This invention relates to removal of contaminates from water, and more specifically to systems and methods for removing ammonia from freshwater and saltwater environments to extend the life expectancy of stored fish.
Freshwater and saltwater fishing are some of the most popular outdoor activities in the United States and throughout the world. Caught fish are often kept alive by placing the fish in a bucket, livewell, or other container or closed system. In addition, live bait is often used for fishing and must be kept in a similar container prior to use. Because the volume of water is limited in these closed systems, an aeration pump is often installed to replenish dissolved oxygen levels in the water. While aeration systems may maintain oxygen levels in the water to sustain the fish, other contaminates may build up in the closed system and poison the fish. For example, waste products discharged by the fish may increase ammonia concentration in the water and may build to levels that will kill the fish despite an adequate level of dissolved oxygen in the water. Traditional methods to control ammonia in these types of closed systems include lowering the pH of the water or introducing new water to the system (that is, diluting the ammonia concentration).
In a conventional aquarium system, ammonia concentrations can be controlled to below toxic levels by maintaining high dissolved oxygen levels and including reactors that promote biological nitrification. However, in a fresh-caught fish or fish transportation system, the ammonia accumulation rate is faster than the ammonia oxidation rate by nitrification. Therefore, direct removal of ammonia from the water is necessary. Ammonia removal methods include ion exchange, adsorption, chemical neutralization, reverse osmosis, electrochemical reduction-oxidation, air stripping and precipitation (Boyer, 2014; Mook, Chakrabarti, et al., 2012; Peddie, van Teijlingen, et al., 2005; Bhatnagar and Sillanpää, 2011). Among them, the ion exchange process is suitable for fish wastewater applications as it is inexpensive, has an easy operational procedure, and is renewable, especially when using zeolite as the ion exchanger (Emadi, Nezhad, et al., 2001; Bergero, Boccignone, et al., 1994; Zhou and Boyd, 2014; Lopez-Ruiz and Gomez-Garrudo, 1994; Singh, Vartak, et al., 2004). There are many kinds of natural zeolite materials, including clinoptilolite and chabazite. Although clinoptilolite is more abundant and less expensive, chabazite has been reported to have higher ammonia removal efficiency (Aponte-Morales, Payne, et al., 2014). Zeolite traps ammonia and toxic heavy metals in aquaculture wastewater, and it has been intensively studied. Many factors, such as zeolite type, particle size, pretreatment, and wastewater type affect ammonia removal effectiveness (Ghasemi, Sourinejad, et al., 2016).
Accordingly, what is needed in the art is a user friendly, sustainable, cost-effective, and capable system and method for reducing the ammonia level in fresh and saltwater systems.
The present invention provides systems and methods for removing ammonia from freshwater and saltwater environments. Various embodiments may comprise a treated, functionalized zeolite compound with a high ammonium absorption capacity. Zeolites are microporous mineral compounds commercially used as adsorbents. The porous structure can accommodate a wide variety of cations such as Na+, Ca2+, K+, and Mg2+. In addition, once these cations are adsorbed by the zeolite, they can be exchanged for other cations when the zeolite is in contact with a solution containing the other cations. While there are a large number of available zeolites, various embodiments comprise chabazite because it is inexpensive, readily available from many areas of the world, and has a cation-exchange capacity.
In an embodiment, an exemplary method for producing an ammonia removal agent for water environments is presented comprising: obtaining a tectosilicate compound, such as chabazite and functionalizing the compound by soaking the tectosilicate compound in a synthetic saltwater solution for 24 hours and replacing cations in the tectosilicate compound with sodium ions; washing the functionalized tectosilicate compound in deionized water and drying the functionalized tectosilicate compound. The synthetic saltwater solution may consist of the following: 10.780 g/L of sodium; 0.42 g/L of potassium; 1.32 g/L of magnesium; 19.290 g/L of chloride 0.400 g/L of calcium; 0.200 g/L of bicarbonate; 2.66 g/L of sulfate; and 0.241 g/L of alkalinity.
The tectosilicate compound may be washed in deionized water and dried prior to soaking the tectosilicate compound in the synthetic saltwater solution. A shaker table may be used for 24 hours for the washing step in order to remove small particles. The functionalized tectosilicate compound can be cried in an oven at 110° C. for 5 hours. Functionalizing the tectosilicate compound as described may result in an increase of at least 30 percent more sodium in the tectosilicate compound. In addition, the functionalized tectosilicate compound can be regenerated for future use by removing adsorbed ammonium ions and replacing them with sodium ions.
An exemplary method for controlling an ammonia level in a water environment may comprise providing a water environment and a functionalized tectosilicate compound. The functionalized tectosilicate compound may be produced by first obtaining a tectosilicate compound, such as chabazite, and functionalizing the tectosilicate compound by soaking the tectosilicate compound in a synthetic freshwater solution or synthetic salt water solution and removing ions from the tectosilicate compound that have a lower cationic affinity than ammonium ions, such as sodium ions, for compounds soaked in a synthetic freshwater solution, or replacing cations in the tectosilicate compound with sodium ions for compounds soaked in a synthetic salt water solution.
The synthetic freshwater solution may consist of the following: 0.075 g/L of sodium; 0.00312 g/L of potassium; 0.024 g/L of magnesium; 0.193 g/L of chloride; 0.043 g/L of calcium; 0.0048 g/L of bicarbonate; 0.096 g/L of sulfate; and 0.310 g/L of alkalinity.
The synthetic saltwater solution may consist of the following: 10.780 g/L of sodium; 0.42 g/L of potassium; 1.32 g/L of magnesium; 19.290 g/L of chloride 0.400 g/L of calcium; 0.200 g/L of bicarbonate; 2.66 g/L of sulfate; and 0.241 g/L of alkalinity.
The functionalized tectosilicate compound may be washed in deionized water and then dried. A porous container that allows liquid to flow through the container may be provided for the functionalized tectosilicate compound with a solid pH buffer being added to the container holding the functionalized tectosilicate compound. The container of functionalized tectosilicate compound may be placed in a water environment comprising a source of ammonia. The pH buffer may buffer the pH of the system to about 7 and shift an equilibrium between ammonia and ammonium in the water environment towards ammonium, thus allowing the ammonium to be adsorbed by the functionalized tectosilicate. The functionalized tectosilicate compound can be regenerated for future use by removing adsorbed ammonium ions and replacing them with sodium ions.
The tectosilicate compound may be washed in deionized water and dried prior to soaking the tectosilicate compound in the synthetic freshwater or synthetic saltwater solution. The functionalized tectosilicate compound can be cried in an oven at 110° C. for 5 hours. Functionalizing the tectosilicate compound as described using the synthetic saltwater solution may result in an increase of at least 30 percent more sodium in the tectosilicate compound. Functionalizing the tectosilicate compound as described using the synthetic freshwater solution may reduce the percentage of sodium ionically bound to the compound by at least 50 percent.
In an embodiment, a system for removing ammonia from a saltwater environment is presented comprising: a saltwater environment containing ammonia; a functionalized tectosilicate compound that is functionalized by soaking the tectosilicate compound in a synthetic saltwater solution consisting of 10.780 g/L of sodium; 0.42 g/L of potassium; 1.32 g/L of magnesium; 19.290 g/L of chloride 0.400 g/L of calcium; 0.200 g/L of bicarbonate; 2.66 g/L of sulfate; and 0.241 g/L of alkalinity then washing the functionalized tectosilicate compound in deionized water and drying the compound; a pH buffer, such as a solid phosphate buffer like Na2HPO4 or NaH2PO4 or a combination thereof, wherein the amount of the pH buffer used is such that the pH buffer maintains a pH of 7 in the saltwater environment; and a container to hold the functionalized tectosilicate compound and the pH buffer, the container comprising a porous material to allow water to flow through the material. The pH of 7 of the water environment shifts the equilibrium between ammonia and ammonium in the water environment towards ammonium, thus allowing the ammonium to be adsorbed by the functionalized tectosilicate. The functionalized tectosilicate compound can be regenerated for future use by removing adsorbed ammonium ions and replacing them with sodium ions. Functionalizing the tectosilicate compound as described using the synthetic saltwater solution may result in an increase of at least 30 percent more sodium in the tectosilicate compound.
For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings, which form a part hereof, and within which are shown by way of illustration specific embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized, and structural changes may be made without departing from the scope of the invention.
Caught fish are often kept alive by placing the fish in a bucket, livewell, or other container or closed system. In addition, live bait is often used for fishing and must be kept in a similar container prior to use. Because the volume of water is limited in these close systems, an aeration pump is often installed to replenish dissolved oxygen levels in the water. While aeration systems may maintain oxygen levels in the water to sustain the fish, other contaminates may build up in the closed system and poison the fish. For example, waste products discharged by the fish may increase ammonia concentration in the water and may build to levels that will kill the fish despite an adequate level of dissolved oxygen in the water.
Various embodiments may comprise one or more treated, functionalized zeolite compounds with a high ammonium absorption capacity. Zeolites are microporous mineral compounds commercially used as adsorbents. The porous structure can accommodate a wide variety of cations such as Na+, Ca2+, K+, and Mg2+. In addition, once these cations are adsorbed by the zeolite, they can be exchanged for other cations when the zeolite is in contact with a solution containing the other cations. While there are a large number of available zeolites, various embodiments comprise chabazite because it is inexpensive, readily available from many areas of the world, and has a cation-exchange capacity. Chabazite (available from St. Cloud Mining Company) is a tectosilicate mineral with the formula (Ca, Na2, K2, Mg)Al2Si4O12.6H2O.
The ion selectivity series for chabazite is:
Ti+>K+>Rb+>NH4+>Pb2+>Na+>Ba2+>Sr2+>Ca2+>Mg2+>Li+
The ion exchange process occurs when ammonium ions are exchanged by other changeable ions as listed above, such as Na+, Mg2+ and Ca2+, in the chabazite thus leading to ammonia removal from the water by the functionalized chabazite. Details on the process are described in the Examples.
Experimentation was conducted to determine the ammonia accumulation rate over time for closed systems of various volumes containing live fish in both freshwater and saltwater. These tests involved bass with a commercial water conditioner, bass without the conditioner, pinfish and blowfish, and shrimp. Ammonia concentration was determined using the salicylate method (HACH Method 10031) and the results are shown in
Next, a procedure was developed to treat and functionalize chabazite pellets to maximize ammonium adsorption capacity. Two pretreatment methods were used to develop products specific to freshwater and saltwater uses. Chabazite was the material used to remove ammonia by ion exchange (IX) method. It was purchased from St. Cloud Mining Inc. (Winston, N. Mex.). The grain size range was 1-2 mm. All natural chabazite (NC) grains were washed by deionized (DI) water using a shaker table for 24 hours to remove extremely small particles and then dried in an oven set to 110° C. All washed chabazite were stored in a sealed plastic bottle at room temperature.
For freshwater uses, the washed and dried chabazite was soaked in freshwater/synthetic freshwater for 24 hours to remove sodium ions, then washed with DI water and oven dried at 110° C. for 5 hours. The composition of the synthetic freshwater is provided in Table 1 below.
For saltwater uses, saltwater modified chabazite (SC) was made from NC soaked for 24 hours in 117 g/L NaCl (2M) to uptake sodium ions where the suspension was shaken using a shaking table for 24 hours. The SC particles were then washed with DI water and dried at 110° C. for 5 hours. The composition of the synthetic saltwater is provided in Table 2 below.
The pretreated chabazite was coated in blue dye (PSP0002 Lake and Pond Dye available from Outdoor Water Solutions) so that it could turn the water color blue when it was put into water. The pretreated chabazite was also packed with a phosphate buffer of a fabric tea bag.
Chabazite Regeneration
All used chabazite was oven dried, mixed, and stored separately in covered containers. During the regeneration process, 30 g of used chabazite was immersed in 200 mL of NaCl solution with pH controlled at 7. The NaCl concentrations were 0 g/L (RE0), 40 g/L (RE40), and 80 g/L (RE80), respectively. The suspension was shaken for varying periods of time and then separated from the supernatant. Aqueous samples were collected from the supernatant to measure desorbed NH4+—N concentrations. Each test was performed in triplicate. Regenerated chabazite was washed with DI water and then dried at 110° C. before use.
Chabazite Characterization
The chemical composition of natural chabazite were investigated using a Scanning Electron Microscope with Electron Energy-dispersive X-ray spectroscopy (SEM-EDS, Hitachi, Japan). Chabazite was also characterized by comparing the chemical composition and crystalline structure before and after treatment. Chemical composition tests were performed in three 50 mL volumetric flasks. Flasks were filled with 50 mL DI water, synthetic freshwater and 2M NaCl, respectively. The chabazite was pretreated in each flask following the previously described pre-treatment procedure. When pre-treatment was completed, water was collected and filtered. The crystalline structure of chabazite before and after treatment was tested using X-Ray Diffraction (Panalytical, Westborough, Mass.).
Ammonium Adsorption Kinetic and Batch Equilibrium Studies
Bench scale kinetic studies were conducted at room temperature using four 1000 mL containers filled with an ammonium solution. An air pump was used to simulate mixing conditions in fresh caught fish and transportation systems. Initial concentrations of NH4Cl were 30, 75, 150, 300 mg/L. The NH4Cl solution was prepared in either synthetic freshwater or seawater. The amount of chabazite was 30 g in each container. Samples were taken every hour until equilibrium was observed.
Adsorption Kinetics
Pseudo-first order and second-order kinetic models were used to analyze the data using the linear forms of Eq. (1) and (2) (Yusof, Keat, et al., 2010; Alshameri, Ibrahim, et al., 2014):
where the variables qt and qe, represent the amount of ammonium adsorbed (mg/g) at any time t (min) and at equilibrium, respectively; k1 (/min) and k2 (g/mg·min) are the pseudo first-order and second-order adsorption rate constants, respectively; V is the solution volume (L), and m is the chabazite mass (g). The least squares method was applied to predict the best-fit linear solution and parameter values. The initial adsorption rate, h (mg/g·min) at t→0, is defined as:
h=k
2
q
e
2 (4)
The best fit model was chosen based on the determination coefficient (R2). The fitness of the kinetic models to the experimental data was evaluated by the error index of Marquardt's standard deviation percentage (Δq) which is written as (Ahmaruzzaman and Laxmi Gayatri, 2010):
where n is the number of data points and qe,exp and qe,cal (mg/g) are the experimental and calculated adsorption capacity, respectively. The best fit model was chosen based on the determination coefficient (R2). The fitness of the kinetic models to the experimental data was evaluated by the error index of Marquardt's standard deviation percentage (Δq) which is written as (Ahmaruzzaman and Laxmi Gayatri, 2010):
where n is the number of data points and qe,exp and qe,cal (mg/g) are the experimental and calculated adsorption capacity, respectively.
To better understand the specific adsorption mechanisms involved in the adsorption process, it is necessary to use a molecular diffusion model. The kinetic data can be further fitted with the film diffusion model and a particle diffusion model (Yusof, Keat, et al., 2010):
where kf (hr) and kp (hr) are the film and particle rate constants, which are calculated from:
where the C and Cz (mg/g) are concentrations of NH4+—N in the solution and in the chabazite, respectively, D is the diffusion coefficient (m2/min), r is the grain radius of chabazite (m), and h is the thickness of film around chabazite particles (10−6 m for poorly stirred solution).
The experimental adsorption kinetic data can also be analyzed using the Morris-Weber equation:
q
t
=kt
0.5
+C (10)
where k is the coefficient of intraparticle diffusion (mg/g·min0.5).
A pseudo-second-order relation had best correlation with the experimental kinetic data in both freshwater and seawater. This finding is the same as most published literature (Yusof, Keat, et al., 2010; Karadag, Koc, et al., 2007). Table 4 lists the results of pseudo-second-order kinetics constants and coefficient data for both freshwater and seawater. The value of Δq is very small, which confirms that the pseudo-second-order kinetic model is the best fit to the experimental data.
From both freshwater and seawater data, some similar trends are seen. The adsorption capacity (qe,exp) increased with increasing initial ammonium concentration. The high initial concentration of ammonium provided a powerful driving force to overcome mass transfer resistance from solution to the adsorbent; therefore, adsorption of a higher number of ammonium molecules onto a given amount of chabazite will increase the adsorption capacity (Tsai, Hsien, et al., 2009; Moussavi, Talebi, et al., 2011). In comparison with freshwater, qe,exp in seawater was about half of qe,exp in freshwater. The cations in seawater also interacted with the zeolite, decreasing the ability of ammonium ions to bind freely (Burgess, Perron, et al., 2004). Another important finding from Table 5 is that the rate constant, (k2), decreased, while the initial adsorption rate (h) increased with increasing initial ammonium concentration. This also shows that the mass transfer rate of ammonium ions improved with increasing initial ammonium concentration (Moussavi, Talebi, et al., 2011).
The third finding can be combined with the equilibrium removal of ammonium. The kinetic studies were conducted for 270 mins, but only 30 mins were needed for an equilibrium concentration to be achieved. The same phenomena can be found in other literature (Burgess, Perron, et al., 2004; Huang, Xiao, et al., 2010; Alshameri, Ibrahim, et al., 2014; Karadag, Koc, et al., 2006; Du, Liu, et al., 2005). The most probable explanation is that ammonium diffused onto the external surface of the chabazite, which was followed by pore diffusion into the intraparticle surfaces to attain equilibrium. The key driving force in this case is the difference in the adsorbed concentration of ammonium at chabazite surface (qe) and the solution qt (Ho, Chiang, et al., 2005; Alshameri, Ibrahim, et al., 2014). The ion exchange capacity is proportional to the number of active ion exchange sites at chabazite (Wen, Ho, et al., 2006; Alshameri, Ibrahim, et al., 2014). The pseudo-second-order kinetic model involves three steps of ion exchange. In the first step ammonium ions diffuse from the liquid phase to the liquid-solid interface (film diffusion), and then the ammonium ions move from the liquid-solid interface to the solid phase of the adsorbent (pore diffusion). Finally, the ammonium ions diffuse into the interparticle pores (Liao, Ismael, et al., 2012; Wang, Shu, et al., 2011; Alshameri, Ibrahim, et al., 2014).
A plot of the intraparticle diffusion model (Eq. 10) confirmed that the sorption processes includes both film diffusion and pore diffusion (Moussavi, Talebi, et al., 2011; Vadivelan and Vasanth Kumar, 2005). The contribution of each step can be further studied by looking at the value of the particle diffusion coefficient (Dp) and film diffusion coefficient (Df) (Table 6). The value of Dp for freshwater is higher than the value of Df, but opposite relations are observed in the seawater. This shows that in freshwater, film diffusion is the dominant mechanism in the adsorption rate. In seawater, pore diffusion dominated the rate of sorption. For the sorption process, film diffusion controls when the system has poor mixing, and dilute adsorbate concentration. In contrast, pore diffusion controls the sorption process when the adsorbate has low affinity for the adsorbent (Vadivelan and Vasanth Kumar, 2005). Na+ has a relatively lower affinity than K+, therefore it is reasonable to have greater pore diffusion in seawater.
indicates data missing or illegible when filed
Adsorption Isotherm Studies
Four isotherm models: Langmuir, Freundlich, Temkin, and Sips were studied to describe the solid-liquid adsorption data (Table 5). The parameters and the thermodynamic assumptions of these equations describe the sorption mechanisms, surface properties and affinities of the sorbents in detail (Ho, Chiu, et al., 2005).
In Table 5, qe is the equilibrium amount of ammonium adsorbed (mg/g), which is experimentally determined from the difference between the initial concentration, C0 (mg/L), and the final NH4+—N concentrations, Ce (mg/L), at equilibrium using Eq. (5), qo is the maximum monolayer adsorption capacity (mg/g), b is the Langmuir adsorption constant of NH4+—N(L/mg) (Foo and Hameed, 2010). K is the Freundlich adsorption capacity parameter ((mg/g)(L/mg)1/n), 1/n is the Freundlich adsorption intensity parameter (unitless), R is the universal gas constant (8.314 J/mole K), T is the absolute temperature during the experiment (296K), bt is the Temkin constant (J/mole), and At is the Temkin isotherm equilibrium binding constant (L/g) (Foo and Hameed, 2010), Ks and as are the Sips isotherm model constant (L/g), and βs is the Sips model exponent (Foo and Hameed, 2010).
The least square method was used to calculate all isotherm parameters. In the linear regression model, a linear coefficient of determination, R2, was used to examine the accuracy of the model fit. The non-linear regression was established by iterative non-linear least square fitting using the solver add-in in Microsoft Excel (Brown, 2001). The coefficient of determination, R2, and chi-square, χ2 tests were used to evaluate the fit of the non-linear isotherm to the experimental data. The equivalent mathematical statement of chi-square is:
where qe,m is the equilibrium capacity obtained by the model (mg/g). If χ2 is a small number, the data from the model are similar to the experimental data; if χ2 is large, the model data are different from the experimental data (Ho, Chiu, et al., 2005).
Regeneration Efficiency Studies
The regeneration efficiency (RE) of chabazite was calculated using Eq. (12):
The study of adsorption isotherms can aid in the design and operation of ammonia removal systems. The obtained values for the isotherm model parameters using linear and non-linear regression in freshwater are listed in Table 6. All non-linear regressions had a better fit than the linear regressions (with higher R2). This is reasonable because the alterations of the linear regression form have the tendency to create a higher error distribution (Karadag, Koc, et al., 2007; Foo and Hameed, 2010). The highest correlation was found in non-linear regression in the Sips isotherm, with an R2 value of 0.99 and χ2 value of 0.01. The Sips isotherm is a combination of the Langmuir and Freundlich isotherms (Foo and Hameed, 2010). It is used to predict the heterogeneous adsorption systems by avoiding the limitations of the Freundlich isotherms (Günay, Arslankaya, et al., 2007; Foo and Hameed, 2010). From the previously obtained adsorption kinetic result, we find that the ammonium adsorption onto chabazite was not a simple monolayer adsorption. The transmigration of ammonium ions happened on the surface of chabazite. Therefore, the Langmuir isotherm (monolayer adsorption isotherm (Dada, Olalekan, et al., 2012; Karadag, Koc, et al., 2007; Foo and Hameed, 2010)) is not the best isotherm model to predict this adsorption phenomenon. The Sips isotherm confirms that the ammonium adsorption onto modified chabazite under freshwater is a complex process that a simplified isotherm model.
Nevertheless, the Langmuir isotherm still fits with experimental data with a high R2 value of 0.99 and low χ2 value of 0.03. The qo value was determined to be 11.1 mg/g, which is smaller than the qo reported in other literature (Table 7). One probable reason for the low maximum ion adsorption capacity in this study was the testing protocol. In prior literature, batch reactors had constant mixing (Lahav and Green, 1998; Cyrus and Reddy, 2011) or were mixed 3-4 times daily (Leyva-Ramos, Monsivais-Rocha, et al., 2010). In this study, the mixing energy of chabazite and water was provided by water turbulence generated from aeration only, which is weaker compared with constant shaking. The second probable reason was the diversity of particle size. It has been found that smaller particle size would have higher ammonium adsorption capacity (Hedstrom, 2004; Cyrus and Reddy, 2011; Wen, Ho, et al., 2006).
Table 8 lists the obtained isotherm parameters using linear and non-linear regression in seawater. Non-linear models were better than linear models in this case. Under seawater conditions, both Temkin and Sips isotherms fit the experimental data, with an R2 value of 0.94 and an χ2 value of 0.01. The Temkin isotherm includes a factor that takes into account the interaction of adsorbent and adsorbate (Dada, Olalekan, et al., 2012). In consideration of the characteristics of the Sips and Temkin isotherms, it is clear that the ammonium adsorption in seawater is complex. The non-linear Langmuir isotherm also had a relatively good fit with the an R2 of 0.92 and an χ2 of 0.03. The maximum ammonia adsorption capacity (qo) in seawater was 7.80 mg/g. This low value also reveals that strong competing ion competition occurred during the adsorption process in seawater. Zeolite used to remove ammonia is seldom studied in marine water due to the competing ions present. However, in this study, the ammonium removal efficiency was 48.6±5.91%, which is much higher than 18.1±2.47% reported by Miladinovic et. al. (Miladinovic, Weatherley, et al., 2004) and 18% reported by Burgess et. Al. (Burgess, Perron, et al., 2004). Emadi et al. also reported an ammonium removal efficiency of 58.8% when the initial NH4Cl was 5 mg/L (Emadi, Nezhad, et al., 2001); however, in their study, NaCl was used instead of synthetic seawater. This will eliminate many other competing ions such as Ca2+, K+, and Mg2+.
indicates data missing or illegible when filed
indicates data missing or illegible when filed
The ammonium adsorption isotherm using the Langmuir and Freundlich models were then determined for both the freshwater and saltwater chabazite. This testing was performed using the synthetic freshwater characterized in Table 1 and synthetic saltwater characterized in Table 2. The ammonium adsorption isotherm results are presented in
Proper pH control may be used to affect the ammonia chemistry according to the equation NH3+H+↔NH4++H2O. The higher the pH, the more the equilibrium moves to the left, favoring ammonia formation. The lower the pH, the more the equilibrium is shifted to the right, favoring ammonium formation. As shown in
Analytical Methods
Ammonia concentrations were measured using the salicylate method (HACH method 10023, Loveland, Colo.) and a high-performance ammonia ion selective electrode (Fisher Scientific, Pittsburgh, Pa.). pH values were measured using a Denver Instrument Model 250 pH meter (Bohemia, N.Y.). Cation concentrations (Na+, K+, Mg2+, and Ca2+) were detected by Ion Chromatography (IC, Metrohn 850, Switzerland).
Ammonia concentrations were measured using the salicylate method described previously and the accumulation rate (k) was calculated based on zero order kinetics:
C=C
0
+kt (13)
where C (mg/L) is the ammonia concentration at time t (hour), and C0 is the initial ammonia concentration (mg/L).
Two fish aeration systems were filled with 10 L of synthetic water. Each system included a 13 L container and an air pump. The NH4Cl solution was pumped into each system at a specified rate calculated from the aforementioned experiment. This design was used to simulate the condition as fish exit in the system. The ammonia removal agent (freshwater chabazite) was added into one aeration system. The other one was set up as a control group. Samples were taken every hour for 24 hours.
Ammonia concentrations of water samples were tested by high performance ammonia ion selective electrode (Fisher Scientific, Pittsburgh, Pa.). The ammonia removal efficiency (%) is calculated based on the final ammonia concentration in the control group (Ccontrol) and the experiment group (Cexperiment) by Equation 14:
Previous trials of in-vitro experiments have found that no ammonia removal was observed when only phosphate buffer was added (ammonia removal efficiency of zero). In addition, if the functionalized chabazite is only added once in the beginning of an experiment, there was no ammonia removal after 24 hours (data not shown). The majority of ammonium adsorption by using chabazite only takes places during the very first hour. After that, the ammonium adsorption is slow. To enhance the ammonia removal performance, the ammonia removal agent was added to the containers every three hours.
Product preparation steps for the functionalized chabazite are summarized as follows:
Using the above preparation steps, porous containers of the freshwater or saltwater chabazite were prepared and an in-vitro test was conducted using synthetic freshwater or saltwater, respectively. As used herein, “seawater” and “saltwater” are used interchangeably. A high-performance ammonia ion selective electrode was used to measure ammonia concentration in a container with the freshwater or saltwater chabazite in a porous bag and a control. Aeration was used in both. The experimental results for freshwater chabazite are shown in
The result of ammonia removal efficiency under in-vitro comparison is listed in Table 10. In freshwater conditions, the average k in control group is 0.38±0.07 mg/L/h, while the k of freshwater chabazite amended tanks is as low as 0.25±0.02 mg/L/h (p-value 0.0025). In freshwater conditions, freshwater chabazite has high ammonia removal efficiency at about 39.25%±1.27% with the highest efficiency achieved being about 43.22%. In seawater conditions, due to the competing ions in the seawater, the ammonia removal efficiency of saltwater chabazite is lower than it is in the freshwater, however it still has a removal efficiency of about 24.56%±1.85% with highest efficiency achieved being about 26.54%. These results reveal that ion exchange is capable of removing ammonia in simulated fish conditions. Meanwhile, adding the ammonia removal agent more frequently can enhance the total ammonia removal efficiency.
Product preparation steps for freshwater and saltwater chabazite are summarized below:
In-vivo tests were performed using live fish in an experimental container with the prepared chabazite and live fish in a container without chabazite as a control. Aeration was used in both. Prepared chabazite was added into water every three hours. Testing was performed for both freshwater and saltwater systems as described below.
Tilapia and pinfish were selected as representative fish species that live in a freshwater and a saltwater environment, respectively. Tilapia were collected at a fresh water lake in Bellair, Fla., U.S.A. Pinfish were collected from a mangrove coastal seawater site located at the same location as the tilapia. Within 1 hour of catch, live fish were transported to the laboratory and raised in the dark without feeding, while constant oxygen is pumped using air stones. The tilapia (7.97±1.15 lb; N=15) were raised in two 75 L coolers (control group and freshwater chabazite group) with three tilapias in each cooler. Each cooler contained 50 L of freshwater.
The pinfish (0.07±0.02 lb; N=200) were maintained in two 38 L buckets (control group and saltwater chabazite group) with approximately 30 pinfish in each bucket with 27 L of seawater. The water temperature ranged from 22° C. to 23° C. The pH of freshwater and seawater were 7.19±0.19 and 7.48±0.02, respectively. The water was sampled every hour for 24 hours. According to the requirement of Institutional Animal Care and Use Committee (IACUC), fish that show end point signs (i.e., inactive, not eating, surface breathing) were euthanatized.
For the freshwater experiment, in the control group, the ammonia accumulation rate is 4.68±0.38 mg/kg fish/h (R2=0.97). The k in the freshwater chabazite group is 3.42±0.36 mg/kg fish/h (R2=0.94). In water, the total ammonia is present as free ammonia form (NH3) and ammonium form (NH4+). Both are maintaining at equilibrium conditions in water according to the following equation:
NH3+H2O↔NH++OH− (15)
Ammonia removal by the ion exchange process occurs when NH4+ is exchanged by other changeable ions (Na+, Mg2+ and Ca2+) in the zeolite, which shifts the equilibrium from left to right in Equation 15, which allows for a decrease in the concentration of NH3. The top graph in
For the saltwater experiment, the ammonia accumulation for the control group is (k=6.68±0.24 mg/kg fish/h, R2=0.99, p-value 7.90E-10) while in the saltwater chabazite group it is (k=6.38±0.37 mg/kg fish/h, R2=0.98). The high Na+ ion concentration reduces the effectiveness of the ion exchange process (Miladinovic et al., 2004).
The bottom graph in
Daphnia magna neonates (age<24 h) were used in the toxicity test. The tests were conducted at 23° C. Ten neonates were placed in a 100 mL transparent plastic beaker with triplicates for each group. The number of dead neonates was recorded at 24 and 48 hours after the initiation of the test. The test water included spring water (control), freshwater chabazite or saltwater chabazite added water. The concentration of each was the daily maximum dose designed to be added to the water (Table 11). The LC50 of each chemical was also tested. The LC50 refers to the concentration of a substance that is lethal to 50% of the animals in the toxicity test (Boyd, 2005). The exposure periods were 24 and 48 hours. Five concentrations were tested from 0 to 2 g/L.
The Daphnia Magna is the regulated specie by USEPA Toxic Substance Control Act (FSCA) for toxicity tests (Hayes, 2007). According to the EPA guideline for the toxicity test, the survival percentage of Daphnia Magna in the control group should be equal or higher to 90% at the end of testing time (USEPA, 2002). This criterion is fulfilled in this experiment. Both the freshwater chabazite and the saltwater chabazite was found to be nontoxic to Daphnia Magna neonates as shown in
Chabazite−Na++X+↔Chabazite−X++Na+ (16)
Costs
Table 6 presents the cost of materials for the chabazite system. The total cost compares favorably to commercial water conditioners which range from $4-10.
Ammonium removal by chabazite in either freshwater or seawater was studied. There were no structural changes of chabazite after being modified by synthetic freshwater or sodium chloride. Experimental kinetic data suggests that ammonium removal follows a pseudo-second-order reaction model, indicating that ammonium sorption in chabazite follows two steps. The diffusion model shows that film diffusion is dominant in the ammonium sorption in freshwater, while pore diffusion dominated ammonium sorption in seawater. The isotherm studies showed that non-linear regression has the best fit for ammonia removal in both freshwater and seawater. The Sips isotherm indicates that the ammonium adsorption is not a simple process that can be described by only one simplified isotherm. The regenerated chabazite has lower ammonium removal capacity than original chabazite in freshwater, while in seawater, ammonium desorption was found when the initial ammonium concentration was low.
Ammonium: a positively charged polyatomic ion with the chemical formula NH4+. It may be formed by the protonation of ammonia (NH3).
Buffer: an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small or moderate amount of strong acid or base is added to it and thus it may be used to prevent changes in the pH of a solution.
Chabazite: a tectosilicate mineral with the formula (Ca,Na2,K2,Mg)Al2Si4O12.6H2O.
Functionalize: to change surface properties of a material by adding or removing functional groups. In an embodiment, the term “functionalize” is used to refer to ion exchange in a material, for example a tectosilicate material such as chabazite, in which NH4+ is exchanged by other changeable ions (Na+, Mg2+, and Ca2+) in the tectosilicate. “Freshwater chabazite” and “Saltwater chabazite” as used herein refer to chabazite that has been functionalized according to the procedures described herein for the listed type.
Ion selectivity: the affinity a compound shows for reacting with different ions. An ion with a higher ion selectivity will tend to displace an ion in the compound that has a lower ion selectivity.
Tectosilicate compound: a silicates compound having a three-dimensional framework of silicate tetrahedra with SiO2 or a 1:2 ratio.
Zeolite compound: a type of tectosilicate compound that is a porous hydrated aluminosilicate mineral formed from interlinked tetrahedra of alumina (AlO4) and silica (SiO4). Examples of zeolites include, but are not limited to, chabazite, clinoptilolite, and mordenite.
About: being within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e. the limitations of the measurement system, i.e. the degree of precision required for a particular purpose. As used herein, “about” refers to ±10% of the numerical.
In the preceding specification, all documents, acts, or information disclosed does not constitute an admission that the document, act, or information of any combination thereof was publicly available, known to the public, part of the general knowledge in the art, or was known to be relevant to solve any problem at the time of priority.
The disclosures of all publications cited above are expressly incorporated herein by reference, each in its entirety, to the same extent as if each were incorporated by reference individually. It will be seen that the advantages set forth above, and those made apparent from the foregoing description, are efficiently attained and since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
The present application is a continuation in part of and claims priority to currently pending U.S. Nonprovisional application Ser. No. 16/023,396, filed Jun. 29, 2018, entitled “Ammonia Removal in Freshwater and Saltwater Systems, which claims priority to U.S. Nonprovisional patent application Ser. No. 14/997,793, filed Jan. 18, 2016, entitled “Ammonia Removal in Freshwater and Saltwater Systems”, which claims priority to U.S. Provisional Patent Application Ser. No. 62/104,398, filed Jan. 16, 2015, entitled “Ammonia Removal in Freshwater and Saltwater Systems”, each of which are incorporated herein by reference their entireties.
Number | Date | Country | |
---|---|---|---|
62104398 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16023396 | Jun 2018 | US |
Child | 16200212 | US | |
Parent | 14997793 | Jan 2016 | US |
Child | 16023396 | US |