An amplifier circuit incorporating configurable frequency compensation is described, suitable for use as a continuous-time linear equalizer (CTLE) for communications receiver input signals. Elements of the design facilitate compact circuit layout with the configurable elements closely integrated with the analog devices they control.
Continuous-time Linear Equalization (CTLE) circuits are well known in the art. One common design is based on a conventional differential amplifier circuit utilizing a matched transistor pair having individual source loads but common drain connections to a fixed current sink. Splitting the current sink into two, one for each transistor drain, allows the drains to be cross-coupled with a frequency-dependent impedance such as a parallel RC network, modifying the essentially flat gain-vs-frequency characteristic of the basic differential amplifier into one having distinctly different low- and high-frequency gains.
In communications system receivers, such a CTLE circuit is typically configured to provide increased high-frequency gain, to equalize or compensate for the inevitable high frequency loss of most communications media. In some embodiments, careful configuration of amplitude and equalization functions is performed to facilitate accurate signal detection and/or clock recovery by subsequent circuits. In some embodiments, a CTLE circuit in which both the gain characteristics and the frequency break points of such frequency-dependent compensation may be adjusted or configured.
It should be noted that these embodiments are intended for use in an integrated circuit environment requiring extremely high frequency signals to be processed with minimal power consumption. The available power rails Vdd and Vss may typically provide one volt or less of operating voltage, thus microampere current flows imply path impedances of many thousands to millions of ohms. As resistances of these magnitudes may require substantial surface area in some integrated circuit processes, active circuit elements such as transistors may be preferable to passive element embodiments.
In
In some embodiments, voltage Vsw is configurable, allowing the impedance of transistor 131 to be adjusted. In other embodiments voltage Vsw is fixed, with that voltage and the physical transistor channel dimensions determining the resulting impedance.
In a further embodiment, voltage Vsw may be set to one of two different predetermined values (i.e. a binary selection,) as subsequently described. In one such embodiment, when Vsw causes transistor 131 to be switched “on” (e.g., low impedance), circuit 100 is configured into a first or “flat” operational mode in which the frequency domain zero produced by capacitors 132, 133, 134 is minimized, and the DC equalization is less relative to the peak equalization. Conversely, when Vsw causes transistor 131 to be switched “off” or high impedance, that impedance along with capacitances 132, 133, 134 result in circuit 100 being configured into a second or high frequency “peaking” operational mode, increasing the DC equalization relative to the peaking equalization.
where Rs is the source resistance provided by transistor 131, and Cs is the source capacitance, which may be equal CDom+Cvc0/1, where CDom is the dominant capacitance of fixed capacitor 132 and Cvc0/1 is the capacitance of one of varactor diodes 133 or 134. Here and in the following description, the notation “0/1” may correspond to the value of one element ‘0’ or ‘1’ in the set of {0 1}, as may be common in half circuit analysis. In at least one embodiment, CDom may have a capacitance of approximately 100 fF in total (e.g., from 20 slices of 100 each having CDom=5 fF), while the varactor diodes 133 and 134 have capacitances ranging approximately from 80-400 fF (e.g., 20 slices of 100 having varactors capacitances ranging from 4 fF-20 fF based on a 0-800 mV Vctrl). Depending on application, the capacitances of the fixed capacitor and varactors may be designed accordingly, e.g., a large fixed capacitance with varactors configured to fine tune via smaller capacitances, or alternatively may be broken up into separate capacitance elements.
The first pole wp0 may be calculated as follows:
The peak frequency wpeak may be calculated as follows:
and the first zero may be determined as follows:
and the second zero may be determined as follows:
and finally the dampening factor of the system may be determined as follows:
In some embodiments, capacitances 133 and 134 are provided by voltage-variable capacitors, which may include varactor or other P-N junction diodes, and the voltage-dependent body capacitance of MOS transistor devices whose channels change and are also non-linear and can be a function of time, depending on the manufacturing process used. Charge density in active devices changes over time and is much more noticeable in small channel length devices. As shown, varactors 133 and 134 are connected back-to-back, to minimize the unwanted modulation of the resulting capacitance by signal voltage, with analog control voltage Vctrl used to adjust the overall capacitance. Use of varactors significantly reduces area occupancy on a chip as compared to e.g., a switched capacitor bank. Furthermore, the varactors increase bandwidth and speed, as they do not introduce as much parasitic capacitance as conventional capacitor arrays introduce. Incorporating fixed capacitor 132 in parallel with the variable capacitance of 133 and 134 further reduces these unwanted signal distortion effects due to the varactors described above by reducing the adjustable range to a suitable amount.
As an added benefit, the capacitance of fixed capacitor 132 may allow use of a MOS ladder DAC, e.g., the MOS ladder DAC of
In some embodiments, NMOS transistors 131 may be configured to operate in between the “high frequency” and “wideband” operational modes by providing source impedance control signals Vsw<7:0> as inputs to transistors 131 to cause transistors 131 to operate in the linear region.
As one will note, increasing the gate voltage of an NMOS transistor, e.g., via a source impedance control signal Vsw<0> provided to NMOS transistor 131 in
Such embodiments for configuring the amplifier to operate in multiple equalization ranges may accommodate factors including different types of coding schemes, different cable/channel lengths, and/or a combination of various other factors. In one particular example, a non-return to zero (NRZ) coding scheme may be configured to have a max equalization of −7 dB, while an ensemble non-return-to-zero (ENRZ) orthogonal differential vector signaling code scheme may be configured to have a max equalization of ˜10 dB. Thus, by selecting an output voltage from the DAC, the correct equalization range may be selected depending on use of ENRZ or NRZ coding schemes, while enabling and disabling parallel slices 100 may finely tune the desired equalization within the selected equalization range.
This configuration of numbers of essentially parallel amplifier slices into a first or a second operational mode provides direct control over the resulting differential gain between the low-frequency and high-frequency regions of the aggregate system's gain-vs-frequency curve. Combined with the previously described control of the variable capacitance elements of each amplifier slice, both the amplitude and corner frequency of the high frequency “peaking” may be configured independently. These adjustments may be combined with other control methods, including varying circuit DC current by adjustment of current sources 113 and 123, and modification of effective load impedance by adjustment of RL0 and RL1 via the parallel resistor networks controlled by RL<n-1:0>. Additionally, the use of multiple parallel slices provides an option to independently control the varactor capacitances in each slice individually, increasing granularity at the cost of a multi-bit control signal Vctrl<7:0>, as shown in
Based on Eqns. 1-4 and the descriptions above regarding the varactor diodes for adjusting source capacitance Cs and multiple parallel slice configuration for adjusting source impedance Rs, it follows based on the frequency response of
Adjustment of these various configurable elements may utilize multiple control elements, such as digital-to-analog converters (DACs), that increase system power consumption and layout area.
Each driving element 300 for the ladder, corresponding to a switch-selected voltage source in series with a “R” resistance transistors 351-358, the exception being transistor 313 having resistance 2R, is shown as a MUX composed of two identical MOS transistors 311 and 312, with 311 selecting voltage Vrefh and 312 selecting voltage Vrefl, the desired high and low values for the DAC output range. In some embodiments, transistor 313 will have a channel resistance twice that of transistors 351-358. In some embodiments, the Vrefh and Vrefl may range from 700-900 mV. In embodiments utilizing NMOS transistors, the voltage range may be lower, e.g., 0-200 mV, as NMOS transistors are more proficient in passing lower voltages.
Transistors 311 and 312 are driven by complementary control signals, here shown as derived from binary control input Vc7, one value taken from control word Vc<0:7> and the other the inverted version of VC7,
In one particular integrated circuit embodiment, DAC 300 producing analog output Vctrl was sufficiently compact to be physically collocated with or near the variable capacitance diodes 133 and 134 it controlled, minimizing the introduction of unwanted parasitic loads into analog circuit 100.
Although PMOS transistors are shown in
While MOS ladder DACs may provide significant advantages in terms of power savings and chip area savings, it should be noted that other DACs, e.g, R-2R ladders utilizing resistors instead of transistors may be utilized as well to provide the various control signals.
This application is a continuation of U.S. patent application Ser. No. 16/378,461, filed Apr. 8, 2019, naming Suhas Rattan, entitled “Amplifier with Adjustable High-Frequency Gain Using Varactor Diodes”, which claims the benefit of U.S. Provisional Application No. 62/683,964, filed Jun. 12, 2018, naming Suhas Rattan, entitled “Amplifier with Adjustable High-Frequency Gain Using Varactor Diodes”, all of which are hereby incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3636463 | Ongkiehong | Jan 1972 | A |
3824494 | Wilcox | Jul 1974 | A |
3939468 | Mastin | Feb 1976 | A |
4276543 | Miller et al. | Jun 1981 | A |
4774498 | Traa | Sep 1988 | A |
4897657 | Brubaker | Jan 1990 | A |
5017924 | Guiberteau et al. | May 1991 | A |
5459465 | Kagey | Oct 1995 | A |
5510736 | Van | Apr 1996 | A |
5748948 | Yu et al. | May 1998 | A |
5777568 | Inoue | Jul 1998 | A |
5793254 | Oconnor | Aug 1998 | A |
5945935 | Kusumoto et al. | Aug 1999 | A |
6094075 | Garrett et al. | Jul 2000 | A |
6226330 | Mansur | May 2001 | B1 |
6232908 | Nakaigawa | May 2001 | B1 |
6343024 | Zabroda | Jan 2002 | B1 |
6346907 | Dacy et al. | Feb 2002 | B1 |
6384758 | Michalski et al. | May 2002 | B1 |
6396329 | Zerbe | May 2002 | B1 |
6400302 | Amazeen et al. | Jun 2002 | B1 |
6462584 | Proebsting | Oct 2002 | B1 |
6546063 | Lee et al. | Apr 2003 | B1 |
6563382 | Yang | May 2003 | B1 |
6624699 | Yin et al. | Sep 2003 | B2 |
6838951 | Nieri et al. | Jan 2005 | B1 |
6839587 | Yonce | Jan 2005 | B2 |
6879816 | Bult et al. | Apr 2005 | B2 |
6888483 | Mulder | May 2005 | B2 |
6972701 | Jansson | Dec 2005 | B2 |
7075996 | Simon et al. | Jul 2006 | B2 |
7167523 | Mansur | Jan 2007 | B2 |
7188199 | Leung et al. | Mar 2007 | B2 |
7199728 | Dally et al. | Apr 2007 | B2 |
7269212 | Chau et al. | Sep 2007 | B1 |
7285977 | Kim | Oct 2007 | B2 |
7372295 | Wei | May 2008 | B1 |
7372390 | Yamada | May 2008 | B2 |
7397302 | Bardsley et al. | Jul 2008 | B2 |
7528758 | Ishii | May 2009 | B2 |
7560957 | Chen et al. | Jul 2009 | B2 |
7598811 | Cao | Oct 2009 | B2 |
7635990 | Ren et al. | Dec 2009 | B1 |
7656321 | Wang | Feb 2010 | B2 |
7683720 | Yehui et al. | Mar 2010 | B1 |
7688102 | Bae et al. | Mar 2010 | B2 |
7688887 | Gupta et al. | Mar 2010 | B2 |
7697915 | Behzad et al. | Apr 2010 | B2 |
7804361 | Lim et al. | Sep 2010 | B2 |
7822113 | Tonietto et al. | Oct 2010 | B2 |
7839229 | Nakamura et al. | Nov 2010 | B2 |
7957472 | Wu et al. | Jun 2011 | B2 |
8000664 | Khorram | Aug 2011 | B2 |
8030999 | Chatterjee et al. | Oct 2011 | B2 |
8106806 | Toyomura et al. | Jan 2012 | B2 |
8159375 | Abbasfar | Apr 2012 | B2 |
8159376 | Abbasfar | Apr 2012 | B2 |
8183930 | Kawakami et al. | May 2012 | B2 |
8537886 | Shumarayev et al. | Sep 2013 | B1 |
8547272 | Nestler et al. | Oct 2013 | B2 |
8581824 | Baek et al. | Nov 2013 | B2 |
8604879 | Mourant et al. | Dec 2013 | B2 |
8643437 | Chiu et al. | Feb 2014 | B2 |
8674861 | Matsuno et al. | Mar 2014 | B2 |
8687968 | Nosaka et al. | Apr 2014 | B2 |
8704583 | Bulzacchelli et al. | Apr 2014 | B2 |
8791735 | Shibasaki | Jul 2014 | B1 |
8841936 | Nakamura | Sep 2014 | B2 |
8860590 | Kamagata et al. | Oct 2014 | B2 |
8861583 | Liu | Oct 2014 | B2 |
9069995 | Cronie | Jun 2015 | B1 |
9106462 | Aziz et al. | Aug 2015 | B1 |
9106465 | Walter | Aug 2015 | B2 |
9148087 | Tajalli | Sep 2015 | B1 |
9178503 | Hsieh | Nov 2015 | B2 |
9281785 | Sjöland | Mar 2016 | B2 |
9281974 | Liu | Mar 2016 | B1 |
9292716 | Winoto et al. | Mar 2016 | B2 |
9300503 | Holden et al. | Mar 2016 | B1 |
9705708 | Jin et al. | Jul 2017 | B1 |
9743196 | Kropfitsch | Aug 2017 | B2 |
9755599 | Yuan et al. | Sep 2017 | B2 |
9780979 | Sun et al. | Oct 2017 | B2 |
9954495 | Chen et al. | Apr 2018 | B1 |
10003315 | Tajalli | Jun 2018 | B2 |
10326623 | Tajalli | Jun 2019 | B1 |
20010006538 | Simon et al. | Jul 2001 | A1 |
20020050861 | Nguyen et al. | May 2002 | A1 |
20020149508 | Hamashita | Oct 2002 | A1 |
20020158789 | Yoshioka et al. | Oct 2002 | A1 |
20020174373 | Chang | Nov 2002 | A1 |
20030016763 | Doi et al. | Jan 2003 | A1 |
20030085763 | Schrodinger et al. | May 2003 | A1 |
20030132791 | Hsieh | Jul 2003 | A1 |
20030160749 | Tsuchi | Aug 2003 | A1 |
20030174023 | Miyasita | Sep 2003 | A1 |
20030184459 | Engl | Oct 2003 | A1 |
20030218558 | Mulder | Nov 2003 | A1 |
20040027185 | Fiedler | Feb 2004 | A1 |
20040169529 | Afghani et al. | Sep 2004 | A1 |
20050008099 | Brown | Jan 2005 | A1 |
20050057379 | Jansson | Mar 2005 | A1 |
20050218980 | Kalb | Oct 2005 | A1 |
20050270098 | Zhang et al. | Dec 2005 | A1 |
20060036668 | Jaussi et al. | Feb 2006 | A1 |
20060097786 | Su et al. | May 2006 | A1 |
20060103463 | Lee et al. | May 2006 | A1 |
20060192598 | Baird et al. | Aug 2006 | A1 |
20060194598 | Kim et al. | Aug 2006 | A1 |
20070009018 | Wang | Jan 2007 | A1 |
20070097579 | Amamiya | May 2007 | A1 |
20070104299 | Cahn et al. | May 2007 | A1 |
20070146088 | Arai et al. | Jun 2007 | A1 |
20070159247 | Lee et al. | Jul 2007 | A1 |
20070176708 | Otsuka et al. | Aug 2007 | A1 |
20070182487 | Ozasa et al. | Aug 2007 | A1 |
20070188367 | Yamada | Aug 2007 | A1 |
20070201546 | Lee | Aug 2007 | A1 |
20070285156 | Roberts et al. | Dec 2007 | A1 |
20080001626 | Bae et al. | Jan 2008 | A1 |
20080107209 | Cheng et al. | May 2008 | A1 |
20080165841 | Wall et al. | Jul 2008 | A1 |
20080187037 | Bulzacchelli et al. | Aug 2008 | A1 |
20090090333 | Spadafora et al. | Apr 2009 | A1 |
20090115523 | Akizuki et al. | May 2009 | A1 |
20090146719 | Pernia et al. | Jun 2009 | A1 |
20090323864 | Tired | Dec 2009 | A1 |
20100033259 | Miyashita | Feb 2010 | A1 |
20100148819 | Bae et al. | Jun 2010 | A1 |
20100156691 | Taft | Jun 2010 | A1 |
20100219781 | Kuwamura | Sep 2010 | A1 |
20100235673 | Abbasfar | Sep 2010 | A1 |
20100271107 | Tran et al. | Oct 2010 | A1 |
20110028089 | Komori | Feb 2011 | A1 |
20110032977 | Hsiao et al. | Feb 2011 | A1 |
20110051854 | Kizer et al. | Mar 2011 | A1 |
20110057727 | Cranford et al. | Mar 2011 | A1 |
20110096054 | Cho et al. | Apr 2011 | A1 |
20110103508 | Mu et al. | May 2011 | A1 |
20110105067 | Wilson | May 2011 | A1 |
20110133816 | Wu et al. | Jun 2011 | A1 |
20110156819 | Kim et al. | Jun 2011 | A1 |
20120025911 | Zhao et al. | Feb 2012 | A1 |
20120044021 | Yeh et al. | Feb 2012 | A1 |
20120133438 | Tsuchi et al. | May 2012 | A1 |
20120200364 | Iizuka et al. | Aug 2012 | A1 |
20120249217 | Fukuda et al. | Oct 2012 | A1 |
20130106513 | Cyrusian et al. | May 2013 | A1 |
20130114663 | Ding et al. | May 2013 | A1 |
20130147553 | Iwamoto | Jun 2013 | A1 |
20130195155 | Pan et al. | Aug 2013 | A1 |
20130215954 | Beukema et al. | Aug 2013 | A1 |
20130259113 | Kumar | Oct 2013 | A1 |
20130334985 | Kim et al. | Dec 2013 | A1 |
20140119479 | Tajalli | May 2014 | A1 |
20140176354 | Yang | Jun 2014 | A1 |
20140177696 | Hwang | Jun 2014 | A1 |
20140203794 | Pietri et al. | Jul 2014 | A1 |
20140266440 | Itagaki et al. | Sep 2014 | A1 |
20140312876 | Hanson et al. | Oct 2014 | A1 |
20150070201 | Dedic et al. | Mar 2015 | A1 |
20150146771 | Walter | May 2015 | A1 |
20150198647 | Atwood et al. | Jul 2015 | A1 |
20160013954 | Shokrollahi et al. | Jan 2016 | A1 |
20160087610 | Hata | Mar 2016 | A1 |
20160197747 | Ulrich et al. | Jul 2016 | A1 |
20170085239 | Yuan et al. | Mar 2017 | A1 |
20170104458 | Cohen et al. | Apr 2017 | A1 |
20170214374 | Tajalli | Jul 2017 | A1 |
20170302237 | Akter et al. | Oct 2017 | A1 |
20170302267 | Luo | Oct 2017 | A1 |
20170309346 | Tajalli et al. | Oct 2017 | A1 |
20180076985 | Schell | Mar 2018 | A1 |
20190199557 | Taylor et al. | Jun 2019 | A1 |
20190221153 | Tsuchi et al. | Jul 2019 | A1 |
20190379563 | Tajalli et al. | Dec 2019 | A1 |
20200321778 | Gharibdoust et al. | Oct 2020 | A1 |
20210248103 | Khashaba et al. | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
104242839 | Dec 2014 | CN |
0425064 | May 1991 | EP |
2018052657 | Mar 2018 | WO |
2019241081 | Dec 2019 | WO |
Entry |
---|
Bae, Joonsung , et al., “Circuits and Systems for Wireless Body Area Network”, Electromagnetics of Body-Area Networks: Antennas, Propagation, and RF Systems, First Edition, 2016, 375-403 (29 pages). |
International Search Report and Written Opinion for PCT/US2019/036384, dated Aug. 1, 2019, 1-11 (11 pages). |
Anadigm , “Using the Anadigm Multiplier CAM”, Design Brief 208, www.anadigm.com, Copyright 2002, 2002, (6 pages). |
Dickson, Timothy , et al., “A 1.8 pJ/bit 16x16 GB/s Source-Sychronous Parallel Interface in 32 nm SOR CMOS with Receiver Redundancy for Link Recalibration”, IEEE Journal of Solid-State Circuits, vol. 51, No. 8, Jul. 8, 2016, 1744-1755 (12 pages). |
Kim, Kyu-Young , et al., “8 mW 1.65-Gbps continuous-time equalizer with clock attenuation detection for digital display interface”, Analog Integrated Circuits and Signal Processing, Kluwer Academic Publishers, vol. 63, No. 2, Oct. 11, 2009, 329-337 (9 pages). |
Palmisano, G. , et al., “A Replica Biasing for Constant-Gain Cmos Open-Loop Amplifiers”, Circuits and Systems, IEEE International Symposium in Monterey, CA, May 31, 1998, 363-366 (4 pages). |
Schneider, J. , et al., “ELEC301 Project: Building an Analog Computer”, http://www.clear.rice.edu/elec301/Projects99/anlgcomp/, Dec. 19, 1999, (9 pages). |
Shekhar, S. , et al., “Design Considerations for Low-Power Receiver Front-End in High-Speed Data Links”, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, Sep. 22, 2013, 1-8 (8 pages). |
Takahashi, Masayoshi, et al., “A 2-GHz Gain Equalizer for Analog Signal Transmission Using Feedforward Compensation by a Low-Pass Filter”, IEICE Transactions on Fundamentals of Electronics, vol. E94A, No. 2, Feb. 2011, 611-616 (6 pages). |
Terzopoulos, Nikolaos , et al., “A 5-Gbps USB3.0 Transmitter and Receiver Liner Equalizer”, International Journal of Circuit Theory and Applications, vol. 43, No. 7, Feb. 28, 2014, 900-916 (17 pages). |
Tierney, J. , “A Digital Frequency Synthesizer”, Audio and Electroacoustics, IEEE Transactions, pp. 48-57, vol. 19, No. 1, Abstract, Mar. 1971, (1 page). |
Wang, Hui, et al., “Equalization Techniques for High-Speed Serial Interconnect Transceivers”, Solid-State and Integrated-Circuit Technology, 9th International Conference on ICSICT, Piscataway, NJ, Oct. 20, 2008, 1-4 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20210175867 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62683964 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16378461 | Apr 2019 | US |
Child | 17183100 | US |