Ammunition-feeding device for a cannon

Information

  • Patent Grant
  • 6339983
  • Patent Number
    6,339,983
  • Date Filed
    Thursday, December 2, 1999
    24 years ago
  • Date Issued
    Tuesday, January 22, 2002
    22 years ago
Abstract
In connection with this ammunition-feeding device, an axial transport device (19) with a conveyor chain (34) is provided between a conveyor (6) and a transfer station (20) for transferring cartridges (2) to a revolver drum (25) of a revolver cannon, by means of which the cartridges (2) are displaced in their longitudinal direction during transport vertically in respect to the movement direction of the conveyor chain (34). A buffer shaft (35) is provided for driving the conveyor chain (34), wherein the drive by means of the buffer shaft (35) takes place in such a way that, prior to being transferred to the transfer station (20), the cartridges (2) are brought into a buffer position.
Description




FIELD OF THE INVENTION




The invention relates to an ammunition-feeding device for a cannon, wherein the ammunition-feeding device has mechanisms for the conveyance and transfer of cartridges to the cannon.




BACKGROUND OF THE INVENTION




An ammunition-feeding device has become known from Swiss Pat. Application 01 587/95-6, which has a conveyor chain rotating in a housing of a magazine. Cups are provided on the conveyor chain, in which cartridges are held during the transport to a drum of a revolver cannon. Star-shaped reversing wheels and star-shaped transfer wheels, which are seated on a common rotatable shaft, are located at a reversing position of the conveyor chain facing the drum, wherein the reversing wheels are in engagement with the conveyor chain. A first conveyor link provided in the area of the reversing wheels takes over cartridges from the conveyor chain, or respectively the transfer wheels, wherein the cartridges are transported along a guide surface in the shape of an arc of a circle away from the transfer wheels to a second conveying link. The first conveying link consists of two trifurcate stars arranged on a common rotatable shaft, whose gaps are matched to the cross-sectional shape of the cartridges. The second conveyor link is also arranged to be rotatable and has a guide surface for guiding respectively one cartridge. A loading star is fastened on the drum and extends coaxially with it, to which the second conveying link transfers the cartridges. A scanning device arranged above a cartridge on the second conveying link, for example in the form of a photoelectric barrier, checks the position of the first cartridge. If a cartridge is present, a loading device is activated and the cartridges are pushed into the drum.




It is not possible to achieve faster rates of fire by means of the above described ammunition-feeding device. Moreover, the energy expenditure for conveying the cartridges is relatively great.




OBJECT AND SUMMARY OF THE INVENTION




It is the object of the invention to propose an ammunition-feeding device of the type mentioned at the outset, which does not have the above mentioned disadvantages.




This object is attained by means of an axial transport device with a conveyor chain, by means of which the cartridges are displaced during the transport in their longitudinal direction vertically in respect to the movement direction of the conveyor chain. A buffer shaft is provided for driving the conveyor chain, wherein the drive of the conveyor chain by means of the buffer shaft is performed in such a way that the cartridges are placed into a buffer position prior to being transferred to the cannon.




The advantages obtained by means of the invention are seen to be in particular in the buffering capability of the axial transport device, by means of which a more rapid rate of fire is made possible, and driving energy can be saved. Above all, the proposed axial transport device allows the seating of the cannon in the center of gravity, by means of which the dynamic behavior and the energy requirements of the elevation movement of the cannon are improved. Further advantages are to be seen in the modular construction of the ammunition-feeding device in accordance with the invention, so that production and maintenance costs can be lowered.




The invention will be explained in greater detail in what follows by means of several exemplary embodiments, making reference to the drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic representation of the ammunition-feeding device in accordance with the invention,





FIG. 2

is a view from above on the axial transport device of the ammunition-feeding device of

FIG. 1

in a simplified representation,





FIG. 3

shows axial guidance devices for the axial transport device in an enlarged scale,





FIG. 4

shows a portion of a conveyor chain of the axial transport device,





FIG. 5

shows a carrier tube of the conveyor chain in

FIG. 4

,





FIG. 6

shows a buffer shaft of the axial transport device,





FIG. 7

represents a cross sectional view of the buffer shaft along the line VII—VII in

FIG. 6

,





FIG. 8

is a longitudinal section of the buffer shaft in a second embodiment,





FIG. 9

is a first schematic representation of the functioning of the buffer shaft in

FIGS. 6 and 8

,





FIG. 10

is a second schematic representation of the functioning of the buffer shaft in

FIGS. 6 and 8

, and





FIG. 11

is a distance/time diagram of the conveyor chain of the axial transport device.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




In

FIG. 1

, a magazine is identified by


1


, which has a conveyor chain


3


, formed of cup-like holding links for cartridges


2


, which is guided over chain reversing wheels


4


and which can be supplied with cartridges


2


via a loading opening


5


. The magazine


1


is in connection with a conveyor


6


, which also has a conveyor chain


9


formed of cup-like holding links for the cartridges


2


and is guided over chain reversing wheels


7


,


8


. By means of play between the holding links, the conveying chain


9


is able to store a few cartridges, so that it is possible to compensate special operating conditions or malfunctions. The cartridges


2


are transferred by means of a transfer wheel


10


from the magazine


1


to the conveyor


6


, wherein the conveyor chains


3


and


9


of the magazine


1


, or respectively of the conveyor


6


, are driven by a motor


11


. The conveyor chains


3


and


9


are guided in guide grooves, not represented, of housings


12


and


13


of the magazine


1


, or of the conveyor


6


. The conveyor


6


is connected with the cradle


16


of a revolver cannon via a flexible zone


14


for elevation compensation and via a conveyor reversing station


15


.




The conveyor reversing station


15


consists of a housing


17


with a front transfer wheel


18


, the chain reversing wheel


8


and a cup guidance and cartridge guidance, not represented. The cartridges


2


are transferred to the front transfer wheel


18


in the conveyor reversing station


15


, and the empty conveyor chain


9


is reversed and guided back to the magazine


1


. The front transfer wheel


18


transfers the cartridges


2


to an axial transport device


19


, which will be described in greater detail later by means of FIG.


2


. The conveyor reversing station


15


is connected via a gear with the axial transport device


19


, wherein the gear is constituted of gear wheels arranged on the shafts of the chain reversing wheel


8


and the transfer wheel


18


, as well as of a buffer shaft


35


(

FIGS. 6

to


8


) of the axial transport device


19


.




The axial transport device


19


is connected via a further gear with a transfer station


20


, which consists of a housing


21


, a rear transfer wheel


22


, a reversing wheel


23


, a further transfer wheel


24


, a compensating guide for the weapon recoil and a cartridge guide. The further gear is formed by gear wheels arranged on the shafts of the transfer wheels


22


,


24


and the reversing wheel


23


, as well as on the buffer shaft


35


of the axial transport device


19


. The transfer station


20


takes over the cartridges


2


from the axial transport device


19


by means of the rear transfer wheel


22


and delivers them via the reversing wheel


23


and the further transfer wheel


24


to a revolver drum


25


of the revolver cannon. The revolver drum


25


has four cartridge layers, for example, the lowest of which is respectively located in the firing axis


26


. The compensating guide compensates the recoil of the weapon in a manner not further represented and guides the cartridges


2


into the cartridge guide. The upper end of the compensating guide is rotatably seated on the housing


21


, which also follows the recoil of the weapon, while the lower end of the compensating guide is fastened on the axial transport device


19


.




In accordance with

FIGS. 2

to


8


, the axial transport device


19


consists of a housing


30


, composed of two plates


31


.


1


and


31


.


2


, a casing


32


and a guide plate


33


, a conveyor chain


34


, a buffer shaft


35


, chain reversing wheels


36


,


36


′ and two chain reversing wheels


37


, wherein the chain reversing wheels


36


,


36


′ are connected with each other by the buffer shaft


35


, while the chain reversing wheels


37


are seated independently of each other at the plates


31


.


1


, or respectively


31


.


2


. Guide grooves


38


(

FIG. 3

) for the conveyor chain


34


are provided in the plates


31


.


1


,


31


.


2


. The casing


32


prevents cartridges


2


from falling out, and on the interior it has two axial guides


39


,


40


(

FIGS. 2

,


3


), which extend at a slant angle in relation to the conveyor chain


34


and by means of which the cartridges


2


are displaced in their longitudinal direction during transport vertically in respect to the movement direction of the conveyor chain


34


. Starting at the entry of the cartridges


2


at the front transfer wheel


18


of the conveyor reversing station


15


, the axial guides


39


,


40


first cross the lower stringer and then the upper stringer of the conveyor chain


34


and end at the exit of the cartridges


2


at the rear transfer wheel


22


of the transfer station


20


. During movement of the conveyor chain


34


in the direction toward the revolver drum


25


, the one axial guide


39


leads the cartridges


2


at the shell mouth


2


.


1


, while the other axial guide


40


controls the position of the cartridges


2


and, in the course of the movement of the conveyor chain


34


in the direction toward the conveyor


6


, leads them at the shell bottom


2


.


2


(FIG.


3


). The guide plate


33


is fastened on the plates


31


.


1


,


31


.


2


. In this way it spaces the two plates


31


.


1


,


31


.


2


apart and guides, or respectively separates, the cartridges


2


in the two stringers of the conveyor chain


34


from each other.




In accordance with

FIGS. 4

,


5


,


9


and


10


, the conveyor chain


34


consists of two roller chains


50


,


50


′ between which carrier tubes


51


are arranged. End pieces


52


, which have receiving bores


53


, are provided at the ends of the carrier tubes


51


. Carrier pins


54


of the roller chains


50


,


50


′ engage the receiving bores


53


with play, wherein the play is of such a size that an inclined position of the carrier tubes


51


of +/−2 degrees is possible.




In accordance with

FIGS. 6 and 7

, the buffer shaft


35


consists of two parts, which are connected with each other by means of a claw coupling


60


. Bolts


61


are provided on the one coupling part


60


.


1


, which engage slits


62


in the shape of an arc of a circle in the other coupling part


60


.


2


. The arc length of the slits is of such a size that the coupling parts


60


.


1


,


60


.


2


can be turned in respect to each other by a cartridge spacing Pt, or respectively the distance of the carrier tubes


51


of the conveyor chain


34


from each other. Gear wheels


63


,


63


′ and the chain reversing wheels


36


,


36


′ are fastened on the ends of the buffer shaft


35


.




It is also possible to design the claw coupling with resilient detents instead of the fixed detents provided by the slits


62


, as in

FIGS. 6 and 7

.




It is furthermore possible to design the buffer shaft


35


as a torsion shaft, wherein the turning up to a maximum torque corresponds to +/− one-half cartridge spacing P/t 2.




The buffer shaft


35


in accordance with

FIG. 8

has a torsion shaft


65


and a detent tube


66


extending coaxially to it. The gear wheels


63


,


63


′ and the chain reversing wheel


36


,


36


′ are fastened at the ends of the torsion shaft


65


. On its end, the detent tube


66


has two cutouts


67


, which are engaged by detents


68


fastened on the one chain reversing wheel


36


. The other end of the detent tube


66


is firmly connected with the other chain reversing wheel


36


′. The arc length of the cutouts


67


is of such a size, that the torsion shaft


65


can be turned by one cartridge spacing Pt, or respectively by the distance between the carrier tubes


51


of the conveyor chain


34


from each other.




Time is associated with the abscissa and the angle of rotation W of the revolver drum


25


with the ordinate in

FIG. 11. A

distance/time characteristic curve of the one roller chain


50


is identified by K


1


, and a distance/time characteristic curve of the other roller chain


50


′ is identified by K


2


. The coordinates R


1


to R


5


identify the instants of shots which are fired during a defined length of time during one rotation of the revolver drum


25


. An occurring distance difference D between the two roller chains


50


,


50


′ is compensated by means of the buffer effect of the axial transport device


19


achieved by the buffer shaft


35


and, if required, by the play in the conveyor chain


9


of the conveyor


6


. Stops of the conveyor


6


and of the revolver cannon are identified by St-F and St-K.




The above described axial transport device


19


operates as follows:




Prior to firing, the one roller chain


50


of the axial transport device


19


is driven by the drive of the conveyor reversing station


15


via the gear wheel connected with the front reversing wheel


18


and the gear wheel


63


of the buffer shaft


35


, as well as via the chain reversing wheel


36


, wherein the one part of the buffer shaft


35


is turned by half a cartridge length Pt/2 until it arrives at a detent (FIG.


9


).




During this action, the gear of the transfer station


20


blocks the other roller chain


50


′ via the gear


63


′ and the other part of the buffer shaft


35


with the chain reversing wheel


36


′, so that the carrier tubes


51


of the conveyor chain


34


and the cartridges


2


are inclined by an angle of approximately 2 degrees out of the center position and take up a buffer position (FIG.


9


). During firing, the canon can pull out one cartridge


2


without the roller chain


50


needing to move. Because of the explosive pressure generated during firing, the revolver drum


25


turns, so that the other roller chain


50


′ is very rapidly driven by the transfer station


20


and the gear wheel


63


′ as well as the chain reversing wheel


36


′ and the carrier tubes


51


, as well as the cartridges


2


are inclined by an angle of approximately 2 degrees in the other direction (FIG.


10


).




During firing, the roller chains


50


,


50


′ of the conveyor chain


34


move simultaneously in accordance with the distance/time characteristic lines K


1


, or respectively K


2


, in FIG.


11


. The revolver drum


25


of the cannon drives the roller chain


50


′ in steps, which moves quickly in the process and is stopped again, namely twice per shot (R


1


to T


5


, K


2


, FIG.


11


). The other roller chain


50


driven by the conveyor reversing station


15


runs continuously and follows the middle cadence of the cannon (K


1


, FIG.


11


). In the process, drive energy is saved by making use of the buffering ability of the axial transport device


19


, provided by means of the buffer shaft


35


, and possibly because of the play in the conveyor chain


9


of the conveyor


6


.




If a torsion shaft is used as a buffer shaft, the torsion shaft is pre-stressed out of its center position by half a cartridge spacing Pt/2 by the conveyor


6


prior to firing. During firing, the cannon relieves this stress when pulling off a cartridge


2


and then pre-stresses the torsion shaft in the opposite direction.



Claims
  • 1. An ammunition-feeding device for a cannon comprising:at least one conveyor chain for transporting ammunition cartridges to said cannon, whereby the direction of conveyor chain transport is generally perpendicular to the longitudinal axis of said ammunition cartridges; and, a buffer shaft connected to one of said conveyor chains for both driving said conveyor chain and slanting the axial orientation of said ammunition cartridges within said connected conveyor chain.
  • 2. An ammunition-feeding device in accordance with claim 1, wherein said buffer shaft is part of an axial transport device which is positioned between a magazine and said cannon.
  • 3. An ammunition-feeding device in accordance with claim 1, wherein at least one of said conveyor chains has two roller chains for carrying the cartridges along, said roller chains being connected with each other via carrier tubes.
  • 4. An ammunition-feeding device in accordance with claim 3, wherein the carrier tubes have end pieces into which receiving bores are formed, wherein said carrier tube end pieces are received with play by pins protruding from said roller chains.
  • 5. An ammunition-feeding device in accordance with claim 4, wherein the roller chains are driven independently of each other by means of the buffer shaft and a transfer station, wherein the roller chains are displaced from each other by a defined amount and the carrier tubes with the cartridges are inclined through the cooperative actions of the buffer shaft and transfer station.
  • 6. An ammunition-feeding device in accordance with claim 5, wherein the defined amount is the distance of half a cartridge spacing on the conveyor chain.
  • 7. An ammunition-feeding device in accordance with claim 1, wherein said buffer shaft consists of two parts which are connected with each other by means of a claw coupling, wherein bolts are provided on said first claw coupling part which engage slits in the shape of an arc of a circle on a second claw coupling part, wherein the arc length of the slits is of such a size that the coupling parts can be turned with respect to each other by the distance of a cartridge spacing on the conveyor chain.
  • 8. An ammunition-feeding device in accordance with claim 1, wherein said buffer shaft is designed as a torsion shaft, on whose ends gear wheels and chain reversing wheels are fastened, wherein the turning of the torsion shaft up to the maximum moment is the distance of about half a cartridge spacing on the conveyor chain.
  • 9. An ammunition-feeding device in accordance with claim 2, wherein said axial transport device has a housing consisting of two flat plates, a casing and a guide plate to guide the cartridges, wherein guide grooves for the conveyor chain are provided on the flat plates, and axial guides for the cartridges are arranged on the inside of the casing.
  • 10. An ammunition-feeding device in accordance with claim 9, wherein said axial guides extend at a slant angle in relation to the conveying direction of the conveyor chain and parallel with each other.
  • 11. An ammunition-feeding device for a cannon comprising:at least one conveyor chain for transporting ammunition cartridges to said cannon, whereby the direction of conveyor chain transport is generally perpendicular to the longitudinal axis of said ammunition cartridges; and, a buffer shaft connected to one of said conveyor chains for both driving said conveyor chain and slanting the axial orientation of said ammunition cartridges within said connected conveyor chain, wherein said buffer shaft has a torsion shaft and a detent tube extending coaxially therewith, two chain reversing wheels and gear wheels are fastened at the end of the torsion shaft, said detent tube has two cutouts at one end, which are engaged by detents attached to one chain reversing wheel, wherein the arc length of the cutouts is of such a size that the torsion shaft can be turned by the distance of one cartridge spacing on the conveyor chain, and the other end of the detent tube is firmly connected with the other chain reversing wheel.
Priority Claims (1)
Number Date Country Kind
2411/98 Dec 1998 CH
US Referenced Citations (15)
Number Name Date Kind
B 439669 Ginsky Jan 1975
3921499 Ginsky Nov 1975 A
4066000 Rostocil Jan 1978 A
4093055 Blackburn et al. Jun 1978 A
4481859 Dix Nov 1984 A
4573395 Stoner Mar 1986 A
4833966 Maher et al. May 1989 A
4876940 Aloi et al. Oct 1989 A
4882972 Raymond Nov 1989 A
4951547 Novet et al. Aug 1990 A
5107750 Buchstaller Apr 1992 A
5149909 Hagen et al. Sep 1992 A
5218162 Bender-Zanoni Jun 1993 A
5408915 Stoner Apr 1995 A
5535661 Lescure Jul 1996 A
Foreign Referenced Citations (5)
Number Date Country
3219800 Jan 1983 DE
152549 Nov 1984 EP
0272399 Apr 1992 EP
0745826 Dec 1996 EP
487371 Jun 1938 GB