine, metal complex and stereochemically isomeric form thereof, for the manufacture of a medicament for inhibting RSV replication. Or the invention relates to a method of inhibiting RSV replication in a warm-blooded animal said method comprising the administation of an effective amount of a compound of formula (I), or a prodrug, N-oxide, addition salt, quaternary amine, metal complex and stereochemically isomeric form thereof.


In a further aspect, this invention relates to novel compounds of formula (I) as well as methods for preparing these compounds.


The term ‘prodrug’ as used throughout this text means the pharmacologically acceptable derivatives, e.g. esters and amides, such that the resulting biotransformation product of the derivative is the active drug as defined in the compounds of formula (I). The reference by Goodman and Gilman (The Pharmacological Basis of Therapeutics, 8th ed., McGraw-Hill, Int. Ed 1992, “Biotansformation of Drugs”, p. 13-15) describing prodrugs generally, is hereby incorporated. Prodrugs are charaterized by a good aqueous solubility and bioavailability, and are readily metabolized into the active inhibitors in vivo.


The terms ‘polysubstituted C1-6alkyl’ and ‘polysubstituted C2-6alkenyl’ such as used in the definition of R2a and R3a meant to comprise C1-6alkyl radicals having two or more substituents, for example two, three, four, five or six substituents, in particular two or three substituents, further in particular two substituents. The upper limit of the number of substituents is determied by the number of hydrogen atoms that can be replaced as well as by the general properties of the substituents such as their bulkiness, these properties allowing the skilled person to determine said upper limit.


The term ‘C1-10alkanediyl optionally substituted with one or more substituents’ as used in the definition of G is meant to comprise C1-10alkanediyl radicals having no, one, two or more substituents, for example no, one, two, three, four, five or six substituents, in particular no, one, two or three substituents, further in particular no, one or two substituents. Also here, the upper limit of the number of substituents is determined by the factors mentioned above.


As used in the foregoing and hereinafter, ‘polyhaloC1-6alkyl’ as a group or part of a group, e.g. in polyhaloC1-6alkyloxy, is defined as mono- or polyhalo substituted C1-6alkyl, in particular C1-6alkyl substituted with up to one, two, three, four, five, six, or more halo atoms, such as methyl or ethyl with one or more fluoro atoms, for example, difluoromethyl, trifluoromethyl, trifluoroethyl. Also included are perfluoro C1-6alkyl groups, which are C1-6alkyl groups whereion all hydrogen atoms are replaced by fluoro atoms, e.g. pentafluoroethyl. In case more than one halogen atom is attached to an alkyl group within the definition of polyhaloC1-4alkyl, the halogen atoms may be the same or different.


Each of the monocyclic or bicyclic heterocycles in the definition of R1 may optionally be substituted with 1 or where possible more substituents, such as 2, 3, 4 or 5, substituents. In particular, said heterocycles may optionally be substituted with up to 4, up to 3, up to 2 substituents, or up to 1 substituent.


Each Ar1 or Ar2 may be unsubstituted phenyl or phenyl substituted with 1 or more substituents, such as 5 or 4 substituents or, which is preferred, up to 3 substituents, or up to two substituents, or with one substituent.


A radical ‘R6b—O—C3-6alkenyl’ or ‘R6b—O—C3-6alkynyl’ such as mentioned among the substituents of Ar2 in particular has the R6b—O— group on a saturated carbon atom.


A hydroxyC1-6alkyl group when substituted on an oxygen atom or a nitrogen atom preferably is a hydroxyC2-6alkyl group wherein the hydroxy group and the oxygen or nitrogen is separated by at least two carbon atoms.


A dihydroxyC1-6alkyl group as mentioned for example in the definition of R4a and R4b, is a C1-6alkyl group having two hydroxy substituents which in particular are substituted on different carbon atoms. The terms (C1-6alkyloxy)(hydroxy)C1-6alkyl, di(C1-6alkyloxy)C1-6alkyl, (Ar1C1-6alkyloxy)(hydroxy)C1-6alkyl refer to a C1-6alkyl radical substitute with as well a C1-6alkyloxy and a hydroxy group, with two C1-6alkyloxy groups, and with a Ar1C1-6alkyloxy and a hydroxy group, respectively. Preferably in these radicals the substituents on the C1-6alkyl group are on a carbon atom other than the carbon linked to the nitrogen atom to which R4a and/or R4b are linked.


As used herein C1-3alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 3 carbon atoms such as methyl, ethyl, propyl, 1-methylethyl and the like; C1-4alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as the group defined for C1-3aklyl and butyl and the like; C2-4alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 2 to 4 carbon atoms such as ethyl propyl, 1-methylethyl butyl and the like; C1-6alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as the groups defined for C1-4alkyl and pentyl, hexyl, 2-methylbutyl and the like; C1-9alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 9 carbon atoms such as the groups defined for C1-6alkyl and heptyl octyl, nonyl 2-methylhexyl, 2-methylheptyl and the like; C1-6alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 10 carbon atoms such as the groups defined for C1-9alkyl and decyl, 2-methylnonyl and the like.


The term ‘C3-6alkenyl’ used herein as a group or part of a group is meant to comprise straight or branched chain unsaturated hydrocarbon radicals having at least one double bond, and preferably having one double bond, and from 3 to 6 carbon atoms such as propenyl buten-1-yl, buten-2-yl, penten-1-yl, penten-2-yl, hexen-1-yl, hexen-2-yl, hexen-3-yl, 2-methylbuten-1-yl, and the like. The term ‘C2-6alkenyl’ used herein as a group or part of a group is meant to comprise C3-6alkenyl groups and ethylene. The term ‘C3-6alkynyl’ defines straight or branched chain unsaturated hydrocarbon radicals having one triple bond and from 3 to 6 carbon atoms such as propenyl, butyn-1-yl, butyn-2-yl, pentyn-1-yl, pentyn-2-yl, hexyn-1-yl hexyn-2-yl, hexyn-3-yl, 2-methylbutyn-1-yl, and the like. The term ‘C2-6alkynyl’ used herein as a group or part of a group is meant to comprise C3-6alkylnyl groups and ethynyl.


Whenever a C2-6alkenyl group is linked to a heteroatom it preferably is linked via a saturated carbon atom. Whenever a C3-6alkenyl group is substituted with hydroxy, the hydroxy is on a saturated carbon atom.


C3-7cycloalkyl is generic to cyclopropyl cyclobutyl cyclopentyl, cyclohexyl or cycloheptyL C5-7cycloalkyl is generic to cyclopentyl, cyclohexyl or cycloheptyl.


C2-5alkanediyl defines bivalent straight and branched chain saturated hydrocarbon radicals having from 2 to 5 carbon atoms such as, for example, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl 1,2-propanediyl, 2,3-butanediyl, 1,5-pentanediyl and the like, C1-6alkanediyl defines bivalent straight and branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, for example, methylene, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl and the like; C1-6alkanediyl is meant to include C1-4alkanediyl and the higher homologues thereof having from 5 to 6 carbon atoms such as, for example, 1,5-pentanediyl, 1,6-hexanediyl and the like; C1-10alkanediyl is meant to include C1-6alkanediyl and the higher homologues thereof having from 7 to 10 carbon atoms such as, for example, 1,7-heptanediyl, 1,8-octanediyl, 1,9-nonanediyl, 1,10-decanediyl and the like.


As used herein before, the term (═O) forms a carbonyl moiety when attached to a carbon atom, a sulfoxide moiety when attached to a sulfur atom and a sulfonyl moiety when two of said terms are attached to a sulfur atom. The term (═N—OH) forms a hydroxyimine moiety when attached to a carbon atom.


The term halo is generic to fluoro, chloro, bromo and iodo.


It should be noted that the radical positions on any molecular moiety used in the definitions may be anywhere on such moiety as long as it is chemically stable.


Radicals used in the definitions of the variables include all possible isomers unless otherwise indicated. For instance pyridyl includes 2-pyridyl, 3-pyridyl and 4-pyridyl; pentyl includes 1-pentyl, 2-pentyl and 3-pentyl.


The term polysubstituted is defined as substituted with more than one substituent.


When any variable occurs more than one time in any constituent, each definition is independent.


Whenever used hereinafter, the term “compounds of formula (I)”, or “the present compounds” or sinilar term is meant to include the compounds of general formula (I), their prodrugs, N-oxides, addition salts, quatemary amines, metal complexes and stereochemicaUy isomeric forms. An interesting subggroup of the compounds of formula (I) or any subgroup thereof are the N-oxides, salts and all the stereoisomeric forms of the compounds of formula (I).


It will be appreciated that some of the compounds of formula (I) may contain one or more centers of chirality and exist as stereochemically isomeric forms.


The term “stereochemically isomeric forms” as used hereinbefore defies all the possible compounds made up of the same atoms bonded by the same sequence of bonds but having different three-dimensional structures which are not interchangeable, which the compounds of formula (I) may possess.


Unless otherwise mentioned or indicated, the chemical designation of a compound encompasses the mixture of all possible stereochemically isomeric forms which said compound may possess. Said mixture may contain all diastereomers and/or enantiomers of the basic molecular structure of said compound. All stereochemically isomeric forms of the compounds of the present invention both in pure form or in admixtue with each other are intended to be embraced within tbe scope of the present invention.


Pure stereoisomeric forms of the compounds and intermediates as mentioned herein are defined as isomers substantially free of other enantiomeric or diastereomeric forms of the same basic molecular structure of said compounds or intermediates. In particular, the term ‘stereoisomerically pure’ concerns compounds or intermediates having a stereoisomeric excess of at least 80% (i. e. minimum 90% of one isomer and maximum 10% of the other possible isomers) up to a stereoisomeric excess of 100% (i.e. 100% of one isomer and none of the other), more in particular, compounds or intermediates having a stereoisomeric excess of 90% up to 100%, even more in particular having a stereoisomeric excess of 94% up to 100% and most in particular having a stereoisomeric excess of 97% up to 100%. The terms ‘enantiomerically pure’ and ‘diastereomerically pure’ should be understood in a similar way, but then having regard to the enantiomeric excess, respectively the diastereomeric excess of the mixure in question.


Pure stereoisomeric forms of the compounds and intermediates of this invention may be obtained by the application of art-known procedures. For instance, enantiomers may be separated from each other by the selective crystallization of their diastereomeric salts with optically active acids or bases. Examples thereof are tartaric acid, dibenzoyltartric acid, ditoluoyltartaric acid and camphosllfonic acid. Alternatively, enantiomers may be separated by chromatographic techniques using chiral stationary phases. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably, if a specific stereoisomer is desired, said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomerically pure starang materials.


The diastereomeric racemates of formula (I) can be obtained separately by conventional methods. Appropriate physical separation methods that may advantageously be employed are, for example, selective crystallization and chromatography, e.g. column chromatography.


For some of the compounds of formula (I), their prodrugs, N-oxides, salts, solvates, quaternary amines, or metal complexes and the intermediates used in the preparation thereof, the absolute stereochemical configuration was not experimentally determined. A person skilled in the art is able to determine the absolute configuration of such compounds using art-known methods such as, for example, X-ray diffraction.


The present invention is also intended to include all isotopes of atoms occurring on the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium. Isotopes of carbon include C-13 and C-14.


For therapeutic use, salts of the compounds of formula (I) are those wherein the counterion is pharmaceutically acceptable. However, salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound. All salts, whether pharmaceutically acceptable or not are included within the ambit of the present invention


The pharmaceutically acceptable acid and base addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and base addition salt forms which the compounds of formula (I) are able to form The pharmaceutically acceptable acid addition salts can conveniently be obtained by treating the base form with such appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid, sulfuric, nitric, phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic (ie. ethanedioic), malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic (i.e. hydroxybutanedioic acid), tartaric, citric, methanesulfonic, ethtnesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.


Conversely said salt forms can be converted by treatent with an appropriate base into the free base form.


The compounds of formula (I) containing an acidic proton may also be converted into their non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkine metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, N-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.


The term addition salt as used hereinabove also comprises the solvates, which the compounds of formula (I) as well as the salts thereof, are able to form. Such solvates are for example hydrates, alcoholates and the like.


The term “quaternary amine” as used hereinbefore defines the quaternary ammonium salts which the compounds of formula (I) are able to form by reaction between a basic nitrogen of a compound of formula (I) and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methyliodide or benzyliodide. Other reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates. A quaternary amine has a positively charged nitrogen. Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be introduced using ion exchange resins.


The N-oxide forms of the present compounds are meant to comprise the compounds of formula (I) wherein one or several nitrogen atoms are oxidized to the so-called N-oxide.


It will be appreciated that the compounds of formula (I) may have metal binding, chelating, complexating properties and therefore may exist as metal complexes or metal chelates. Such metalated derivatives of the compounds of formula (I) are intended to be included within the scope of the present invention.


Some of the compounds of formula (I) may also exist in their tautomeric form. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.


One embodiment of the present invention concerns compounds of formula (I-a):
embedded image

wherein Q, G, R1, R2a, R2b are as specified in the definitions of the compounds of formula (I) or any of the subgroups of compounds of formula (I) specified herein.


Another embodiment of the present invention concerns compounds of formula (I-b):
embedded image

wherein Q, G, R1, R3a, R3b are as specified in the definitions of the compounds of formula (I) or any of the subgroups of compounds of formula (I) specified herein.


One particular embodiment of the present invention concerns compounds of formula (I-a-1):
embedded image

wherein Q, G, R1, R4a and R2b are as specified in the definitions of the compounds of formula (I) or any of the subgroups of compounds of formula (I) specified herein; and Alk is C1-6alkanediyl;


R9, R10, R11 independently from one another have the same meanings as the substituents on Ar2as specified in the definitions of the compounds of formula (I) or of any of the subgroups thereof, and R10and/or R11 may also be hydrogen.


Another particular embodiment of the present invention concerns compounds of formula (I-b-1):
embedded image

wherein Q, G, R1, R4a and R3b are as specified in the definitions of the compounds of formula (I) or any of the subgroups of compounds of formula (I) specified herein; and Alk is C1-6alkanediyl;


R9, R10, R11 independently from one another have the same meanings as the substituents on Ar2 as specified in the definitions of the compounds of formula (I) or of any of the subgroups thereof and R10and/or R11 may also be hydrogen.


Interesting subgroups are those comprising compounds of formulae:
embedded image

wherein in (I-c-1) and (I-c-2) the radicals G, R1, R2b, R3b are as specified in the definitions of the compounds of formula (I) or any of the subgroups of compounds of formula (I) specified herein; the radicals Alk, R9, R10, R11 are as specified above or in any of the subgroups of compounds of formula (I) specified herein; and the radicals R6a and R6b are as specified in the definitions of the compounds of formula (I) or any of the subgroups of compounds of formula (I) specified herein.


Preferred subgroups are those wherein Alk is ethylene or methylene, more preferably wherein Alk is methylene.


In (I-a-1) or (I-b-1) R4a preferably is hydrogen, hydoxyC1-6alkyl, aminocarbonylC1-6alkyl.


In (I-a-1), (I-b-1), (I-c-1) or (I-c-2) the radicals R9, R10; R11 preferably and independently from one another are C1-6alkyl or R6b—O—C1-6alkyl; and R10and/or R11 may also be hydrogen; or


R9, R10 more preferably and independently from one another are C1-6alkyl or R6b—O—CC1-6alkyl; and R11 is hydrogen; or


R9, R10 still more preferably are C1-6alkyl and R11 is hydrogen; or


R9 is C1-6alkyl, R10 is R6b—O—C1-6alkyl and R11 is hydrogen.


It is to be understood that the above defined subgroups of compounds of formulae (I-a), (I-b), etc. as well as any other subgroup defined herein are meant to also comprise any prodrugs, N-oxides, addition salts, qulaternary amines, metal complexes and stereochemically isomeric forms of such compounds.


Interesting compounds are those compounds of formula (I) or any subgroup thereof wherein G is C1-10alkanediyl; more in particular, wherein G is methylene.


One embodiment comprises compounds of formula (I), as defined above or as in any of the subgroups specified herein wherein Q is hydrogen. Another embodiment is comprises compounds of formula (I), as defined above or as in any of the subgroups specified herein wherein Q is amino; or wherein Q is other than hydrogen, i.e. wherein Q is amino, mono- or di-(C1-6alkyl)amino.


Particular subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein G is C1-10alkanediyl, more in particular wherein G is methylene.


Other particular subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein


(a) R1 is other than Ar1; or wherein


(b) R1 is Ar1 or a monocyclic heterocycle, which is as specified in the definitions of the compounds of formula (I) or any of the subgroups thereof.


Further particular subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein


(c) R1 is pyridyl optionally subtlted with 1 or 2 substituents independently selected from the group consisting of halo, hydroxy, amino, cyano, carboxyl, C1-6alkyl, C1-6alkyloxy, C1-6alkylthio, C1-6alkyloxyC1-6alkyl, Ar1, Ar1CC1-6alkyl, Ar1CC1-6alkyloxy, hydroxyC1-6alkyl mono-or di(C1-6alkyl)amino, mono-or di(C1-6alkyl)aminoC1-6alkyl, polyhaloC1-6alkyl, C1-6alkylcarbonylanino, C1-6alkyl-SO2—NR4a—, Ar1—SO2—NR4a, C1-6alkyloxycarbonyl, —C—(═O)—NR4aR4b, HO(—CH2—CH2—O)n—, halo(—CH2—CH2—O)n—, C1-6alkyloxy(—CH2—CH2—O)n—, Ar1C1-6alkyloxy(—CH2—CH2—O)n— and mono-or di(C1-6alkyl)amino(—CH2—CH2—O)n—; or more in particular


(d) R1 is pyridyl substituted with 1 or 2 substituents independently selected from the group consisting of hydroxy, C1-6alkyl, halo, C1-6alkyloxy, Ar1C1-6alkyloxy and (C1-6alkyloxy)C1-6alkyloxy; preferably wherein


(e) R1 is pyridyl substituted with 1 or 2 substituents independently selected from the group consisting of hydroxy, C1-6alkyl, halo and C1-6alkyloxy; or wherein


(f) R1 is pyridyl substituted with 1 or 2 substituents independently selected from the group consisting of hydroxy and C1-6alkyl; more preferably wherein


(g) R1 is pyridyl substituted with hydroxy and C1-6alkyl; or more preferably wherein


(h) R1 is pyridyl substituted with hydroxy and methyl; or wherein


(i) R1 is 3-hydroxy-6-methylpyrid-2-yl.


Further embodiments comprise those compounds of formula (I) or any of the subgroups of compounds of formula (I) wherein


(j) R1 is Ar1, quinolinyl, benzimidazolyl, a radical of formula
embedded image

pyrazinyl, or pyridyl; or wherein


(k) R1 is Ar1, quinolinyl, benzimidazolyl or a radical of formula (c-4) wherein m is 2, pyrazinyl, or pyridyl;


wherein each of the radicals in (j) and (k) may optionally be substituted with the substituents specified in the definition of the compounds of formula (I) and in particular pyridyl may be substituted as specified above in (a) to (i).


Further embodiments comprise those compounds of formula (I) or any of the subgroups of compounds of formula (I) wherein


(l) R1 is Ar1, quinolinyl, benzimidazolyl or a radical of formula (c-4) wherein m is 2, pyrazinyl or pyridyl, wherein each of these radicals may optionally be substitated with one, two or three radicals selected from the group consisting of halo, hydroxy, C1-6alkyl, C1-6alkyloxy, Ar1C1-6alkyloxy, (C1-6alkyloxy)C1-6alkyloxy; or more specifically wherein


(m) R1 is Ar1, quinolinyl, benzimidazolyl or a radical of formula (c-4) wherein m is 2, pyrazinyl, or pyridyl, wherein each of these radicals may optionally be substituted with one, two or three radicals selected from the group consisting of halo, hydroxy, C1-6alkyl, C1-6alkyloxy, benzyloxy; or more specifically wherein


(n) R1 is phenyl optionally substituted with one, two or three radicals selected from the group consisting of halo, hydroxy, C1-6alkyl, C1-6alkyloxy; quinolinyl; a radical (c-4) wherein m is 2, optionally substituted with up to two radicals selected from C1-6alkyl; benzimidazolyl optionally substituted with C1-6alkyl; pyridyl optionally substituted with one or two radicals selected from hydroxy, halo, C1-6alkyl, benzyloxy and C1-6alkyloxy, pyrainyl optionally substituted with up to three radicals selected from C1-6alkyl; or pyridyl substituted or optionally substituted as specified above in (a)-(i); or wherein


(o) R1 is phenyl optionally substituted with one or two radicals selected from the group consisting of halo, hydroxy, C1-6alkyl, C1-6alkyloxy;


(p) R1 is quinoliyl;


(q) R1 is a radical (c-4) wherein m is 2, optionally substituted with up to two radicals selected from C1-6alkyl;


(r) R1 is benzimidazolyl optionally substituted with C1-6alkyl; pyridyl optionally substituted with one or two radicals selected from hydroxy, halo, C1-6alkyl, benzyloxy and C1-6alkyloxy,


(s) R1 is pyrazinyl optionally substituted with up to three radicals selected from C1-6alkyl.


Preferred subgroups of compounds of formula (I) or any of the subgroups of compounds of formula (I) are those wherein G is a direct bond or methylene and R1 is as specified above in (a)-(s). Further preferred are the compounds of formula (I) or any of the subgroups specified herein wherein G is a direct bond and R1 is a radical (c-4), in particular wherein m is 2, optionally substituted with up to two radicals selected from C1-6alkyl. Further preferred are the compounds of formula (I) or any of the subgroups specified herein wherein or G is methylene and R1 is as specified above in (a)-(s), but is other than a radical (c-4).


Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein


(a) R4a and R4b are each independently selected from hydrogen, C1-6alkyl, Ar2C1-6alkyl, (Ar2)(hydroxy)C1-6alkyl, Het-C1-6alkyl, hydroxyC1-6alkyl, mono- and di-(C1-6alkyloxy)C1-6alkyl, (hydroxyC1-6alkyl)oxyC1-6alkyl, Ar1C1-6alkyloxy-C1-6alkyl, dihydroxyC1-6alkyl, (C1-6alkyloxy)(hydroxy)C1-6alkyl, (Ar1C1-6alkyloxy) (hydroxy)C1-6alkyl, Ar1oxyC1-6alkyl, (Ar1oxy)(hydroxy)-C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)amino-C1-6alkyl, carboxylC1-6alkyl, C1-6alkyloxyocarbonyl-C1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonyl-C1-6alkyl, C1-6alkylcarbonylC1-6alkyl, (C1-4alkyloxy)2P(═O)-C1-6alkyl, (C1-6alkyl-oxy)2P(═O)—O—C1-6alkyl, amiosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)-aminosulfonyl-C1-6alkyl, C1-6alkylcarbonyl, Ar2carbonyl, Het-carbonyl, Ar2C1-6alkylcarbonyl, Het-C1-6alkylcarbonyl, Ar2 and Het; or wherein


(b) R4a and R4b are each independently selected from hydrogen C1-6alkyl, Ar2C1-6alkyl, (Ar2)(hydroxy)C1-6alkyl, Het-C1-6alkyl, hydroxyC1-6alkyl, mono- and di-(C1-6alkyloxy)C1-6alkyl, (hydroxyC1-6alkyl)oxyC1-6alkyl, Ar1C1-6alkyloxy-C1-6alkyl, dihydroxyC1-6alkyl, (C1-6alkyloxy)(hydroxy)C1-6alkyl, (Ar1C1-6alkyloxy)(hydroxy)C1-6alkyl, Ar1oxy-C1-6alkyl, (Ar1oxy)(hydroxy)-C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)amino-C1-6alkyl, carboxyl-C1-6alkyl, C1-6alkyloxycarbonylC1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl, C1-6alkylcarbonylC1-6alkyl, (C1-4alkyloxy)2—P(═O)-C1-6alkyl, (C1-4alkyloxy)2P(═O)—O—C1-6alkyl, aminosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonyl-C1-6alkyl, Ar2 and Het; or wherein


(c) R4a and R4b are each independently selected from hydrogen, C1-6alkyl, Ar2C1-6alkyl, (Ar2)(hydroxy)C1-6alkyl, Het-C1-6alkyl, hydroxyC1-6alkyl, (C1-6alkyloxy)C1-6alkyl, (hydroxyC1-6alkyl)oxyC1-6alkyl, Ar1C1-6alkyloxy-C1-6alkyl, Ar1oxy-C1-6alkyl, (Ar1oxy)(hydroxy)-C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)amino-C1-6alkyl, carboxyC1-6alkyl, C1-6alkyloxycarbonylC1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl, (C1-4alkyloxy)2P(═O)-C1-6alkyl, (C1-6alkyloxy)2P(═O)—O—C1-6alkyl, aminosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonyl-C1-6alkyl and Ar1; or wherein


(d) R4a and R4b are each independently selected from hydrogen, C1-6alkyl, (Ar2)(hydroxy)C1-6alkyl, Het-C1-6alkyl, hydroxyC1-6alkyl, (C1-6alkyloxy)C1-6alkyl, (hydroxyC1-6alkyl)oxyC1-6alkyl, Ar1C1-6alkyloxy-C1-6alkyl, Ar1oxyC1-6alkyl, (Ar1oxy)(hydroxy)-C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)aminoC1-6alkyl, carboxylC1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)-aminocarbonylC1-6alkyl, (C1-4alkyloxy)2P(═O)—C1-6alkyl, (C1-6alkyloxy)2-P(═O)—O—C1-6alkyl, aminosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonyl-C1-6alkyl and Ar1.


Interesting subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein wherein


(e) R4a and R4b are each independently selected from hydrogen, morpholinyl-C1-6alkyl, hydroxyC1-6alkyl, (C1-6alkyloxy)C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)amino-C1-6alkyl, carboxylC1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocaonylC1-6alkyl, aminosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonylC1-6alkyl and Ar1; or wherein


(f) R4a and R4b are each independently selected from hydrogen, hydroxyC1-6alkyl, (C1-6alkyloxy)C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)amino-C1-6alkyl, carboxylC1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)amino-carbonyl-C1-6alkyl; or wherein


(g) R4a and R4b are each independently selected from hydrogen, hydroxyC1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl; or wherein


(h) R4a and R4b are each independently selected from hydrogen, hydroxyC1-6alkyl and aminocarbonylC1-6alkyl.


Other interesting subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein R4a is hydrogen and R4b is as specified above in the restricted definitions (a) to (h).


Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein


(a) Ar2 is phenyl, phenyl annelated with C5-7cycloalkyl, or phenyl substituted with 1, 2, or 3 substituents selected from halo, cyano, C1-6alkyl, Het-C1-6alkyl, Ar1—C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, R6b—O—C3-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C3-6aklynyl, Ar1, Het, R6b—O—, R6b—S—, R6c—SO—, R6c—SO2—, R6b—O—C1-6alkyl—SO2—, —N(R6aR6b), CF3, CF3-oxy, CF3-thio R6c—C(═O)—, R6b—O—C(═O)—, N(R6aR6b)—C(═O), R6b—O—C1-6alkyl, R6b—S—C1-6alkyl, R6c—(═O)2—C1-6alkyl, N(R6aR6b)—C1-6alkyl, R6c—C(═O)—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, N(R6aR6b)—C(═O)—C1-6alkyl, R6c—C(═O)—NR6b—, R6c—C(═O)—O—, R6c—C(═O)—NR6b—C1-6alkyl, R6c—C(═O)—O—C1-6alkyl, N(R6aR6b)—S(═O)2—, H2N—C(═NH)—;


(b) Ar2 is phenyl, phenyl annelated with C5-7cycloalkyl, or phenyl substituted with 1, 2, or 3 substituents, or with 1 or 2 substituents, selected from halo, cyano, C1-6alkyl, Het-C1-6alkyl, Ar1-C1-6alkyl, cyanoC1-6alkyl, C2-4alkenyl cyano-C2-6alkenyl, R6b—O—C3-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C3-6alkynyl, Ar1, Het, R6b—O—, R6c—SO—, R6c—SO2—, R6b—O—C1-6alkyl—SO2—, —N(R6aR6b), CF3, R6c—C(═O)—, R6b—O—C(═O)—, N(R6aR6b)—C(═O)—, R6b—O—C1-6alkyl, R6b—S—C1-6alkyl, R6c—S(═O)2—C1-6alkyl, N(R6aR6b)—C1-6alkyl, R6c—C(═O)—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, N(R6aR6b)—C(═O)—C1-6alkyl, R6c—C(═O)—NR6b—, H2N—C(═NH)—;


(c) Ar2 is phenyl, phenyl annelated with C5-7cycloalkyl, or phenyl substituted with 1, 2, or 3, or with 1 or 2, substituents selected from halo, cyano, C1-6alkyl, Het-C1-6alkyl, Ar1-C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, R6b——C3-6alkenyl, C1-6alkynyl, cyanoC2-6alkynyl, R6b—O—C3-6alkynyl, Ar1, Het, R6b—O—, R6b—S—, R6c—SO2—, —N(R6aR6b), CF3, R6b—O—C(═O)—, R6b—O—C1-6alkyl, R6c—SO2—, —N(R6aR6b), CF3, R6b—O—C(═O)—, N(R6aR6b)—C(═O)—, R6b—O—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, N(R6aR6b)—C(═O)—C1-6alkyl, R6c—C(═O)—NR6b—;


(d) Ar2 is phenyl, phenyl annelated with C5-7cycloalkyl, or phenyl substituted with 1, 2, or 3, or with 1 or 2, substituents selected from C1-6alkyl, Het-C1-6alkyl, Ar1-C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, R6b——C3-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C3-6alkynyl, R6b—O—C1-6alkyl, R6b—S—C1-6alkyl, R6c—S(═O)2—C1-6alkyl, N(R6aR6b)—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl,


(e) Ar2 is phenyl, or phenyl substituted with 1, 2, or 3 substituents, or with 1 or 2 substituents, selected from C1-6alkyl, Het-C1-6alkyl, Ar1-C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, hydroxy-C3-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, hydroxy-C3-6alkynyl, R6b—O—C1-6alkyl, amino-S(═O)2—C1-6alkyl, N(R6aR6b)—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, amino-C(═O)—C1-6alkyl, mono- and di-C1-6alkyl amino-C(═O)—C1-6alkyl;


(f) Ar2 is phenyl, or phenyl substituted with 1, 2, or 3 substituents or with 1 or 2 substituents selected from C1-6alkyl, Het-C1-6alkyl, Ar1—C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, C2-6-alkynyl cyanoC2-6alknyl, R6b—O—C1-6alkyl, amino-S(═O)2—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, amino-C(═O)—C1-6alkyl, mono- and di-C1-6alkylamino-C(═O)—C1-6alkyl;


(g) Ar2 is phenyl, or phenyl substituted with 1, 2, or 3 substituents or with 1 or 2 substituents selected from C1-6alkyl, R6b—O—C1-6alkyl and amino-C(═O)—C1-6alkyl; or selected from C1-6alkyl, hydroxy-C1-6alkyl and amino-C(═O)—C1-6alkyl.


The limitations in the substitutions on Ar2 as specified under (a)-(g) above preferably apply to any Ar2being part of a radical R2a or R3a being C1-6alkyl substituted with a radical —NR4aR4b wherein R4a and/or R4b is or are a radical Ar2.


Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein


(h) Ar2 is phenyl substitted with C1-6alkyl, Het-C1-6alkyl, Ar1-C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C1-6alkyl, amino-S(═O)2—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, amino-C(═O)—C1-6alkyl, mono- and di-C1-6alkylamino-C(═O)—C1-6alkyl; and optionally further substituted with one or with two of the substituents of Ar2 mentioned above in restrictions (a) to (g); or


(i) Ar2 is phenyl substituted with R6b—O—C1-6alkyl, amino-C(═O)—C1-6alkyl; or phenyl substituted with hydroxy-C1-6alkyl, amino-C(═O)—C1-6alkyl; and optionally further substituted with one or with two of the substituents on Ar2 mentioned above in restrictions (a) to (g).


The limitations in the substitutions on Ar2 as specified under (h)-(i) above preferably apply to any Ar2being part of a radical R2a or R3a being C1-6alkyl substituted with a radical Ar2.


Further subgroups are compounds of formula (I) or of any of the subgroups of compounds of formula (I) wherein:


(a) R6a in particular is hydrogen, C1-6alkyl, Ar1, Ar1C1-6alkyl, C1-6alkylcarbonyl, Ar1carbonyl, Ar1C1-6alkylcarbonyl, C1-6alkyloxyC1-6alkyl, aminoC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, hydroxyC1-6alkyl, (carboxyl)-C1-6alkyl, (C1-6alkyloxycarbonyl)-C1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonyl C1-6alkyl, aminosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonyl-C1-6alkyl, Het, Het-C1-6alkyl, Het-carbonyl, Het-C1-6alkylcarbonyl;


(b) R6a more in particular is hydrogen, C1-6alkyl, Ar1, Ar1C1-6alkyl, C1-6alkyloxyC1-6alkyl, aminoC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, hydroxyC1-6alkyl, (carboxyl)-C1-6alkyl, (C1-6alkyloxycarbonyl)-C1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl, aminosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonyl-C1-6alkyl, Het, Het-C1-6alkyl;


(c) R6a further in particular is hydrogen, C1-6alkyl, Ar1C1-6alkyl, C1-6alkyloxyC1-6alkyl, aminoC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, hydroxyC1-6alkyl, (carboxyl)-C1-6alkyl, (C1-6alkyloxycarbonyl)-C1-6alkyl, aminocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl, aminosulfonyl-C1-6alkyl, mono- and di(C1-6alkyl)aminosulfonyl-C1-6alkyl, Het-C1-6alkyl;


(d) R6a further in particular is hydrogen, C1-6alkyl, Ar1C1-6alkyl, aminoC1-6alkyl, hydroxyC1-6alkyl, (carboxyl)-C1-6alkyl, aminocarbonylC1-6alkyl, aminosulfonyl-C1-6alkyl, morpholinyl-C1-6alkyl; (e) R6a further in particular is hydrogen, hydroxyC1-6alkyl, aminocarbonyC1-6alkyl, aminosulfonyl-C1-6alkyl; or wherein


(e) R6a is hydrogen, C1-6alkyl, Ar1 or Ar1C1-6alkyl; or R6a is hydrogen or C1-6alkyl; or R6a is hydrogen.


Further subgroups are compounds of formula (I) or of any of the subgroups of compounds of formula (I) wherein:


(f) R6b preferably is hydrogen or C1-6alkyl; or more preferably is hydrogen;


(g) R6c preferably is C1-6alkyl.


In the group of compounds of formula (I) or in any of the subgroups of compounds of formula (I):


(a) Ar1 preferably is phenyl or phenyl substituted with up to 3 substituents, or with up to 2 substituents, or with one substituent, selected from halo, hydroxy, C1-6alkyl, hydroxyC1-6alkyl, trifluormethyl, and C1-6alkyloxy;


(b) Ar1 more preferably is phenyl or phenyl substituted with up to 3 substituents, or with up to 2 substituents, or with one substituent, selected from halo, hydroxy, C1-6alkyl and C1-6alkyloxy;


(c) Ar1 more preferably is phenyl or phenyl substituted with up to 3 substituents, or with up to 2 substituents, or with one substituent, selected from halo and C1-6alkyl.


Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein


(a) net is tetrahydrofuranyl, furanyl, thienyl, thiazolyl, oxazolyl, imidazolyl isothiazolyl, pyrazolyl, isoxazolyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl, tetrahydroquinolinyl, quinolinyl, isoquinolinyl, benzodioxanyl, benzodioxolyl indolinyl, indolyl, which may optionally be substituted with oxo, amino, Ar1, C1-6alkyl, aminoC1-4alkyl, Ar1C1-4alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, mono- or di(C1-6alkyl)amino, (hydroxyC1-6alkyl)amino, and optionally further with one or two C1-4alkyl radicals; or


(b) Het is tetrahydrofuranyl, furanyl, thienyl, thiazolyl, oxazolyl, imidazolyl pyrazolyl, isoxazolyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl, tetrahydroquinolinyl, quinolinyl isoquinolinyl, benzodioxanyl, benzodioxolyl, indolinyl, indolyl, which may optionally be substituted with oxo, amino, Ar1, C1-4alkyl, aminoC1-4alkyl, and optionally further with one or two C1-4alkyl radicals; or


(c) Het is furanyl, thienyl, pyrazolyl isoxazolyl , morpholinyl, pyrimidinyl, quinolinyl indolinyl which may optionally be substituted with one or two C1-4alkyl radicals.


(d) Het is morpholinyl, which may optionally be substituted with one or two C1-4alkyl radicals; or


(d) Het is morpholinyl.


A particular embodiment of the present invention concerns compounds of formula (I) wherein Q, G, R1 and R5 are as specified above in the definition of formula (I) or as in any of the subgroups of compounds of formula (I) specified herein; and wherein


(a) one of R2a and R3a is selected from —N(R4aR4b), (R4aR4b)N—CO—, C1-6alkyl substituted with one or two substituents selected from hydroxy, cyano, Ar2, Het or —N(R4aR4b) and C2-6alkenyl substituted with cyano or Ar2; and the other one of R2a and R3a is hydrogen; or


(b) one of R2a and R3a is selected from —N(R4aR4b); (R4aR4b)N—CO—; C1-6alkyl optionally substituted with hydroxy, cyano, Ar2, Het or —N(R4aR4b); C1-6alkyl substituted with hydroxy and Ar2; and C2-6alkenyl substituted with cyano or Ar2; and the other one of R2a and R3a is hydrogen; or


(c) one of R2a and R3a is selected from (R4aR4b)N—CO—; C1-6alkyl optionally substituted with hydroxy, Ar2, Het or —N(R4aR4b); and C2-6alkenyl substituted with Ar2; and the other one of R2a and R3a is hydrogen; and


in case R2a is different from hydrogen then R2b is hydrogen, C1-6alkyl or halogen and R3b is hydrogen;


in case R3a is different from hydrogen then R3b is hydrogen, C1-6alkyl or halogen and R2b is hydrogen;


Ar2, Het, R4a and R4b are as in the definitions of the compounds of formula (I) or as in any subgroup specified herein.


Another particular embodiment of the present invention concerns compounds of formula (I) wherein Q, G, R1 and R5 are as specified above in the definition of formula (I) or as in any of the subgroups of compounds of formula (I) specified herein; and


(d) one of R2a and R3a is selected from (R4aR4b)N—CO—; C1-6alkyl optionally substituted with hydroxy, Ar2, Het or —N(R4aR4b); and C2-6alkenyl substituted with Ar1; and the other one of R2a and R3a is hydrogen; or


(e) one of R2a and R3a is selected from (R4a)HN—CO—; C1-6alkyl optionally substituted with hydroxy, Ar2, Het, —NH(R4a) or —N(R4a) Ar2; and C2-6alkenyl substituted with Ar1; and the other one of R2a and R3a is hydrogen; or


(f) one of R2a and R3a is C1-6alkyl optionally substituted with hydroxy, Ar2, Het, —NH(R4a) or —N(R4a) Ar2; and the other one of R2a and R3a is hydrogen; or


(g) one of R2a and R3a is C1-6alkyl optionally substituted with hydroxy, Ar2, —NH(R4a) or —N(R4a) Ar2; and the other one of R2a and R3a is hydrogen;


(h) one of R2a and R3a is C1-6alkyl optionally substituted with —NH(R4a) or —N(R4a) Ar2; and the other one of R2a and R3a is hydrogen;


(i) one of R2a and R3a is C1-6alkyl optionally substituted with —NH(R4a); and the other one of R2a and R3a is hydrogen;


(j) one of R2a and R3a is C1-6alkyl optionally substituted with —N(R4a) Ar2; and the other one of R2a and R3a is hydrogen;


in case R2a is different from hydrogen then R2b is hydrogen or C1-6alkyl and R3b is hydrogen;


in case R3a is different from hydrogen then R3b is hydrogen or C1-6alkyl and R2b is hydrogen;


Ar2, Het, R4a and R4b are as in the definitions of the compounds of formula (I) or as in any subgroup specified herein.


Another particular embodiment of the present invention concerns compounds of formula (I) wherein Q, G, R1 and R5 are as specified above in the definition of formula (I) or as in any of the subgroups of compounds of formula (I) specified herein; wherein R2a and R3a are as defined in (a)-(j) above and R2b and R3b are both hydrogen.


Another embodiment of the present invention concerns compounds of formula (I) wherein Q, G, R1 and R5 are as specified above in the definition of formula (I) or as in any of the subgroups of compounds of formula (I) specified herein; wherein


(k) one of R2a and R3a is C1-6alkyl; and the other one of R2a and R3a is hydrogen;


in case R2a is different from hydrogen then R2b is C1-6alkyl and R3b is hydrogen;


in case R3a is different from hydrogen then R3b is C1-6alkyl and R2b is hydrogen.


Still another embodiment of the present invention concerns compounds of formula (I) wherein Q, G, R1 and R5 are as specified above in the definition of formula (I) or as in any of the subgroups of compounds of formula (I) specified herein; wherein


one of R2a and R3a is selected from C1-6alkyl substituted with —N(R4aR4b), wherein R4b is hydrogen;


and the other one of R2a and R3bis hydrogen; and


in case R2a is different from hydrogen then R2b is hydrogen and R3b is hydrogen;


in case R3a is different from hydrogen then R3b is hydrogen and R2b is hydrogen.


Still another embodiment of the present invention concerns compounds of formula (I) wherein Q, G, R1 and R5 are as specified above or as in any of the subgroups of compounds specified herein; and


one of R2a and R3a is selected from C1-6alkyl substituted with —N(R4aR4b); and the other one of R2a and R3a is hydrogen; and


in case R2a is different from hydrogen then R2b is hydrogen and R3b is hydrogen;


in case R3a is different from hydrogen then R3b is hydrogen and R2b is hydrogen; and further wherein


R4a is Ar2and


R4b is C1-6alkyl, Ar2C1-6alkyl, C1-6alkyloxyC1-6alkyl, hydroxyC1-6alkyloxyC1-6alkyl, Ar1C1-6alkyloxyC1-6alkyl, (C1-6alkyloxy)(hydroxy)C1-6alkyl, (Ar1C1-6alkyloxy) (hydroxy)C1-6alkyl, aminoC1-6alkyl, mono- and di(C1-6alkyl)aminoC1-6alkyl, hydroxyC1-6alkyl, amiuocarbonylC1-6alkyl, mono- and di(C1-6alkyl)aminocarbonylC1-6alkyl, C1-4alkyloxycarbonylC1-6alkyl, hydroxycarbonylC1-6alkyl, Het or Het-C1-6alkyl.


Preferred compounds are those compounds listed in tables 1 through 6, more in particular the compound numbers 1 to 75, 81 to 116, 129to 165, 167 to 183, 191 to 192, 194 to 197, 205 to 214 and 238 to 239.


Most preferred is compound 90 in Table 1, the name of which is 2-(2-amino-6-{[2-(3-hydroxy-propyl)-5-methyl-phenylamino]-methyl}-benzimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol, as well as the prodrugs, N-oxides, addition salts, quaternary amines and metal complexes thereof, in particular said compound and the acid-addition salts thereof.


The compounds of formula (I) or any of the subgroups thereof can be prepared as in the following reaction schemes.
embedded image


In this scheme G, R1, R2a, R2b, R3a, R3b have the meanings defined above for the compounds of formula (I) or of any of the subgroups thereof. W is an appropriate leaving group, preferably it is chloro or bromo. The reaction of this scheme can be typically conducted in a suitable solvent such as an ether, e.g. THF, a halogenated hydrocarbon, e.g. dichoromethane, CHCl3, toluene, a polar aprotic solvent such as DMF, DMSO, DMA and the like. A base may be added to pick up the acid that is liberated during the reaction. If desired, certain catalysts such as iodide salts (e.g. KI) may be added.


Where in the conversion of (II) into (I) the radical Q is amino, said radical Q may be protected with an appropriate protecting group such as an alkyloxycarbonyl group, e.g. methoxycarbonyl, ethoxycarbonyl, t.butyloxycarbonyl, which subsequently is removed, for example by treatent with a base. Where radical Q is methoxycarbonylamino, said radical Q may be transformed into a methylamino group by treatment of the starting methoxycarbonylamino benzimidazole with a complex metal hydride such as LiAlH4.


The compounds of formula (I) wherein Q is amino, said compounds being represented by formula (I-d) can be prepared as outlined in the following reaction schemes.
embedded image


In a first step, a diaminobenzene (IV) is cyclized with a suitable reagent, for example with cyanogen bromide, preferably in a suitable solvent, e.g. an alcohol such ethanol, to yield an aminobenzimidazole (V). The latter intermediate (V) is reacted with reagent (III) in an N-alkylation reaction to obtain an intermediate (II). One of the amino groups in starting material (IV) can be substituted with a radical —G—R1 and this derivative of (IV) can be cyclized with cyanogen bromide as deserabed above to directly obtain (I-d). Alternatively, intermediate (IV) can be reacted with urea in a condensation reaction to yield a benzimidazol-2-one, in a suitable solvent such as xylene. The resulting product is converted into a corresponding 2-subsututed benzimidazole derivative, wherein the group in 2-position is a leaving group, preferably halo, e.g. chloro or bromo, by reaction with a halogenating agent such as POCl3. The obtained product can further be reacted with ammonia to yield (V).


The above-mentioned N-alkylations are conducted in a suitable solvent and, if desired, in the presence of a base.


Compounds of formula (I) may be converted into each other following art-known functional group transformation reactions, comprising those described herefter.


Compounds of formula (I) wherein R2a or R3a is C1-6alkoxycarbonyl or C1-6alkyl substituted with C1-6alkoxycarbonyl can be reduced, e.g. with LiAlH4, to the corresponding compounds wherein R2a or R3a is hydroxy C1-6alkyl. The latter group can be oxidized to an aldehyde group, e.g. with MnO2, which can further be derivatized with amines, e.g. with a reductive amination process, to the corresponding C1-6alkylamines or derivatized amines. Alternatively the compounds of formula (I) wherein R2a or R3a is hydroxyC1-6alkyl can be converted to the corresponding haloC1-6alkyl compounds, e.g. by treatment with a suitable halogenating agent such as SOCI2, which compounds subsequently are reacted with an amine or amine derivative.


Compounds of formula (I) wherein R2a or R3a is an aldehyde can be converted to the corresponding compounds wherein R2a or R3a is C2-6alkenyl or substituted C2-6alenyl by a Wittig reaction or a Wittig-Horner reaction. In the former instance a Wittig type reagent is used, such as a triphenylphosphoniumylide in a suitable reaction-inert solvent such as an ether, starting from triphenylphosphine and a halo derivative. The Wittig-Horner reaction is performed using a phosphonate, such as e.g. a reagent of formula di(C1-6alkyloxy)—P(═O)—CH2—CH2—CN in the presence of a base, preferably a strong base, in an aprotic organic solvent. Compounds wherein R2a or R3a is C2-6alkenyl or substituted C2-6alkenyl can be reduced to the corresponding saturated alkyls, e.g. with hydrogen in the presence of a suitable catalyst such as Raney Ni.


Compounds of formula (I) wherein R2a or R3a is an aldehyde can also be derivatized with a Grignard type of reaction to introduce aryl or alkyl groups.


Nitro groups can be reduced to amino groups, which subsequently may be alkylated to mono- or dialkylamino groups, or acylated to arylcarbonylamino or alkylcarbonylamino and the like groups. Cyano groups may be reduced to aminomethylene groups, which similarly may be derivatized.


A number of the intermediates used to prepare the compounds of formula (I) are known compounds or are analogs of known compounds, which can be prepared following modifications of art-known methodologies readily accessible to the skilled person. A number of preparations of intermediates are given hereafter in somewhat more detail.


The intermediates of formula (VII) can be obtained from the corresponding alcohols by a suitable alcohol to leaving group conversion, e.g. by reaction of the alcohol with SOCl2. The intermediates of formula (VII) wherein G is a direct bond and R1 is a radical (c-4) or a similar radical, can be prepared by a halogenation reaction of an intermediate R1—H, e.g. with N-bromo succinimide.


The compounds of formula (I) may be converted to the corresponding N-oxide forns following art-known procedres for convering a trivalent nitrogen into its N-oxide form. Said N-oxidation reaction may generally be carried out by reacting the starting material of formula (I) with an appropriate organic or inorganic peroxide. Appropriate inorganic peroxides comprise, for example, hydrogen peroxide, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxide, potassium peroxide; appropriate organic peroxides may comprise peroxy acids such as, for example, benzenecarboperoxoic acid or halo substituted benzenecarboperoxoic acid, e.g. 3-chlorobenzenecarboperoxoic acid, peroxoalkanoic acids, e.g. peroxoacetic acid, alkylhydroperoxides, e.g. t.butyl hydro-peroxide. Suitable solvents are, for example, water, lower alcohols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butanone, halogenated hydrocarbons, e.g. dichloromethane, and mixures of such solvents.


Pure stereochemically isomeric forms of the compounds of formula (I) may be obtained by the application of art-known procedures. Diastereomers may be separated by physical methods such as selective crystallization and chromatographic techniques, e.g., counter-current distribution, liquid chromatography and the like.


The compounds of formula (I) as prepared in the hereinabove described processes are generally racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I) which are sufficiently basic or acidic may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid, respectively chiral base. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystalliation and the enantiomers are liberated therefrom by alkali or acid. An alternative manner of separating the enantiomeric forms of the compounds of formula (I) involves liquid chromatography, in particular liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably if a specific stercoisomer is desired, said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomerically pure starting materials.


In a further aspet, the present invention concerns a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (I) as specified herein, or a compound of any of the subgroups of compounds of formula (I) as specified herein, and a pharmaceutically acceptable carrier. A therapeutically effective amount in this context is an amount sufficient to prophylaxtically act against, to stabilize or to reduce viral infection, and in particular RSV viral infection, in infected subjects or subjects being at risk of being infected. In still a further aspect, this invention relates to a process of preparing a pharmaceutical composition as specified herein, which comprises intimately mixing a pharmaceutically acceptable carrier with a therapeutically effective amount of a compound of formula (I), as specified herein, or of a compound of any of the subgroups of compounds of formula (I) as specified herein.


Therefore, the compounds of the present invention or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in addition salt form or metal complex, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs, emulsions and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetion enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin.


The compounds of the present invention may also be administered via oral inhalation or insufflation by means of methods and formulations employed in the art for administration via this way. Thus, in general the compounds of the present invention may be administered to the lungs in the form of a solution, a suspension or a dry powder, a solution being preferred. Any system developed for the delivery of solutions, suspensions or dry powders via oral inhalation or insufflation are suitable for the administration of the present compounds.


Thus, the present invention also provides a pharmaceutical composition adapted for administration by inhalation or insufflation through the mouth comprising a compound of formula (I) and a pharmaceutically acceptable carrier. Preferably, the compounds of the present invention are administered via inhalation of a solution in nebulized or aerosolized doses.


It is especially advantageous to formulate the aforementioned pharmaceutical compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predeterined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such unit dosage forms are tablets (including scored or coated tablets), capsules, pills, suppositories, powder packets, wafers, injectable solutions or suspensions and the like, and segregated multiples thereof.


The compounds of formula (I) show antiviral properties. Viral infections treatable using the compounds and methods of the present invention include those infections brought on by ortho- and paramyxoviruses and in particular by human and bovine respiratory syncytial virus (RSV). A number of the compounds of this invention moreover are active against mutated strains of RSV. Additionally, many of the compounds of this invention show a favorable pharmacokinetic profile and have attractive properties in terms of bioavailabilty, including an acceptable half-life, AUC and peak values and lacking unfavourable phenomena such as insufficient quick onset and tissue retention.


The in vitro antiviral activity agaist RSV of the present compounds was tested in a test as described in the experimental part of the description, and may also be demonstrted in a virus yield reduction assay. The in vivo antiviral activity against RSV of the present compounds may be demonstrated in a test model using cotton rats as described in Wyde et al. (Antiviral Research (1998), 38, 31-42).


Due to their antiviral properties, particularly their anti-RSV properties, the compounds of formula (I) or any subgroup thereof their prodrugs, N-oxides, addition salts, quaternary amines, metal complexes and stereochemically isomeric forms, are useful in the treatment of individuals experiencing a viral infection, particularly a RSV infection, and for the prophylaxis of these infections. In general, the compounds of the present invention may be useful in the treatment of warm-blooded animals infected with viruses, in particular the respiratory syncytial virus.


The compounds of the present invention or any subgroup thereof may therefore be used as medicines. Said use as a medicine or method of treatment comprises the systemic administration to viral infected subjects or to subjects susceptible to viral infections of an amount effective to combat the conditions associated with the viral infection, in particular the RSV infection.


The present invention also relates to the use of the present compounds or any subgroup thereof in the manufactre of a medicament for the treatment or the prevention of viral infections, particularly RSV infection.


The present invention furthermore relates to a method of treating a warm-blooded animal infected by a virus, or being at risk of infection by a virus, in particular by RSV, said method comprising the administration of an anti-virally effective amount of a compound of formula (I), as specified herein, or of a compound of any of the subgroups of compounds of formula (I), as specified herein.


In general it is contemplated that an antivirally effective daily amount would be from 0.01 mg/kg to 500 mg/kg body weight, more preferably from 0.1 mg/kg to 50 mg/kg body weight. It may be appropriate to administer the reqiired dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.


The exact dosage and frequency of adminison depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, extent of disorder and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective daily amount ranges mentioned hereinabove are therefore only guidelines.


Also, the combination of another antiviral agent and a compound of formula (I) can be used as a medicine. Thus, the present invention also relates to a product containing (a) a compound of formula (I), and (b) another antiviral compound, as a combined preparation for simultaneous, separate or sequential use in antiviral treatment. The different drugs may be combined in a single preparation together with pharmaceutically acceptable carriers. For instance, the compounds of the present invention may be combined with interferon-beta or tumor necrosis factor-alpha in order to treat or prevent RSV infections.







EXAMPLES

The following examples are intended to illustrate the present invention and not to limit it thereto. The terms ‘compound 1, compound 4, etc. used in these examples refer to the same compounds in the tables.


The compounds were analysed by LC/MS using one of the following methods:


LCT: electrospray ionisation in positive mode, scanning mode from 100 to 900 amu; Xterra MS C18 (Waters, Milford, Mass.) 5 μm, 3.9×150 mm); flow rate 1 mil/min. Two mobile phases (mobile phase A: 85% 6.5 mM ammonium acetate+15% acetonitrile; mobile phase B: 20% 6.5 mM ammonium acetate+80% acetonitdle) were employed to run a gradient from 100% A for 3 min to 100% B in 5 min., 100% B for 6 min to 100% A in 3 min, and equilibrate again with 100% A for 3 min).


ZQ: electrospray ionisation in both positive and negative (pulsed) mode scanning from 100 to 1000 amu; Xterra RP C18 (Waters, Milford, Mass.) 5 μm, 3.9×150 mm); flow rate 1 ml/min. Two mobile phases (mobile phase A: 85% 6.5 mM ammonium acetate+15% acetonitrile; mobile phase B: 20% 6.5 mM ammonium acetate+80% acetonitrile) were employed to run a gradient condition from 100% A for 3 min to 100% B in 5 min., 100% B for 6 min to 100% A in 3 min, and equihrate again with 100% A for 3 min).


Example 1
Preparation of Dimethylbenzimidazole-2-Amines



embedded image


embedded image



Preparation of Intermediates a-3 and a-4


A mixture of a-1 (0.0268 mol), a-2 (0.0321 mol) and potassium carbonate (0.0938 mol) in dinethylformamide (100 ml) were stirred at 70° C. for 12 hours. The solvent was evaporated. The residue was taken up in 2-propanone. The precipitate was filtered. The solvent of the mother layer was evaporated. The residue (13.6 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 92/810.5; 20-45 μm). The pure fiactions were collected and the solvent was evaporated, yielding 6.2 g of a mixture of a-3 and a-4 (50/50) (overall yield 71%).


Preparation of Intermediates a-5 and a-6:


Lithium a wuinum hydride (0.0367 mol) was added portion wise at 0° C. to a mixture of a-3 and a-4 (0.0184 mol) in tetrahydrofuran (THF) (100 ml) under nitrogen flow. The mixture was stirred at 5° C. for 30 minutes, then at room temperature for 2 hours. Ethylacetate (5 ml) then H2O (5 ml) were added drop wise at 0° C. The mixture was filtered over celite. Celite was washed with THF and then water. The filtrate was extracted with a solution of CH2Cl2 with 10% of methanol. The organic layer was dried over magnesium sulfilte, filtered and concentrated. The residue (5 g) was purified by column chromatography over silica gel (eluent CH2Cl2/CH3OH/NH4OH 92/810.5; 15-40 μm). Two fractions were collected and the solvent evaporated, yielding 1.45 g of a-5 (28%, melting point >250° C.) and 1.4 g of a-6 (27%, melting point 222° C.).


Preparation of Intermediate a-7


MnO2 (10 g) was added to a mixture of a-5 (0.0035 mol) in CH2Cl2/THF (50 ml, 50/50) and methanol (5 ml). The reaction was stirred at room temperature for 3 hours, and then filtered over celite. Celite was washed with CH2Cl2/methanol (90/10). The filtrate was evaporated, yielding 0.6 g of a-7 (60%). This product was used directly in the next reaction step.


Preparation of Intermediate a-8


This intermediate was prepared analogous to the procedure for preparng intermediate a-7.


Preparation of Compounds of Formula a-9 and a-10


Variant 1: Meta-methylaniline (0.0017 mol) was added at room temperature to a mixture of a-7 (0.0017 mol) and CH2Cl2 (15 ml). The mixture was stirred at room temperature for 30 minutes. Acetic acid (0.5 ml) and NaBH3CN (0.0017 mol) were added at room temperature. The reaction mixture was stirred at room temperature for 5 hours, poured into water saturated with K2CO3 and extcted with CH2Cl2. The organic layer was washed with H2O, dried over magnesium sulfate, filtered, and the solvent was evaporated. The residue (0.45 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 90/10/0.5; 15-35 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.26 g, 40%) was crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried, yielding 0.195 g (30%, compound 1, melting point 234° C.) of 2-[2-Amino-6-(m tolylamino-methyl)-benzoimidazol-1-ylmediyl]-6-methyl-pyridin-3-ol.


Variant 2: A mixture of a-7 (0.001 mol), meta-(OCF3)-aniline (0.0015 mol), supported cyano-borohydride (0.0021 mol) and acetic acid (6 drops) in methanol was stirred at room temperature for 48 hours, and then filtered. The filtrate was evaporated. The residue was taken up in CH2Cl2/methanol. The organic layer was washed with a solution of K2CO3 10%, dried over magnesium sulfate, filtered and the solvent was evaporated. The residue (0.42 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 9317/0.5; 15-35 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.15 g, 32%) was crystlize from CH3CN/methanol. The precipitate was filtered off and dried, yielding 0.085 g (18%, compound 4, melting point 156° C.) of 2-{2-Amino-6-[(3-trifluoromethoxy-phenylamino)-methyl]-benzoimidazol-1-ylmethyl}-6-methyl-pyridin-3-ol.


Variant 3: Ortho-methylaniline (0.000265 mol) was added to solution of a-7 (0.000177 mol) in methanol (7 ml). Acetic acid (3 drops) and cyano borohydride on solid support (0.000265 mol) were then added. The reaction was carried out at room temperature for 48 h. The supported reagent was filtered off. Triethylamine (0.2 ml) was added to the filtrate. The solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 90/10/0.5; 10 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.050 g, 65%) was crystallized from diisopropyl-ether. The precipitate was filtered off and dried, yielding 0.027 g (35%, compound 8, melting point 120° C.) of 2-[2-Amino-6-(o-tolylamino-methyl)-benzoimidazol-1-ylmethyl]-6-methyl-pyridin-3-ol acetic acid salt.


Example 2
Preparation of 6-Aminomethyl Substituted Benzimidazole-2-Amines



embedded image



Preparation of Intermediate b-2


SOCl2 (0.0021 mol) was added drop wise at 5° C. to a solution of b-1 (0.0014 mol) in CH2Cl2 (10 ml). The mixture was stirred at room temperature for 4 hours. The precipitate was filtered, washed with CH2Cl2, then with diisopropyl ether and dried, yielding 0.49 g of b-2 (100%).


Preparation of Compounds of Formula b-3


Variant 1: A mixture of b-2 (0.0008 mol), (N-ethanol)-meta-methylaniline (0.0013 mol) and potassium carbonate (0.003 mol) in dimethylformamide (5 ml) was stirred at 80° C. for 12 hours, poured into water and extracted with CH2Cl2. The organic layer was washed with water, dried over magnesium sulfate, filtered and the solvent was evaporated. The residue (0.4 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 93/7/0.5; 15-35 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.13 g, 35%) was crystalized from methanol. The precipitate was filtered off and dried, yielding 0.06 g (16%, compound 129, melting point 210° C.) of 2-(2-amino-6-{[(2-hydroxy-ethyl)-m-tolyl-amino]-methyl}-benzoimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol.


Variant 2


a) 3-bromo-butyric acid ethyl ester (0.029 mol) and triethylamine (0.0436 mol) were added to a solution of 3-bromo-aniline (0.029 mol) in toluene (50 ml). The reaction was stirred under reflux for 12 hours and then cooled down to room temperature. The precipitate was filtered off. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography over silica gel (eluent: Cyclohexane:AcOEt 80/20; 20-45 μm). The pure fractions were collected and the solvent was evaporated, yielding 5 g of 4-(3-bromo-phenylamino)-butyric acid ethyl ester (60%, melting point: 65° C.).


b) 4-(3-Bromo-phenylamino)-butric acid ethyl ester (0.00524 mol) in tetrahydrofurn (15 ml) was added drop wise to slurry of LiAlH4 (0.00786 mol) in tetrahydrofuran (15 ml) at 5° C. under N2 flow. The reaction was stirred at 5° C. for 1 hour. Ethylacetate and water were added carefully. The reaction was extracted with a mixture CH2Cl2/methanol (90/10). The organic layer was separated, dried (over MgSO4) and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 96/4/0.3; 15-40 μm). The pure fractions were collected and the solvent was evaporated, yielding 0.76 g of 4-(3-bromophenylamino)-butan-1-ol (60%).


c) 2-(2-Amino-6-{[(3-bromo-phenyl)-(4-hydroxy-butyl)-amino]-methyl}-benzoimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol (compound 139, melting point 120° C. gum) was synthesized starting from 4-(3-bromo-phenylamino)-butan-1-ol in a way analogous to the procedure described in variant 1 for the synthesis of compounds b-3.


Variant 3


a) A mixtue of 3-(3-bromo-aniline)-propionic acid ethyl ester (0.0037 mol) and a saturated solution of NH3 in methanol (15 ml) were heated at 80° C. in a PARR apparatus for 12 hours. The reaction was cooled down to room temperaure and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography over silica gel (eluent: Cyclohexane:ethylacetate 80/20; 20-45 μm). The pure fractions were collected and the solvent was evaporated, yielding 0.75 g of 3-(3-bromo-phenylamino)-propionamide (83%).


b) 3-[[2-Amino-3-(3-hydroxy-6-methyl-pyridin-2-ylmethyl)-3H-benzoimidazol-5-yl-methyl]-(3-bromo-phenyl)-amino]-propionamide (compound 137, melting point: 245° C.) was synthesized starting from 3-(3-bromo-phenylamino)-propionamide in a way analogous to the procedure described in variant 1 for the synthesis of compounds b-3.


Variant 4


a) K2CO3 (0.0109 mol) and 4-2-chloro-ethyl)-morpholine (1 HCl) (0.0036 mol) were added to a solution of 2-ethanol-aniline (0.0036 mol) in CH3CN (15 ml). The reaction was stirred at 80° C. for 24 hours and then cooled down to room temperature. The precipitate was filtered off and rinsed with CH3CN. The solution was concentrated under reduced pressure. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 98/2/0.1; 35-70 μm). The pure fractions were collected and the solvent was evaporated, yelding 0.7 g of 2-[2-(2-morpholin-4yl-ethylamino)-phenyl]-ethanol (77%).


b) 2-(2-Amino-6-{[[2-(2-hydroxy-ethyl)-phenyl]-(2-molpholin-4-yl-ethyl)-amino]-methyl}-benzoimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol (compound 160, melting point: 184° C.) was synthesized starting from 2-[2-(2-morpholinyl-ethylamino)-phenyl]-ethanol in a way analogous to the procedure described in variant 1 for the synthesis of compounds b-3.


Variant 5


Lithium hydroxide hydrate (0.00093 mol) was added to a solution of 3-{[2-amino-3-(3-hydroxy-6-methyl-pyridin-2-yhmethyl)-3H-benzoimidazol-5-ylmethyl]-m-tolyl-amino}-propionic acid ethyl ester (0.000464 mol) in a mixture of water (10 ml) and tetrahydrofuran (10 ml). The reaction was stird at room temperature for 12 hours. The tetrahydrofuran was removed under reduced pressure and the solution was acidified to pH 4 with a 1N solution of HCl in water. The precipitate was filtered off; rinsed with water, then with diethyl ether and dried, yielding 0.157 g of 3-{[2-amino-3-(3-hydroxy-6-methyl-pyridin-2-ylmethyl)-3H-benzoimidazol-5-ylmethyl]-m-tolyl-amino}-propionic acid (76%, compound 161, melting point 165° C.).


Variant 6


a) A mixture of b-2 (0.0016 mol), N-(ethylamino-Boc)-meta-methylaniline (0.0016 mol) and K2CO3 (0.0048 mol) in dimethylformamide (10 ml) was stirred at 80° C. for 12 hours. The reaction was poured into water and extracted with CH2Cl2/methanol. The organic layer was washed with water, dried over magnesium sulfate, filtered and the solvent was evaporated. The residue (4 g) was purified by cohumn chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 95/5/0.5; 10 μm). The pure fractions were collected and the solvent was evaporated, yielding 0.11 g (13%) of 2- {2-Amino-6-[(propyl-m-tolyl-amino)-methyl]-benzoimidazol-1-yl-methyl}-6-methyl-pyridin-3-ol (b-4).


b) A solution of HCl 5-6N in 2-propanol (0.5 ml) was added at room teperare to a mixtue of b-4 (0.0002 mol) in 2-propanol (15 ml). The mixtre was stirred at 60° C. for 2 hours, and then cooled to room temperature. The precipitate was filtered off, washed with diethyl ether and dried, yielding 0.075 g (65%, compound 131, melting point: 200° C.) of 2-(2-amino-6-{[(2-aminoehyl)-m-tolyl-amino]-methyl}-benzoimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol HCl salt.


Example 3
Synthesis of 5- and 6-Formyl Substituted Benzimidazole-2-Amines



embedded image


embedded image



Preparation of Intermediates c-3 and c-4


Intermediate c-2 (0.051 mol) was added at room temperature to a mixture of intermediate c-1 (0.051 mol) and K2CO3 (0.053 mol) in DMF (150 ml). The mixtre was stirred at room temperture for 24 hours. The solvent was evaporated. The residue was taken up in CH2Cl2. The organic layer was washed with H2O, saturated with NaCl, dried (over MgSO4), filtered and the solvent was evaporated. The residue (24 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 96/4/0.1; 20-45 μm). The pure fractions were collected and the solvent was evaporated, yielding: 13.4 g of intermediates c-3+c-4 (63%).


Preparation of Intermediates c-5 and c6


LiAlH4 (0.0619 mol) was added portion wise at 5° C. to a mixture of c-3+c4 (0.031 mol) in THF (150 ml) under N2 flow. The mixture was stirred at 5° C. for 30 minutes, and then stirred at room temperature for 2 hours. H2O (10 ml) was added drop wise slowly at 0° C. EtOAc (100 ml) was added. The mixture was filtered over celite. Celite was washed with EtOAc, then with CH2Cl2/CH3OH. The filtrate was evaporated. The residue was taken up in CH2Cl2/CH3OH. The organic layer was washed with H2O, dried (over MgSO4), filtered and the solvent was evaporated. The residue (10.2 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 10 94/6/0.5; 15-40 μm). The pure fractions were collected and the solvent was evaporated, yielding: 3 g of intermediate c-5 (26%, melting point: 216° C.) and intermediate c-6 (20%).


Preparation of Intermediate c-7


MnO2 (20 g) was added portion wise at room temperature to a mixture of c-5 (0.008 mol) in CH2Cl2 (200 ml). The mixture was stirred at room temperature for 4 hours, and then filtered over celite. Celite was washed with CH2Cl2/CH3OH (70/30). The filtrate was evaporated. Yield: 2.65 g of intermediate c-7 (89%, melting point: 199° C.).


Preparation of Intermediate c-8


This intermediate was synthesized according to the procedure described for intermediate c-7.


Example 4
Synthesis of Hydroxymethylene Substituted Benzimidazole-2-Amines



embedded image



Preparation of Intermediate d-3


A mixture of d-1 (0.0292 mol), d-2 (0.0438 mol) and NEt3 (0.0584 mol) in CH3CN (150 ml) was stirred and refluxed for 12 h, then cooled to room temperature and the solvent was evaporated. The mixture was poured into water and extracted with EtOAc. The organic layer was separated, dried (over MgSO4), filtered and the solvent was evaporated. The residue (12.5 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/EtOAc 96/4; 20-45 μm). Yield: 2 g of intermediate d-3 (45%, melting point: 140° C.).


Preparation of Intermediate d4


A mixture of d-3 (0.0081 mol) and Raney Nickel (3 g) in CH3OH (100 ml) was hydrogenated at room temperature for 2 hours, then filtered over celite. Celite was washed with CH3OH. The filtrate was concentrated, yielding 2.9 g of intermediate d-4 (100%).


Preparation of Intermediate d-5


A mixture of b-4 (0.0083 mol) and BrCN (0.0091 mol) in EtOH (50 ml) was stirred and refluxed for 1 h, then cooled to room temperature and the solvent was evaporated. The residue was taken up in CH2Cl2. The organic layer was washed with a solution of K2CO3 10%, dried (over MgSO4), filtered and the solvent was evaporated. The residue (3 g) was c allized form CH3CN. The precipitate was filtered off and dried, yielding 2.2 g of intermediate d-5 (71%).


Example 5
Synthesis of Arylamino Substituted Benzimidazole-2-Amines



embedded image



Preparation of 3-(4-methyl-2-nitro-phenyl)-prop-2-en-1ol, Intermediate (e-2)


Dibal-H (0.0255 mol) was added at −35° C. to a mixture of 3-(4-methyl-2-nitro-phenyl)-acrylic acid ethyl ester (0.0085 mol) in THF (80 ml) under N2 flow. The mixture was stirred at −35° C. for 15 minutes. H2O (20 ml) was added drop wise at −35° C. under N2 flow. The mixture was half-evaporated. CH2Cl2 was added. The mixture was filtered over celite. Celite was washed with CH2Cl2. The filtrate was washed with H2O. The organic layer was separated, dried (over MgSO4), filtered and the solvent was evaporated Yield: 2 g of 3-(4-Methyl-2-nitro-phenyl)-prop-2-en-1-ol (e-2) (100%).


Preparation of Intermediate 3-(2-Amino-4-methyl-phenyl)-propan-1-ol (e-3)


A mixture of 3-(4-Methyl-2-nitro-phenyl)-prop-2-en-1-ol (e-2) (0.0085 mol) and Raney Nickel (1.6 g) in MeOH (30 ml) was hydrogenated at room temperature for 2 hours under a 3 bar pressure, then filtered over ceilte. Celite was washed with CH3OH. The filtrate was evaporated. Yield. 1.7 g of 3-(2-Amino-4-methyl-phenyl)-propan-1-ol (e-3) (86%, melting point: 65° C.).


Preparation of Intermediate e-5


AcOH (10 drops) then BH3CN— on solid support (0.007 mol) were added at room temperature to a mixture of e-4 (0.0035 mol) and 3-(2-aminomethyl-phenyl)-propan-1-ol (e-3) (0.0052 mol) in MEOH (50 ml). The mixture was filtered, and then washed with CH3OH. The filtrate was evaporated. The residue was taken up in CH2Cl2/CH3OH. The organic layer was washed with K2CO3 10%, dried (over MgSO4), filtered and the solvent was evaporated until dryness. The residue (2.7 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 95/5/0.1). The pure fractions were collected and the solvent was evaporated. Yield: 1.3 g (71%). This fraction was crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried. Yield: 0.026 g of intermediate e-5 (compound 128, melting point: 129° C.).


Preparation of Final Compound e-6


A mixture of e-5 (0.0024 mol) and Pd/C (0.3 g) in CH3OH (60 ml) was hydrogenated at room temperature for 1 hour and 30 minutes under a bar pressure, and then filtered over celite. Celite was washed with CH3OH. The filtrate was evaporated. The residue (1.1 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 90/10/0.1; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.88 g) was crystalized from 2-propanone/diethyl ether. The precipitate was filtered off and dried. Yield: 0.735 g of final compound e-6 (68%, compound 90, melting point: 248° C.).


Example 6
Synthesis of Arylamino Substiuted Benzmidazole-2-Amines



embedded image



Preparation of Intermediate 2-(4-Bromo-2-nitro-phenyl)-ethanol (f-2)


A mixture of 4-bromo-1-methyl-2-nitro-benzene (f-1) (0.01134 mol) and para-formaldehyde (0.009 mol) in DMSO (5 ml) and Triton-B (0.35 ml) was stirred at 50° C. for 2 hours, then cooled to room and purified by column chromatography over silica gel (eluent: CH2Cl2CH3OH 98.5/1.5; 35-70 μm). The pure fractions were collected and the solvent was evaporated. Yield: 1.18 g of 2-(4-Brorno-2-nitro-phenyl)-ethanol (f-2) (42%).


Preparation of Intenrediate 2-(2-Amino-4-bromo-phenyl)-ethanol (f-3)


A mixture of 2-(4Bromo-2-nitro-phenyl)-ethanol (f-2) (0.00203 mol) and Raney Nickel (0.5 g) in MeOH (20 ml) and thiophene (0.5 ml) was hydrogenated at room temperature for 2 hours under a 3 bar pressure, then filtered over celite. Celite was washed with CH3OH. The filtrate was concentrated. Yield: 1.7 g of 2-(2-Amino-4-bromo-phenyl)-ethanol (f-3) (91%).


Preparation of Final Compound f-5 (compound 93)


This compound was synthesized according to the procedure described for compound e-5.


Example 7
Synthesis of Ethynylphenylamino Substituted Benzimidazole-2-Amines



embedded image



Preparation of Intermediate g-2


Disopropyl-ethylamine (23.5 ml) was added drop wise to a mixture of g-1 (0.0047 mol), Pd(PPh3)2Cl2 (0.0002 mol) and CuI (0.0002 mol) in THF (50 ml) under N2 flow. Ethynyl-trimethyl-silane (0.0095 mol) was added drop wise at room temperature. The mixture was stirred at 50° C. for 12 hours under N2 flow, poured into H2O and extracted with EtOAc. The organic layer was washed with H2O, dried (over MgSO4), filtered and the solvent was evaporated. The residue (3.1 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH 99/1). The pure fractions were collected and the solvent was evaporated. Yield: 1 g of intermediate e-2 (80%).


Preparation of Intermediate g-3


TiCl3 (0.0334 mol) was added drop wise at 0° C. to a mixture of g-2 (0.0041 mol) in THF (50 ml). The mixture was stirred at room temperature for 12 hours. EtOAc was added. The mixture was washed several times with H2O, washed with a solution K2CO3 10%, and finally with H2O. The organic layer was separated, dried (over MgSO4), filtered and the solvent was evaporated. Yield: 0.82 g of intermediate g-3 (84%).


Preparation of Intermediate g-4


A mixture of g-3 (0.0022 mol) and K2CO3 (0.0066 mol) in CH3OH (20 ml) and H2O (4 ml) was stirred at room temperature for 2 hours. The solvent was evaporated until dryness. The residue was taken up in CH2Cl2/H2O. The organic layer was washed with H2O, dried (over MgSO4), filtered and the solvent was evaporated, yielding: 0.29 g of intermediate g-4 (81%).


Preparation of Final Compound g-6


This compound was synthesized according to the procedure described for compound c-5 (yield: 33%, compound 92, melting point: 252° C.).


Example 8
Synthesis of Alkylsulfonylphenylamino Substituted Benznimdazole-2-Amines



embedded image



Preparation of Intermediate h-2


A mixture of h-1 (0.0092 mol), 2-mercapto-ethanol (0.0102 mol) and K2CO3 (0.0139 mol) in CH3CN (50 ml) was stirred and refluxed for 6 hours, then poured into H2O and extacted with EtOAc. The organic layer was washed with H2O, dried (over MgSO4), filtered and the solvent was evaporated. Yield: 2.1 g of intermediate h-2 (100%). This fraction was used directly in the next reaction step.


Preparation of Intermediate h-3


A mixture of h-2 (0.0098 mol) and Raney Nickel (2 g) in CH3OH (50 ml) was hydrogennted at room temperature for 1 hour under a 3 bar pressure, then filtered over celite. Celite was washed with CH3OH. The filtrate was evaporated. Yield. 1.5 g of intermediate h-3 (83%).


Preparation of Intermediate h-4


Sodium perborate (NaBO3, 0.005 mol) was added portion wise at 0° C. to a mixture of h-3 (0.0025 mol) in AcOH (5 ml). The mixture was stirred at room temperature for 12 hours, poured on ice, basified with K2CO3 and extracted with EtOAc. The organic layer was separated, dried (over MgSO4), filtered and the solvent was evaporated until dryness. The residue (0.46 g) was purified by column chromatography over silica gel (eluent CH2Cl2/CH3OH 98/2; 10 μm). The pure fractions were collected and the solvent was evaporated. Yield: 0.16 g of intermediate h-4 (30%).


Preparation of Final Compound h-6 (Compound 100, Melting Point: >260° C)


This compound was synthesized according to the procedure described for compound e-6.


Example 9
Synthesis of Phenylamino Substituted Benidazole-2-Amines



embedded image


embedded image



Preparation of Intermediate i-2


A mixture of i-1 (0.0185 mol) in ethanol (60 ml) and H2SO4 36N (5 ml) was stirred and refluxed for 24 hours. The solvent was evaporated. The residue was taken up in CH2Cl2. The organic layer was washed with a solution of K2CO3 10% in water, dried over magnesium sulfate, filtered and the solvent was evaporated, yielding 32 g of i-2 (89%). This crude fraction was used directly in the next step.


Preparation of Intermediate i-3


A mixture of i-2 (0.0144 mol) and BrCN (0.0158 mol) in ethanol (30 ml) was stirred and refluxed for 2 hours. The solvent was evaporated. The residue was taken up in K2CO3 10% in water, extracted with CH2Cl2/methanol. The organic layer was separated, dried over magnesium sulfate, filtered and the solvent was evaporated, yielding 2.3 g of i-3 (73%). This crude fraction was used directly in the next step.


Preparation of Intermediate i-5


A mixture of c-3 (0.0095 mol), i-4 (0.0115 mol) and K2003 (0.0335 mol) in dimethylformamide (50 ml) was stirred at 70° C. for 12 hours, then cooled to room temperature and taken up in 2-propanone. The precipitate was filtered and washed with 2-propanone. The filtrate was evaporated. The residue (4.5 g) was crystallized from CH2Cl2/methanol. The precipitate was filtered off and dried, yielding 2.4 g of c-5 (74%, melting point >250° C.).


Preparation of Intermediate i-6


LiAlH4 (0.0106 mol) was added portion wise at 5° C. to a mixture of i-5 (0.0052 mol) in THF (50 ml) under nitrogen flow. The reaction was stirred at 5° C. for 30 minutes then at room temperature for 6 hours. Water was added carefully. The mixture was filtered through a pad of celite. The pad was washed with water, then with THF. The filtrate was evaporated. The residue was taken up in CH2Cl2/metlanol. The organic layer was separated, dried over magnesium sulfate, filtered and the solvent was evaporated, yielding 1.7 g of i-6 (100%).


Preparation of Intermediate i-7


MnO2 (4 g) was added portion wise at room temperature to a mixture of i-6 (0.0013 mol) in CH2Cl2 (20 ml) and methanol (2 ml). The reaction was stirred at room temperature for 30 minutes, and then filtered through a pad of celite. The pad was washed with CH2Cl2/methanol. The filtrate was evaporated, yielding 0.5 g of i-7 (69%).


Preparation of Compound i-8


A mixture of i-7 (0.0006 mol), m-methylaniline (0.0008 mol), supported cyanoborohydride (0.001 mol) and acetic acid (6 drops) in methanol (20 ml) was stirred at room temperature for 48 hours, then filtered and washed with CH2Cl2/methanol. The filtrate was evaporated. The residue (0.32 g) was purified by column chromatography over silica gel (eluent CH2Cl2/methanol/NH4OH 90/10/0.5; 10 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.054 g, 31%) was crystallized from diethyl ether. The precipitate was filtered off and dried, yielding 0.036 g (21%) of 2-[2-amino-4-methyl-6(m-tolylamino-methyl)-benzoimidazol-1-ylmethyl]-6-methyl-pyridin-3-ol.


Example 10
Synthesis of Aminoalkyl Substituted Benzimidazole-2-Amines



embedded image



Preparation of Intermediate j-2


Diethylcyanomethyl phosphonate (0.0021 mol) was added drop wise at 5° C. to a solution of NaH (0.0043 mol) in THF (10 ml) under nitrogen flow. The mixture was stirred at 5° C. for 30 minutes under nitrogen flow. j-1 (0.0007 mol) was added portion wise. The mixture was stirred at 5° C. for 1 hour, and then stirred at room temperature for 12 hours and poured onto ice. The aqueous layer was saturated with K2CO3 and extracted with CH2Cl2/methanol. The organic layer was separated, dried over magnesium sulfate, filtered and the solvent was evaporated, yielding 0.5 g of j-2 (100%). This crude product was used directly in the next reaction step.


Preparation of Intermediate j-3


A mixture of j-2 (0.0007 mol) and Pd/C (0.1 g) in methanol (20 ml) was hydrogenated at room temperature for 12 hours under a 3 bar pressure, and then filtered through a pad of celite. The pad was washed with methanol. The filtrate was evaporated. The residue was purified by coliumn chromatography over silica gel (eluent: CH2Cl2/methanol/NH4OH 90/10/0.5; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.25 g, 100%) was crystallized from CH3CN/diisopropyl ether. The precipitate was filtered off and dried, yielding 0.055 g of j-3 (25%, compound 198, melting point 242° C.).


Preparation of Compound j4


A mixture of j-3 (0.0006 mol) and Raney Nickel (0.2 g) in methanol/NH3 7N (30 ml) was hydrogenated at room temperature for 12 hours under a 3 bar pressure, and then filtered through a pad of celite. The pad was washed with methanol. The filtrate was evaporated. The residue was dissolved in isopropanol/HCl and converted into the hydrochloric acid salt. The precipitate was filtered off and dried, yielding 0.058 g of j-4 (22%, compound 196, melting point 195° C.).


Example 11
Synthesis of Dimethyl Substituted Benzimidazole-2-Amines



embedded image


A mixture of k-1 (0.031 mol), k-2 (0.0372 mol) and K2CO3 (0.0183 mol) in dimethylformamide (150 ml) was stirred at 70° C. for 24 hours. The solvent was evaporated. The residue was taken up in CH2Cl2. The organic layer was washed with water, dried over magnesium sulfate, filtered and the solvent was evaporated. The residue (12 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/methanol/NH4OH 90/10/0.5; 20-45 μm). The pure fractions were collected and the solvent was evaporated. The residue (6.8 g, 78%) was crystallized from CH3CN/diisopropyl ether. The precipitate was filtered off and dried, yielding 0.506 g of k-3 (compound 199, melting point: >260° C.).


Example 12
Synthesis of Phenyl(Hydroxymethyl) Substituted Benzimidazole-2-Amines



embedded image


Bromobenzene (0.0026 mol) was added drop wise to a mixure of magnesium (0.0026 mol) in THF (3 ml) under nitrogen flow. The mixture was stirred at room temperature under nitrogen flow until the magnesium disappeared 1-1 (0.0002 mol) was added portion wise. The mixture was stirred at room temperature for 2 hours. A solution of NH4Cl 10% in water (3 ml) was added drop wise at 0° C. The mixture was extacted with CH2Cl2. The organic layer was separated, dried over magnesium sulfate, filtered and the solvent was evaporated. The residue (0.2 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/methanol/NH4OH 90/10/0.5; 5 μm). The pure fractions were collected and the solvent was evaporated, yielding 0.035 g of 1-2 (compound 197, 36%).


Example 13
Synthesis of 1-(Pyridinylmethyl)-6-Benzoylamido-Benzimidazoles



embedded image


embedded image



Preparation of the Mixture of Intermediates m-3 and m4


m-2 (0.0368 mol) was added to a mixture of m-1 (0.03 mol) and K2CO3 (0.107 mol) in CH3CN (200 ml). The reaction was stirred and refluxed 12 hours. The solvent was evaporated. The residue was taken up in CH2Cl2. The organic layer was washed with water, dried over magnesium sulfte, filtered and the solvent was evaporated, yielding 15.5 g of a mixture of m-3 and m-4 (100%).


Preparation of Intermediates m-5 and m-6


A mixture of m-3 and m-4 (0.03 mol) and Raney Nickel (11 g) in methanol (200 ml) was hydrogenated at room temperature for 1 hour under a 3 bar pressure, and then filtered through a pad of celite. The pad was washed with methanol. The filtrate was evaporated. The residue (12 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/methanol/NH4OH 97/3/0.1; 20-45 μm). The pure fractions were collected and the solvent was evaporated, yielding 5 g of m-5 (48%) and 4.8 g of m-6 (45%).


Preparation of Intermediate m-7


Benzoic acid (0.0005 mol) was added at room temperature to a mixture of m-5 (0.0005 mol) and 1-(3-dinethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.0006 mol) in CH2Cl2 (5 ml). The reaction was stied at room temperature for 12 hours and poured into water. The organic layer was separated, dried over magnesium sulfate, filtered and the solvent was evaporated, yielding: 0.27 g of m-7 (100%). The crude compound was used in the next reaction step.


Preparation of Compound m-8


A mixture of m-7 (0.0005 mol) and Pd/C (0.05 g) in methanol (30 ml) was hydrogenated at room temperature for 8 hours under a 5 bar pressure, and then filtered through a pad of celite. The pad was washed with methanol. The filtrate was evaporated. The residue (0.42 g) was purified by column chromatography (eluent CH2Cl2/methanol/NH4OH 95/5/0.5; 10 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.09 g, 43%) was crystallized from ethanol. The precipitate was filtered off and dried, yielding 0.057 g of m-8 (27%, compound 198, melting point: >250° C.).


Example 14
Synthesis of 1-(Pyridylmethyl) 5-and 6-Formyl-Benzimidazoles



embedded image


embedded image



Preparation of the Mixture of Intermediates n-3 and n-4


A mixture of n-1 (0.0708 mol), n-2 (0.077 mol) and K2CO3 (0.02455 mol) in dimethylformamide (130 ml) was stirred at 70° C. for 24 hours. The solvent was evaporated. The residue was taken up in CH2Cl2. The organic layer was washed with water, dried over magnesium sulfate, filtered and the solvent was evaporated. The residue was taken up in acetone. The precipitate was filtered off and dried, yielding 16.2 g of a mixture of n-3 and n-4 (74%).


Preparation of Intermediates n-5 and n-6


LiAlH4 (0.052 mol) was added portion wise at 5° C. to a mixture of n-5 and n-6 (0.026 mol) in THF (160 ml) under nitrogen flow. The reaction was stirred at 5° C. for 2 hours. Ethyl acetate and water were added carefully. The mixture was filtered through a pad of celite. The pad was washed with water, then with THF. The filtrate was evaporated. The residue was taken-up in CH2Cl2/methanol. The organic layer was separated, dried over magnesium sulfate, filtered and the solvent was evaporated, yielding 13 g of the mixture of n-5 and n-6 (92%). The two compounds were separated by column chromatography over silica gel (eluent: CH2Cl2/methanol/NH4OH 90/10/0.5; 10 μm).


Preparation of Intermediate n-7


MnO2 (36 g) was added to a mixture of n-5 (0.014 mol) in CH2Cl2/THF (400 ml) and methanol (20 ml). The reaction was stirred at room temperature for 3 hours, and then filtered through a pad of celite. The pad was washed with CH2Cl2/methanol. The filtrate was evaporated, yielding 3.5 g of n-7 (93%). This product was used directly in the next reaction step.


Preparation of Intermediate n-9


Diethylcyanomethyl phosphonate (0.0033 mol) was added drop wise at 5° C. to a mixture of NaH (0.0011 mol) in THF (15 ml) under nitrogen flow. The mixture was stirred at 5° C. for 30 minutes under nitrogen flow. A solution of n-7 (0.0011 mol) in THF (15 ml) was added drop wise at 5° C. The reaction was stirred at 5° C. for 1 hour, and then at room temperature for 2 hours and poured into water. The aqueous layer was saturated with K2CO3 and extrcted with ethylacetate/methanol. The organic layer was separated, dried over magnesium ulphate, filtered and the solvent was evaporated, yielding 1 g of n-9 (100%, compound 189, melting point: >250° C., mixture E/Z (90/10)).


Preparation of Intermediate n-10


A mixture of n-9 (0.0007 mol) and Pd/C (0.1 g) in methanol (15 ml) was hydrogenated at room temperature for 12 hours under a 3 bar pressure, and then filtered through a pad of celite. The pad was washed with methanol. The filtrate was evaporated, yielding 0.2 g of n-10 (91%). This crude product was used directly in the next reaction step.


Preparation of compound n-11


A mixture of n-10 (0.0006 mol) and Raney Nickel (0.2 g) in methanol/NH3 7N (20 ml) was hydrogenated at room temperature for 4 hours under a 3 bar pressure, and then filtered through a pad of celite. The pad was washed with methanol. The filtrate was evaporated. The residue (0.33 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/methanol/NH4OH 85/14/1; 15-35 μm), yielding 0.128 g of the free base of n-11 (72%). The compound was dissolved in CH3CN and converted into the ethanedioic acid salt. The precipitate was filtered off and dried, yielding 0.031 g of n-11 (10%, compound 188, melting point 205° C.).


Example 15
Synthesis of 1-(Pyridylmethyl)-6-Aminomethylbenzimidazoles



embedded image


Meta-chloroaniline (0.000224 mol) was added to solution of o-1 (0.187 mmol) in methanol (5 ml). Acetic acid (1 drops) and cyano borohydride on solid support (0.224 mmol) were then added. The reaction was carried out at room temperature for 48 hours. The supported reagent was filtered off. The solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent CH2Cl2/CH3OH/NH4OH 90/10/0.5; 10 μm). The pure fractions were collected and the solvent was evaporated, yielding 0.044 g (62%, compound 186) of 2-{6-[(3-chloro-phenylamino)-methyl]-benzoimidazol-1-ylmethyl}-6-methyl-pyridin-3-ol.


Example 16
Synthesis of 1-(Pyridylmethyl)-6-Aminomethyl-Benzimidazole-2-Amines



embedded image



Preparation of Intermediates p-3


Intermediate p-3 was prepared from p-1 and p-2 (which is identical to k-2) following the same procedures as for the preparation of k-3.


Preparation of Intermediates p-5 and p-6


LiAlH4 (0.0198 mol) was added portion wise to a solution of p-3 and p-4 (0.00494 mol; intermediates prepared analogous to intermediates c-3 and c-4) in tetrahydrofuran (50 ml) at 5° C. under N2 flow. The reaction was stirred at 5° C. for 0.5 hour and then at 40° C. for 12 hours. The reaction was cooled down to 5° C. and ethylacetate and water were added drop wise very carefully. The solution was filtered over celite. The pad was rinsed with water and tetrahydrofuran. The solution was saturated with K2CO3 powder and exracted with a mixture CH2Cl2/methanol (90/10). The organic layer was separated, dried (over MgSO4) and evaporated until dryness. The two isomers were isolated by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 90/10/1; 15-40 μm). The pure fractions were collected and the solvent was evaporated, yielding 0.21 g of p-5 (14%, melting point >260° C.) and 0.35 g of p-6 (24%, melting point: >260° C.).


Preparation of Intermediate p-7 and Compound p-8


2-(6-Chloromethyl-2-methylamino-benzoimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol hydrochloride salt (prepared analogous to the preparation of intermediate b-2) was used as starting material to prepare 2-(6-{[(2-hydroxy-ethyl)-m-tolyl-amino]-methyl}-2-methylamino-benzoimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol (compound 188, melting point: 204° C.) in an analogous way to the preparation of compounds of formula b-3.


Example 17
Synthesis of 1-Quinolylmethyl-6-Aminomethylbenzimidazole-2-Amines



embedded image


embedded image



Synthesis of Intermediates q-5 and q-6


These intermediates were synthesized analogous to the procedure described for intermediates c-5 and c-6. The separation of the two isomers was performed by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 9218/0.5; 15-40 μm). The pure fractions were collected and the solvent was evaporated, yielding 0.3 g of (2-amino-3-quinolin-8-ylmethyl-3H-benzoimidazol-5-yl)-methanol (q-5, 18%, compound 222, melting point: 230° C.) and 0.24 g of (2-amino-1-quinolin-8-ylmethyl-1H-benzoimidazol-5-yl)-methanol (q-6, compound 224, 10%, melting point >260° C.).


Preparation of Intermediate q-7 and Compound q-8


6-Chloromethyl-1-quinolin-8-ylmethyl-1H-benzoimidazol-2-ylamine hydrochloride salt (prepared analogous to the preparation of intermediate d-2) was used as starting material to prepare 3-[(2-amino-3-quinolin-8-ylmethyl-3H-benzoimidazol-5-ylmethyl)-m-tolyl-amino]-propan-1-ol (compound 222, melting point: 191° C.) in an analogous way to the preparation of compounds of formula d-3.


Example 18
Synthesis of Bicyclic Intermediates R1—G—W



embedded image


A mixture of 2,3-dimethyl-5,6,7,8-tetrahydro-quinoxaline (0.0198 mol), NBS (0.0198 mol) and benzoyl peroxide (0.0017 mol) in CCl4 (237 ml) was stirred and refluxed for 30 minutes, and then filtered. The filtrate was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH 100/0 and 95/5; 35-70 μm). The pure fractions were collected and the solvent was evaporated. Yield: 2.61 g of intermediate r-2 (55%).


Example 19
Synthesis of Intermediates R1—G—W



embedded image



Synthesis of Intermediate s-2


NaH (0.054 mol) was added portion wise at 5° C. under N2 flow to mixture of 1H-benzoimidazole-4-carboxylic acid ethyl ester (0.045 mol) in DMF (50 ml). The mixture was stirred at 0° C. under N2 flow for 1 hour. CH3I (0.045 mol) was added drop wise at 0° C. under N2 flow. The mixture was stirred at room temperatre under N2 flow for 2 hours, hydrolyzed with ice water and extracted with CH2Cl2. The organic layer was separated, washed several times with H2O, dried (over MgSO4), filtered and the solvent was evaporated. The residue (10.5 g) was purified by column chromatography over silica gel (eluent CH2Cl2/CH3OH 97/3; 20-45 μm). Two pure fractions were collected and their solvents were evaporated Yield: 7 g of intermediate s-2 (76%, melting point: 86° C.).


Synthesis of Intermediate s-3


LiAlH4 (0.0342 mol) was suspended portion wise at 0° C. under N2 flow in THF (100 ml). A solution of s-2 (0.0342 mol) in a small amount of THF was added drop wise at 0° C. under N2 flow. The mixture was stirred at 0° C. for 2 hours, hydrolyzed with EtOAc and H2O, decanted and extracted with EtOAc. The organic layer was separated, washed with H2O, dried (over MgSO4), filtered and the solvent was evaporated. The residue (4.3 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97/3/0.1; 15-40 μm). The desired fractions were collected and the solvent was evaporated. Yield. 2.6 g of intermediate s-3 (47%, melting point 116° C.).


Synthesis of Intermediate s-4


SOCl2 (0.0222 mol) was added drop wise at 5° C. to a solution of s-3 (0.0148 mol) in CH2Cl2 (70 ml). The mixture was stirred at room temperature for 2 hours, poured on ice, basified with K2CO3 10% and extracted with CH2Cl2. The organic layer was separated, washed with H2O, dried (over MgSO4), filtered and the solvent was evaporated. Yield: 2.8 g of intermediate s-4 (100%). The product was used without further purification.


Example 20
Synthesis of 1-Substituted Benzimidazole-2-Amines



embedded image


embedded image


A mixture of t-1 (0.005 mol), t-2 (0.0059 mol) and K2CO3 (0.0074 mol) in DMF (25 ml) was stirred at room temperature for 24 hours, poured on ice, saturated with K2CO3 (powder) and extracted with CH2Cl2. The organic layer was separated, dried (over MgSO4), filtered and the solvent was evaporated until dryness. The residue (2 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 89/10/0.1; 15-40μm). The pure fractions were collected and the solvent was evaporated. Yield: 1.285 g of the mixture t-3+t-4 (50/50, 70%).


LiAlH4 (0.007 mol) was added portion wise to a mixture of t-3+t-4 (0.0035 mol) in THF (30 ml) under N2 flow. The mixture was stirred at 5° C. for 30 minutes under N2 flow, and then stirred at room temperature for 2 hours. H2O (10 ml) was added. The mixture was filtered over celite. Celite was washed with CH2Cl2/CH3OH (50/50). The filtrate was evaporated. The residue (1.1 g) was purified by column chromatography over silica gel (eluent CH2Cl2/CH3OH/NH4OH 88/12/1; 15-40 μm). Two fractions were collected and the solvent was evaporated. Yield. 0.15 g of t-5 (13%) and 0.115 g of t-6 (10%).


A mixture of t-5 (0.0004 mol) and MnO2 (1.5 g) in CH2Cl2 (40 ml) was stirred at room temperature for 4 hours, and then filtered over celite. Celite was washed with CH2Cl2. The filtrate was evaporated. The residue (0.16 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 94/6/0-5; 10 μm). The pure fractions were collected and the solvent was evaporated, yielding: 0.059 g of t-7 (40%).


Example 21
Synthesis of 1 -Bicyclyl-6-Substituted Benzimidazole-2-Amines



embedded image


A mixture of u-1 (0.0001 mol), u-2 (0.0002 mol), BH3CN— on solid support (0.0002 mol) and CH3CO2H (3 drops) in CH3OH (10 ml) was stirred at room temperature for 12 hours. The solvent was evaporated until dryness. The residue was taken up in CH2Cl2/CH3OH. The mixture was basified with K2CO3 10%, saturated with K2CO3 (powder) and extracted with CH2Cl2. The organic layer was separated, dried (over MgSO4), filtered and the solvent was evaporated until dryness. The residue was crystallized from 2-propanone/Diisopropylether. The precipitate was filtered off and dried, yielding: 0.042 g of u-3 (49%, compound 206, melting point: 165° C.).


Example 22
Synthesis of 1-[(4-Benzimidazolyl)Methyl-5-Formyl-Benzimidazole-2-Amines



embedded image


The mixture of intermediates v-3+v-4 (50/50, 93%, melting point: 144° C.) was synthesized according to the procedure described for the mixture of intermediates t-3+t4.


Compounds v-5 (33%, compound 223, melting point 258° C.) and v-6 (35%, melting point 260° C.) were synthesized according to the procedure described for intermediates t-5 and t-6.


Compound v-7 (81%) was synthesized according to the procedure described for intermediate t-7.


Final compound v-9 (28%, compound 211, melting point: 174° C.) was synthesized according to the procedure described for final compound u-3.


Example 23
Synthesis of 1-Quinolonylmethyl-Benzimidazole-2-Amines



embedded image


embedded image


Intermediate w-2 is identical to intermediate q-2.


The mixture of intermediates w-3+w-4 (50/50, 32%) was synthesized according to the procedure described for the mixture of intermediates t-3+t4.


Intermediates w-5 (18%, melting point: 230° C.) and w-6 (10%, melting point: >260° C.) have been synthesized according to the procedure described for intermediates t-5 and t-6.


Intermediate w-7 (81%) was synthesized according to the procedure described for intermediate t-7.


Example 24
Synthesis of 1-Qinolonyhnethyl-6-Phenylaminomethyl-Benzimidazole-2-Amines



embedded image


Final compound x-2 (26%, compound 214, melting point: 194° C.) was synthesized according to the procedure described for final compounds u-3.


Example 25
Synthesis of 1 -Pyridylmethyl-6-Phenylaminomethyl-Benzimidazole-2-Amines



embedded image


The mixture of intermediates y-3 and y-4 (50/50, 57%) was synthesized according to the procedure described for the mixture of intermediates t-3 and t4.


Intermediates y-5 (12%) and y-6 (9%) were synthesized according to the procedure descrbied for intermediates t-5 and t-6.


Intermediate y-7 (91%) was synthesized according to the procedure described for intermediate t-7.


Final compound y-9 (30%, compound 209, melting point: 212° C.) was synthesized according to the procedure described for final compounds u-3.


Example 26
Synthesis of (6-Bromo-1-Pyridyl)Methyl 5- and 6-Aminomethyl-Benzimidazole-2-Amines



embedded image


embedded image


The mixture of intermediates z-3+z-4 (50/50, 40%) was synthesized according to the procedure described for the mixture of intermediates t-3+t4.


Intermediates z-5 (18%, compoumd 226, melting point 221° C.) and z-6 (16%, compound 227, melting point: 230° C.) have been synthesized according to the procedure described for intermediates t-5 and t-6.


Intermediate z-7 (80%) was synthesized according to the procedure described for intermediate t-7.


Final compound z-10 (48%, compound 212, melting point: 158° C.) was synthesized according to the procedure described for final compounds u-3.


Example 27



embedded image


embedded image


The mixture of intermediates aa-3+aa-4 (50/50, 35%) was synthesized according to the procedure described for the mixture of intermediates t-3+t4.


Intermediates aa-5 (24%) and aa-6 (18%) have been synthesized according to the procedure described for intermediates t-5 and t-6.


Intermediate aa-7 (100%) was synthesized according to the procedure described for intermediate t-7.


Example 28



embedded image


Final compound ab-3 (43%, compound 217, melting point 175° C.) was synthesized according to the procedure described for final compounds u-3.


Example 29



embedded image


embedded image


The mix of intermediates ac-3+ac-4 (50/50, 46%, melting point: 193° C.) was synthesized according to the procedure described for the mixture of intermediates t-3+t4.


Intermediates ac-5 (33%, compound 236, melting point 202° C.) and ac-6 (21%, compound 237, melting point >260° C.) have been synthesized according to the procedure described for intermediates t-5 and t-6.


Intermediate ac-7 (100%) was synthesized according to the procedure described for intermediate t-7.


Example 30



embedded image


Final compound ad-2 (46%, compound 219, melting point 179° C.) was synthesized according to the procedure described for final compounds o-5.


The compounds listed in the following tables were prepared analogous to one of the above exemplified synthesis schemes. The tables include physicochemical data such as mass spectral data (MH+) and/or melting point Any radical depicted in these tables is connected to the remainder of the molecule by the ‘open’ bond, i.e. that bond that at one side has no radical).

TABLE 1embedded imageComp.MeltingSynthesisNo.RActivityMH+pointSalt formscheme1embedded image8.6374234° C.A2embedded image8.6428250° C.A3embedded image8.6438A4embedded image8.6444156° C.A5embedded image8.5394A6embedded image8.5384200° C.A7embedded image8.5390140° C. (gum)acetateA8embedded image8.5374120° C. (gum)acetateA9embedded image8.4388228° C.A10embedded image8.4439188° C.A11embedded image8.4390212° C.A12embedded image8.4388130° C. (gum)acetateA13embedded image8.4385A14embedded image8.3448252° C.A15embedded image8.3406188° C.A16embedded image8.3402A17embedded image8.1416A18embedded image8.0388A19embedded image8.0388A20embedded image8.0438A21embedded image7.9360>250° C.A22embedded image7.9378A23embedded image7.9388A24embedded image7.9404A25embedded image7.9385A26embedded image7.9390A27embedded image7.9453A28embedded image7.8408A29embedded image7.8408A30embedded image7.8460A31embedded image7.8388A32embedded image7.8402A33embedded image7.8468A34embedded image7.7420A35embedded image7.7417A36embedded image7.7400A37embedded image7.7506A38embedded image7.7416A39embedded image7.7403A40embedded image7.7378A41embedded image7.7402A42embedded image7.6402A43embedded image7.6418A44embedded image7.6411A45embedded image7.6446A46embedded image7.6418A47embedded image7.6495A48embedded image7.6428A49embedded image7.5396A50embedded image7.5452A51embedded image7.5496A52embedded image7.5466A53embedded image7.5417A54embedded image7.5438A55embedded image7.4396A56embedded image7.4452A57embedded image7.4458A58embedded image7.4436100° C. (gum)acetateA59embedded image7.3432A60embedded image7.3392A61embedded image7.3420A62embedded image7.3506A63embedded image7.3456A64embedded image7.3476A65embedded image7.3408A66embedded image7.3396A67embedded image7.3374A68embedded image7.2432A69embedded image7.2402A70embedded image7.2416A71embedded image7.1452A72embedded image7.1444A73embedded image7.1388182° C.A74embedded image7.1496A75embedded image7406A76embedded image6.8472A77embedded image6.8466A78embedded image6.6472A79embedded image6.4450A80embedded image6.2556A81embedded image9.4404155° C.A82embedded image10.3418245° C.F83embedded image9.1388213° C.A84embedded image9418323° C.A85embedded image8.4403204° C.A86embedded image8.4404252° C.A87embedded image8.2404170° C.A88embedded image7.8404172° C.A89embedded image10.6429240° C.F90embedded image10.5432248° C.E91embedded image10.5434A92embedded image10.4428252° C.G93embedded image10482F94embedded image10432207° C.F95embedded image10452-454231° C.A96embedded image9.9448226° C.E97embedded image9.8434F98embedded image9.6418126° C.E99embedded image9.6486205° C.E100embedded image9.6482>260° C.H101embedded image9.5446228° C.E102embedded image9.4422F103embedded image9.3446198° C.F104embedded image9.3430246° C.A105embedded image9.2433A106embedded image8.5431220° C.A107embedded image8.4482F108embedded image8473148° C.A109embedded image8447F110embedded image7.8404>250° C.HClA111embedded image9.3446241° C.A112embedded image9.4445236° C.A113embedded image>9.6430246° C.A114embedded image9.2499205° C.A115embedded image>9.6472216° C.F









TABLE 2















embedded image





















Melting



Comp.

Act-

point
sSynthesis


No.
R
ivity
MH+
(° C.)
scheme























116


embedded image


7.0
360

A





117


embedded image


6.8
388

A





118


embedded image


6.4
402

A





119


embedded image


6.4
388

A





120


embedded image


6.4
374
212
A





121


embedded image


5.8
428

A





122


embedded image


<4.0
394

A





123


embedded image


<4.0
411

A





124


embedded image


<4.0
378

A





125


embedded image


<4.0
388

A





126


embedded image


<4.0
438
205
A





127


embedded image


<4.0
384
205
A









Compound Prepared According to Scheme E

embedded imageComp. No.Activity categoryMH+Melting point (° C.)1286.9522129









TABLE 3










compounds prepared according to scheme B




embedded image


















Comp.




Melting



No.
R1
R2
Activity
MH+
point (° C.)
Salt














129


embedded image




embedded image


9.3
418
210





130


embedded image




embedded image


8.6
404
175





131


embedded image




embedded image


8.4
417
200 (gum)
HCl





132


embedded image




embedded image


7.9
445
190





133


embedded image




embedded image


7.5
450
220





134


embedded image




embedded image


9.2
432
 90 (gum)





135


embedded image




embedded image


7.7
418
158





136


embedded image




embedded image


8.6
487
245





137


embedded image




embedded image


9.6
509
245





138


embedded image




embedded image


9.4
459
180 (gum)
HCl





139


embedded image




embedded image


9.4
510
120 (gum)





140


embedded image




embedded image


9.4
523
155
HCl





141


embedded image




embedded image


9.3
482
225





142


embedded image




embedded image


9.3
487
195





143


embedded image




embedded image


9.3
509
120 (gum)





144


embedded image




embedded image


9.2
445
222





145


embedded image




embedded image


9.2
428
210





146


embedded image




embedded image


9.1
446
 80 (gum)





147


embedded image




embedded image


9.0
429
>260  





148


embedded image




embedded image


8.7
496
120 (gum)





149


embedded image




embedded image


8.6
474
190





150


embedded image




embedded image


8.6
501
164





151


embedded image




embedded image


8.6
488
138





152


embedded image




embedded image


8.6
474
170
HCl





153


embedded image




embedded image


8.6
470
248





154


embedded image




embedded image


8.5
445
224





155


embedded image




embedded image


8.4
443
252





156


embedded image




embedded image


8.4
456
>260  





157


embedded image




embedded image


8.3
460
185 (gum)
HCl





158


embedded image




embedded image


8.3
483
>260  





159


embedded image




embedded image


8.2
422
165





160


embedded image




embedded image


8.1
517
184





161


embedded image




embedded image


8.1
446
165





162


embedded image




embedded image


8.0
448
175





163


embedded image




embedded image


7.9
447
240





164


embedded image




embedded image


7.8
447
230





165


embedded image




embedded image


7.6
418
208





166


embedded image


—CH3
6.8
418
210





167


embedded image


—(CH2)2—CO—NH2
9.4
499
>260  





168


embedded image


—(CH2)3—SO2—NH2
9.3
495
130 (gum)





169


embedded image




embedded image


9.2
460
232





170


embedded image




embedded image


9.2
446
228





171


embedded image




embedded image


8.9
462
166
HCl





172


embedded image




embedded image


8.8
459
165 (gum)
HCl





173


embedded image




embedded image


8.6
474
227





174


embedded image




embedded image


8.6
538
170
HCl





175


embedded image


—(CH2)2—OH
8.5
455
244





176


embedded image




embedded image


8.3
454
160 (gum)





177


embedded image




embedded image


8.2
459
224





178


embedded image


—(CH2)2—OH
7.8
460
175 (gum)
HCl





179


embedded image


—(CH2)2—OH
7.6
446
232





180


embedded image




embedded image


9.3
448
185





181


embedded image




embedded image


8.5
538
 80 (gum)





182


embedded image




embedded image


8.3
482
205
HCl
















TABLE 3b















embedded image
















Comp.


Melting



No.
Activity
MH+
point (° C.)
Salt













183
7.4
442
>250
















TABLE 4















embedded image


















Comp.



Melting

Synthesis


No.
R
Activity
MH+
point (° C.)
Salt form
scheme














184


embedded image


6.7
373


O





185


embedded image


6.1
413


O





186


embedded image


5.8
379


I





187


embedded image


5.7
373


O





188


embedded image


5.1
297
205
oxalate
N





189


embedded image


4.8
291
>250  

N





190


embedded image


<4.0  
359
>250  

M





191


embedded image


7.9
417
221

O





192


embedded image


7.8
403
235

O





193


embedded image


6.3
403
196

O
















TABLE 5a















embedded image



















Comp.





Melting
Synthesis


No.
R2
R3
R4
Activity
MH+
point/salt
scheme















194


embedded image


—CH3
—NH2
7.9
388
252° C.
I





195


embedded image


H
—NH—CH3
7.8
432
204° C.
P





196
5-[-(CH2)3—NH2]
H
—NH2
7.7
312
195° C./HCl
J





197


embedded image


H
—NH2
7.2
361

L





198
5-[-(CH2)2—CN]
H
—NH2
6.8
308
242° C.
J


199
5-[—CH3]
—CH3
—NH2
6.8
283
>260° C.  
K


200
5-[—CH2—OH]
H
—NH—CH3
4.9
299
>260° C.  
P





201


embedded image


H
—NH2
<4.0  
359
>260° C.  
J





202
6-[CH2—OH]
H
—NH—CH3
<4.0  
299
>260° C.  
P





203


embedded image


H
—NH2
<4.0  
361
221° C.
L





204


embedded image


H
—NH—CH3
6.9
432
188° C.
P
















TABLE 5b















embedded image


















Comp.




Melting
Synthesis


No.
R1
R2
Activity
MH+
point/salt
scheme














205


embedded image




embedded image


7.3
452
191° C.
Q





206


embedded image




embedded image


8.7
471
165° C.
U





207


embedded image




embedded image


8.4
485
161° C.
U





208


embedded image




embedded image


7.9
452
194° C.
X





209


embedded image




embedded image


7.8
446
212° C.
Y





210


embedded image




embedded image


7.8
451
>260° C.  
V





211


embedded image




embedded image


7.6
455
174° C.
V





212


embedded image




embedded image


7.5
480
158° C.
Z





213


embedded image




embedded image


7.4
529
230° C.
Q





214


embedded image




embedded image


7.3
452
191° C.
X





215


embedded image




embedded image


6.9
466

Z





216


embedded image




embedded image


6.5
471
118° C.
U





217


embedded image




embedded image


6.2
431
175° C.
AB





218


embedded image




embedded image


6.1
445
176° C.
AB





219


embedded image




embedded image


5.3
419
179° C.
AD





220


embedded image




embedded image


4.8
479

Z





221


embedded image




embedded image


<4.5  
445
172° C.
AB





222


embedded image


5-(CH2—OH)
4.4
305
230° C.
Q





223


embedded image


5-(CH2—OH)
<4   
308
258° C.
V





224


embedded image


6-(CH2—OH)
<4   
305
>260° C.  
Q





225


embedded image




embedded image


<4   
452

Q





226


embedded image


5-(CH2—OH)
<4   
333
221° C.
Z





227


embedded image


6-(CH2—OH)
<4   
333
230° C.
Z





228


embedded image




embedded image


<4   
480
140° C.
Z





229


embedded image




embedded image


<4   
466

Z





230


embedded image




embedded image


<4   
436

Z





231


embedded image




embedded image


<4   
422

Z





232


embedded image




embedded image


<4   
521

Z





233


embedded image


6-(CH2—OH)
<4   
308
260° C.
V





234


embedded image




embedded image


<4   
446
179° C.
Y





235


embedded image




embedded image


<4   
455
250° C.
V





236


embedded image


5-(CH2—OH)
<4   
272
202° C.
AD





237


embedded image


6-(CH2—OH)
<4   
272
>260° C.  
AD





238


embedded image




embedded image


7.7
467
144° C.
U





239


embedded image




embedded image


8.2
525
228° C.
U





240


embedded image




embedded image


6.6
504

Y
















TABLE 6















embedded image



















Comp.




Melting
Synthesis



No.
R1
R2
Activity
MH+
point
scheme
Salt form















241
H


embedded image


4.5
394

O





242
H


embedded image


4.2
373

M





243
H


embedded image


4.2
376

O





244
H


embedded image


4.2
373
215° C.
M





245
H


embedded image


4.2
409
144° C.
M





246
H
—CH2—OH
<4.0  
270
181° C.
N


247
—CH2—OH
H
<4.0  
270
234° C.
N





248


embedded image


H
<4.0  
342
>260° C.  
N





249
H


embedded image


<4.0  
342
248° C.
N





250
H


embedded image


<4.0  
344
191° C.
N





251


embedded image


H
<4.0  
344
−225° C.  
N





252
H
—CH═CH—CN
<4.0  
291
241° C.
N





253
H


embedded image


<4.0  
373
166° C.
O





254


embedded image


H
<4.0  
396
240° C.
O
HCl





255
H


embedded image


<4.0  
340
>260° C.  
O





256
H


embedded image


<4.0  
297
180° C.
N





257


embedded image


H
<4.0  
373
 96° C.
O





258
H


embedded image


<4.0  
396
>250° C.  
O
HCl





259
H
—NH2
<4.0  
255
248° C.
M





260
H


embedded image


<4.0  
341
120° C.
O





261
—NH2
H
<4.0  
255
>250° C.  
M





262
H


embedded image


<4.0  
352
210° C.
O
HCl





263


embedded image


H
<4.0  
442
182° C.
O





264


embedded image


H
<4.0  
373
>250° C.  
M





265
H


embedded image


<4.0  
359
184° C.
O





266
H


embedded image


<4.0  
359
168° C.
O





267
H


embedded image


<4.0  
366
>250° C.  
M





268


embedded image


H
<4.0  
346
150° C.
I





269
H


embedded image


<4.0  
327

O





270
H


embedded image


<4.0  
360

O





271
H


embedded image


<4.0  
349

O





272
H


embedded image


<4.0  
387

O





273
H


embedded image


<4.0  
374
172° C.
I
oxalate





274
H


embedded image


<4.0  
346
170° C.
I
oxalate





275


embedded image


H
<4.0  
373
170° C.
M





276


embedded image


H
<4.0  
374
175° C.
M





277


embedded image


H
<4.0  
387
255° C.
M





278


embedded image


H
<4.0  
360
>260° C.  
M





279
H


embedded image


<4.0  
360
>260° C.  
M





280
H


embedded image


<4.0  
387
225° C.
M





281
H


embedded image


<4.0  
374
190° C.
M





282


embedded image


H
<4.0  
387

O





283


embedded image


H
<4.0  
296

O





284


embedded image


H
<4.0  
373

O





285


embedded image


H
<4.0  
345

O





286
H


embedded image


<4.0  
387

O





287
H


embedded image


<4.0  
423

O





288
H


embedded image


<4.0  
379

O





289
H


embedded image


<4.0  
373

O





290
H


embedded image


<4.0  
413

O





291
H


embedded image


<4.0  
396

O





292
H


embedded image


<4.0  
369

O





293
H


embedded image


<4.0  
363

O





294
H


embedded image


<4.0  
373

O





295
H


embedded image


<4.0  
373

O





296
H


embedded image


<4.0  
345

O









Example 31
In vitro Screening of Compounds of Formula (I) for Activity Against RSV

The percent protecton against cytopathology caused by viruses (antiviral activity or EC50) achieved by -tested compounds and their cytotoxicity (CC50) are both calculated from dose-response curves. The selectivity of the antiviral effect is represented by the selectivity index (SI), calculated by dividing the CC50 (cytotoxic dose for 50% of the cells) by the EC50 (antiviral activity for 50% of the cells). The tables in the above experimental part list the category to which each of the prepared compounds belong. Compounds belonging to activity category “A” have a pEC50 (—log of EC50 when expressed in molar units) equal to or more than 7. Compounds belonging to activity category “B” have a pEC50 value between 6 and 7. Compounds belonging to activity category “C” have a pEC50 value equal to or below 6.


Automated tetrazolium-based colorimetric assays were used for determination of EC50 and CC50 of test compounds. Flat-bottm, 96-well plastic microtiter trays were filled with 180 μl of Eagle's Basal Medium, supplemented with 5% FCS (0% for FLU) and 20 mM Hepes buffer. Subsequently, stock solutions (7.8× final test concentration) of compounds were added in 45 μl volumes to a series of triplicate wells so as to allow simultaneous evaluation of their effects on virus- and mock-infected cells. Five five-fold dilutions were made directly in the microtiter trays using a robot system. Untreated virus controls, and HeLa cell controls were included in each test. Approximately 100 TCID50 of Respiratory Syncytial Virus was added to two of the three rows in a volume of 50 μl. The same volume of medium was added to the third row to measure the cytotoxicity of the compounds at the same concentrations as those used to measure the antiviral activity. After two hours of incubation, a suspension (4×105 cells/ml) of HeLa cells was added to all wells in a volume of 50 μl. The cultures were incubated at 37° C. in a 5% CO2 atmosphere. Seven days after infection the cytotoxicity and the antiviral activity was examined spectrophotometrically. To each well of the microtiter tray, 25 μl of a solution of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was added. The trays were further incubated at 37° C. for 2 hours, after which the medium was removed from each cup. Solubilization of the formazan crystals was achieved by adding 100 μl 2-propanol. Complete dissolution of the formazan crystals were obtained after the trays have been placed on a plate shaker for 10 min. Finally, the absorbances were read in an eight-channel computer-controlled photometer (Multiskan MCC, Flow Laboratories) at two wavelengths (540 and 690 nm). The absorbance measured at 690 nm was automatically subtracted from the absorbance at 540 nm, so as to eliminate the effects of non-specific absorption.


The percent protection against cytopathology caused by viruses (antiviral activity or EC50 ) achieved by tested compounds and their cytotoxicity (CC50) were both calculated from dose-response curves. The selectivity of the antiviral effect is represented by the selectivity index (SI), calculated by dividing the CC50 (cytotoxic dose for 50% of the cells) by the EC50 (antiviral activity for 50% of the cells).

Claims
  • 1. A compound having the formula
  • 2. A compound according to claim 1 wherein the compound has the formula:
  • 3. A compound according to claim 1 wherein the compound has the formula:
  • 4. A compound according to claim 1 wherein the compound has the formula:
  • 5. A compound according to claim 1 wherein the compound has the formula:
  • 6. A compound according to claim 1 wherein the compound has the formula:
  • 7. A compound according to claim 1 wherein the compound has the formula:
  • 8. A compound according to claim 4, wherein Alk is methylene.
  • 9. A compound according to claim 4, wherein R9, R10, R11 are selected from halo, cyano, C1-6alkyl, Het-C1-6alkyl, Ar1-C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, R6b—O—C3-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C3-6alkynyl, Ar1, Het, R6b—O—, R6b—S—, R6c—SO—, R6c—SO2—, R6b—O—C1-6alkyl-SO2—, —N(R6aR6b), CF3, R6c—C(═O)—, R6b—O—C(═O)—, N(R6aR6b)—C(═O)—, R6b—O—C1-6alkyl, R6b—S—C1-6alkyl, R6c—S(═O)2—C1-6alkyl, N(R6aR6b)—C1-6alkyl, R6c—C(═O)—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, N(R6aR6b)—C(═O)—C1-6alkyl and R6c—C(═O)—NR6b—, H2N—C(═NH)—.
  • 10. A compound according to claim 4, wherein R9, R10, R11 are selected from C1-6alkyl, Het-C1-6alkyl, Ar1—C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, R6b—O—C3-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C3-6alkynyl, R6b—O—C1-6alkyl, R6b—S—C1-6alkyl, R6c—S(═O)2—C1-6alkyl, N(R6aR6b)—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl and N(R6aR6b)—C(═O)—C1-6alkyl.
  • 11. A compound according to claim 1, wherein R9, R10, R11 are selected from C1-6alkyl, Het-C1-6alkyl, Ar1—C1-6alkyl, cyanoC1-6alkyl, C2-6alkenyl, cyanoC2-6alkenyl, C2-6alkynyl, cyanoC2-6alkynyl, R6b—O—C1-6alkyl, amino-S(═O)2—C1-6alkyl, R6b—O—C(═O)—C1-6alkyl, amino-C(═O)—C1-6alkyl, mono- and diamino-C(═O)—C1-6alkyl.
  • 12. A compound according to claim 4, wherein R9, R10, R11 are C1-6alkyl or R6b—O—C1-6alkyl; and R10 and/or R11 may also be hydrogen.
  • 13. A compound according to claim 1, wherein G is C1-10alkanediyl.
  • 14. A compound according to claim 1, wherein G is methylene.
  • 15. A compound according to claim 1, wherein R1 is Ar1, quinolinyl, benzimidazolyl, a radical of formula
  • 16. A compound according to claim 1, wherein R1 is Ar1, quinolinyl, benzimidazolyl, a radical of formula (c-4) wherein m is 2, pyrazinyl, or pyridyl, wherein each of said Ar1, quinolinyl, benzimidazolyl, radical of formula (c-4), pyrazinyl or pyridyl may optionally be substituted with one, two or three radicals selected from the group consisting of halo, hydroxy, C1-6alkyl, C1-6alkyloxy, Ar1C1-6alkyloxy, (C1-6alkyloxy)C1-6alkyloxy.
  • 17. A compound according to claim 1, wherein R1 is phenyl optionally substituted with one, two or three radicals selected from the group consisting of halo, hydroxy, C1-6alkyl, C1-6alkyloxy; quinolinyl; a radical (c-4) wherein m is 2, optionally substituted with up to two radicals selected from C1-6alkyl; benzimidazolyl optionally substituted with C1-6alkyl; pyridyl optionally substituted with one or two radicals selected from hydroxy, halo, C1-6alkyl, benzyloxy and C1-6alkyloxy, pyrazinyl optionally substituted with up to three radicals selected from C1-6alkyl; or pyridyl substituted or optionally substituted with one or two radicals selected from the group consisting of halo, hydroxy, C1-6alkyl, C1-6alkyloxy, Ar1C1-6alkyloxy, (C1-6alkyloxy)C1-6alkyloxy.
  • 18. A compound according to claim 1, wherein R1 is pyridyl optionally substituted with one or two radicals selected from hydroxy, halo, C1-6alkyl, benzyloxy and C1-6alkyloxy.
  • 19. A compound according to claim 1, wherein R1 is pyridyl optionally substituted with one or two radicals selected from hydroxyl, C1-6alkyl and C1-6alkyloxy.
  • 20. A compound according to claim 1, wherein, where applicable, one of R2a and R3a is selected from —N(R4aR4b), (R4aR4b)N—CO—, C1-6alkyl substituted with one or two substituents selected from hydroxy, cyano, Ar2, Het or —N(R4aR4b) and C2-6alkenyl substituted with cyano or Ar2; and the other one of R2a and R3a is hydrogen; and in case R2a is different from hydrogen then R2b is hydrogen, C1-6alkyl or halogen and R3b is hydrogen; in case R3a is different from hydrogen then R3b is hydrogen, C1-6alkyl or halogen and R2b is hydrogen.
  • 21. A compound according to claim 1, wherein, where applicable, one of R2a and R3a is selected from (R4aR4b)N—CO—; C1-6alkyl optionally substituted with hydroxy, Ar2, Het or —N(R4aR4b); and C2-6alkenyl substituted with Ar1; and the other one of R2a and R3a is hydrogen; or in case R2a is different from hydrogen then R2b is hydrogen or C1-6alkyl and R3b is hydrogen; in case R3a is different from hydrogen then R3b is hydrogen or C1-6alkyl and R2b is hydrogen; Ar2, Het, R4a and R4b are as in the definitions of the compounds of formula (I) or as in any subgroup specified herein.
  • 22. A compound according to claim 20, wherein, where applicable, R2b and R3b are both hydrogen.
  • 23. A compound according to claim 1, wherein the compound is 2-(2-amino-6-{[2-(3-hydroxy-propyl)-5-methyl-phenylamino]-methyl}-benzoimidazol-1-ylmethyl)-6-methyl-pyridin-3-ol.
  • 24. (canceled)
  • 25. A pharmaceutical composition comprising a pharmaceutically acceptable carrier, and as active ingredient a therapeutically effective amount of a compound as claimed in claim 1.
  • 26-27. (canceled)
  • 28. A process for preparing a compound as claimed in claim 1, said process comprising (a) reacting an intermediate of formula (II) with a reagent (III) as in the following reaction scheme: (b) reacting an intermediate of formula (V) with a reagent (I) thus obtaining a compound of formula (I-d); wherein, optionally, intermediate (V) can be prepared by a cyclization reaction of an intermediate (IV); as in the following reaction scheme; and optionally converting the thus obtained compounds of formula (I) into their pharmaceutically acceptable base-addition or acid addition salt form by treatment with a suitable base or acid and conversely treating the base-addition or acid addition salt form with an acid or a base to obtain the free form of the compound of formula (I).
  • 29. A compound according to claim 5, wherein Alk is methylene.
  • 30. A compound according to claim 6, wherein Alk is methylene.
  • 31. A compound according to claim 7, wherein Alk is methylene.
  • 32. A compound according to claim 21 wherein, where applicable, R2b and R3b are both hydrogen.
Priority Claims (1)
Number Date Country Kind
03104797.0 Dec 2003 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP04/53613 12/20/2004 WO 6/15/2006
Provisional Applications (1)
Number Date Country
60566834 Apr 2004 US