Embodiments of the present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments in accordance with the present invention is defined by the appended claims and their equivalents.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments of the present invention; however, the order of description should not be construed to imply that these operations are order dependent.
The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of embodiments of the present invention.
For the purposes of the present invention, the phrase “A/B” means A or B. For the purposes of the present invention, the phrase “A and/or B” means “(A), (B), or (A and B)”. For the purposes of the present invention, the phrase “at least one of A, B, and C” means “(A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C)”. For the purposes of the present invention, the phrase “(A)B” means “(B) or (AB)” that is, A is an optional element.
The description may use the phrases “in an embodiment,” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present invention, are synonymous.
Embodiments of the present invention provide differential pair amplifier circuits including cross-coupled cascode transistors.
Referring to
In accordance with various embodiments of the present invention, additional capacitance 116, 118 may be provided at the nodes shared by the drains of the differential pair transistors 102, 104 and the sources of the cascode transistors 110, 112 in order to increase the gain peaking of the amplifier circuit. This may be especially useful if load capacitance is large.
Referring to
Two cascode transistors 210, 212 are cross-coupled between the output of the differential pair and the resistive loads as cascode devices. Thus, transistors 202, 204, 210 and 212 form two cascodes. Accordingly, transistor 210 has its source operatively coupled to the drain of transistor 202 within the differential pair, while the drain of transistor 210 is operatively coupled to resistive load 206, the gate of source follower transistor 214 and the gate of transistor 212. The gate of transistor 210 is operatively coupled to the gate of source follower transistor 216, the drain of transistor 212 and resistive load 208. The source of transistor 212 is operatively coupled to the drain of transistor 204 of the differential pair, while the drain of transistor 212 is operatively coupled to resistive load 208, the gate of source follower transistor 216 and the gate of transistor 210. The gate of transistor 212 is operatively coupled to the gate of source follower transistor 214, the drain of transistor 210 and resistive load 206. Current within TIA 200 is modeled by current sources 220, 222, 224.
In accordance with various embodiments of the present invention, the amplifiers of
In accordance with various embodiments of the present invention, additional capacitance 226, 228 may be provided at the nodes shared by the drains of the input differential pair transistors 202, 204 and the sources of the cascode transistors 210, 212 in order to increase the gain peaking of the amplifier circuit. This may be especially useful if load capacitance is large.
Those skilled in the art will understand that one each or multiple ones of the circuits of
The present invention thus provides an amplifier circuit that provides improved gain/bandwidth performance, especially in CMOS receivers for chip-to-chip optical interconnects without using inductors. This may result in savings of die area.
Although certain embodiments have been illustrated and described herein for purposes of description of the preferred embodiment, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present invention. Those with skill in the art will readily appreciate that embodiments in accordance with the present invention may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments in accordance with the present invention be limited only by the claims and the equivalents thereof.