The present invention relates in general to the field of munitions. Specifically, this invention relates to an ammunition counter that is integrated into an ammunition can so that it automatically and accurately communicates the number of remaining rounds of ammunition in the can.
In a combat situation, a soldier is typically provided with an ammunition can that contains reserve ammunition, such as bullets. However, offer partial use of the reserve ammunition, the soldier is not provided with an accurate means for counting the ammunition remaining in the ammunition can. As a result, it has become necessary for the soldier to manually open and inspect the ammunition can, in order to manually count the number of the remaining rounds.
In the event of a fire fight, the soldier, not desiring to be short on ammunition, and incapable of wasting time to count the rounds remaining in the ammunition can, exchanges a partially full ammunition can with an ammunition can that contains the maximum number of rounds.
During reload, if a can is not refilled, the soldier may end up with less ammunition than is required. After a firefight, it is common practice to turn in all the ammunition cans that contain less than the original number of rounds. Such logistics cause a waste of valuable manpower and resources.
Therefore, there is still remains an unsatisfied need for an ammunition can having an integrated counter, for automatically and accurately notifying the soldier, or a command center, of the number of remaining rounds in the ammunition can.
The present invention addresses the foregoing concerns and presents a new ammunition can that communicates to a soldier, or to a command or logistics center, the accurate number of ammunition rounds remaining therein.
The present ammunition can allows the soldier to easily determine the number of remaining ammunition, effectively reducing the logistics since the counter that is integrated with the ammunition can, is selectively turned on. The present ammunition can increases responsiveness by allowing soldiers to quickly and accurately realize the current ammunition on hand. The present ammunition can has military and commercial applications in law enforcement and gun sports.
More specifically, the ammunition can includes a housing and a window formed on one side of the housing to provide a visual indication of the count of the stored ammunition. The window extends from the top side to a bottom side of the housing, to provide a clear sampling view of the stored ammunition. A scale, disposed in close proximity to the window, provides a more accurate visual indication of the count of the stored ammunition.
According to another embodiment, the ammunition can includes two strain gauges that are secured to the handle, to provide a measurement of the weight of the entire ammunition can, including the remaining rounds. A counter converts the measured weight into a number reflective of the remaining rounds, and displays this number onto a display.
According to yet another embodiment, the ammunition cans can be networked together to providing the necessary logistics to a command center.
The accompanying drawings, which are incorporated in, and constitute part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. The embodiments illustrated herein are presently preferred, it being understood, however, that the present invention is not limited to the precise arrangements and instrumentalities shown, wherein:
Similar numerals refer to similar elements in the drawings. It should be understood that the sizes of the different components in the figures are not necessarily in exact proportion or to scale, and are shown for visual clarity and for the purpose of explanation.
With reference to
The window 111 is formed on one of the sides of the housing 120, preferably along the height of the ammunition can 100, to provide a visual indication of the number of rounds 500 that are stored within the ammunition can 100. The rounds 500 will also be referred to herein as remaining ammunition or remaining rounds 500. The window 111 can be placed on any one or more of the four lateral sides of the ammunition can 100.
The window 111 is preferably made of a material that is resistant to shock, such as transparent hardened plastic.
The window 111 is preferably narrow, to minimize accidental damage. It preferably extends from the top side 140 of the ammunition can 100 to its bottom side 144, to provide a full view of the content of the ammunition can 100.
Next to the window 111, a scale 150 provides an approximate visual count of the remaining rounds 500. In this exemplary embodiment, the scale 150 provides a percentile indication (i.e., 25%, 50%, 75%) of the remaining rounds 500. While the present exemplary embodiment illustrates the use of the scale 150, it should be understood that any other known or available means of converting the physical change in the number of remaining rounds 500 into a numerical value may be used, and that the present invention is not limited to the use of the scale 150.
The ammunition can 100 is also provided with a handle 130 for carrying the housing 120, and also for assisting in the accurate measurement of the remaining rounds 500, as illustrated in the alternative embodiments of
Considering now another ammunition can 700 according to a second embodiment of the present invention, in connection with
In this exemplary embodiment, the counter 777 is illustrated as being mounted on the top side 140 of the housing 120. It should be understood that the counter 777 could alternatively be mounted on any side of the housing 120 that provides access to the soldier.
The counter 777 is electrically connected to the strain gauges 720, 722 by means of conductors or cables 736. The strain gauges 720, 722 are secured to both ends of the handle 130. Alternatively, the strain gauges 720, 722 can be integrated with the handle 130. The strain gauges 720, 722 determine the approximate quantity of ammunition 500 remaining in the ammunition can 700, by measuring the weight of the remaining rounds 500 inside the ammunition can 700. The operation of the counter 777 will be explained later in more detail in connection with
The sensing layer 1120 can be formed of means to convert the weight of the remaining rounds 500 within the ammunition can 1100 into a digital reading that is sent to the counter 777, via a conductor or cable 1110. As an example, the sensing layer 1120 may be formed of piezoelectric elements, or similar other known or available means for generating a signal that is proportional, or indicative, of the weight of the remaining rounds 500.
The platform 1111 may be either movable or flexible. If car be either dimensioned to fit the inner dimensions of the ammunition can 1100, so that it is capable of moving upwardly or downwardly relative to the sides of the ammunition can 1100. Alternatively, the edges of the flexible platform 1111 can be secured to the inner sides of the ammunition can 1100, so that the platform 1111 is allowed to bend or bow under the weight of the remaining rounds 500.
The counter 777 is generally formed of a processor 1220 that accepts the output of the strain gauges 720, 722, and/or the sensing layer 1120, and calculates the number of the remaining rounds 500. In turn, the processor 1220 transmits the calculated number of the remaining rounds 500 to a display 1222, which provides the soldier with a simple number that helps the soldier in assessing his/her potential need for more ammunition.
In use, the soldier uses the display 1222 and a control pad 1224 to select the type of ammunition contained within the ammunition can 700, 1100. In the embodiment of
The processor 1220 subtracts the weights of the empty ammunition can 700, 1100 and the sensing system, from the registered total weight, to provide an accurate total weight of the remaining rounds 500 inside the ammunition can 700, 1100. The processor 1220 divides the total ammunition weight by the stored value of one round of ammunition, generating the total number of rounds 500 remaining inside the ammunition can 700, 1100.
The processor 1220 then displays this value on the display 1:222, allowing the soldier to visually see the number of ammunition left within the ammunition can 700, 1100.
A power source, including but not limited to a battery 1228, powers the various components of the ammunition counter system 1200.
This embodiment illustrates the fact that the features of the various embodiments may be combined, selectively, depending on the desired accuracy, to suit the specific application for which the ammunition can is designed. Although the present invention is described with respect to military applications, it should be clear that it can be used in numerous commercial applications, including but not limited to law enforcement and gun sports.
As an example, communication can be established automatically and periodically, so that the command center 1400 is constantly advised of the quantity of ammunition on the field. As another example, the ammunition cans 100, 700 communicate with the command center 1400 only when instructed by the soldier, or when the soldier lifts the ammunition can 700. As yet another example, communication can be initiated by the command center 1400, as needed. It should be understood that communication could be wireless, by means of cables, or by any other suitable known or available means to establish a network communication.
It is to be understood that the phraseology and terminology used herein with reference to device, mechanism, system, or element orientation (such as, for example, terms like “front”, “back”, “up”, “down”, “top”, “bottom”, “forward”, “rearward”, and the like) are only used to simplify the description of the present invention, and do not alone indicate or imply that the mechanism or element referred to must have a particular orientation. In addition, terms such as “first”, “second”, and “third” are used herein and in the appended claims for purposes of description and are not intended to indicate or imply relative importance or significance.
It is also to be understood that the invention is not limited in its application to the details of construction and the arrangements a′ components set forth in the following description or illustrated in the drawings. Other modifications may be made to the present design without departing from the spirit and scope of the invention. The present invention is capable of other embodiments and of being practiced or of being carried out in various ways, such as, for example, in military and commercial applications.
The invention described herein may be manufactured and used by, or for the Government of the United States for governmental purposes without the payment of any royalties thereon.
Number | Name | Date | Kind |
---|---|---|---|
1379215 | Riedel | May 1921 | A |
2518973 | Atherton | Aug 1950 | A |
2710083 | White | Jun 1955 | A |
2759577 | White | Aug 1956 | A |
2937016 | Westman | May 1960 | A |
3090454 | Farrar | May 1963 | A |
3789202 | Yamanaka | Jan 1974 | A |
4108363 | Susumu | Aug 1978 | A |
4219089 | Gard | Aug 1980 | A |
4566070 | Tanaka | Jan 1986 | A |
4646767 | Hikita | Mar 1987 | A |
4892755 | Eitman | Jan 1990 | A |
5206444 | Oliver | Apr 1993 | A |
5235325 | McCaughan, Jr. | Aug 1993 | A |
6478182 | Karpisek | Nov 2002 | B2 |
7271353 | Lewis | Sep 2007 | B1 |
7378604 | Truong | May 2008 | B2 |
7589287 | Hargabus | Sep 2009 | B1 |
7629542 | Harding | Dec 2009 | B1 |
7897884 | Harish | Mar 2011 | B2 |
8485329 | Roy | Jul 2013 | B1 |
8575500 | Genet, Sr. | Nov 2013 | B1 |
8713835 | Calvert | May 2014 | B1 |
8901442 | Dilone | Dec 2014 | B1 |
8944249 | Mullaney | Feb 2015 | B1 |
9080910 | Zyman Beer | Jul 2015 | B1 |
20010007307 | Karpisek | Jul 2001 | A1 |
20050051586 | Siwak | Mar 2005 | A1 |
20050217904 | Hughes | Oct 2005 | A1 |
20060266563 | Kaplan | Nov 2006 | A1 |
20070004048 | Kikuchi | Jan 2007 | A1 |
20070050058 | Zuziak | Mar 2007 | A1 |
20070163813 | Lewis | Jul 2007 | A1 |
20070193786 | Pohl | Aug 2007 | A1 |
20090057037 | Muniz | Mar 2009 | A1 |
20090119113 | Dancy | May 2009 | A1 |
20090192764 | Radcliff | Jul 2009 | A1 |
20120167423 | Kindt | Jul 2012 | A1 |
20120186926 | Sheikh | Jul 2012 | A1 |
20120222904 | Lu | Sep 2012 | A1 |
20130048391 | Lee | Feb 2013 | A1 |
20130140097 | Zyman Beer | Jun 2013 | A1 |
20150129324 | Zhao | May 2015 | A1 |
20150237980 | Shah | Aug 2015 | A1 |
20150292936 | Sheikh | Oct 2015 | A1 |
20160356640 | Freeman | Dec 2016 | A1 |
20170108370 | Pyne | Apr 2017 | A1 |
20170307433 | Espinosa | Oct 2017 | A1 |