The present invention is generally related to amorphous propylene-ethylene copolymers and processes for producing such copolymers. More particularly, the present invention is generally related to amorphous propylene-ethylene copolymers having desirable needle penetrations, softening points, viscosities, and viscoelastic characteristics.
Amorphous polyolefins are commonly used in industry to produce a wide array of products including, for example, adhesives. Common polyolefins utilized in adhesives generally include copolymers produced from propylene, ethylene, and various C4-C10 alpha-olefin monomers, such as, for example, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, and 1-decene. In particular, propylene-butene copolymers are commonly used to produce hot melt adhesives due to the higher adhesive bond strengths derived from these copolymers. Much of the adhesive bond strength derived from these copolymers can be attributed to the C4-C10 alpha-olefins contained therein, which can greatly increase the subsequent bonding properties of the copolymer. Unfortunately, C4-C10 alpha-olefins can be quite expensive due to market availability and can also exhibit limited reactivity during the polymerization processes.
Due to the above deficiencies of the C4-C10 alpha-olefins, some manufacturers have attempted to replace C4-C10 alpha-olefins with ethylene. Unlike many of the C4-C10 alpha-olefins, ethylene can be more readily available and more reactive than many of the commonly used C4-C10 alpha-olefins, such as 1-butene. Unfortunately, propylene-ethylene copolymers can exhibit deficiencies in hardness, thereby resulting in adhesives that lack ideal bond strength over time. Some manufacturers have attempted to increase the hardness of these copolymers by incorporating crystalline polypropylene therein. However, by adding crystalline polypropylene to these copolymers, the softening points of the copolymers are also increased. This can limit the application of these copolymers to certain types of adhesives due to the higher softening points.
Thus, there is a need for amorphous copolymers that exhibit an ideal balance between hardness and softening point and that can also be used to produce adhesives with improved adhesive characteristics.
One or more embodiments of the present invention concern a copolymer comprising propylene and ethylene, which has a softening point in the range of 90 to 140° C. Furthermore, the copolymer has a needle penetration that is equal to y, which is defined by the following formula:
y≤−0.000000262249x6+0.000172031278x5−0.046669720165x4+6.701746779438x3−537.286013331959x2+22,802.983472587x−400,204.018086126
In the above formula, x is the softening point of the copolymer.
Additionally, one or more embodiments of the present invention concern a copolymer comprising propylene and ethylene. The copolymer has a softening point in the range of 110 to 135° C. and a needle penetration of less than 25 dmm.
Furthermore, one or more embodiments of the present invention concern a copolymer comprising propylene and ethylene. The copolymer has a softening point in the range of 90 to 121° C. and a needle penetration of less than 35 dmm.
Also, one or more embodiments of the present invention concern a copolymer comprising propylene and ethylene. The copolymer has a softening point in the range of 90 to less than 115° C. and a needle penetration equal to or less than 53 dmm.
Moreover, one or more embodiments of the present invention concern a hot melt adhesive. The hot melt adhesive comprises a copolymer comprising propylene and ethylene. The copolymer has a softening point in the range of 90 to 140° C. and a needle penetration that is equal to y, which is defined by the following formula:
y≤−0.000000262249x6+0.000172031278x5−0.046669720165x4+6.701746779438x3−537.286013331959x2+22,802.983472587x−400,204.018086126
In the above formula, x is the softening point of the copolymer.
In addition, one or more embodiments of the present invention concern a process for producing a copolymer. The process comprises reacting propylene and ethylene in the presence of a catalyst system comprising an electron donor to form the copolymer. The copolymer has a softening point in the range of 90 to 140° C. and a needle penetration that is equal to y, which is defined by the following formula:
y≤−0.000000262249x6+0.000172031278x5−0.046669720165x4+6.701746779438x3−537.286013331959x2+22,802.983472587x−400,204.018086126
In the above formula, x is the softening point of the copolymer.
In yet further embodiments of the present invention, a process for producing a copolymer is provided. The process comprises reacting propylene and ethylene in the presence of a catalyst system comprising an electron donor to form the copolymer. The copolymer has a softening point in the range of 110 to 140° C. and a needle penetration that is equal to y, which is defined by the following formula:
y≤−0.000751414552642x4+0.374053308337937x3−69.5967657676062x2+5,734.02599677759x−176,398.494888882
In the above formula, x is the softening point of the copolymer.
Embodiments of the present invention are described herein with reference to the following drawing figures, wherein:
The present invention is generally related to amorphous propylene-ethylene copolymers and their various applications. Many of the existing propylene-ethylene copolymers in the market today generally exhibit deficiencies regarding their softening points or hardness. The inventive copolymers described herein exhibit improved properties currently not available in these commercial copolymers. In particular, as described below in further detail, the inventive copolymers can exhibit desirable softening points and needle penetrations, thereby resulting in copolymers that are useful in a wide array of applications.
The Propylene-Ethylene Copolymers
Commercially-available propylene-ethylene copolymers have generally not been strong enough to be used in adhesives for packaging applications or hygiene products (e.g., diapers and feminine care products). Generally, this has to do with the lack of balance between the strength and adhesion properties of the copolymers. Historically, in order to produce a copolymer with sufficient strength, one had to limit the ethylene content of the copolymer. It has been observed that there is a correlation between the ethylene contents of a copolymer and its softening point and needle penetration, which is an indication of the copolymer's strength. Usually, the ethylene content can have a negative correlation with the softening point of the copolymer and a positive correlation with the needle penetration of the copolymer. In other words, the more ethylene that is present in a copolymer, the lower the softening point and higher the needle penetration of the copolymer. Thus, increasing the ethylene content in a propylene-ethylene copolymer may decrease the copolymer's softening point, but can also compromise its strength as shown by an increased needle penetration.
Unlike conventional propylene-ethylene copolymers available today, the inventive copolymers can exhibit a desirable softening point and needle penetration with relatively high ethylene contents. As previously noted, it can be desirable to utilize ethylene as a comonomer in propylene copolymers due to the high availability and low costs of ethylene compared to other alpha-olefins. Furthermore, there can be polymerization advantages in using ethylene as a comonomer since ethylene can be much more reactive than many other alpha-olefins.
According to various embodiments, the propylene-ethylene copolymers described herein can comprise varying amounts of ethylene. For example, the propylene-ethylene copolymers can comprise at least 1, 3, 5, 7, 10, 12, 14, 15, 17, 18, or 20 and/or not more than 70, 65, 60, 55, 50, 45, 40, 35, 30, 27, or 25 weight percent of ethylene. Moreover, the propylene-ethylene copolymers can comprise in the range of 1 to 70, 3 to 65, 5 to 60, 7 to 55, 10 to 50, 12 to 45, 14 to 40, 15 to 35, 17 to 30, 18 to 27, or 20 to 25 weight percent of ethylene.
Furthermore, in various embodiments, the propylene-ethylene copolymers can contain varying amounts of propylene. For example, the propylene-ethylene copolymers can comprise at least 40, 50, 60, 65, or 70 and/or not more than 99, 95, 90, 85, or 80 weight percent of propylene. Moreover, the propylene-ethylene copolymers can comprise in the range of 40 to 99, 50 to 95, 60 to 90, 65 to 85, or 70 to 80 weight percent of propylene.
In various embodiments, the copolymers can comprise at least 50, 65, 75, or 85 and/or not more than 99, 97.5, 95, or 90 weight percent of ethylene and propylene in combination. Moreover, the copolymers can comprise in the range of 50 to 99, 65 to 97.5, 75 to 95, or 85 to 90 weight percent ethylene and propylene in combination. Additionally or alternatively, the copolymers can comprise a weight ratio of propylene to ethylene of at least 0.5:1, 1:1, 2:1, or 2.5:1 and/or not more than 20:1, 15:1, 10:1, or 5:1. Moreover, the copolymers can comprise a weight ratio of propylene to ethylene in the range of 0.5:1 to 20:1, 1:1 to 15:1, 2:1 to 10:1, or 2.5:1 to 5:1.
In various embodiments, the copolymers can contain one or more C4-C10 alpha-olefins. As previously noted, C4-C10 alpha-olefins can be used to increase the resulting bond strength of the copolymers when utilized in adhesives. These C4-C10 alpha-olefins can include, for example, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and combinations thereof. According to one or more embodiments, the copolymers can comprise at least 0.5, 1, 2, 3, 4, or 5 and/or not more than 40, 30, 25, 20, 15, or 10 weight percent of at least one C4-C10 alpha-olefin. Moreover, the copolymers can comprise in the range of 0.5 to 40, 1 to 30, 2 to 25, 3 to 20, 4 to 15, or 5 to 10 weight percent of at least one C4-C10 alpha-olefin.
As noted above, a lower softening point for the copolymers can be desirable so that the copolymers can be utilized and processed at lower application temperatures. In various embodiments, the copolymers can have a softening point of at least 85, 90, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 113, 115, 116, 119, 120, 121, 124, 125, or 127° C. Additionally or alternatively, the copolymers can have a softening point of not more than 145, 140, 138, 137, 136, 135, 134, 132, 130, 129, 128, 127, 126, 125, 124, 123, 122, 121, 120, 118, 117, 115, 110, or 109.9° C. as measured according to ASTM E28 Standard Test Method for Softening Point of Resins Derived from Pine Chemicals and Hydrocarbons, by Ring-and Ball Apparatus using a heating rate of 5° C. per minute and a bath liquid of USP Glycerin.
Moreover, the copolymers can have a softening point in the range of 85 to 145° C., 90 to 140° C., 90 to 110° C., 90 to 121° C., 90 to 115° C., 95 to 138° C., 95 to 110° C., 96 to 136° C., 97 to 135° C., 98 to 134° C., 99 to 132° C., 100 to 130° C., 101 to 129° C., 102 to 128° C., 103 to 127° C., 104 to 126° C., 105 to 125° C., 106 to 124° C., 107 to 123° C., 108 to 122° C., 109 to 121° C., or 110 to 120° C. as measured according to ASTM E28 as discussed previously.
Despite exhibiting the low softening points described above, the copolymers can also exhibit desirable needle penetration values. Generally, the lower the needle penetration value, the higher the strength characteristics and modulus of the copolymer; however, if the needle penetration gets too low, then adhesive properties can be adversely impacted. In various embodiment, when the softening point is in the range of 90 to 140° C., the needle penetration values of the copolymers described herein can be defined by the following formula:
y≤−0.000000262249x6+0.000172031278x5−0.046669720165x4+6.701746779438x3−537.286013331959x2+22,802.983472587x−400,204.018086126.
Needle penetration is measured following ASTM D5 Standard Test Method for Penetration of Bituminous Materials and utilizing the following specifications:
In various other embodiments, when the softening point is in the range of 110 to 140° C., the needle penetration values of the copolymers described herein can be defined by the following formula:
y≤−0.000751414552642x4+0.374053308337937x3−69.5967657676062x2+5,734.02599677759x−176,398.494888882.
In the above formula, “y” defines the needle penetration (dmm) of the copolymer and “x” is the softening point (° C.) of the copolymer.
In various embodiments, the copolymers can have a needle penetration of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 30, or 35 decimillimeters (“dmm”) as measured according to ASTM D5 as discussed previously. Additionally or alternatively, the copolymers can have a needle penetration of not more than 75, 73.8, 70, 60, 50, 45, 40, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, or 15 dmm as measured according to ASTM D5 as discussed previously. Moreover, the copolymers can have a needle penetration in the range of 1 to 75, 2 to 50, 3 to 30, 4 to 29, 5 to 28, 6 to 27, 7 to 26, 8 to 25, 9 to 24, 10 to 23, 11 to 22, 12 to 21, or 13 to 20 dmm as measured according to ASTM D5 as discussed previously.
Depending on their intended end use, the copolymers can have varying softening points and needle penetration ranges. In various embodiments, the copolymers can have a softening point in the range of 90 to 121° C. and needle penetration less than 35 dmm. In other embodiments, the copolymers can have a softening point in the range of 90 to 115° C. and a needle penetration of less than 53 dmm. In various embodiments, the copolymers can have a softening point in the range of 110 to 138° C. and needle penetration in the range of 1 to 15 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 110 to 135° C. and needle penetration in the range of 5 to 15 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 110 to 130° C. and needle penetration in the range of 10 to 15 dmm.
In various embodiments, the copolymers can have a softening point in the range of 110 to 137° C. and needle penetration in the range of 1 to 22 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 110 to 135° C. and needle penetration in the range of 5 to 22 dmm. In other embodiments, the copolymers can have a softening point in the range of 110 to 135° C. and needle penetration in the range of 10 to 24 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 110 to 130° C. and needle penetration in the range of 10 to 20 dmm.
In various embodiments, the copolymers can have a softening point in the range of 110 to 134° C. and needle penetration in the range of 1 to 25 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 110 to 132° C. and needle penetration in the range of 5 to 25 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 110 to 130° C. and needle penetration in the range of 10 to 25 dmm.
In various embodiments, the copolymers can have a softening point in the range of 110 to 124° C. and needle penetration in the range of 1 to 30 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 110 to 122° C. and needle penetration in the range of 5 to 30 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 110 to 120° C. and needle penetration in the range of 10 to 30 dmm.
In various embodiments, the copolymers can have a softening point in the range of 110 to 120° C. and needle penetration in the range of 30 to 50 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 110 to 120° C. and needle penetration in the range of 35 to 50 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 110 to 120° C. and needle penetration in the range of 30 to 45 dmm.
In various embodiments, the copolymers can have a softening point in the range of 90 to 125° C. and needle penetration of less than 30 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 90 to 123° C. and needle penetration of less than 35 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 90 to 125° C. and needle penetration in the range of 10 to 30 dmm. In various embodiments, the copolymers can have a softening point in the range of 90 to 109.9° C. and needle penetration of less than 73.8 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 127 to 140° C. and needle penetration of less than 25 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 124 to 126° C. and needle penetration of less than 30 dmm.
In various embodiments, the copolymers can have a softening point in the range of 121 to 123° C. and needle penetration of less than 40 dmm. Furthermore, in certain embodiments, the copolymers can have a softening point in the range of 119 to 120° C. and needle penetration of less than 50 dmm. Moreover, in certain embodiments, the copolymers can have a softening point in the range of 116 to 118° C. and needle penetration of less than 60 dmm. In other embodiments, the copolymers can have a softening point in the range of 113 to 117° C. and needle penetration of less than 70 dmm.
Generally, lower softening points in the copolymers can sometimes be accompanied by lower glass transition (“Tg”) temperatures. In various embodiments, the copolymers can have a glass transition temperature of at least −100, −80, −60, or −40 and/or not more than about 20, 0, −10, or −20° C. as measured according to DMA. Moreover, the copolymers can have a Tg in the range of −100 to 20° C., −80 to 0° C., −60 to −10° C., or −40 to −20° C. as measured according to DMA.
Furthermore, in various embodiments, the copolymers can have a melt viscosity at 190° C. of at least 100, 500, 1,000, 3,000, or 5,000 and/or not more than about 100,000, 75,000, 50,000, 35,000, or 25,000 cP as measured according to ASTM D3236. Moreover, the copolymers can have a melt viscosity at 190° C. in the range of 100 to 100,000, 500 to 75,000, 1,000 to 50,000, 3,000 to 35,000, or 5,000 to 25,000 cP as measured according to ASTM D3236.
According to one or more embodiments, the copolymers can have a Brookfield viscosity at 190° C. of at least 100, 300, 500, or 750 and/or not more than 30,000, 10,000, 5,000, or 2,500 cps as measured according to ASTM D3236. Moreover, the copolymers can have a Brookfield viscosity at 190° C. in the range of 100 to 30,000, 300 to 10,000, 500 to 5,000, or 750 to 2,500 cps.
In one or more embodiments, the copolymers described herein can also have a number average molecular weight (Mn) of less than 100,000, 50,000, or 25,000 as determined by gel permeation chromatography.
In various embodiments, the copolymers described herein do not exhibit substantial changes in color when subjected to storage conditions at elevated temperatures over extended periods of time. Before any aging due to storage occurs, the inventive copolymers can have an initial Gardner color of less than 4, 3, 2, or 1 as measured according to ASTM D1544. After being heat aged at 177° C. for at least 96 hours, the inventive copolymers can exhibit a final Gardner color of less than 7, 5, 3, or 2 as measured according to ASTM D1544. Thus, the inventive copolymers can retain a desirable color even after prolonged storage and exposure.
Additionally, the copolymers described herein can be amorphous or semi-crystalline. As used herein, “amorphous” means that the copolymers have a crystallinity of less than 5 percent as measured using Differential Scanning Calorimetry (“DSC”) according to ASTM E 794-85. As used herein, “semi-crystalline” means that the copolymers have a crystallinity in the range of 5 to 40 percent as measured using DSC according to ASTM E 794-85. In various embodiments, the copolymers can have a crystallinity of not more than 60, 40, 30, 20, 10, 5, 4, 3, 2, or 1 percent as measured using DSC according to ASTM E 794-85.
The Processes for Producing the Propylene-Ethylene Copolymers
In various embodiments, the copolymers can be produced by reacting propylene monomers and ethylene monomers in the presence of a catalyst system comprising at least one electron donor.
In various embodiments, the catalyst system can comprise a Ziegler-Natta catalyst. According to one or more embodiments, the Ziegler-Natta catalyst can contain a titanium-containing component, an aluminum component, and an electron donor. In certain embodiments, the catalyst comprises titanium chloride on a magnesium chloride support.
The catalyst systems, in certain embodiments, can comprise a heterogeneous-supported catalyst system formed from titanium compounds in combination with organoaluminum co-catalysts. In various embodiments, the co-catalyst can comprise an alkyl aluminum co-catalyst (“TEAL”).
In one or more embodiments, the catalyst system can have an aluminum to titanium molar ratio of at least 1:1, 5:1, 10:1, or 15:1 and/or not more than 100:1, 50:1, 35:1, or 25:1. Moreover, the catalyst system can have an aluminum to titanium molar ratio in the range of 1:1 to 100:1, 5:1 to 50:1, 10:1 to 35:1, or 15:1 to 25:1. Additionally or alternatively, in various embodiments, the catalyst system can have a molar ratio of aluminum to silicon of at least 0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, or 6:1 and/or not more than 100:1, 50:1, 35:1, 20:1, 15:1, 10:1, or 8:1. Moreover, the catalyst system can have a molar ratio of aluminum to silicon in the range of 0.5:1 to 100:1, 1:1 to 50:1, 2:1 to 35:1, 2:1 to 20:1, 2:1 to 15:1, 2:1 to 10:1, or 2:1 to 8:1.
Electron donors are capable of increasing the copolymer's stereospecificity. However, it can be important to closely regulate the contents of the electron donors since they can suppress catalyst activity to unacceptable levels in some circumstances. The electron donors used during the polymerization process can include, for example, organic esters, ethers, alcohols, amines, ketones, phenols, phosphines, and/or organosilanes. Furthermore, the catalyst system can comprise internal donors and/or external donors.
In various embodiments, the catalyst system comprises at least one external electron donor. In one or more embodiments, the external electron donor comprises at least one alkoxy silane. In particular, in certain embodiments, the alkoxy silane can comprise dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, or a combination thereof. Moreover, in some embodiments, the alkoxy silane can comprise, consist essentially of, or consist entirely of dicyclopentyldimethoxysilane.
It has been observed that the addition of the above external donors to the catalyst system can increase the hardness (i.e., decrease the needle penetration) and viscosities of the copolymers. However, contrary to what has been previously observed in the art, the electron donors described above can actually lower the softening points of the produced copolymers instead of increasing it. Furthermore, it has been observed that substantially all (i.e., greater than 95 percent) of the ethylene added to the reactor during the polymerization process can react when the above electron donors are used. Thus, this can result in copolymers having higher ethylene contents and lower propylene contents. Consequently, when using the above electron donors, propylene-ethylene copolymers can be produced that have higher ethylene contents, but still exhibit desired balances between softening point and hardness.
In addition, according to various embodiments, the catalyst system can have a molar ratio of electron donor to titanium of at least 0.1:1, 0.5:1, 1:1, 1.25:1, 1.5:1, or 2:1 and/or not more than 20:1, 15:1, 10:1, 5:1, 4.5:1, or 4:1. Moreover, the catalyst system can have a molar ratio of electron donor to titanium in the range of 0.1:1 to 20:1, 0.5:1 to 15:1, 1:1 to 10:1, 1.25:1 to 5:1, 1.5:1 to 4.5:1, or 2:1 to 4:1. Additionally or alternatively, in various embodiments, the catalyst system can comprise a molar ratio of TEAL co-catalyst to the electron donor of at least 0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, or 6:1 and/or not more than 100:1, 50:1, 35:1, 20:1, 15:1, 10:1, or 8:1. Moreover, the catalyst system can comprise a molar ratio of TEAL co-catalyst to the electron donor in the range of 0.5:1 to 100:1, 1:1 to 50:1, 2:1 to 35:1, 2:1 to 20:1, 2:1 to 15:1, 2:1 to 10:1, or 2:1 to 8:1. In certain embodiments, the type of electron donor can influence the necessary TEAL/electron donor ratio. For instance, in embodiments where the electron donor is dicyclopentyldimethoxysilane, the TEAL/electron donor ratio can be less than 20:1.
The catalyst system can exhibit a catalyst activity in the range of 200 to 2,000, 400 to 1,200, or 500 to 1,000 g/g. Catalyst activity is calculated by measuring the ratio of the weight the polymer made in the reactor to the weight of the catalyst charged into the reactor. These measurements are based on a reaction time of one hour.
Since the addition of external donors can increase viscosity and molecular weight, the addition of hydrogen can be required to act as a chain terminator during polymerization. For example, the process can be carried out at a hydrogen pressure in the range of 5 to 100, 10 to 80, or 15 to 50 psig.
In various embodiments, the polymerization reaction can occur at a temperature in the range of 100 to 200, 110 to 180, or 120 to 150° C. Furthermore, the polymerization reaction can be carried out a pressure in the range of 500 to 2,000, 700 to 1,500, or 800 to 1,250 psig.
In certain embodiments, the reactor can comprise a stirred reactor and the polymerization reaction can have a residence time in the reactor in the range of 0.1 to 6, 0.5 to 4, or 1 to 2 hours. In various embodiments, the ethylene can be added to the reactor as a gas and the propylene can be added as a liquid.
End Products Incorporating the Propylene-Ethylene Copolymers
The copolymers described herein can be utilized in a wide array of applications including, for example, adhesives, sealants, roofing membranes, waterproof membranes and underlayments, carpet, laminated articles, tapes (e.g. tamper evident tapes, water activated tapes, gummed tape, sealing tape, scrim reinforced tape, veneer tape, reinforced and non-reinforced gummed paper tape, box makers tape, paper tape, packaging tape, duct tape, masking tape, invisible tape, electrical tape, gaffer tape, hockey tape, medical tape, etc.), labels (e.g. general purpose label, beverage label, freezer label, smart label, consumer electronics etc.), mastics, polymer blends, wire coatings, molded articles, and rubber additives. In certain embodiments, the copolymers described herein can be utilized in adhesives, such as, for example, hotmelt adhesives, water based adhesives, solvent based adhesives, hot melt pressure-sensitive adhesives, solvent-based pressure-sensitive adhesives, hot melt nonwoven/hygiene adhesives, and hot melt packaging adhesives. In particular, due to their unique combination of softening point and needle penetration as previously described, adhesives produced from the inventive copolymers can be utilized in a vast array of end products, including hygienic packaging and other packaging applications. In many embodiments, the various properties of the inventive copolymers, such as softening point and needle penetration, can be selected to suit the intended end use of the composition incorporating the copolymers.
Furthermore, in various embodiments, the inventive copolymers described herein can also be used to modify existing polymer blends that are typically utilized in plastics, elastomeric applications, roofing applications, cable filling, and tire modifications. The inventive copolymers can improve the adhesion, processability, stability, viscoelasticity, thermal properties, and mechanical properties of these polymer blends.
In various embodiments, the inventive copolymers can be modified to produce graft copolymers. In such embodiments, the inventive copolymers can be grafted with maleic anhydride, fumarate and maleate esters, methacrylate esters (e.g., glycidyl methacrylate and hydroxethyl methacrylate), methacrylic acid, vinyl derivatives, silane derivatives, or combinations thereof. These graft copolymers can be produced using any conventional process known in the art including, for example, transesterification and free radical induced coupling.
The various end uses and end products noted above can utilize the inventive copolymer by itself or can combine it with other additives and polymers. Suitable polymers that can be combined with the inventive copolymers to form a polymer blend may include, for example, isoprene-based block copolymers; butadiene-based block copolymers; hydrogenated block copolymers; ethylene vinyl acetate copolymers; polyester; polyester-based copolymers; neoprene; urethane; polyacrylate; acrylate copolymers such as ethylene acrylic acid copolymer, ethylene n-butyl acrylate copolymer, and ethylene methyl acrylate copolymer; polyether ether ketone; polyamide; styrenic block copolymers; hydrogenated styrenic block copolymers; random styrenic copolymers; ethylene-propylene rubber; ethylene vinyl acetate copolymer; butyl rubber; styrene butadiene rubber; butadiene acrylonitrile rubber; natural rubber; polyisoprene; polyisobutylene; polyvinyl acetate; polyethylene; polypropylene including atactic polypropylene; a terpolymer formed from the ethylene, propylene, and a diene (EPDM); metallocene-catalyzed polypropylene polymers; ethylene-butene copolymers; ethylene-hexene copolymers; ethylene-octene copolymers; ethylene-dodecene copolymers; propylene-butene copolymers; propylene-hexene copolymers; propylene-octene copolymers; and propylene-dodecene copolymers.
In various embodiments, the copolymers described herein can be used to produce a hot melt adhesive. According to one or more embodiments, the adhesives can comprise at least 1, 5, 10, 20, 30, or 40 and/or not more than 95, 90, 80, 70, 60, or 55 weight percent of the inventive copolymer. Moreover, the adhesives can comprise in the range of 1 to 95, 5 to 90, 10 to 80, 20 to 70, 30 to 60, or 40 to 55 weight percent of the inventive copolymers. In certain embodiments, the adhesive can be entirely comprised of the inventive copolymer.
Furthermore, depending on the intended end use, these hot melt adhesives can also comprise various additives including, for example, polymers, tackifiers, processing oils, waxes, antioxidants, plasticizers, pigments, and fillers.
In various embodiments, the adhesives can comprise at least 10, 20, 30, or 40 and/or not more than 90, 80, 70, or 55 weight percent of at least one polymer that is different from the inventive copolymers. Moreover, the adhesives can comprise in the range of 10 to 90, 20 to 80, 30 to 70, or 40 to 55 weight percent of at least one polymer that is different from the inventive copolymers. These polymers can include any of the polymers listed above.
In various embodiments, the adhesives can comprise at least 10, 20, 30, or 40 and/or not more than 90, 80, 70, or 55 weight percent of at least one tackifier. Moreover, the adhesives can comprise in the range of 10 to 90, 20 to 80, 30 to 70, or 40 to 55 weight percent of at least one tackifer. Suitable tackifiers can include, for example, cycloaliphatic hydrocarbon resins, C5 hydrocarbon resins; C5/C9 hydrocarbon resins; aromatically-modified C5 resins; C9 hydrocarbon resins; pure monomer resins such as copolymers or styrene with alpha-methyl styrene, vinyl toluene, para-methyl styrene, indene, methyl indene, C5 resins, and C9 resins; terpene resins; terpene phenolic resins; terpene styrene resins; rosin esters; modified rosin esters; liquid resins of fully or partially hydrogenated rosins; fully or partially hydrogenated rosin esters; fully or partially hydrogenated modified rosin resins; fully or partially hydrogenated rosin alcohols; fully or partially hydrogenated C5 resins; fully or partially hydrogenated C5/C9 resins; fully or partially hydrogenated aromatically-modified C5 resins; fully or partially hydrogenated C9 resins; fully or partially hydrogenated pure monomer resins; fully or partially hydrogenated C5/cycloaliphatic resins; fully or partially hydrogenated C5/cycloaliphatic/styrene/C9 resins; fully or partially hydrogenated cycloaliphatic resins; and combinations thereof. Exemplary commercial hydrocarbon resins include Regalite™ hydrocarbon resins (Eastman Chemical).
In various embodiments, the adhesives can comprise at least 1, 2, 5, 8, or 10 and/or not more than 40, 30, 25, or 20 weight percent of at least one processing oil. Moreover, the adhesives can comprise in the range of 2 to 40, 5 to 30, 8 to 25, or 10 to 20 weight percent of at least one processing oil. Processing oils can include, for example, mineral oils, naphthenic oils, paraffinic oils, aromatic oils, castor oils, rape seed oil, triglyceride oils, or combinations thereof. As one skilled in the art would appreciate, processing oils may also include extender oils, which are commonly used in adhesives. The use of oils in the adhesives may be desirable if the adhesive is to be used as a pressure-sensitive adhesive to produce tapes or labels or as an adhesive to adhere nonwoven articles. In certain embodiments, the adhesive may not comprise any processing oils.
In various embodiments, the adhesives can comprise at least 1, 2, 5, 8, or 10 and/or not more than 40, 30, 25, or 20 weight percent of at least one wax. Moreover, the adhesives can comprise in the range of 1 to 40, 5 to 30, 8 to 25, or 10 to 20 weight percent of at least one wax. Suitable waxes can include, for example, microcrystalline wax, paraffin wax, waxes produced by Fischer-Tropsch processes, functionalized waxes (maleated, fumerated, or wax with functional groups etc.) and vegetable wax. The use of waxes in the adhesives may be desirable if the adhesive is to be used as a hot melt packaging adhesive. In certain embodiments, the adhesive may not comprise a wax.
In various embodiments, the adhesives can comprise at least 0.1, 0.5, 1, 2, or 3 and/or not more than 20, 10, 8, or 5 weight percent of at least one antioxidant. Moreover, the adhesives can comprise in the range of 0.1 to 20, 1 to 10, 2 to 8, or 3 to 5 weight percent of at least one antioxidant.
In various embodiments, the adhesives can comprise at least 0.5, 1, 2, or 3 and/or not more than 20, 10, 8, or 5 weight percent of at least one plasticizer. Moreover, the adhesives can comprise in the range of 0.5 to 20, 1 to 10, 2 to 8, or 3 to 5 weight percent of at least one plasticizer. Suitable plasticizers can include, for example, dibutyl phthalate, dioctyl phthalate, chlorinated paraffins, and phthalate-free plasticizers. Commercial plasticizers can include, for example, Benzoflex™ plasticizers (Eastman Chemical) and Eastman 168™ (Eastman Chemical).
In various embodiments, the adhesives can comprise at least 10, 20, 30, or 40 and/or not more than 90, 80, 70, or 55 weight percent of at least one filler. Moreover, the adhesives can comprise in the range of 1 to 90, 20 to 80, 30 to 70, or 40 to 55 weight percent of at least one filler. Suitable fillers can include, for example, carbon black, calcium carbonate, titanium oxide, zinc oxide, or combinations thereof.
The adhesive compositions can be produced using conventional techniques and equipment. For example, the components of the adhesive composition may be blended in a mixer such as a sigma blade mixer, a plasticorder, a brabender mixer, a twin screw extruder, or an in-can blend (pint-cans). In various embodiments, the adhesive may be shaped into a desired form, such as a tape or sheet, by an appropriate technique including, for example, extrusion, compression molding, calendaring or roll coating techniques (e.g., gravure, reverse roll, etc.), curtain coating, slot-die coating, or spray coating.
Furthermore, the adhesive may be applied to a substrate by solvent casting processes or by melting the adhesive and then using conventional hot melt adhesive application equipment known in the art. Suitable substrates can include, for example, nonwoven, textile fabric, paper, glass, plastic, films (Polyethylene, Polypropylene, Polyester etc.), and metal. Generally, about 0.1 to 100 g/m2 of the adhesive composition can be applied to a substrate.
According to one or more embodiments, the hot melt adhesives can have a Brookfield viscosity at 177° C. of at least 100, 300, 500, or 750 and/or not more than 30,000, 10,000, 5,000, or 2,500 cps as measured according to ASTM D3236. Moreover, the hot melt adhesives can have a Brookfield viscosity at 177° C. in the range of 100 to 30,000, 300 to 10,000, 500 to 5,000, or 750 to 2,500 cps. Additionally or alternatively, the hot melt adhesives can have a loop tack of 0.1, 0.5, 1, or 1.5 and/or not more than 20, 15, 10, or 5 lbf as measured according to ASTM D6195. Moreover, the hot melt adhesives can have a loop tack in the range of 0.1 to 20, 0.5 to 15, 1 to 10, or 1.5 to 5 lbf as measured according to ASTM D6195.
Furthermore, in various embodiments, the hot melt adhesives can have a peel strength of at least 1, 2, 5, 10, or 15 and/or not more than 50, 40, 35, 30, or 25 g/mm as measured according to ASTM D903. Moreover, the hot melt adhesives can have a peel strength in the range of 1 to 50, 2 to 40, 5 to 35, 10 to 30, or 15 to 25 g/mm as measured according to ASTM D903. Additionally or alternatively, the hot melt adhesives can have a 90° peel strength of at least 0.05, 0.1, 0.2, or 0.5 and/or not more than 20, 10, 5, or 1 lbf/inch as measured according to ASTM D903. Moreover, the hot melt adhesives can have a 90° peel strength in the range of 0.05 to 20, 0.1 to 10, 0.2 to 5, or 0.5 to 1 lbf/inch as measured according to ASTM D903.
According to various embodiments, the adhesives containing the inventive copolymers can have a broad operating window and may have an application window from 80 to 230° C. This broad operating window can be demonstrated by the peel strengths of the adhesives at different temperatures. Add-on level can be from 0.5-30 gsm. In one or more embodiments, the hot melt adhesives can have a peel strength for samples applied at lower temperature (such as 100-145° C.) of at least 2, 5, 25, or 40 and/or not more than 250, 200, or 175 g/mm as measured according to ASTM D903. Moreover, the hot melt adhesives can have a peel strength for samples applied at lower temperature (such as 100-145° C.) in the range of 2 to 250, 25 to 200, or 40 to 175 g/mm as measured according to ASTM D903. Additionally or alternatively, the hot melt adhesives can have a peel strength at for samples applied at higher temperature (such as 145-180° C.)—of at least 1, 5, 30, or 40 and/or not more than 250, 200, or 150 g/mm as measured according to ASTM D903. Moreover, the hot melt adhesives can have a peel strength for samples applied at higher temperature (such as 145-180° C.) in the range of 1 to 250, 30 to 200, or 40 to 150 g/mm as measured according to ASTM D903.
According to one or more embodiments, the hot melt adhesives can have a probe tack of at least 0.1, 0.2, or 0.3 and/or not more than 5, 3, 2, or 1 kg as measured according to ASTM D9279. Moreover, the hot melt adhesives can have a probe tack in the range of 0.1 to 3, 0.2 to 2, or 0.3 to 5 kg as measured according to ASTM D9279. Furthermore, in various embodiments, the hot melt adhesives can have a holding power of at least 0.1, 0.5, or 1 and/or not more than 50000, 10000, 5000, 1000, 500, 100, 50, 20, 10, 7, or 4 hours as measured according to ASTM D3654. Moreover, the hot melt adhesives can have a holding power in the range of 0.1 to 10, 0.5 to 7, or 1 to 4 hours as measured according to ASTM D3654.
According to various embodiments, the hot melt adhesives can have a peel adhesion failure temperature (“PAFT”) of at least 2, 10, 25, or 45 and/or not more than 200, 120, or 80° C. as measured according to ASTM D4498. Moreover, the hot melt adhesives can have a PAFT in the range of 2, 10 to 200, 25 to 120, or 45 to 80° C. as measured according to ASTM D4498. Additionally or alternatively, the hot melt adhesives can have a shear adhesion failure temperature (“SAFT”) of at least 2, 5, 10, 25, 50, or 75 and/or not more than 200, 150, or 125° C. as measured according to ASTM D4498. Moreover, the hot melt adhesives can have a SAFT in the range of 2 to 200, 50 to 150, or 75 to 125° C. as measured according to ASTM D4498.
In various embodiments, the adhesives containing the inventive copolymers do not exhibit substantial changes in color when subjected to storage conditions at elevated temperatures over extended periods of time. Before any aging due to storage occurs, the adhesives can have an initial Gardner color of less than 18, 15, 10, 8, 5, 4, 3, 2, or 1 as measured according to ASTM D1544. After being heat aged at 177° C. for at least 96 hours, the adhesives can exhibit a final Gardner color of less than 18, 15, 10, 7, 5, 3, 2 or 1 as measured according to ASTM D1544. Thus, the adhesives can retain a desirable color even after prolonged storage and exposure.
This invention can be further illustrated by the following examples of embodiments thereof, although it will be understood that these examples are included merely for the purposes of illustration and are not intended to limit the scope of the invention unless otherwise specifically indicated.
In this example, various propylene-ethylene copolymers were produced in a two-liter stirred reactor with an average residence time of about one hour. The reactor temperature was maintained at approximately 140° C. and a pressure of 900 psig. The propylene was fed into the reactor as a liquid, while the ethylene was fed into the reactor as a gas. The polymerization occurred in the presence of a Ziegler-Natta catalyst, which was a titanium chloride on a magnesium chloride support. This particular catalyst is a heterogeneous-supported catalyst system formed from titanium compounds in combination with alkyl aluminum co-catalyst (“TEAL”). The catalyst system contained an Al/Ti mole ratio of 21. Any unreacted monomer and other vapors were vented from the reactor upon discharge of the copolymer.
Samples 1-11 were produced using the aforementioned catalyst system and an external electron donor. As noted below, the electron donor was either cyclohexylmethyldimethoxysilane (“C”) or dicyclopentyldimethoxysilane (“D”). Comparative sample 1 (C1) was produced using the above catalyst system in the absence of any electron donors. The amount of added electron donor varied for each sample as indicated by Donor/Ti molar ratio.
The copolymers produced from this reaction are described in TABLE 1 below, along with their various properties and the reaction conditions used to produce them. It should be noted that needle penetration was measured using a penetrometer in accordance with ASTM D5 as discussed previously without actually running the specimens in water; however, the specimens were conditioned in water prior to running the test.
As shown above in TABLE 1, the addition of the external donor generally increased hardness, which was indicated by a decrease in needle penetration, along with increasing the softening point and viscosity of the copolymers. As depicted in TABLE 1, samples produced with the external donor had significantly lower needle penetration values than the comparative sample (C1). Furthermore, it was observed that the comparative sample was very tacky, but still lacked the strength of the samples represented by needle penetration values below 30 dmm.
Previous studies indicate that external donor levels greater than 1.25:1 (donor:Ti molar ratio) start to adversely impact properties of the copolymers. In contrast to these studies, it was observed in this example that polymer properties improved at external donor levels of greater than 1.25:1 (donor:Ti molar ratio). Since the addition of external donors can increase viscosity and molecular weight, the addition of hydrogen, or a higher level of hydrogen, can be required to act as a chain terminator during polymerization compared to polymerization of a similar composition with no external donor added.
As shown in
In this example, various propylene-ethylene copolymers were produced using the process and system described in Example 1; however, the external electron donor used in this example was cyclohexylmethyldimethoxysilane. Furthermore, the amounts of electron donor added for each sample were varied as indicated by the donor/Ti molar ratio. The copolymers produced during this process are described in TABLE 2 below, along with their various properties and the reaction conditions used to produce them.
As depicted in TABLE 2, the use of cyclohexylmethyldimethoxysilane as the external donor was able to produce copolymers with a desirable combination of needle penetration and softening point. However, this balance was largely affected by the donor/Ti molar ratio. As shown in Samples 2F and 2G in TABLE 2, when the donor/Ti molar ratio was increased from 1.5:1 to 2:1, there was a slight decrease in softening point and a significant increase in needle penetration, which was not desirable.
In this example, various propylene-ethylene copolymers were produced using the process and system described in Example 1. The external electron donor used in this example was dicyclopentyldimethoxysilane. Furthermore, the amounts of electron donor added for each sample was varied as indicated by the donor/Ti molar ratio. The copolymers produced during this process are described in TABLE 3 below, along with their various properties and the reaction conditions used to produce them
As shown in TABLE 3, the amount of dicyclopentyldimethoxysilane needed to produce copolymers with the desired softening point and needle penetration varies from the amount of cyclohexylmethyldimethoxysilane needed as shown above in Example 2. As demonstrated by comparative samples C1 and C2, dicyclopentyldimethoxysilane levels generally needed to be at 2:1 or greater to achieve the desired properties in the produced copolymers. Moreover, it was observed that copolymers produced using dicyclopentyldimethoxysilane generally had much lower softening points compared to those produced using cyclohexylmethyldimethoxysilane. Furthermore, the copolymers produced using dicyclopentyldimethoxysilane were able to maintain desirable needle penetration values.
Comparing Samples 3C and 3F in TABLE 3 shows that increasing the dicyclopentyldimethoxysilane levels from 3:1 to 4:1 (at 17.5% ethylene flow) results in more ethylene being incorporated into the polymer, thereby yielding a copolymer with a lower softening point.
Another noteworthy result is observed when comparing Samples 3D and 3F, both of which were produced using the same ethylene flow (13%) and had the same needle penetration (21 dmm). However, by increasing the dicyclopentyldimethoxysilane levels from 2:1 to 3:1, Sample 3F unexpectedly had an increased ethylene content (24.2%) compared to Sample 3D (18.2%). This increased amount of ethylene led to the lower softening point in Sample 3F. Furthermore, it is theorized that the propylene portion of Sample 3F is also more stereoregular (i.e., harder) than that of Sample 3D, thereby offsetting the softness that is usually accompanied with a higher ethylene content.
Adhesives were produced with Samples 1B, 1E, and 1F from Example 1. The adhesives were produced in pint-sized cans using mechanical agitation with a paddle-type agitator controlled by a variable speed motor with a heat block set at 177° C. The copolymer, along with antioxidant, were introduced into the pint-sized can and heated to 177° C. under a nitrogen blanket. Resin and oil were then introduced into the mixture after the copolymer was melted. In some cases, wax can be also added along with resin and/or oil or in place of resin and/or oil. This mixture was agitated for 30 minutes until it was completely homogenous. After thorough mixing, the adhesive was poured into a silicone-lined cardboard box and allowed to cool. TABLE 4, below, describes the composition and properties of these adhesives. In addition, comparative adhesives were produced using INFUSE™ 9807 block copolymer (Dow) and Kraton® D1102 copolymer (Kraton). It should be noted that the compositional components recited in TABLE 4 are based on weight percentage.
Viscoelastic characteristics of Comparative Adhesive 1, Comparative Adhesive 2, Inventive Adhesive 2, and Inventive Adhesive 3 in TABLE 4 were analyzed using Dynamic Mechanical Analysis (“DMA”).
Based on
A pressure sensitive adhesive for labels was produced using the process described in Example 4. The adhesive was produced using Sample 1E from Example 1. TABLE 5, below, depicts the compositional makeup of this adhesive.
The viscoelastic characteristics of this adhesive were measured using DMA and are depicted in
Thus, this adhesive can be used as a label adhesive since it exhibits desirable viscoelastic characteristics as shown in
Hot melt adhesives for packaging applications were produced using the process described in Example 4. All of the adhesives produced for this example comprised 39.8 weight percent of the respective propylene-ethylene copolymer, 39.8 weight percent of Eastotac™ H-100W hydrocarbon resin, 19.9 weight percent of Sasol H1 wax (Sasol), and 0.6 weight percent of antioxidant. It should be noted that some of these adhesives were formed from copolymers produced and described in the previous examples (Samples 1F and 2B), which are noted in TABLE 6 below. As for the remaining listed copolymers (Samples 6A-6D), they were produced in accordance with the process described in Example 1. TABLE 6, below, provides various properties and characteristics of the produced adhesives. Furthermore, TABLE 6 notes the electron donor used to produce the listed copolymers. These electron donors included cyclohexylmethyldimethoxysilane (“C”), dicyclopentyldimethoxysilane (“D”), and tetraethoxysilane (“TEOS”). The adhesives were evaluated for various adhesive properties, such as peel adhesion failure temperature (“PAFT”) (ASTM D4498), shear adhesion failure temperature (“SAFT”) (ASTM D4498), % fiber tear (ASTM D4498), and open time/set time (ASTM D4497).
It should be noted that the adhesive produced with Sample 6D did not have any noticeable fiber tear due to its low needle penetration as depicted in TABLE 6.
The viscoelastic characteristics of the adhesive produced from Sample 1F (labeled as “Inventive Adhesive 5”) are compared in
Hot melt adhesives for nonwovens were produced using the inventive propylene-ethylene copolymers and various polymers. The propylene-ethylene copolymers used to manufacture these adhesive samples were produced in accordance with the process described in Example 1. The various properties and characteristics of the copolymers used to produce the adhesive samples are listed in TABLE 7 below. Furthermore, TABLE 7 indicates the electron donor that was used to produce the respective copolymer (cyclohexylmethyldimethoxysilane (“C”) or dicyclopentyldimethoxysilane (“D”)).
The adhesives were produced in accordance with the process described in Example 4. The adhesives were produced with various polymers and additives including Vistamaxx™ 6202 (ExxonMobil), Infuse™ 9807 (Dow), L-MODU S400 (Idemitsu), Kraton® 1102 (Kraton), Kraton® 1161 (Kraton), Kraton® 1657 (Kraton), Regalite™ R1090 (Eastman Chemical), Kaydol mineral oil (Sonneborn), and Irganox® 1010 (BASF). The Brookfield viscosity and the peel strength of the produced adhesives were measured as described above. TABLE 8, below, describes the composition and properties of these inventive adhesives, which are labeled as “IA.” It should be noted that the compositional components recited in TABLE 8 are based on weight percentage and that all components add up to 100 percent; however, this does not include the 1 percent of antioxidant (Irganox® 1010), which was added after all other components were combined. The weight percentage for the antioxidant was based off the combined weight percentage of the other components.
As shown in TABLE 8, the inventive adhesives exhibited desirable adhesive properties that are comparable to standard adhesives in the industry.
Hot melt adhesives for hygienic applications were produced using the inventive propylene-ethylene copolymers depicted in TABLE 9. The copolymers were produced in accordance with the process described in Example 1 using dicyclopentyldimethoxysilane as the electron donor.
The adhesives were produced in accordance with the process described in Example 4. The adhesives were produced with various additives including Eastotac™ H-100W (Eastman Chemical), Regalite™ R1090 (Eastman Chemical), Kaydol mineral oil (Sonneborn), and Irganox® 1010 (BASF). TABLE 10, below, describes the composition and properties of these inventive adhesives, which are labeled as “IA.” It should be noted that the compositional components recited in TABLE 10 are based on weight percentage.
The coatability, sprayability, and adhesive performance of the inventive adhesives were compared against adhesives containing a commercially-available styrenic block copolymer (“SBC”) and a commercially-available olefin-based copolymer as shown in TABLE 10. The coating/spraying analysis was performed using an Acumeter and Nordson CF nozzle with different add-ons (2, 3, and 4 gsm) at 800, 600, and 400 ft/min (6 gsm at 350 ft/min for 3 samples) at two different temperatures (137° C. and 163° C.). The tested substrates were 1 mil polyethylene and a 15 gsm spun bound nonwoven. The sprayability was observed and marked as “good,” “poor,” or “no” (i.e., not sprayable) after observing the spraying of adhesive at the designated temperature. The Brookfield viscosity, softening point, needle penetration, and the peel strength of the produced adhesives were also measured as described above. The width of the adhesive samples tested for peel strength was 15 to 20 mm.
It should be noted that peel strength tests of 137° C. samples were inconclusive for the two comparative commercial adhesives due to the poor sprayability of these adhesives. As shown in TABLE 10, the inventive adhesives exhibited desirable coatability and sprayability at low and high temperatures, thereby indicating a broad operating window. Furthermore, the inventive adhesives exhibited adhesive properties that are either comparable or superior to standard adhesives in the industry.
Hot melt adhesives for packaging applications were produced using the inventive propylene-ethylene copolymers depicted in TABLE 11. Furthermore, comparative adhesives were produced from a comparative propylene homopolymer (“CPH”) as depicted in TABLE 11. The copolymers used to manufacture these adhesive samples were produced in accordance with the process described in Example 1. Furthermore, TABLE 11 also indicates the electron donor that was used to produce the copolymers (cyclohexylmethyldimethoxysilane (“C”) or dicyclopentyldimethoxysilane (“D”)).
The adhesives were produced in accordance with the process described in Example 4. The adhesives were produced with various additives including Eastotac™ H-100W (Eastman Chemical), Eastotac™ H-130W (Eastman Chemical), Sasol wax H-1 (Sasol), and Irganox® 1010 (BASF). TABLE 12, below, describes the composition and properties of the inventive adhesives, which are labeled as “IA,” and the comparative adhesives (“CA”). It should be noted that the compositional components recited in TABLE 12 are based on weight percentage. The initial viscosities of the adhesives were measured at 162° C. and 177° C., along with the SAFT, PAFT, and open/set times. The SAFT measurements were performed to understand the shear strength of the adhesives over a temperature period in a SAFT oven. Viscosity profiles of the adhesives were generated to determine the processability characteristics. Furthermore, the initial Gardner color before aging and adhesive clarity at 177° C. were also measured and observed.
As shown in TABLE 12, the inventive adhesives exhibited adhesive properties that are either comparable or superior to adhesives produced from propylene. The inventive adhesives can exhibit desirable clarity and color, along with desirable processability as indicated by their viscosities.
Hot melt adhesives for packaging applications were produced using the inventive propylene-ethylene copolymers depicted in TABLE 13. Furthermore, comparative adhesives were produced from Affinity™ GA1950 (Dow) and comparative polymers (“CP”) as depicted in TABLE 13. The copolymers used to manufacture these adhesive samples were produced in accordance with the process described in Example 1. Furthermore, TABLE 13 also indicates the electron donor that was used to produce the copolymers.
The adhesives were produced in accordance with the process described in Example 4. The adhesives were produced with various additives including Regalite™ R1090 (Eastman Chemical), Escorez® 5300 (Exxonmobil), Piccotac™ 1095 (Eastman Chemical), Piccotac™ 7590 (Eastman Chemical), Sasol wax H-1 (Sasol), and Irganox® 1010 (BASF). TABLE 14, below, describes the composition and properties of the inventive adhesives, which are labeled as “IA,” and the comparative adhesives labeled as “CA.” It should be noted that the compositional components recited in TABLE 14 are based on weight percentage and that all components add up to 100 percent; however, this does not include the 1 percent of antioxidant (Irganox® 1010), which was added after all other components were combined. The weight percentage for the antioxidant was based off the combined weight percentage of the other components.
The initial viscosities of the adhesives were measured at 150° C., 162° C., and 177° C., along with the SAFT, PAFT, and open/set times. Viscosity profiles of the adhesives were generated to determine the processability characteristics of the adhesives. The SAFT measurements are performed to understand the shear strength of the adhesives over a temperature period in a SAFT oven. Furthermore, the adhesive clarity at 177° C. was also observed.
As shown in TABLE 14, the inventive adhesives exhibited adhesive properties that are either comparable or superior to common adhesives in the industry. The inventive adhesives can exhibit desirable clarity and desirable processability as indicated by their viscosities. Furthermore, as shown in TABLE 14, the inventive adhesives can exhibit superior adhesive properties.
Hot melt pressure-sensitive adhesives for tapes and labels were produced using an inventive propylene-ethylene copolymer (Sample 7D from Example 7). The adhesives were produced in accordance with the process described in Example 4. The adhesives were produced with Vistamaxx™ 6202 (Exxonmobil), Kraton® 1162 (Kraton), Kraton® 1657 (Kraton), Regalite™ R1090 (Eastman Chemical), Kaydol mineral oil (Sonneborn), and Irganox® 1010 (BASF). TABLE 15, below, describes the composition and properties of the inventive adhesives. It should be noted that the compositional components recited in TABLE 15 are based on weight percentage. The probe tack (kg) of the adhesive was measured according to ASTM D9279 and the hold power (hours) was measured according to ASTM D3654
As shown in TABLE 15, the inventive adhesives exhibited adhesive properties that are either comparable or superior to common adhesives in the industry.
Polymer blends were produced to observe the effects that certain polymers had on particular blends. In this example, a commercial propylene homopolymer (Exxon™ PP3155) was compared to a propylene homopolymer prepared in accordance with Example 1. This propylene homopolymer (“Sample 12A”) was produced without an electron donor and had a softening point of 157.5° C. and a needle penetration of 7 dmm. These two homopolymers were separately combined with Kraton® G1650 (Kraton), Kraton® G1651 (Kraton), CaCO3, Drakeol® 34 oil (Calumet Specialty Products), and Kristalex™ 5140 (Eastman Chemical) to produce polymer blends. The composition and properties of these polymer blends are depicted in TABLE 16 below. It should be noted that all composition values in TABLE 16 are based on weight percentages.
Furthermore, various properties of the polymer blends were measured as shown TABLE 16. The tested properties included Shore A hardness (ASTM D2240), melt flow rate (ASTM D1238), tear strength (ASTM D624), 100% modulus (ASTM D412), 200% modulus (ASTM D412), 300% modulus (ASTM D412), elongation at break (ASTM D412), tensile strength (ASTM D412), and Young's Modulus (ASTM E111-04).
As shown above, the non-commercial homopolymer produced using the process described above can improve polymer blends in a similar manner as commercial homopolymers.
The inventors hereby state their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as it pertains to any apparatus not materially departing from but outside the literal scope of the invention as set forth in the following claims.
The preferred forms of the invention described above are to be used as illustration only, and should not be used in a limiting sense to interpret the scope of the present invention. Modifications to the exemplary embodiments, set forth above, could be readily made by those skilled in the art without departing from the spirit of the present invention.
Hot melt adhesives for hygiene and packaging applications were produced using the inventive propylene-ethylene copolymers depicted in TABLE 17. The copolymers used to manufacture these adhesive samples were produced in accordance with the process described in Example 1. Furthermore, TABLE 17 also indicates the electron donor that was used to produce the copolymers.
The adhesives were produced in accordance with the process described in Example 4. The adhesives were produced with various additives including Regalite™ R1090 (Eastman Chemical), Eastotac™ H100W (Eastman Chemical), Kaydol® mineral oil (Sonneborn), Licocene® wax (Clarient), Sasol wax H-1 (Sasol), and Irganox® 1010 (BASF). TABLE 18 and TABLE 19, below, describes the composition and properties of the inventive adhesives. TABLE 18 contains inventive adhesives that can be utilized for the hygiene construction market, while TABLE 19 contains inventive adhesives that can be used for packaging. It should be noted that the compositional components recited in TABLE 18 and TABLE 19 are based on weight percentage and that all components add up to 100 percent.
TABLE 18, above, describes the composition and properties of the inventive adhesives, which are labeled as IA1-IA9. Comparative commercial adhesives were also analyzed and are labeled as CA1-CA4. CA1-CA3 utilize olefin based polymers for adhesives in hygiene construction. CA4 is also a commercial adhesive using styrenic block copolymers for use in hygiene construction. The hygiene adhesives in TABLE 18 made using inventive polymers show broad operating window using wide range of spraying/coating techniques (signature, summit, CF, omega, intermittent, sloat etc.) with excellent sprayability/coatability characteristics over a wide range of temperatures (270° F. to 350° F.) with good adhesive peel at room temperature, body temperature and under aged conditions (elevated temperature and room temperature) with an add-on level varying from 0.5-8.0 gsm. Thermal stability, Garner color and Brookfield viscosity stability of the adhesives made using inventive polymers are also excellent, and the adhesives made using the inventive polymers are clear at room temperature with no color and no odor.
The initial viscosity of the adhesives in TABLE 19 was measured at 177° C., along with the SAFT, PAFT, % fiber tear and open/set times. Aged viscosities of the adhesives were generated to determine the processability characteristics and long term aging stability of the adhesives. The PAFT and SAFT measurements are performed to understand the peel adhesion and shear strength of the adhesives over a temperature period in a SAFT oven. Furthermore, the initial and aged color in Gardner color scale was also measured.
This is a continuation application claiming priority to U.S. application Ser. No. 15/443,278, now issued as U.S. Pat. No. 10,214,600, which claims priority to U.S. application Ser. No. 14/567,028, now issued as U.S. Pat. No. 9,611,341, filed Dec. 11, 2014, which claims priority to U.S. Provisional Application Ser. No. 61/937,024 filed Feb. 7, 2014, the disclosures of which are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4367322 | Shiga et al. | Jan 1983 | A |
4736002 | Allen et al. | Apr 1988 | A |
4847340 | Allen | Jul 1989 | A |
5077358 | Durand et al. | Dec 1991 | A |
5100981 | Schreck et al. | Mar 1992 | A |
5177162 | Matsuura et al. | Jan 1993 | A |
5192732 | Duranel et al. | Mar 1993 | A |
5236962 | Govoni et al. | Aug 1993 | A |
5247031 | Kioka et al. | Sep 1993 | A |
5247032 | Kioka et al. | Sep 1993 | A |
5302675 | Sustic et al. | Apr 1994 | A |
5397843 | Lakshmanan et al. | Mar 1995 | A |
5414063 | Seeger et al. | May 1995 | A |
5438110 | Ishimaru et al. | Aug 1995 | A |
5468810 | Hayakawa et al. | Nov 1995 | A |
5476911 | Morini et al. | Dec 1995 | A |
5498770 | Hosaka et al. | Mar 1996 | A |
5516866 | Resconi et al. | May 1996 | A |
5576259 | Hasegawa et al. | Nov 1996 | A |
5589549 | Govoni et al. | Dec 1996 | A |
5618886 | Shinozaki et al. | Apr 1997 | A |
5618895 | Kerth et al. | Apr 1997 | A |
5637665 | Sustic et al. | Jun 1997 | A |
5681913 | Sustic et al. | Oct 1997 | A |
5684173 | Hosaka et al. | Nov 1997 | A |
5693729 | Fushimi et al. | Dec 1997 | A |
5714554 | Sustic et al. | Feb 1998 | A |
5733645 | Somers | Mar 1998 | A |
5744567 | Huffer et al. | Apr 1998 | A |
5747573 | Ryan | May 1998 | A |
5747595 | Saito et al. | May 1998 | A |
5773537 | Mueller et al. | Jun 1998 | A |
5804296 | Itoh et al. | Sep 1998 | A |
5840808 | Sugimura et al. | Nov 1998 | A |
5993964 | Nakajima | Nov 1999 | A |
6013742 | Huffer et al. | Jan 2000 | A |
6034189 | Shinozaki et al. | Mar 2000 | A |
6057413 | Ima et al. | May 2000 | A |
6087459 | Miro et al. | Jul 2000 | A |
6100351 | Sun et al. | Aug 2000 | A |
6103253 | Hoffmann et al. | Aug 2000 | A |
6107430 | Dubois et al. | Aug 2000 | A |
6111039 | Miro et al. | Aug 2000 | A |
6111046 | Resconi et al. | Aug 2000 | A |
6121393 | Kioka et al. | Sep 2000 | A |
6201090 | Sumitomo et al. | Mar 2001 | B1 |
6214939 | Shinozaki et al. | Apr 2001 | B1 |
6214949 | Reddy et al. | Apr 2001 | B1 |
6221984 | Kersting et al. | Apr 2001 | B1 |
6228956 | Covezzi et al. | May 2001 | B1 |
6232285 | Casteel et al. | May 2001 | B1 |
6303696 | Ushioda et al. | Oct 2001 | B1 |
6306973 | Takaoka et al. | Oct 2001 | B1 |
6313225 | Saito et al. | Nov 2001 | B2 |
6313227 | Tanaka et al. | Nov 2001 | B1 |
6319979 | Dubois et al. | Nov 2001 | B1 |
6329468 | Wang | Dec 2001 | B1 |
6335410 | Finlayson et al. | Jan 2002 | B1 |
6362298 | Dolle et al. | Mar 2002 | B2 |
6410663 | Shamshoum et al. | Jun 2002 | B2 |
6423782 | Yukimasa et al. | Jul 2002 | B1 |
6451726 | Zambon et al. | Sep 2002 | B1 |
6455643 | Harlin et al. | Sep 2002 | B1 |
6469112 | Cheng et al. | Oct 2002 | B2 |
6534606 | Kohler et al. | Mar 2003 | B2 |
6545099 | Shinozaki et al. | Apr 2003 | B2 |
6566294 | Miro | May 2003 | B2 |
6569827 | Van Dijk et al. | May 2003 | B2 |
6573350 | Markel et al. | Jun 2003 | B1 |
6582762 | Faissat et al. | Jun 2003 | B2 |
6586536 | Kelley | Jul 2003 | B1 |
6586543 | Wey et al. | Jul 2003 | B1 |
6600034 | Sato et al. | Jul 2003 | B2 |
6630559 | Shinozaki et al. | Oct 2003 | B2 |
6649725 | Seta et al. | Nov 2003 | B2 |
6689846 | Leskinen et al. | Feb 2004 | B1 |
6693161 | Collina et al. | Feb 2004 | B2 |
6723810 | Finlayson et al. | Apr 2004 | B2 |
6730754 | Resconi et al. | May 2004 | B2 |
6747103 | Vestberg et al. | Jun 2004 | B1 |
6747114 | Karandinos et al. | Jun 2004 | B2 |
6870022 | Iwasaki et al. | Mar 2005 | B2 |
6887817 | Lu et al. | May 2005 | B2 |
6900281 | Streeky et al. | May 2005 | B2 |
6916883 | Parikh et al. | Jul 2005 | B2 |
6927258 | Datta et al. | Aug 2005 | B2 |
6960635 | Stevens et al. | Nov 2005 | B2 |
6982310 | Datta et al. | Jan 2006 | B2 |
6984631 | Aranishi et al. | Jan 2006 | B2 |
6984696 | Curry et al. | Jan 2006 | B2 |
6984730 | Yamada et al. | Jan 2006 | B2 |
6992158 | Datta et al. | Jan 2006 | B2 |
6992159 | Datta et al. | Jan 2006 | B2 |
6992160 | Datta et al. | Jan 2006 | B2 |
6998457 | Kelley | Feb 2006 | B2 |
7001965 | Appleyard et al. | Feb 2006 | B2 |
7015170 | Morini et al. | Feb 2006 | B2 |
7014886 | Vey et al. | Mar 2006 | B2 |
7019081 | Datta et al. | Mar 2006 | B2 |
7019097 | Sacchetti et al. | Mar 2006 | B2 |
7053164 | Datta et al. | May 2006 | B2 |
7056982 | Datta et al. | Jun 2006 | B2 |
7071137 | Klendworth et al. | Jul 2006 | B2 |
7074871 | Cecchin et al. | Jul 2006 | B2 |
7084218 | Datta et al. | Aug 2006 | B2 |
7105609 | Datta et al. | Sep 2006 | B2 |
7157522 | Datta et al. | Jan 2007 | B2 |
7199180 | Simmons et al. | Apr 2007 | B1 |
7238758 | Yoshikiyo et al. | Jul 2007 | B2 |
7244787 | Curry et al. | Jul 2007 | B2 |
7253221 | Mohanty et al. | Aug 2007 | B2 |
7262251 | Kanderski et al. | Aug 2007 | B2 |
7289091 | Heo | Oct 2007 | B2 |
7294681 | Jiang et al. | Nov 2007 | B2 |
7323525 | Alastalo et al. | Jan 2008 | B2 |
7329626 | Spaether et al. | Feb 2008 | B2 |
7332556 | Cecchin et al. | Feb 2008 | B2 |
7348381 | Bodiford et al. | Mar 2008 | B2 |
7365136 | Huovinen et al. | Apr 2008 | B2 |
7413811 | Dharmarajan et al. | Aug 2008 | B2 |
7452953 | Jaaskelainen et al. | Nov 2008 | B2 |
7465775 | Vestberg et al. | Dec 2008 | B2 |
7470756 | Jaaskelainen et al. | Dec 2008 | B2 |
7491670 | Chen et al. | Feb 2009 | B2 |
7521518 | Jacobsen et al. | Apr 2009 | B2 |
7524910 | Jiang et al. | Apr 2009 | B2 |
7524911 | Karjala et al. | Apr 2009 | B2 |
7538173 | Schwab et al. | May 2009 | B2 |
7579422 | Jaaskelainen et al. | Aug 2009 | B2 |
7589145 | Brant et al. | Sep 2009 | B2 |
7592286 | Morini et al. | Sep 2009 | B2 |
7608668 | Li Pi Shan et al. | Oct 2009 | B2 |
7611776 | Yu et al. | Nov 2009 | B2 |
7678867 | Baita et al. | Mar 2010 | B2 |
7807768 | Becker et al. | Oct 2010 | B2 |
7977435 | Lin et al. | Jul 2011 | B2 |
7981982 | Cagnani et al. | Jul 2011 | B2 |
8008412 | Brant et al. | Aug 2011 | B2 |
8026311 | Migone et al. | Sep 2011 | B2 |
8063160 | Cavalieri et al. | Nov 2011 | B2 |
8071499 | Morini et al. | Dec 2011 | B2 |
8076422 | Heemann et al. | Dec 2011 | B2 |
8106138 | Sheard et al. | Jan 2012 | B2 |
8129490 | Cagnani et al. | Mar 2012 | B2 |
8178633 | Cai et al. | May 2012 | B2 |
8188164 | Chen et al. | May 2012 | B2 |
8207271 | Denifl et al. | Jun 2012 | B2 |
8207272 | Bernreitner et al. | Jun 2012 | B2 |
8222336 | Eberhardt et al. | Jul 2012 | B2 |
8227370 | Chang | Jul 2012 | B2 |
8273838 | Chan et al. | Sep 2012 | B2 |
8288304 | Chen et al. | Oct 2012 | B2 |
8288481 | Fiebig et al. | Oct 2012 | B2 |
8288489 | Becker et al. | Oct 2012 | B2 |
8309501 | Kolb et al. | Nov 2012 | B2 |
8324335 | Ito et al. | Dec 2012 | B2 |
8334354 | Kwon et al. | Dec 2012 | B2 |
8372193 | Chen et al. | Feb 2013 | B2 |
8378048 | Kolb et al. | Feb 2013 | B2 |
8383731 | Lewtas et al. | Feb 2013 | B2 |
8399571 | Becker et al. | Mar 2013 | B2 |
8420742 | Karjala et al. | Apr 2013 | B2 |
8431642 | Tancrede et al. | Apr 2013 | B2 |
8487026 | Bach et al. | Jul 2013 | B2 |
8530582 | Becker et al. | Sep 2013 | B2 |
8536268 | Karjala et al. | Sep 2013 | B2 |
8536868 | Zenge | Sep 2013 | B2 |
8552105 | Peters | Oct 2013 | B2 |
8614271 | Davis et al. | Dec 2013 | B2 |
8802782 | Becker et al. | Aug 2014 | B2 |
8846814 | Becker et al. | Sep 2014 | B2 |
8921489 | Becker et al. | Dec 2014 | B2 |
9382351 | Somers | Jul 2016 | B2 |
20040052952 | Vey et al. | Mar 2004 | A1 |
20040106723 | Yang et al. | Jun 2004 | A1 |
20040127614 | Jiang et al. | Jul 2004 | A1 |
20040132935 | Arjunan et al. | Jul 2004 | A1 |
20080021186 | Steib | Jan 2008 | A1 |
20080114142 | Hicks et al. | May 2008 | A1 |
20090062466 | Dong et al. | Mar 2009 | A1 |
20090105407 | Karjala | Apr 2009 | A1 |
20090182103 | Chang et al. | Jul 2009 | A1 |
20090270560 | Bacci et al. | Oct 2009 | A1 |
20100047064 | Mokulys et al. | Feb 2010 | A1 |
20100210795 | Clarembeau et al. | Aug 2010 | A1 |
20100249330 | Massari et al. | Sep 2010 | A1 |
20100279033 | Becker et al. | Nov 2010 | A1 |
20100285246 | Becker et al. | Nov 2010 | A1 |
20110003094 | Becker et al. | Jan 2011 | A1 |
20110034634 | Grein et al. | Feb 2011 | A1 |
20110054117 | Hall | Mar 2011 | A1 |
20110060078 | Becker et al. | Mar 2011 | A1 |
20110086970 | Grein et al. | Apr 2011 | A1 |
20110224387 | Bergstra et al. | Sep 2011 | A1 |
20120088086 | Grein et al. | Apr 2012 | A1 |
20120116029 | Van Egmond et al. | May 2012 | A1 |
20120232221 | Collina et al. | Sep 2012 | A1 |
20130060215 | Knutson et al. | Mar 2013 | A1 |
20130197153 | Kheirandish et al. | Aug 2013 | A1 |
20130253124 | Bernreiter et al. | Sep 2013 | A1 |
20130267660 | Leskinen et al. | Oct 2013 | A1 |
20130267667 | Paavilainen et al. | Oct 2013 | A1 |
20150166850 | Tse | Jun 2015 | A1 |
20150299526 | Gray et al. | Oct 2015 | A1 |
20150322303 | Coffey et al. | Nov 2015 | A1 |
20150351977 | Bunnelle | Dec 2015 | A1 |
20160130480 | Kauffman et al. | May 2016 | A1 |
20160177141 | Schroeyers et al. | Jun 2016 | A1 |
20170290945 | Hanson et al. | Oct 2017 | A1 |
20180002578 | Kauffman et al. | Jan 2018 | A1 |
20180030317 | Fujinami et al. | Feb 2018 | A1 |
20180037778 | Briseno et al. | Feb 2018 | A1 |
20180134927 | Sergeant et al. | May 2018 | A1 |
20180193515 | Bunnelle | Jul 2018 | A1 |
20180193516 | Bunnelle et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
1282546 | Apr 1991 | CA |
3299431 | Mar 2018 | EP |
2000063420 | Feb 2000 | JP |
WO 2006069205 | Jun 2006 | WO |
WO 2009069721 | Jul 2009 | WO |
WO 2010138142 | Dec 2010 | WO |
WO 2013019507 | Feb 2013 | WO |
WO 2014011450 | Jan 2014 | WO |
WO 2014105244 | Jul 2014 | WO |
WO 2014127093 | Aug 2014 | WO |
WO 2014205336 | Dec 2014 | WO |
WO 2015167692 | Nov 2015 | WO |
WO 2016126949 | Aug 2016 | WO |
Entry |
---|
ASTM D5; “Standard Test Method for Penetration of Bituminous Materials” Published Feb. 2013. |
ASTM D412; “Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension”, Published Apr. 2013. |
ASTM E794; “Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis”; Published Sep. 2012. |
ASTM D903; “Standard Test Method for Peel or Stripping Strength of Adhesive Bonds”; Published Oct. 2010. |
ASTM D1544; Standard Test Method for Color of Transparent Liquids (Gardner Color Scale); Published Jun. 2010. |
ASTM D2240; Standard Test Method for Rubber Property—Durometer Hardness; Published Apr. 2010. |
ASTM D3236; Standard Test Method for Apparent Viscosity of Hot Melt Adhesives and Coating Materials; Published Jul. 2014. |
ASTM D3654; “Standard Test Methods for Shear Adhesion of Pressure-Sensitive Tapes”; Published Nov. 2011. |
ASTM D4497; Standard Test Method for Determining the Open Time of Hot Melt Adhesives (Manual Method); Published Oct. 2010. |
ASTM D6195; Standard Test Methods for Loop Tack; Published Apr. 2011. |
ASTM E28 Standard Test Methods for Softening Point of Resins Derived from Pine Chemicals and Hydrocarbons, by Ring-and-Ball Appratus; Published Aug. 2014. |
ASTM E111; Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus; Published Jan. 2011. |
ASTM D4498; “Standard Test Method for Heat-Fail Temperature in Shear of Hot Melt Adhesives”; Published Jun. 2007. |
ASTM D1238; “Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer”; Published Aug. 2013. |
ASTM D624; “Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers”; Published Mar. 2012. |
ASTM D1084; “Standard Test Methods for Viscosity of Adhesives”; Published Jun. 2016. |
ASTM D792; “Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement”; Published Nov. 2013. |
Fernanda et al. “Properties of Ethylene-Propylene Copolymers Synthesized by a Supported Ziegler-Natta Catalyst Based on TiC14/MgC12/PC13” Eur. Polym. 1997, J. vol. 33, No. 6 pp. 897401. |
Lou et al. “Polypropylene Chain Structure Regulation by Alkoxysilane and Ether Type External Donors in TiCl4/DIBP/MgCl2—AlEt3 Ziegler-Natta Catalyst” Iranian Polymer Journal 19(12), 2010, pp. 927-936. |
Zohuri et al. “Copolymerization of ethylene-propylene using high-activity bi-supported Ziegler-Natta TiCl4 catalyst” Journal of Applied Polymer Science, 93(6), Sep. 15, 2004, pp. 2597-2606. |
Co-pending U.S. Appl. No. 14/567,028, filed Dec. 11, 2014; now U.S. Pat. No. 9,611,341; Somers, et al. |
Co-pending U.S. Appl. No. 14/567,037, filed Dec. 11, 2014; now U.S. Pat. No. 9,382,351; Somers, et al. |
Co-pending U.S. Appl. No. 14/567,050, filed Dec. 11, 2014; now U.S. Pat. No. 9,428,598; Somers, et al. |
Co-pending U.S. Appl. No. 14/567,074, filed Dec. 11, 2014; now U.S. Pat. No. 9,399,686; Somers, et al. |
Co-pending U.S. Appl. No. 14/567,093, filed Dec. 11, 2014; now U.S. Pat. No. 9,593,179; Somers, et al. |
Co-pending U.S. Appl. No. 15/443,278, filed Feb. 27, 2017; now U.S. Pat. No. 10,214,600; Somers, et al. |
Co-pending U.S. Appl. No. 15/683,964, filed Aug. 23, 2017; now U.S. Pat. No. 10,308,740; Muvundamina et al. |
Co-pending U.S. Appl. No. 16/002,734, filed Jun. 7, 2018; now U. S. Publication No. 2018-0282449; Carvagno et al. |
Co-pending U.S. Appl. No. 16/002,739, filed Jun. 7, 2018; now U. S. Publication No. 2018-0282450; Muvundamina et al. |
Co-pending U.S. Appl. No. 16/002,743, filed Jun. 7, 2018; now U. S. Publication No. 2018-0282451; Carvagno et al. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Apr. 10, 2015 received in International Application No. PCT/US15/11689. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Nov. 2, 2017 received in International Application No. PCT/US2017/048322. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Sep. 17, 2018 received in International Application No. PCT/US2018/036588. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Sep. 17, 2018 received in International Application No. PCT/US2018/036590. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Sep. 18, 2018 received in International Application No. PCT/US2018/036593. |
Number | Date | Country | |
---|---|---|---|
20190171143 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
61937024 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15443278 | Feb 2017 | US |
Child | 16256126 | US | |
Parent | 14567028 | Dec 2014 | US |
Child | 15443278 | US |