1. Field of the Invention
The present invention generally pertains to the art of active electronic devices and, in particular, electronic amplifiers which produce both voltage noise and current noise. More particularly, the invention relates to an amplifier circuit for reducing the effect of current noise at the amplifier input while also reducing the voltage noise in most practical cases.
2. Discussion of the Prior Art
Measurement and amplification systems are sometimes limited by the effect of their internal current noise acting on the impedance of an external element connected to the amplification system. This current noise is multiplied by the impedance of the element to give an effective voltage noise at the amplifier input. In an arrangement where an amplifier is connected to a very high impedance antenna, such as a pure capacitor, there will be a frequency below which the voltage noise referred to the system input is dominated by the effect of current noise acting on the antenna impedance. Essentially, as active electronic devices and, in particular, electronic amplifiers, produce both voltage noise and current noise, it is desirable to have some type of noise reduction system to make these devices more sensitive.
One proposed way of reducing the effect of voltage noise is to use the well-known method of chopping an input voltage signal. Such chopper stabilization was developed around 1950 and is currently the standard technique employed in low DC offset operational amplifiers. Referring to
Every amplifier has a DC offset or offset drift. In this case, the DC offset or offset drift is referenced as Voff. With the voltage at amplifier output 1032, Vamp, being a square wave signal which swings between VIN+Voff and −VIN+Voff, any voltage due to the amplifier's offset drift, which essentially is a form of noise, has no effect on the peak to peak amplitude of the square wave which is given by 2VIN. If the input signal is not a DC signal but still alternates at a relatively low frequency, fs, chopping generates sidebands about the chopping frequency, fmod, occurring at fmod±fs. Converting the signal to a higher frequency is of benefit because, typically, the voltage noise of almost all amplifiers decreases with increasing frequency of the input signal.
Another simple circuit to illustrate chopper stabilization for an amplifier 1030 with voltage source 1015 is shown in
While the technique of chopper stabilization is well established and is effective at reducing an amplifier's voltage noise, it is ineffective in situations where the amplifier input noise is dominated by the amplifier's current noise. The circuit shown in
and in the insensitive state by:
With this in mind, at non-inverting terminal 1082 of amplifier 1039, the signal amplitude is multiplied by a square wave going between 0 and 1 at a frequency fmod. The current is multiplied by a square wave going between
at frequency fmod, and the voltage noise is constant. The fact that the term which represents current noise is modulated at frequency fmod means that it is converted along with the signal and, thus, will not be eliminated or reduced.
Despite the above-discussed proposed solution to reduce voltage noise in an electronic amplifier, none of these methods have been successful at reducing current noise. Neither the traditional method of chopper stabilization nor the prior techniques of capacitive modulation offer effective reduction of current noise. Therefore, there exists a need in the art to provide an amplifier circuit with both voltage and current noise reduction.
The present invention is directed to a circuit which reduces the effect of amplifier current noise. This circuit also reduces the effective voltage noise in most practical cases. The circuit includes a signal source having an associated impedance producing a signal at a varying frequency. First and second variable impedance devices are provided between a signal source and an amplifier. A modulation frequency generator establishes a modulation frequency to alter the first and second impedance values out of phase from one another at the modulation frequency so that the sum of the first and second impedance values at the input of the amplifier is substantially constant, even while the first and second impedance values are varied. As a result, the modulation at frequency fmod shifts the signal to side bands about the modulation frequency. The modulation frequency is preferably chosen so that the side bands are in a regime at which the noise contribution to the effect of amplifier voltage noise is low. The output from the amplifier is then passed to a bandpass filter centered on the modulation frequency in order to remove all frequencies outside the bandwidth of interest. The signal itself is recovered by demodulating an output for the bandpass filter using a synchronization signal that is derived from the modulation signal. Finally, the demodulated voltage is directed through a low pass filter to generate a sensor output.
While the first and second variable impedance devices may take many forms, such as transistors, relays or diodes, but preferably the variable impedance devices are constituted by variable capacitors whose capacitive senses increase and decrease in either a square wave pattern or a sinusoidal wave pattern. It should be noted that, even if the variable capacitors have a maximum value which differs by 10%, the effective current and voltage noise can still be substantially reduced in the system.
Additional objects, features and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments when taken in conjunction with the drawings wherein like reference numerals refer to corresponding parts in the several views.
With initial reference to
Turning now to
As also shown in
When the balancing capacitor Cbal is switched as described, the amplifier voltage swings between
In this case the square wave being applied to the current noise goes between
in a sensitive state and
in an insensitive state. Therefore the component of the amplifier output 32 due to noise at frequency fn is given, for IN=IN
In this expression, the signal is described by the second or lower term. The amount of low frequency mixing is proportional to the change in impedance at the amplifier's input. By matching the values of Cs, and Cbal, a high degree of rejection to mixing of low-frequency current noise is produced.
Chopper stabilization in electronic circuits is usually implemented using semiconductor switches, such as transistors. However, these switches are not well suited to applications of the invention in which sensitivity is critical because of leakage in an off mode and charge injection when switching. The leakage and charge injection could increase overall noise of the system to unacceptable levels. Resistive or contact switching is preferably achieved using microelectromechanical systems (MEMS). Such switches evince current lifetimes in the order of 107 cycles. As this lifetime may be considered inadequate at the switching frequencies typically needed for adequate conversion of signals.
In the preferred embodiment of the present invention, input capacitance modulation is employed. Essentially, switches 60 and 65 of
Setting Cs=Cbal=C0, then the case when C1=Cmax and C2=Cmin, which corresponds to the amplifier being sensitive to the signal, Xsig becomes:
where Ctot=C0Cmax/(C0+Cmax)+C0Cmin/(C0+Cmin)+Camp is the total capacitance of the input circuit. When the amplifier is desensitized to the input signal, C1=Cmin and C2=Cmax, such that:
The total capacitance of the input circuit remains unchanged, and therefore the voltage generated by current noise flowing through the input circuit also remains unchanged as capacitors 160 and 165 are modulated.
Turning now to
for the following parameters: Cs=1 pF, Cbal=1 pF, C1 modulation between 0.1 and 2 pF, C2 modulation between 0.1 and 2 pF, and modulation frequency fmod=1024 Hz. In the case of square wave modulation, the value for Ctot, remains unchanged. However, Ctot, in the case of a sine wave, is modulated at 2×fmod, which causes conversion of the current noise at twice the modulation frequency. This additional noise can be addressed by filtering before demodulation. Note also the nonlinear behavior for both Csource and Cballast which is due to the presence of sinusoidal components in the denominators for both CSource and Cballast. However, these nonlinearities are compensated for through established circuit parameters.
Based on the above, it should be readily apparent that first and second variable impedance devices are maintained out of phase from one another at an established modulation frequency such that the sum of impedance values associated with the first and second variable impedance devices at an input to the amplifier remains substantially constant. The modulation shifts a signal of interest to side bands about the modulation frequency such that, when an output of the amplifier is directed through a bandpass filter centered on the modulation frequency, essentially all frequencies outside a bandwidth of interest is removed. Demodulating the output of the bandpass filter is performed to recover the signal through the use of a synchronization signal derived based on the modulation signal. In this manner, the amplifier circuit of the present invention effectively reduces the current noise of the first stage amplifier. With the inclusion of a balancing element, fine adjustments can be made for the reduction in the effective current noise. In the practical case that the voltage noise of the amplifier also varies with frequency, the modulation so described can also be used to convert the signal to a region of lower voltage noise, thereby reducing the effective voltage noise of the amplifier.
Although described with reference to preferred embodiments of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, the first and second variable impedance devices could be constituted by variable resistors. In general, the invention is only intended to be limited by the scope of the following claims.
The present application represents a National Stage application of pending PCT/US2005/032358 filed Sep. 9, 2005 entitled “Amplifier Circuit and Method for Reducing Voltage and Current Noise”, and further claims the benefit of U.S. Provisional Patent Application Ser. No. 60/608,366 entitled “System and Method to Reduce Current Noise in High Impedance Circuits and Sensors” filed Sep. 10, 2004.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of SBIR Phase II Contract DAAH01-03-C-R290.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/032358 | 9/9/2005 | WO | 00 | 3/9/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/031704 | 3/23/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4207478 | Marumoto et al. | Jun 1980 | A |
4577160 | Lettvin et al. | Mar 1986 | A |
5959498 | Sauer | Sep 1999 | A |
6242974 | Kunst | Jun 2001 | B1 |
6366099 | Reddi | Apr 2002 | B1 |
6433632 | Nakamura et al. | Aug 2002 | B1 |
6538502 | Nair et al. | Mar 2003 | B2 |
6611168 | Denison et al. | Aug 2003 | B1 |
6617910 | Quan | Sep 2003 | B2 |
6643540 | Yonce | Nov 2003 | B2 |
6661283 | Lee | Dec 2003 | B1 |
6674322 | Motz | Jan 2004 | B2 |
6686800 | Krupka | Feb 2004 | B2 |
6696890 | Hedberg et al. | Feb 2004 | B2 |
6707336 | Reber | Mar 2004 | B2 |
6734723 | Huijsing et al. | May 2004 | B2 |
6750703 | Shen et al. | Jun 2004 | B1 |
6853241 | Fujimoto | Feb 2005 | B2 |
6925325 | Yonce | Aug 2005 | B2 |
20030036691 | Stanaland et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
1127268 | Sep 1968 | GB |
Number | Date | Country | |
---|---|---|---|
20080111621 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60608366 | Sep 2004 | US |