The present disclosure relates to an amplifier circuit, and in particular to one that can successively reduce the effects of a residual voltage at the output of the amplifier circuit over a sequence of residue-reduction steps.
According to a first aspect of the present disclosure there is provided an amplifier circuit comprising:
Such an amplifier circuit advantageously requires a low number (e.g. 2 to 5) of residue-reduction steps to reduce global residual voltage (offset) to a very low level when the amplifier circuit is subsequently used in the operational configuration. This technique not only applies for offset compensation but extends to any signal processing.
In one or more embodiments, the first capacitor of the final-stage residue-reduction storage unit may be indirectly connected to the first amplifier stage input terminal via the first capacitor of the first-stage residue-reduction storage unit. The second capacitor of the final-stage residue-reduction storage unit may be indirectly connected to the second amplifier stage input terminal via the second capacitor of the final-stage residue-reduction storage unit.
In one or more embodiments, when the amplifier circuit is in the operational configuration:
In one or more embodiments, the amplifier stage may comprise a first set of amplifier stage input terminals and a second set of amplifier stage input terminals. The first capacitor of the final-stage residue-reduction storage unit may be indirectly connected to a first amplifier stage input terminal of the first set of amplifier stage input terminals via the first capacitor of the first-stage residue-reduction storage unit. The second capacitor of the final-stage residue-reduction storage unit may be indirectly connected to a second amplifier stage input terminal of the first set of amplifier stage input terminals via the second capacitor of the final-stage residue-reduction storage unit. When the amplifier circuit is in the operational configuration: the first amplifier circuit input terminal may be connected to a first amplifier stage input terminal of the second set of amplifier stage input terminals; and the second amplifier circuit input terminal may be connected to a second amplifier stage input terminal of the second set of amplifier stage input terminals.
In one or more embodiments, the amplifier stage may comprise a differential circuit comprising: a first transistor having: a gate terminal, a back-gate terminal and a conduction channel; a second transistor having: a gate terminal, a back-gate terminal and a conduction channel; and a current source. The gate terminal of the first transistor may be connected to the first amplifier stage input terminal of the second set of amplifier stage input terminals. The gate terminal of the second transistor may be connected to the second amplifier stage input terminal of the second set of amplifier stage input terminals. The back-gate terminal of the first transistor may be connected to the first amplifier stage input terminal of the first set of amplifier stage input terminals. The back-gate terminal of the second transistor may be connected to the second amplifier stage input terminal of the first set of amplifier stage input terminals. The current source may be configured to provide output signalling to the first amplifier stage output terminal via the conduction terminal of the first transistor. The current source may be configured to provide output signalling to the second amplifier stage output terminal via the conduction terminal of the second transistor.
In one or more embodiments, the amplifier stage may comprises a first set of amplifier stage input terminals, a second set of amplifier stage input terminals, and a third set of amplifier stage input terminals. The first capacitor of the first-stage residue-reduction storage unit may be connected to a first amplifier stage input terminal of the first set of amplifier stage input terminals. The second capacitor of the first-stage residue-reduction storage unit may be connected to a second amplifier stage input terminal of the first set of amplifier stage input terminals. The first capacitor of the final-stage residue-reduction storage unit may be connected to a first amplifier stage input terminal of the second set of amplifier stage input terminals. The second capacitor of the final-stage residue-reduction storage unit may be connected to a second amplifier stage input terminal of the second set of amplifier stage input terminals. When the amplifier circuit is in the operational configuration: the first amplifier circuit input terminal may be connected to a first amplifier stage input terminal of the third set of amplifier stage input terminals; and the second amplifier circuit input terminal may be connected to a second amplifier stage input terminal of the third set of amplifier stage input terminals.
In one or more embodiments, the amplifier stage may comprise a differential circuit comprising: a first transistor having: a gate terminal, a back-gate terminal and a conduction channel; a second transistor having: a gate terminal, a back-gate terminal and a conduction channel; a third transistor having: a gate terminal, a back-gate terminal and a conduction channel; a fourth transistor having: a gate terminal, a back-gate terminal and a conduction channel; a first current source; and a second current source. The gate terminal of the first transistor may be connected to the first amplifier stage input terminal of the third set of amplifier stage input terminals. The gate terminal of the second transistor may be connected to the second amplifier stage input terminal of the third set of amplifier stage input terminals. The gate terminal of the third transistor may be connected to the first amplifier stage input terminal of the third set of amplifier stage input terminals. The gate terminal of the fourth transistor may be connected to the second amplifier stage input terminal of the third set of amplifier stage input terminals. The back-gate terminal of the first transistor may be connected to the first amplifier stage input terminal of the first set of amplifier stage input terminals. The back-gate terminal of the second transistor may be connected to the second amplifier stage input terminal of the first set of amplifier stage input terminals. The back-gate terminal of the third transistor may be connected to the first amplifier stage input terminal of the second set of amplifier stage input terminals. The back-gate terminal of the fourth transistor may be connected to the second amplifier stage input terminal of the second set of amplifier stage input terminals. The first current source may be configured to provide output signalling to the first amplifier stage output terminal via the conduction terminal of the first transistor. The first current source may be configured to provide output signalling to the second amplifier stage output terminal via the conduction terminal of the second transistor. The second current source may be configured to provide output signalling to the first amplifier stage output terminal via the conduction terminal of the third transistor. The second current source may be configured to provide output signalling to the second amplifier stage output terminal via the conduction terminal of the fourth transistor.
In one or more embodiments, the amplifier stage may comprise a differential circuit comprising: a first transistor having: a gate terminal, a back-gate terminal and a conduction channel; a second transistor having: a gate terminal and a conduction channel; a third transistor having: a gate terminal and a conduction channel; a fourth transistor having: a gate terminal and a conduction channel; a fifth transistor having: a gate terminal and a conduction channel; a sixth transistor having: a gate terminal and a conduction channel; a first current source; a second current source; and a third current source. The gate terminal of the first transistor may be connected to the first amplifier stage input terminal of the third set of amplifier stage input terminals. The gate terminal of the second transistor may be connected to the second amplifier stage input terminal of the third set of amplifier stage input terminals. The gate terminal of the third transistor may be connected to the first amplifier stage input terminal of the first set of amplifier stage input terminals. The gate terminal of the fourth transistor may be connected to the second amplifier stage input terminal of the first set of amplifier stage input terminals. The gate terminal of the fifth transistor may be connected to the first amplifier stage input terminal of the second set of amplifier stage input terminals. The gate terminal of the sixth transistor may be connected to the second amplifier stage input terminal of the second set of amplifier stage input terminals. The first current source may be configured to provide output signalling to the first amplifier stage output terminal via the conduction terminal of the first transistor. The first current source may be configured to provide output signalling to the second amplifier stage output terminal via the conduction terminal of the second transistor. The second current source may be configured to provide output signalling to the first amplifier stage output terminal via the conduction terminal of the third transistor. The second current source may be configured to provide output signalling to the second amplifier stage output terminal via the conduction terminal of the fourth transistor. The third current source may be configured to provide output signalling to the first amplifier stage output terminal via the conduction terminal of the fifth transistor. The third current source may be configured to provide output signalling to the second amplifier stage output terminal via the conduction terminal of the sixth transistor.
In one or more embodiments, the switching network may comprise first-stage residue-reduction short circuit switches that, when closed, provide a connection between the first plates of the capacitors of the first-stage residue-reduction storage unit and a reference terminal.
In one or more embodiments, the switching network may comprise final-stage residue-reduction short circuit switches that are connected between: i) a node between the first plate of a respective final-stage capacitor and the second plate of the corresponding respective first-stage capacitor; and ii) a reference terminal.
In one or more embodiments, the capacitors of the final-stage residue-reduction storage unit may have a higher capacitance than those of the first-stage residue-reduction storage unit.
In one or more embodiments, one or more switches of the switching network may further comprise a charge injection compensation switch.
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that other embodiments, beyond the particular embodiments described, are possible as well. All modifications, equivalents, and alternative embodiments falling within the spirit and scope of the appended claims are covered as well.
The above discussion is not intended to represent every example embodiment or every implementation within the scope of the current or future Claim sets.
The figures and Detailed Description that follow also exemplify various example embodiments. Various example embodiments may be more completely understood in consideration of the following Detailed Description in connection with the accompanying Drawings.
One or more embodiments will now be described by way of example only with reference to the accompanying drawings in which:
The compensation of offset voltage and improvement of charge transfer accuracy of analogue circuitry, such as for a comparator, gain stage, or integrator, presents significant challenges. This is particularly the case when very high accuracy is desired. Furthermore, as technology nodes scale down (in terms of gate length), the dynamic range of a signal decreases but the intrinsic offset of the components remains relatively high, and the intrinsic available gain decreases. For example, post-processing at 16-bit accuracy with a 3V dynamic requires 12 μV (microvolt) accuracy but the intrinsic offset of the electronic circuitry is of the order of a few mV (when driven by a noise constraint).
Different techniques can be used to compensate the offset and loss of intrinsic gain of an amplifier. Regarding offset compensation, these techniques can be classified into three main categories: i. analogue domain techniques (as will be discussed with reference to
Advantages of this technique include:
Disadvantages of this technique include:
Advantages of this technique include:
Disadvantages of this technique include:
Advantages of this technique include:
Disadvantages of this technique include:
A plurality of techniques can be used to enhance amplifier gain, which can be classified into three categories:
Advantages:
Disadvantages:
Advantages:
Disadvantages:
Advantages:
Disadvantages:
Advantageous examples that are described below can be considered as including a combination of the “analogue” and “mixed” techniques. They can work in analogue only domains and advantageously require only a few (e.g. 2 to 5) consecutive residue-reduction steps to converge to the final accuracy. As will be discussed below, they can involve multiple storage units (combination of switches and capacitors) arranged to apply correction in one of the following ways: “stacked-ac-coupling”, “stacked-dc-coupling”, or “parallel-dc-coupling”. There can be one storage unit per residue-reduction step, where each storage unit stores part of the residual voltage of the preceding residue-reduction steps. All together, these steps add together to produce global offset residual voltage compensation. Over successive residue-reduction steps, the global residual voltage (offset) compensation refines more and more. At each residue-reduction step the residual voltage (offset) is partly cancelled, a new residual voltage (offset) is produced; and a storage unit stores the current residual voltage (offset) result. From step to step the residual voltage (offset) compensation adds (“stacks”); all together they advantageously contribute to reduce global residual voltage (offset) to a very low level. This technique not only reduces for offset compensation but extends to any signal processing.
The circuit of
The amplifier circuit 400 has a first amplifier circuit input terminal 401, a second amplifier circuit input terminal 402, a first amplifier circuit output terminal 403, and a second amplifier circuit output terminal 404. As will be discussed below, the first amplifier circuit input terminal 401 and the second amplifier circuit input terminal 402 receive input differential signalling. The first amplifier circuit output terminal 403 and the second amplifier circuit output terminal 404 provide output differential signalling, which is an amplified version of the received input differential signalling. The amplifier circuit 400 also includes an amplifier stage 405 comprising: a first amplifier stage input terminal 406, a second amplifier stage input terminal 407, a first amplifier stage output terminal 413, and a second amplifier stage output terminal 414. The first amplifier stage output terminal 413 is connected directly to the first amplifier circuit output terminal 403 in this example. The second amplifier stage output terminal 414 is connected directly to the second amplifier circuit output terminal 404 in this example.
The amplifier circuit 400 also has at least a first-stage residue-reduction storage unit 408 and a final-stage residue-reduction storage unit 409. The first-stage residue-reduction storage unit 408 comprises a first first-stage capacitor 415A, having a first plate and a second plate. The first-stage residue-reduction storage unit 408 also comprises a second first-stage capacitor 416A, having a first plate and a second plate. The final-stage residue-reduction storage unit 409 comprises a first final-stage capacitor 415B, having a first capacitor plate and a second capacitor plate. The final-stage residue-reduction storage unit 409 also comprises a second final-stage capacitor 416B, having a first plate and a second plate. As will be discussed below, these capacitors 415A, 416A, 415B, 416B will be used to store charge based on a residual voltage at the output of the amplifier stage 415 when the amplifier circuit 400 is in a residue-reduction configuration, such that they can then be used to offset the residual voltage when the amplifier circuit 400 is in a subsequent operational configuration.
The amplifier circuit 400 also has a switching network 410 that is operable to control the amplifier circuit 400 so that it is put in one of a plurality of configurations such that the capacitors 415A, 416A, 415B, 416B of the storage units 408, 409 are sequentially connected to the amplifier stage output terminals 413, 414 by first-stage switches 430, 431 and final-stage switches 428, 429, respectively, of the switching network 410, as will be discussed in detail below.
The first plate of the first first-stage capacitor 415A is connected to the first amplifier stage input terminal 406 and is also selectively connectable to the first amplifier stage output terminal 413 via the switching network 410. The first plate of the second first-stage capacitor 416A is connected to the second amplifier stage input terminal 407 and is also selectively connectable to the second amplifier stage output terminal 414 via the switching network 410.
The first plate of the first final-stage capacitor 415B is connected to the second plate of the first first-stage capacitor 415A. In this way, the first final-stage capacitor 415B is indirectly connected to the first amplifier stage input terminal 406; that is, it is connected to the first amplifier stage input terminal 406 via the first first-stage capacitor 415A. The first plate of the first final-stage capacitor 415B is also selectively connectable to the first amplifier stage output terminal 413 via the switching network 410.
The first plate of the second final-stage capacitor 416B is connected to the second plate of the second first-stage capacitor 416A. In this way the second final-stage capacitor 416B is indirectly connected to the second amplifier stage input terminal 407, via the second first-stage capacitor 416A. The first plate of the second final-stage capacitor 416B is also selectively connectable to the second amplifier stage output terminal 414 via the switching network 410.
The amplifier circuit input terminals 401, 402 are selectively connectable to the second plates of the corresponding final-stage capacitors 415B, 416B of the final-stage residue reduction unit 409. In this way, each of the two amplifier circuit input terminals 401, 402 can be connected to a respective one of the amplifier stage input terminals 406, 407 (via the capacitors 415B, 416B of the final-stage residue reduction unit 409 and the capacitors 415A, 416A of the first-stage residue reduction unit 408) so that the amplifier stage 405 can amplify the signalling at the amplifier circuit input terminals 401, 402 when the amplifier circuit 400 is in the operational configuration. Also, the two amplifier circuit input terminals 401, 402 can be disconnected from the amplifier stage input terminals 406, 407 when the amplifier circuit 400 is in a residue-reduction configuration.
When the first residue-reduction storage unit 408 is connected to the amplifier stage output terminals 413, 414, the first capacitor 415A of the first residue-reduction storage unit 408 is charged by the residual voltage (offset) at the first amplifier stage output terminal 413. Also, the second capacitor 416A of the first residue-reduction storage unit 408 is charged by the residual voltage (offset) at the second amplifier stage output terminal 414. In the next step of the sequence, the first-stage residue-reduction storage unit 408 is disconnected from the amplifier stage output terminals 413, 414 and the final-stage residue-reduction storage unit 409 is connected to the amplifier stage output terminals 413, 414. Then, the first capacitor 415B of the final-stage residue-reduction storage unit 409 is charged by the residual voltage (offset) at the first amplifier stage output terminal 413, and the second capacitor 416B of the final-stage residue-reduction storage unit 409 is charged by the residual voltage (offset) at the second amplifier stage output terminal 414. In this way, the residue-reduction process runs in successive sequential cycles. At each step, the residual offset correction adds to the previous correction term by charging the capacitors in the next residue-reduction storage unit. So, at each subsequent step, the residual offset (that is, the remaining part of the offset after the preceding residue-reduction steps) is reduced by about the DC gain value of the amplifier stage. This is because an additional capacitor, that is charged by an amount that will reduce the residue offset, is connected to each of the inputs of the amplifier stage. Due to the sequential nature of the residue-reduction process, the residual offset can be made very low without requiring a huge DC gain value at the amplifier stage 405.
The following discussion outlines the various operational configurations of the amplifier circuit 400 in greater detail.
In this example, the amplifier circuit 400 has a first residue-reduction configuration, in which the amplifier stage 405 is disconnected from the amplifier circuit input terminals 401, 402 such that it does not receive input signalling from the amplifier circuit input terminals 401, 402. Also, the first-stage residue-reduction storage unit 408 is connected to the amplifier stage output terminals 413, 414 by respective ones of the first-stage switches 430, 431 such that the capacitors 415A, 416A of the first-stage residue-reduction storage unit 408 are charged by a residual offset voltage that is present at the output of the amplifier stage 405. One of the first-stage switches 430 is connected in series between the first plate of the first first-stage capacitor 415A and the first amplifier stage output terminal 413. The other of the first-stage switches 431 is connected in series between the first plate of the second first-stage capacitor 416A and the second amplifier stage output terminal 414. None of the other residue-reduction storage units are connected to the amplifier stage output terminals 413, 414 in the first residue-reduction configuration.
Specifically, in the first residue-reduction configuration, the states of switches in the switching network 410 are controlled such that: the first amplifier circuit input terminal 401 is not connected to the first amplifier stage input terminal 406; and the second amplifier circuit input terminal 402 is not connected to the second amplifier stage input terminal 407. The first amplifier stage output terminal 413 is connected to the first capacitor 415A of the first-stage residue-reduction storage unit 408, such that the first capacitor 415A of the first-stage residue-reduction storage unit 408 is charged by a residual voltage at the first amplifier stage output terminal 413. The second amplifier stage output terminal 414 is connected to the second capacitor 416A of the first-stage residue-reduction storage unit 408 such that the second capacitor 416A of the first-stage residue-reduction storage unit 408 is charged by a residual voltage at the second amplifier stage output terminal 414. The first amplifier stage output terminal 413 is not connected to the first capacitor 415B of the final-stage residue-reduction storage unit 409 such that the first capacitor 415B of the final-stage residue-reduction storage unit 409 is not charged by a residual voltage at the first amplifier stage output terminal 413. The second amplifier stage output terminal 414 is not connected to the second capacitor 416B of the final-stage residue-reduction storage unit 409 such that the second capacitor 416B of the final-stage residue-reduction storage unit 409 is not charged by a residual voltage at the second amplifier stage output terminal 414. In this way, in the first residue-reduction configuration, the capacitors 415A, 416A of only the first-stage residue-reduction storage unit 408 are charged in such a way that the undesirable effects caused by the offset of the amplifier stage 405 are reduced for subsequent use of the circuit 400 when it is configured to amplify input signalling.
In this example, the circuit 400 also has a second residue-reduction configuration. In the example of
Specifically, in the second residue-reduction configuration, the states of switches in the switching network 410 are controlled such that: the first amplifier circuit input terminal 401 is not connected to the first amplifier stage input terminal 406; and the second amplifier circuit input terminal 402 is not connected to the second amplifier stage input terminal 407. The first amplifier stage output terminal 413 is not connected to the first capacitor 415A of the first-stage residue-reduction storage unit 408 such that the first capacitor 415A of the first-stage residue-reduction storage unit 408 is not charged by a residual voltage at the first amplifier stage output terminal 413. The second amplifier stage output terminal 414 is not connected to the second capacitor 416A of the first-stage residue-reduction storage unit 408 such that the second capacitor 416A of the first-stage residue-reduction storage unit 408 is not charged by a residual voltage at the second amplifier stage output terminal 414. The first amplifier stage output terminal 413 is connected to the first capacitor 415B of the final-stage residue-reduction storage unit 409 such that the first capacitor 415B of the final-stage residue-reduction storage unit 409 is charged by a residual voltage at the first amplifier stage output terminal 413. The second amplifier stage output terminal 414 is connected to the second capacitor 416B of the final-stage residue-reduction storage unit 409 such that the second capacitor 416B of the final-stage residue-reduction storage unit 409 is charged by a residual voltage at the second amplifier stage output terminal 414. In this way, the capacitors 415B, 416B of only the final-stage residue-reduction storage unit 409 are charged in such a way that the undesirable effects caused by the offset of the amplifier stage 405 are further reduced (i.e. reduced by more than they were for the first residue-reduction configuration) for subsequent use of the circuit 400 when it is configured to amplify input signalling.
The amplifier circuit 400 also has an operational configuration, in which the amplifier stage 405 is configured to receive input signalling from the amplifier circuit input terminals 401, 402. Also, the residue-reduction storage units 408, 409 are not connected to the amplifier stage output terminals 413, 414. In this way, the residual offset voltage stored on the capacitors 415A, 416A of the first-stage residue-reduction storage unit 408 adds together with the voltage stored on capacitors 415B, 416B of the final-stage residue-reduction storage unit 409, respectively, to produce a global offset compensation voltage that compensates for the offset voltage when the input signalling is applied to the amplifier stage input terminals 406, 407.
Specifically, in the operational configuration, the first amplifier circuit input terminal 401 is connected to the first amplifier stage input terminal 406. The second amplifier circuit input terminal 402 is connected to the second amplifier stage input terminal 407. The first amplifier stage output terminal 413 is not connected to the first capacitor 415A of the first-stage residue-reduction storage unit 408. The second amplifier stage output terminal 414 is not connected to the second capacitor 416A of the first-stage residue-reduction storage unit 408. The first amplifier stage output terminal 413 is not connected to the first capacitor 415B of the final-stage residue-reduction storage unit 409. The second amplifier stage output terminal 414 is not connected to the second capacitor 416B of the final-stage residue-reduction storage unit 409. In this way, the circuit 400 is configured to amplify the input signal applied to the amplifier stage input terminals 406, 407 in such a way that the charge that was stored on the capacitors 415A, 416A, 415B, 416B during the earlier residue-reduction configurations reduces the undesirable effects caused by the offset of the amplifier stage 405 at the amplifier circuit output terminals 403, 404.
In this example, the switching network 410 includes a plurality of residue-reduction short circuit switches 417, 418, 419, 420, two for each of eth residue-reduction storage units 408, 409.
First-stage residue-reduction short circuit switches 419, 420 are operable to provide a reset for the capacitors 415A, 416A of the first-stage residue-reduction storage unit 408. That is, when the first-stage residue-reduction short circuit switches 419, 420 are closed they provide a connection between the first plates of the capacitors 415A, 416A of the first-stage residue-reduction storage unit 408 and a reference terminal 425. In this example the reference terminal 425 is a ground terminal. In this way, the capacitors 415A, 416A of the first-stage residue-reduction storage unit 408 can be discharged, and therefore reset, when the first-stage residue-reduction short circuit switches 419, 420 are closed. When the first-stage residue-reduction short circuit switches 419, 420 are open, the associated capacitors 415A, 416A of the first-stage residue-reduction storage unit 408 hold their charge such that they can be used to provide an offset to the respective amplifier stage input terminals 406, 407 and thereby reduce the residual offset voltage at the outputs of the amplifier stage 405.
Final-stage residue-reduction short circuit switches 417, 418 are connected between: i) a node between the first plate of a respective final-stage capacitor 415B, 416B and the second plate of the corresponding respective first-stage capacitor 415A, 416A; and ii) a reference terminal 426. The final-stage residue-reduction short circuit switches 417, 418 are configured to selectively connect the second plates of the first and second first-stage capacitors 415A, 416A to a reference terminal 426 such as to complete a circuit such that the capacitors 415A, 416A of the first-stage residue-reduction storage unit 408 can be charged when the first plates of the capacitors 415A, 416A of first-stage residue-reduction storage unit 408 are also connected to the amplifier stage output terminals 413, 414. The final-stage residue-reduction short circuit switches 417, 418 are also configured to provide a reset for the capacitors 415B, 416B of the final-stage residue-reduction storage unit 408. That is, when the final-stage residue-reduction short circuit switches 417, 418 are closed they provide a connection between the first plates of the capacitors 415B, 416B of the final-stage residue-reduction storage unit 409 and the reference terminal 426. In this example the reference terminal 426 is a ground terminal. The final-stage residue-reduction short circuit switches 417, 418 function substantially in the same way as the first-stage residue-reduction short circuit switches 419, 420.
When the first-stage residue-reduction short circuit switches 419, 420 are open, the first-stage capacitors 415A, 416A hold their charge such that it is provided to the respective amplifier stage input terminals 406, 407. When the final-stage residue-reduction short circuit switches 417, 418 are open, the first plates of the final-stage capacitors 415B, 416B hold their charge such that it is provided to the amplifier stage input terminals 406, 407 (indirectly) via the series connection with the first-stage capacitors.
The switching network 410 in this example also includes two input short circuit switches 411, 412, each of which is configured to connect the second plates of a respective one of the final-stage capacitors 415B, 416B to a reference terminal 427. These switches function to complete a circuit such that the final-stage capacitors 415B, 416B of the final-stage residue-reduction storage unit 409 can be charged when the first plates of the final-stage capacitors 415B, 416B of the final-stage residue-reduction storage unit 409 are connected to the amplifier stage output terminals 413, 414.
The switching network 410 also includes a first input disconnection switch 436 and a second input disconnection switch 437. The first input disconnection switch 436 is connected in series between the first amplifier circuit input terminal 401 and the second plate of the first capacitor 415B of the final-stage residue-reduction storage unit 409. The first input disconnection switch 436 is open when the amplifier circuit 400 is in a residue-reduction configuration, such that any input signalling that is received at the first amplifier circuit input terminal 401 is not provided to the amplifier stage 405. The first input disconnection switch 436 is closed when the amplifier circuit 400 is in the operational configuration, such that any input signalling that is received at the first amplifier circuit input terminal 401 is provided to the amplifier stage 405. The second input disconnection switch 437 is connected in series between the second amplifier circuit input terminal 402 and the second plate of the second capacitor 416B of the final-stage residue-reduction storage unit 409. The second input disconnection switch 437 is open when the amplifier circuit 400 is in a residue-reduction configuration, such that any input signalling that is received at the second amplifier circuit input terminal 402 is not provided to the amplifier stage 405. The second input disconnection switch 437 is closed when the amplifier circuit 400 is in the operational configuration, such that any input signalling that is received at the second amplifier circuit input terminal 402 is provided to the amplifier stage 405.
When a switch of the switching network 410 opens, noise that results from this event contributes to the residual voltage of the amplifier stage 405. The magnitude of this noise value is dependent on the size of the capacitor that is connected to the switch. That is, a higher capacitance will reduce the noise contribution associated with a switching event. It can be especially important to account for this noise contribution during the residual-reduction that is provided by the final-stage residual-reduction storage unit 409, since it is this noise value that will be seen when the amplifier circuit input terminals 401, 402 are subsequently connected to the amplifier stage input terminals 406, 407 during the operational configuration. Therefore, to reduce the noise that will be present when the amplifier stage 405 is used to amplify input signalling, the final-stage capacitors 415B, 416B of the final-stage residue-reduction storage unit 409 can have a higher capacitance than the first-stage capacitors 415A, 416A of the first-stage residue-reduction storage unit 408 (and any other residue-reduction storage units that may be provided).
One or more switches of the switching network 410 may further comprise a charge injection compensation switch in order to improve the accuracy of the residue-reduction. The implementation of the charge injection compensation switch involves splitting the final-stage switches 428, 429 of the switching network 410 (which connect the final-stage capacitors 415B, 416B to the amplifier stage output terminals 413, 414 into multiple sub-switches that are provided in parallel with each other and are controlled such that they are switched off sequentially. The final sub-switch can be the smallest. Anytime a switch opens it injects some charge (the amount of charge is proportional to the switch size). As the remaining switches are still closed these injected charges can be cleaned. Therefore, splitting these final-stage switches 428, 429 into N parts in this way can reduce charge injection.
The amplifier stage of any of the amplifier circuits 400 disclosed herein can be provided with a single set of input terminals (as shown in
In
When the amplifier circuit is in the operational configuration:
In
When the amplifier circuit is in the operational configuration:
As will be mentioned below with reference to
One or more of the embodiments described in this document provide one or more of the following technical advantages:
The operation of the amplifier circuit shown in
dVamemi=0 for i>1,
sum(dVamemi)=0
dVout=−Gdc*(dVout+Kc*0+Off)=−Off*(Gdc/(1+Gdc)),
dVamem1=dVout=−Off*Gdc/(1+Gdc)
dVamemi=0 for i>2,
sum(dVamemei)=dVamem1=−Off*(Gdc/(1+Gdc))
dVout=−Gdc*(dVout−Kc*Off*Gdc/(1+Gdc)+Off)
dVout=−Off*Gdc/(1+Gdc)*(1−Kc*Gdc/(1+Gdc)),
dVamem2=dVout=−Off*Gdc/(1+Gdc)*(1−Kc*Gdc/(1+Gdc))
dVamemi=0 for i>1,
sum(dVamemei)=−Off*Gdc/(1+Gdc)−Off*Gdc/(1+Gdc)*(1−Kc*Gdc/(1+Gdc))
dVout=Gdc*(dVout−Kc*Off*Gdc/(1+Gdc)−Off*Gdc/(1+Gdc)*(1−Kc*Gdc/(1+Gdc))+Off)
dVout=−Off*(Gdc/(1+Gdc))*(1−Kc*Gdc/(1+Gdc)){circumflex over ( )}2,
dVamem2=dVout=−Off*(Gdc/(1+Gdc))*(1−Kc*Gdc/(1+Gdc)){circumflex over ( )}2 etc. . . .
After Ncal cycles, the residual offset appears back to input (in amplification phase) as
Off_res=1/Gdc*Off*Gdc/(1+Gdc)*(1−Kc*Gdc/(1+Gdc)){circumflex over ( )}(Ncal−1)
Assuming Kc<1, Gdc*(1−Kc)>>1 and Gdc>>1 it comes
Off_res˜1/Gdc*(1−Kc){circumflex over ( )}(Ncal−1)
Assuming Kc=1 and Gdc>>1
Off_res˜1/(Gdc{circumflex over ( )}Ncal)
Finally, the process completes with the last switches smoothly switching off. This can be achieved by splitting the last switches in multiple smallest parts (Ninj) that are switched-off sequentially over the Ninj extra sub-cycles. Note, that these parts do not have to be built from the same unity switch (which can be used for one or more of the other switches). Their sizes can be varied according to any pattern (binary, etc. . . . ) as long as they decrease from biggest to smallest one (that the technology could offer); in this case, the switching-off sequence starts from the biggest one and ends with the smallest one. @ step “j” (Ncal<=j<(Ncal+Ninj))
In
In
The components of
In
The components of
Some trade-off can be made to save power because, due to the techniques disclosed herein, the bias current of the calibration pairs can be reduced. Even if the transconductance of the calibration path is lower than the transconductance of the input path, the techniques disclosed herein still work as long as the calibration path gain remains greater than unity. (It is accounted for due to the Kc factor depicted in equation set below.) Note that all calibration bias currents do not have to have same value. Fully depleted silicon on insulator (FDSOI) technology can be used, where the back-gates are used to receive the calibration voltages. This represents a further enhancement to the techniques that are described above in terms of providing high accuracy without any current penalty.
It will appreciated from the above description that a more general form exists
dVout=−Gdc*(dVinp+KcdVcal+Off)
During calibration, inputs are shorted (dVsig=0) to common node and amplifier outputs are sequentially feedback to compensation networks using SWCALi switches (negative sign as retro-action). The sequence starts with all storage cells short-circuit switches closed and all feedback storages cells feedback switches open.
Steps are indexed from 1 to Ncal and then from Ncal to Ncal+Ninj in case latest SWCAL switch is split (Ninj>1)
@ step “j” (1<=j<Ncal)
It will be appreciated from this disclosure that:
Any of the implementations that are described herein can also be used for a GAIN or an INTEGRATOR configuration, by simply replacing SWCAL with SWFDB.
Examples disclosed herein can be considered as relating to a recycling opamp input error technique to enhance accuracy. In some implementations, this can provide analogue successive approximation offset calibration. Discloses herein is a method to enhance accuracy of switch cap circuitry using very low gain amplifier; it recycles the opamp input residue error multiple times. The correction happens only in analog domain.
Examples disclosed herein provide a new way of reaching high accuracy with analogue only calibration and without the need for a high amplifying gain stage; the equivalent high gain is obtained due to multiples steps as Gdc_equi=Gdc{circumflex over ( )}Nsteps.
The instructions and/or flowchart steps in the above figures can be executed in any order, unless a specific order is explicitly stated. Also, those skilled in the art will recognize that while one example set of instructions/method has been discussed, the material in this specification can be combined in a variety of ways to yield other examples as well, and are to be understood within a context provided by this detailed description.
In some example embodiments the set of instructions/method steps described above are implemented as functional and software instructions embodied as a set of executable instructions which are effected on a computer or machine which is programmed with and controlled by said executable instructions. Such instructions are loaded for execution on a processor (such as one or more CPUs). The term processor includes microprocessors, microcontrollers, processor modules or subsystems (including one or more microprocessors or microcontrollers), or other control or computing devices. A processor can refer to a single component or to plural components.
In other examples, the set of instructions/methods illustrated herein and data and instructions associated therewith are stored in respective storage devices, which are implemented as one or more non-transient machine or computer-readable or computer-usable storage media or mediums. Such computer-readable or computer usable storage medium or media is (are) considered to be part of an article (or article of manufacture). An article or article of manufacture can refer to any manufactured single component or multiple components. The non-transient machine or computer usable media or mediums as defined herein excludes signals, but such media or mediums may be capable of receiving and processing information from signals and/or other transient mediums.
Example embodiments of the material discussed in this specification can be implemented in whole or in part through network, computer, or data based devices and/or services. These may include cloud, internet, intranet, mobile, desktop, processor, look-up table, microcontroller, consumer equipment, infrastructure, or other enabling devices and services. As may be used herein and in the claims, the following non-exclusive definitions are provided.
In one example, one or more instructions or steps discussed herein are automated. The terms automated or automatically (and like variations thereof) mean controlled operation of an apparatus, system, and/or process using computers and/or mechanical/electrical devices without the necessity of human intervention, observation, effort and/or decision.
It will be appreciated that any components said to be coupled may be coupled or connected either directly or indirectly. In the case of indirect coupling, additional components may be located between the two components that are said to be coupled.
In this specification, example embodiments have been presented in terms of a selected set of details. However, a person of ordinary skill in the art would understand that many other example embodiments may be practiced which include a different selected set of these details. It is intended that the following claims cover all possible example embodiments.
Number | Date | Country | Kind |
---|---|---|---|
23305752.0 | May 2023 | EP | regional |