The invention relates to a closure device for an ampoule to facilitate and improve the use thereof. In particular, the invention relates to a sealing device for ampoules with a break off top and in some embodiments a content transfer device for extracting content from an ampoule.
An ampoule is a small sealed vial which is typically used to contain and preserve a sample. The sample is usually either a solid (e.g. a powder or granules) or liquid. Ampoules are commonly made of glass, although plastic ampoules do also exist.
Modern ampoules are most commonly used to contain pharmaceuticals and chemicals that must be protected from air and contaminants and UV light for example. Glass ampoules are often used so as to avoid reaction of the sample with the container material during storage. They are usually hermetically sealed by melting the thin top with an open flame, and are typically opened by snapping off the neck (which may be deliberately formed as a point of weakness). If properly done, this last operation creates a clean break without any extra glass shards or slivers; however this is not guaranteed and small glass shards can fall into the ampoule leaving sharp edges and “shark teeth” that can present a cutting hazard to the user. Therefore the contents (e.g. liquid or solution) may be filtered for greater assurance. The space above the chemical may be filled with an inert gas before sealing. The walls of glass ampoules are usually sufficiently strong to be brought into a glovebox without any difficulty.
Glass ampoules are more expensive than vials or bottles and other simple containers, but there are many situations where their superior imperviousness to gases and liquids and all-glass interior surface are worth the extra cost. Examples of chemicals sold in ampoules are injectable pharmaceuticals (e.g. morphine and adrenaline), air-sensitive reagents like tetrakis(triphenylphosphine)palladium(0), hygroscopic materials like deuterated solvents and trifluoromethanesulfonic acid, and analytical standards.
There are several problems with these ampoules as follows:
One of the major challenges for today's healthcare globally is the spreading of infections through patient care. 35-37% of Hepatitis A and B infection occurs as a result of cuts/needle stick during patient treatment situations. (Source WHO). Research has revealed that there are many unrecorded incidences of needle stick injuries. Today's procedures and existing products do not provide effective solutions to this problem in a safe and user-friendly manner, and they generate large amounts of costly waste which is hazardous to the environment and an over-use of expensive pharmaceuticals.
Problems arise when a glass ampoule is broken and a sharp glass edge is exposed at the break point (usually the neck). This can be sharp and serrated and can easily cause lacerations with the associated risk of blood contamination. There is also a risk of injuries and blood contamination when using a needle to draw content out from within the ampoule due to the risk of needle stick when attempting to insert the needle into the small opening in the glass ampoule which is held with two or more fingers.
Once opened, the contents of the ampoule must be used immediately before the contents can become contaminated or spilled. However, as the quantity of substance will vary from use to use (e.g. with the size of patient or type/severity of treatment), ampoules often contain more substance than the required dose. Thus after the required dose has been withdrawn from the ampoule there is still a quantity of substance remaining within the ampoule. As the ampoule is not sealed there is a risk of spillage and wastage of vital drugs from an opened ampoule, as well as unnecessary exposure of the content (e.g. to air and/or UV light).
As mentioned above, there is a risk during breaking open the ampoule that small shards of glass may fall into the ampoule and its contents. If these are not adequately filtered out then there is a risk of these glass particles being accidentally drawn into a syringe and injected into a patient. A common filtering technique at present is to use a needle (or possibly a straw) to draw out the contents from the ampoule into a syringe, relying on the narrow diameter of the needle to prevent glass shards from being drawn up. However very small particles may still be able to pass through. In some countries and for some procedures it is recommended to use a filter for extraction, but in emergencies the use of a filter can often be bypassed for speed, just using the needle to provide the filtering function.
The current solutions are also not optimal for the handling of hazardous waste. For example there is risk of the contents spilling as described above. In particular the patient treatment will likely be carried out before any remaining ampoule and contents are disposed of. During this time there is a risk of the ampoule being knocked and broken or the content spilled. Additionally, in cases where injection is not via a catheter port (i.e. without a needle), the needle that is used to draw contents from the ampoule cannot be re-used for injection into the patient. Thus two needles are required for every use which is wasteful as well as increasing the risk of needle stick injuries through changing of the needle.
A lot of effort has been put into solutions that ensure a safe breaking of the neck of a glass ampoule, because this is a particularly risky operation. Therefore, there are a significant number of products that attempt to solve one or more of these problems. However each has its limitations and/or disadvantages.
For example, US 2007/0282279 describes an ampoule opener with a receiving body sized to receive the ampoule cap and a shield to protect the user's hand when breaking the cap from the main ampoule body. US 2010/0301089 describes another ampoule breaking aid with a body portion that receives and holds the main body of the ampoule and a cap portion that receives the ampoule's cap and that can be rotated relative to the body portion to snap the ampoule cap off the ampoule body. Neither of these devices provide a reliable seal of the ampoule after the cap has been broken off.
FR 2209291 describes another device for breaking the ampoule cap from the ampoule body. Once separated, the cap is retained within the device as the contents flow past and through an outflow orifice. Thus the device is not sterile. US 2015/0329339 describes another ampoule cap breaking device where the cap is retained by a head holder which pivots it to one side once separated. However, again the broken cap part is held in the outflow path leading to potential contamination.
U.S. Pat. No. 6,832,703 describes a cover for an ampoule that covers both the main body and the cap and is designed to retain the cap after the cap has been broken away from the body. An outflow channel is also provided to allow the contents to be poured out of the ampoule, optionally through a filter. However, this arrangement will not be sterile if the sleeve is fitted to the ampoule after the ampoule leaves a sterile manufacturing environment as the contents may contact the outside of the ampoule and the inside of the sleeve during pouring. The design is also not convenient for syringe access. U.S. Pat. No. 5,423,440 describes another ampoule sheath that is designed to be fitted prior to shipping and can be used to break the cap from the main body with lower risk of injury. However the sheath must be removed to access the contents of the ampoule, thus removing the sealing properties and allowing for potential spillage, contamination and further injury.
U.S. Pat. No. 5,595,326 describes a metering pump with a dip tube to be inserted into an ampoule after the cap has been broken off and an elastically deformable skirt arranged to seal around an outside wall of the ampoule. However the skirt does not fully seal the outer surface of the ampoule from the contents and thus still has a contamination risk.
It will be appreciated that the users of ampoules include several different groups. Ampoules are particularly important for paramedics, but are also used by other medical or medical-related professionals, such as those who work for vaccination programs, researchers, ER/HEMS/EMT personnel, anesthesiologists, pharmacists, veterinarians (for pets, farms and aquaculture). Ampoules are sold in billions annually for storage of medication in small volumes. Typical drugs that may be found in glass ampoules (purely by way of example) are morphine and adrenaline. Ampoules may be various shapes and sizes. Some typical ampoules for drugs range from about 1 ml to about 30 ml. Larger ampoules are also used for storage of other materials, e.g. Mercury. Such ampoules may have a volume of a litre or more. Also, while the majority of ampoules are circular in cross-section (broadly a circular cylinder), other shapes such as oval or rectangular cross-sections are also possible.
According to a first aspect, the invention provides a closure for an ampoule, the closure comprising: a cap portion arranged to engage with a broken neck of an opened ampoule; and a cylindrical skirt portion extending from the cap portion, the skirt portion being elastically deformable and being arranged to move from a first position in which it is at least partially folded back on itself to a second position in which it is unfolded and extends away from the cap portion.
The term closure is used here to mean something that closes off an opening (i.e. the opening that is formed in an ampoule when the neck is snapped and the top removed). It may include a cap or a sealing device or a protection device (for protecting against the sharp edge formed upon removal, and/or for protecting the contents from exposure or spillage). It may also provide a sealing function.
As the cap portion engages with the broken neck, it reduces the chances of users receiving lacerations from the sharp edges. The cap portion also seals the ampoule, preventing the contents from being spilled and/or wasted. The closure also provides a degree of impact protection, reinforcement and strengthening to the now weakened open end of the ampoule, e.g. in case the ampoule is dropped.
The skirt portion not only provides a seal around the ampoule body by being in close contact therewith, but also holds the cap portion firmly against the broken rim of the open ampoule, thus holding the closure in place by means of the friction between the skirt portion and the outer surface of the ampoule body.
While the skirt portion may be simply folded so as to form a single bend when in the first position, the skirt portion may be folded more times or may be rolled back on itself.
The cap portion is preferably wider than the broken neck's diameter so as to ensure that the broken rim is easily and fully sealed.
In the absence of an ampoule, the skirt portion is preferably arranged to extend downwards from the outer edge of the cap portion when it is in the second position and forms a cylinder with an internal diameter that is less than the diameter of the ampoule(s) that it is designed for. When the skirt is then rolled or folded into the first position, the lower surface of the cap portion preferably extends continuously into the inner surface of the skirt portion (‘inner’ here referring to the surface that will be the inner surface when the skirt is in the second position). This allows the contact surface for the rim to be wide and allows easy placement of the closure against the opened ampoule. The smooth surface then facilitates easy unrolling or unfolding of the skirt portion which can smoothly wrap into contact with the external surface of the ampoule. As the skirt portion is rolled or folded down into the second position, it constricts around the ampoule and holds the ampoule firmly through friction.
In some preferred embodiments the cap portion may comprise a circumferential groove in which the skirt portion sits when in the first position. The groove provides a seat in which the skirt material can rest before it is deployed into the second position. This reduces the stretch that is applied to the skirt while the closure is at rest in this position (the closure will typically be stored and supplied in this configuration prior to use, with the skirt only being deployed to the second position when the closure is used).
The skirt may have an enlarged rim which is seated in the groove when in the first position. The enlarged rim, which is formed at the distal end of the skirt, i.e. distal from the cap portion, provides extra reinforcement at the end portion for gripping the ampoule, but also helps to hold the skirt in the groove as it nestles into the groove. In embodiments where the skirt is rolled rather than folded it will be appreciated that this enlarged rim (or bead) may not be in direct contact with the groove, but may still press into the groove indirectly through one or more intervening layers of the rolled skirt. In such embodiments the enlarged rim also provides a convenient surface around which to roll the skirt during initial manufacture.
In preferred embodiments the surface of the cap portion inside the skirt portion is shaped such that when the cap portion is pressed against a broken neck of an opened ampoule, the force is transmitted through the cap portion to encourage the skirt portion out of the groove. A number of mechanisms may operate here. As the closure is pressed against the broken rim of the ampoule in order to form a seal, that force may be transmitted through the cap portion and deforms the groove so as to push the skirt portion out of the groove and may also reduce the retaining effect of the groove on the skirt portion. At the same time, the force of pressing the closure against the broken neck of the ampoule creates tension along the surface of the skirt portion, pulling the skirt portion out of the groove. The combination of these mechanisms may also cause the lower part of the groove to deform, making it easier for the rolled or folded skirt portion to exit the groove. In other words the deformation that occurs in the cap due to contact with the rim can result in deformation in the groove, enabling the skirt to move away from the groove. This facilitates and encourages deployment of the skirt portion into the second position, thus making for quick and easy sealing of the closure onto an ampoule. In some embodiments, squeezing the side of the cap portion hard enough may provide enough deformation in the cap portion, and therefore in the groove, that the skirt portion is no longer retained in the groove and thus is released and deploys into its second position. Depending on the particular design of the closure, it may be that only one of these mechanisms is effective in the deployment of the skirt or more than one mechanism may operate simultaneously, possibly with one of these mechanisms being dominant and with others providing contributing effects. The deformation may be sufficient that no further action is required to effect deployment of the skirt portion. In other words the change of shape may be enough to make the skirt portion unstable in the first position such that it automatically deploys itself into the second position, i.e. automatically unrolling or unfolding into the deployed state in which it grips the ampoule. Even if the deformation is not quite enough to effect this deployment automatically, the force required from the user to move the skirt into the second position is reduced by the deformation such that deployment of the skirt is easy and fast. Of course the skirt portion can be arranged such that it is designed to be activated by direct contact, e.g. by pushing with fingers to effect deployment. Once deployed, the inner surface of the skirt portion engages with the outer surface of the ampoule to grip it. As long as the inner diameter of the skirt in its relaxed state is smaller than the outer diameter of the ampoule that it is attached to, the skirt portion will remain in a slightly stretched configuration in use, i.e. it never returns fully to its relaxed state (its manufactured state, prior to rolling or folding into the first position) and thus provides a gripping force on the ampoule to hold the closure in place.
The surface of the cap portion inside the skirt portion preferably comprises a cone shape. The cone shape may point (or extend) away from the main body of the cap portion, i.e. extending towards and into the ampoule that is to be closed by the closure. The cone shape ensures that a good seal is formed against the rim of the ampoule (i.e. against the broken surface of the ampoule after the top has been removed). As the rim surface is typically rough and/or jagged, sealing against it can be difficult. However the conical surface ensures that the cap portion extends into the opening formed by the rim and ensures that the cap portion can make contact around the whole surface of the rim. It will be appreciated that the cone shape may be a truncated cone or may have a rounded end and it may have a hole through it for content extraction as described later. More generally it may be any projection with a tip that is narrower than the ampoule opening so that the projection extends into the ampoule and a base that is wider than the ampoule opening so that as the projection is inserted substantially axially into the opening, the sloping side of the projection first contacts the inner diameter of the broken neck which is a sterile surface. The projection may be a dome. The projection may taper from its base (adjacent to the cap portion) towards its tip (distal from the cap portion, being the part that is inserted into the neck of the ampoule). As the projection is further pressed onto the ampoule, the line of contact between the projection and the broken neck will move radially outwardly, i.e. from the sterile inner surface towards the non-sterile outer surface. This ensures that the seal between the cap portion and the ampoule maintains the sterility of the ampoule, thus allowing the contents of the ampoule to remain usable over a longer period of time.
As the cone shape extends into the opening of the ampoule and the skirt extends down the outside of the ampoule, the cone shape (or projection) preferably forms a concave region around it, i.e. between the cone and the skirt. This concave region receives the rim of the ampoule and forms the seal around the rim and round the external edge of the ampoule (i.e. shoulders and/or sides). In some preferred embodiments a trench in the cap portion may be formed around the cone to receive the rim portion more deeply into the cap portion, thus providing more contact area with the rim. The conic shape is preferably sterile as it is designed to be inserted into the ampoule where it may come into contact with the contents of the ampoule and it is therefore preferable that it does not risk contamination of the contents.
Preferably the underside of the cap portion inside the skirt portion is formed from a deformable material. The deformable material allows the broken (and typically jagged/serrated rim to press, or even cut into it to form a seal. The more that the deformable material can mould to the shape of the broken rim, the better the seal will be. Allowing the sharpest portions of the rim to cut into the cap portion is preferred as it ensures good material contact between the rim and the cap portion, thus improving the seal. The deformable material preferably has a thickness of at least 0.5 mm, preferably at least 1 mm, more preferably at least 2 mm, at least 3 mm, at least 4 mm, at least 5 mm, at least 6 mm, at least 7 mm or at least 8 mm. Thicker material can accommodate greater variations in the surface of the rim, i.e. larger serrations. The amount of variation in the surface (i.e. the size of serrations) may vary significantly in use, depending on just how the ampoule top breaks off the main body. The deformable material is thus preferably arranged to accommodate the largest serrations that are expected to be found on a given ampoule rim for which the closure is designed so that the serrations do not hinder sealing of the closure against the rim at any point around the circumference of the rim.
While the closure could simply be used to stop up an ampoule after its contents have already been accessed, that leaves the broken edge of the ampoule exposed while the ampoule is being used. Therefore it is preferred to bring the closure into use, i.e. into sealing contact with the ampoule immediately after opening and before the ampoule's contents have been accessed. Thus preferably the closure comprises a channel extending through the cap from a lower surface of the cap inside the skirt portion to an upper surface of the cap. The channel allows the contents of the ampoule to be withdrawn through the closure after it has been sealed to the ampoule, covering the sharp broken edge and thereby reducing injury potential. As mentioned above, ampoules may contain solid, granulated or liquid contents. The channel is preferably sized so as to prevent accidental extraction or unwanted flow of contents through the channel. For example in the case of fluids, the fluid channel is preferably small enough that the fluid meniscus formed by surface tension prevents fluid from flowing through the channel in the absence of an external biasing force (such as a pressure difference). Thus the channel effectively seals the ampoule as the contents cannot escape unbidden.
In other embodiments the channel may be provided with a one-way valve that permits content extraction from the inside of the ampoule, but blocks transfer of any material back into the ampoule. As an example such a one-way valve may be formed by one or more flaps (e.g. flexible flaps) extending diagonally across the channel (i.e. not perpendicular to the channel axis) so as to close off the channel such that flow in one direction will lift the flap away from closing off the channel while flow in the opposite direction will press the flap into firmer contact, strengthening the contact and maintaining the channel closed. A single flap extending across the channel may be sufficient. In other embodiments, A pair of flaps may be provided that meet substantially on the channel axis and separate away from the channel axis to permit flow or press against each other to prevent flow in the opposite direction. For redundancy and improved valve performance, several such flaps (or pairs of flaps) may be provided at different axial locations along the channel, all operating to permit and prevent flow in the same direction. While such flaps may be integrally formed with the rest of the cap portion, such integral formation may be difficult (e.g. in a moulding process) and therefore the one-way valve may be formed as a separate element that is later inserted into a suitable corresponding cavity in the cap portion along the path of the content extraction channel.
The channel may connect to a connector element mounted on or formed in the upper surface of the cap portion. While the channel could be used to draw the contents from the ampoule using a needle as is currently often the case, the provision of an appropriate connector on the upper surface of the closure allows a syringe to be connected directly to the closure in communication with the interior of the ampoule through the channel so that the contents can be drawn directly into the syringe. This has several advantages. For example it reduces the number of needles that are used in the process of treating a patient (no needle is used for ampoule content extraction) and consequently the risk of needle stick injuries is further reduced. There is much lower risk from sharps (neither from the broken ampoule body nor a content extraction needle) during the process of filling the syringe. Any suitable type of connector element may be used according to the particular intended use. However in some preferred embodiments the connector element is a syringe connector, for example a luer tip connector or a luer lock connector or the like. The channel is preferably centrally formed in the cap portion, i.e. on or close to the axis of symmetry. It may in some embodiments extend from the tip of the conic shape discussed above to the upper surface of the cap portion. The connector element may be a separate piece that is fitted to the cap portion or it may be integrally formed in the cap portion, e.g. as part of the moulding of the cap portion. The connector element and cap portion may be formed in a two step moulding process where the connector element is moulded first and the cap portion (and skirt portion) are moulded around the connector.
When the content extraction channel extends through the closure to the centre of the projection (e.g. substantially conic projection) that is inserted into the neck of the ampoule, there will typically be a region surrounding the projection, between the radially outer surface of the projection and the inner surface of the ampoule, that may not be easily extractable through the channel. For example, when the ampoule is turned upside down, the contents could collect in this region around the projection at a level that is lower than the entrance to the channel. This reduces the amount of content that can be extracted and is therefore inefficient. While the amount in question may be quite small, an improvement in efficiency can be achieved by providing additional branches that connect the main channel to the sides of the projection and can thus allow content to be drawn out from around the projection for improved efficiency. These additional branches may in some embodiments take the form of one or more through holes that connect the main axial channel to the radially outer surface of the projection. In other embodiments the branches may take the form of one or more gullies connecting the channel to the radial outer surface of the projection along a length from the tip of the projection. The length may be selected so as to remain within the ampoule even for the smallest insertion length (which will typically occur on the smallest ampoule with the smallest diameter neck opening). In the case of through holes, to accommodate several different possible insertion lengths of the projection, through holes may be provided at different axial positions so as to ensure that when used on larger ampoules there is still a through hole close to the neck for optimal content extraction. Preferably the through holes are angled from the projection towards the upper surface of the closure, i.e. angled in the same general direction as that in which content is to be extracted. The through holes or gullies may be moulded as part of the closure moulding or they may be formed in a post-moulding step.
As discussed above, when an ampoule is opened by breaking the top form the main body, there is a risk that small shards of the ampoule material (usually glass) can break off and fall inside the ampoule. It is desirable to prevent these from being removed along with the contents of the ampoule and therefore preferably a filter is provided in the channel. The filter preferably has pores or channels or openings large enough to allow the ampoule contents to pass while preventing small shards of glass through. The filter may be positioned anywhere in the flow path, e.g. at either end of the channel or somewhere in the middle. The filter may be an integral part of the closure or it may be a removable element (and thus may also be an optional element that can be fitted if required, or not fitted otherwise). Purely by way of example the filter may take the form of a sponge, a mesh (e.g. a mat or weave of fibres) or a bunch of very narrow parallel tubes. In embodiments in which a luer tip is used, the filter may be a part of the luer tip. In some embodiments the one-way valve described above could also form part of the luer tip.
The cap portion and skirt portion may be formed separately and joined or attached to each other. However, they are preferably integrally formed. The cap portion and the skirt portion are preferably formed (e.g. moulded) from a single material, and may for example be formed from an elastomer. In some preferred embodiments they are formed from silicone as this has good properties in terms of elasticity, deformation (provides good sealing when cut by a sharp rim) and is readily moldable. Preferably the material also has deformation characteristics that remain stable over a significant period of time. Typical ampoules may have a shelf life of a year or more and therefore it is preferred that the closure will have a similar shelf life so that it can be supplied with an ampoule with the expectation of working throughout the same time period. Thus it is preferred that the elasticity and/or deformability characteristics of the material will remain functional (e.g. the skirt portion can remain folded or rolled up and will still unroll or unfold appropriately) over a long time, e.g. for at least a year.
Preferably the skirt portion is transparent so that when the skirt portion is in the second position, it does not obscure any important labelling or information that may be provided on the ampoule. This is important in the case of pharmaceuticals, e.g. to prevent the accidental administration of the wrong drug to a patient.
The skirt portion may have any suitable thickness such that the rolling or folding and unrolling or unfolding can be achieved. In some preferred embodiments the skirt portion may have a thickness of at least 0.1 mm or at least 0.2 mm or at least 0.5 mm. The skirt portion may in some embodiments have a thickness no more than 5 mm, preferably no more than 4 mm, more preferably no more than 2 mm. The thickness of material (as well as the elastic properties and surface friction properties) affects the sealing properties and also the way that the skirt portion moves between its stored configuration and its deployed configuration. A thicker material encourages more of a “snap”-type deployment in which the skirt portion deploys rapidly once dislodged from its stored state. Alternatively, a more rigid material may be used or a material with a strong tendency to regain its natural shape and position may be used instead of a thicker material,
The cap and/or skirt portion may in some preferred embodiments comprise shaping on its exterior surface that inhibits rolling when the skirt is in the second position (e.g. when deployed onto an ampoule). Such shaping may comprise a variable thickness of the cap and/or skirt portion. This can be beneficial for example when ampoules are being used in unstable surroundings, e.g. in the back of an ambulance where the ampoule is much more likely to be knocked over or it may be difficult to stand it on end. While a normal ampoule is round in cross-section such that it will roll freely if placed on its side, if the closure gives the ampoule a non-round shape, e.g. a slightly squared profile, rolling will be inhibited and the ampoule is less likely to move, less likely to gain momentum and less likely to drop from a high surface such as a table or shelf onto a floor for example. The shaping may comprise one or more ribs. These ribs may extend axially so as to alter the cross-sectional shape (in a cross-section taken perpendicular to the ampoule's main axis). A single rib may suffice, but preferably 2, 3 or 4 ribs are provided, evenly spaced around the cap and/or skirt so as to minimise the distance that the ampoule can roll before a rib hinders it. The ribs may be provided on the skirt, the cap or both, but preferably at least on the cap portion. In some preferred embodiments axial ribs are provided only on the cap portion so that they do not interfere with the rolling up of the skirt portion.
In some preferred embodiments one or more ribs may extend in a spiral around the skirt. The spiral ribs provide less of an obstruction when the skirt is rolled or folded up into the first position as the volume of rib is distributed more evenly around the circumference of the skirt. The angle of the spiral may be chosen depending on the dimensions of the device and the intended aim of reducing rolling, but in some examples it is preferably less than 45 degrees to the main closure/ampoule axis. These spiral skirt ribs assist with the automatic deployment once it is dislodged from the stability of the first (stored) position.
The friction between the material of the skirt (e.g. silicone in some embodiments) and the material of the ampoule (typically glass) will in most circumstances provide adequate force to hold the closure firmly onto the opened ampoule and form an excellent seal around the broken rim. However, in other cases, it may be desirable to supplement this contact force to ensure the seal is maintained. Thus the interior surface of the skirt may be coated at least in part with a gripping material or an adhesive. The gripping material may be a material that is designed for better friction with the ampoule material. The adhesive may be a permanent or temporary adhesive. In some embodiments the interior surface of the skirt may be provided with at least one circumferential rib. This internal rib may also be used to increase friction making it harder to remove the skirt portion from the ampoule once it has been deployed to the second position. The or each interior circumferential rib may be asymmetric such that it resists removal of the closure more than it resists placement of the closure on an ampoule. Such asymmetric ribs make it easy to install the skirt portion to the second position, but difficult to remove it due to the shape of the rib.
Where the cap is made from an elastic material, the skirt is deployed while the cap portion is pressed against the broken neck of the ampoule. After deployment and when the application pressure is removed from the cap portion, the elastic material will cause the skirt portion to stretch slightly with the friction of the skirt against the outside of the ampoule maintaining a pull on the cap portion against the broken neck of the ampoule and thus maintaining the seal against the broken neck.
The closure may further comprise a ring positioned circumferentially around the closure and around which the skirt portion is rolled or folded when in the first position. The ring helps the skirt portion to unfold or ‘snap’ into place around the ampoule when force is applied to the inside of the closure by pressing the closure against the ampoule. The ring essentially provides an extra surface around which the skirt must pass, stretching it further as it passes over the ring, folding back on itself. This extra stretch changes the stability of the skirt between the first and second positions. Thus, while the skirt is stable in both the first and second positions, the ring makes a less stable transitional point closer to the first position such that the skirt is quickly encouraged to begin movement towards the second position. The skirt's elasticity will generally help to deploy the skirt all the way to the second position once it has passed the intermediate unstable position, but if it does not then, if the ring is separate it can be used to push the skirt further down onto the ampoule to finish the deployment. In other embodiments the ring may be formed integrally with the cap portion rather than separately. In other words it forms a flange around which the skirt folds when in the first position.
In some embodiments the closure may further comprise a dispenser arranged to hold the skirt portion in the first position and being capable of releasing the skirt portion such that it can move to the second position. Such a dispenser provides a removable tool which can be supplied with the closure and remain with it until the closure is used. The dispenser then facilitates mounting of the closure to the ampoule and releasing the skirt portion. Afterwards the dispenser may be disposed of.
The dispenser may comprise a ring having a narrow diameter section sized to contact the cap portion and a wider diameter section sized to hold the skirt portion in the first position. The dispenser may comprise a split ring. The split ring provides a biasing force that helps to maintain the folded or rolled skirt portion in the first position, but can also be left in place after mounting to add to the sealing force against the ampoule body. The ring may also be used to assist with application of the skirt portion to the ampoule body by pushing the ring axially down the ampoule body. The split in the split ring accommodates any changes in size of the ampoule, e.g. an enlarged shoulder portion may cause the split ring to expand.
The dispenser may comprise a gripper arranged to grip the skirt portion in the first position. The gripper may comprise a release mechanism arranged to release the skirt portion such that it can move from the first position to the second position. The gripper may comprise at least one pivoted arm that releases the skirt portion when squeezed so as to pivot about a pivot point.
The cap portion may further comprise a gripping device arranged to be capable of gripping a break off top of an ampoule to facilitate removal of the top from the rest of the ampoule. Providing such a structure removes the user's hands further from the breaking action and keeps the user's fingers further from any sharp edges that result from that breaking. The gripping device may be a ring sized to receive an ampoule top. The ring may have an inner surface formed from an elastic material, or other gripping material designed to engage the ampoule material with good friction so as to hold the cap once removed.
In some embodiments the closure may further comprise a lid arranged to cover the upper surface of the cap portion. The lid may be hinged to the closure so that it does not become separated. It may of course be integrally formed with the closure. It will be understood that the upper surface of the closure means the surface facing away from the ampoule, i.e. the surface that is uppermost of the ampoule is stood upright in normal use. The lid may form an air tight seal, thus protecting and preserving the contents of the ampoule. In embodiments where the cap portion is provided with a connector such as a luer connector, the lid may engage with the connector and may be hinged to the connector. As the connector may be formed from a more rigid material than the rest of the cap portion, this may enable a more secure engagement for the lid.
It can be appreciated from the above that the closure described here will provide an all over safer treatment situation for patients and healthcare personnel with reduced risk of injury and contamination as well as reduced wastage.
At least in the preferred embodiments the closure provides a combined flexible cap/seal/fluid transfer device that facilitates the drawing of liquid content from a glass ampoule into a syringe without using a needle. It shields the sharp edges, filters the content, prevents spilling and allows a user to draw the exact amount of content into a syringe and to maintain full control of the bolus given to the patient.
A further advantage of the seal is that where an ampoule contains enough content for more than one dose, the contents can be kept sterile and prevented from spilling long enough to allow a second (and possibly further) dose to be extracted from the ampoule, thus making better and more efficient use of the contents. This can be particularly beneficial for expensive pharmaceuticals or reagents. For certain products the contents may have to be used within a certain timeframe after opening, e.g. some pharmaceuticals have to be used within 24 hours of opening according to the regulations in some countries. However, this still provides a time window in which a second (or further) dose can be extracted if the ampoule is properly closed and/or sealed during this timeframe.
The cap portion may be provided with a shield rib separating the skirt portion from the upper surface of the closure. The shield rib may be provided around the outer surface of the cap portion and allows force to be applied to the closure onto the ampoule with a reduced risk of accidentally deploying the skirt early. When the closure is pressed onto the ampoule by fingers, the fingers may slip down the sides of the cap portion and are at risk of deploying the skirt portion from its first position into its second position. The shield rib protects the skirt portion from the fingers (or other force applier, e.g. when it is being taken out of a packaging) until it is desired to deploy the skirt portion. As discussed above, this deployment preferably happens automatically upon application of sufficient pressure if it is not accidentally triggered early.
The skirt portion may be provided with one or more support projections positioned such that when the skirt is in its second position the support projections engage with the outer surface of the ampoule, in the region of a shoulder of the ampoule. A typical ampoule may be considered to have a neck portion, being a concave (when viewed from the outside) region which connects the break off cap to a shoulder portion, the shoulder portion being a convex region (when viewed from the outside) which connects the neck portion to a side wall, the side wall being a substantially vertical wall of the ampoule body. When the skirt portion is in its first position, the one or more support projections are preferably located on the underside of the closure on a circle of larger diameter than the ampoule opening. Thus as the closure is pressed against the ampoule, the support projection will be deployed onto the outer surface of the ampoule at a position that will depend on the size of the ampoule. The purpose of the one or more support projections is to allow the closure to adapt to different diameters of ampoule by preventing the skirt portion from shrinking in diameter too early in the deployment process before it has passed the shoulder of the ampoule. In order to seal against a range of ampoule diameters, the cap portion is preferably formed wider than the largest diameter to be sealed and the skirt portion is preferably formed with a natural diameter (i.e. if deployed unstretched, not on an ampoule) less than the diameter of the smallest ampoule to be sealed. During the deployment of the skirt portion, as the skirt portion rolls or unfolds off the cap portion (a position in which it is rolled up in a larger diameter than its natural diameter), it starts to shrink towards its natural diameter until it engages with the outer surface of the ampoule. For smaller diameter ampoules the engagement of the skirt portion with the outer surface of the ampoule will tend to be lower down the outer surface than the shoulder that connects the main body of the ampoule with the neck part. The skirt will then deploy easily along the outer body. However, in the case of a larger diameter ampoule, in the absence of any support projections as discussed above, the skirt portion starts to narrow in diameter, but then comes into contact with the wide shoulder of the ampoule which hinders further deployment. The skirt portion can still be pushed over the shoulder manually, but the automatic (or ‘snap’) deployment may be prevented. The one or more support projections discussed above are arranged to contact the shoulder of a larger ampoule and thus prevent the skirt portion from narrowing in diameter before it has passed axially down past the shoulder of the ampoule. The support projection(s) thus essentially support the skirt portion on the shoulder in its earliest phase of deployment. Once past the shoulder, deployment proceeds as normal. The support projections are preferably arranged to engage only on the shoulder portion of the ampoule as engagement higher up on the neck portion may not provide sufficient support to maintain the diameter of the skirt during deployment. When deployed on smaller ampoules (of the range that the closure is intended to fit) the support projections may not touch the ampoule at all. Preferably a plurality of such support projections are provided around the skirt portion, all on the circle of larger diameter than the ampoule opening. A single annular support projection may be used, but it has been found that such an annular ring can in some cases produce tension that makes it difficult to hold the skirt portion in the first position. Therefore in preferred embodiments a plurality of support projections are provided around the opening with gaps between them. This reduces the tension, allowing the skirt portion to be held in the first position, while still achieving the required support that facilitates deployment onto larger ampoules. The support projections may be tapered towards the centre of the closure (e.g. triangular or trapezoidal shaped).
As the closure seals against the ampoule, when content is extracted from within the ampoule, the pressure within the ampoule is lowered. This lowering of pressure tends to increase the sealing strength, thus maintaining the seal despite the pressure difference across the closure. This pressure difference is thus generally an advantage. However, in the case of larger ampoules when a significant amount of content needs to be extracted in one go, the pressure drop can make it hard or inconvenient to extract enough content. For example, as the pressure difference increases, a syringe used to extract a drug from an ampoule experiences suction that makes it harder to pull the syringe. A one-way valve may go some way towards mitigating this by preventing extracted content from being sucked back in, but there may still be an inconvenience if the suction makes the syringe difficult to use one-handed. Therefore in some embodiments it may be desirable to provide one or more air channels that connect the outside to the inside of the ampoule, i.e. that connect the region inside the ampoule body to the outside of the closure. These channels would allow air to enter the ampoule thus relieving the pressure difference. However, in order to maintain sterility of the inside of the ampoule, it is preferred that any such channels have a filter to prevent non-sterile foreign objects from entering the ampoule.
The structure of the closure that engages the broken rim of the ampoule is considered to be inventive independently of the folded skirt portion. Therefore according to another aspect of the invention there is provided a closure for an ampoule, the closure comprising: a cap portion arranged to engage with a broken neck of an opened ampoule; and a skirt portion extending from the cap portion, the skirt portion being arranged to grip the sides of an ampoule; wherein the surface of the cap portion that is arranged to engage the broken neck comprises a convex shape arranged to project inside the open neck of the ampoule; and wherein the cap portion is formed from a deformable material so as to deform and seal against the broken neck.
It will be appreciated that all of the preferred features that are described above apply equally to this invention and that in the most preferred embodiments both inventions are employed.
In particular, the convex shape is preferably a cone or truncated cone shape as described above. Also, a trench may be provided around the convex shape.
A skirt portion may be provided as is described above, although in other embodiments the ampoule may be gripped by a different skirt portion that does not necessarily fold back on itself. For example a push-on or slide-on skirt portion may be used that may be either made from the same elastic material or may be of a more rigid material. The skirt portion may be formed from a flexible material that can radially expand as it is pressed over an ampoule. In such cases, the skirt portion is preferably formed with a natural (unstretched) diameter that is smaller than the smallest ampoule intended to be sealed by the closure. The skirt preferably has enough elasticity to expand radially to accommodate the largest ampoule intended to be sealed by the closure.
In the case of a push-on or slide-on skirt portion, as soon as the closure is pressed onto the ampoule, the skirt portion forms a seal against the outer surface of the ampoule body. As the closure is moved further onto the ampoule, if this seal is airtight (as it typically is), air pressure will build up within the skirt portion. This may be to the extent that it is difficult to press the closure all the way onto the ampoule, thus hindering the formation of a good seal against the broken neck of the ampoule. Therefore preferably one or more air canals connect the region inside the skirt portion to the outside of the closure so that air can escape thus reducing the pressure build up. As it is important that these air canals do not connect to the inside of the ampoule itself, they connect to the region inside the skirt at a location that is outside of the contact point with the ampoule neck (i.e. inside the closure but outside the ampoule). As a seal is formed against the neck portion, that seal still separates the sterile interior of the ampoule from the region which is connected to the outside by the air canals. In some preferred embodiments the air canals connect to a point radially outward from the projection that projects inside the ampoule.
A push-on or slide-on skirt may have one or more internal ribs as described above to increase the friction between the skirt portion and the outside surface of the ampoule. In some preferred embodiments, the one or more internal ribs may be in the form of lamellae that deflect and/or bend substantially parallel with the ampoule body surface as they are pressed over the ampoule body. These lamellae are formed form an elastic or otherwise deformable material with a natural diameter smaller than the ampoule body so that they are deflected and/or bent during the push-on application process. It has been found that in some cases, the friction created with smaller ribs formed from an elastic material can push the closure back slightly from the position of maximum overlap with the ampoule, slightly reducing the effectiveness of the seal that is formed at the neck. The lamellae that bend substantially parallel to the surface of the ampoule body tend to maintain an axial pressure better, thus resulting in an improved seal.
The skirt portion may be provided with a brim extending radially outwardly from the skirt portion to provide a surface against which to push the closure onto the ampoule. The brim may be provided at the end of the skirt portion (at the end distal from the cap portion) or it may be provided closer to the cap portion or indeed on the cap portion itself.
In other embodiments the skirt may effect a good grip without fully encircling the ampoule, e.g. opposed gripping fingers may squeeze against the ampoule. The gripping or squeezing force may be provided by a more rigid structure (e.g. sprung metal) that may be covered by a softer, grippier material such as silicone. In the case of sprung gripping members, the closure may be arranged to provide a means of separation of the sprung members for fitting to the ampoule. For example, the gripping members may be pivoted such that they may move between an open position and a closed or gripping position and they are preferably biased towards the closed or gripping position such that a good seal is maintained in the absence of other forces.
The closure may further comprise a rigid structure that is arranged to bias the skirt portion radially inwardly against the sides of the ampoule. The rigid structure may comprise at least one leg pivoted around a pivot structure such that it can be pivoted radially outwardly to release the skirt portion for mounting to or demounting from an ampoule.
The skirt portion may alternatively have a stiff, but flexible (or sprung) outer material on the outside with a softer, grippier inner material such as silicone on the inside.
The outer material may be separated into a plurality of gripping fingers as described above while the inner material fully encircles the ampoule. Alternatively both the outer material and the inner material may be divided into separate fingers so long as a full seal is formed around the broken neck of the ampoule when in use.
Viewed from an alternative perspective, the invention provides a closure for an ampoule, the closure comprising: a cap portion arranged to engage with a broken neck of an opened ampoule; and a skirt portion extending from the cap portion, the skirt portion being arranged to grip the sides of an ampoule; wherein the surface of the cap portion that is arranged to engage the broken neck is formed from a deformable material that is arranged to deform and seal against the broken neck.
As discussed above, the skirt portion may be a flexible skirt portion that is rolled or folded into a stored position and that can be activated or deployed into a use position on an ampoule. It will be appreciated that the preferred and optional features discussed above may equally be applied to this definition of the invention.
The cap portion may be arranged to form a seal against the broken rim of the neck of the ampoule around the full circumference of the rim so as to provide a separation between a sterile inside of an ampoule from a non-sterile outside. As discussed above, the rim (i.e. the broken edge surface) of the ampoule connects the interior of the ampoule with the exterior of the ampoule. The interior is typically sterile and the exterior is typically non-sterile. The broken surface that connects them (and which used to be part of the ampoule body wall) is also sterile and therefore sealing against that surface and fully around the circumference of that surface separates the sterile parts from the non-sterile parts, thus preventing contamination during content extraction.
The surface of the cap portion that is arranged to engage the broken neck is preferably arranged to accommodate and seal against a broken neck having a surface that varies in height by at least 0.5 mm, preferably at least 1 mm, more preferably at least 2 mm, at least 3 mm, at least 4 mm, at least 5 mm, at least 6 mm, at least 7 mm or at least 8 mm. The amount of variation in the surface may vary significantly in use, depending on just how the ampoule top breaks off the main body. It may reveal a fairly smooth rim or it may leave a sharp and jagged rim. The sealing surface is thus preferably arranged to accommodate the largest serrations that are expected to be found on a given ampoule rim for which the closure is designed so that the serrations do not hinder sealing of the closure against the rim at any point around the circumference of the rim. Larger ampoules may have larger potential serrations and may therefore need larger (thicker) sections of material in the cap portion facing the broken neck. In some embodiments, ampoules with volume from 1 ml to 5 ml have been found to have serrations up to 6 mm, while ampoules with volumes from 10 ml to 30 ml have been found to have serrations up to 8 mm. Accordingly, it is preferred that the cap portions designed for these sizes of ampoule can accommodate the corresponding sizes of serrations.
It will be appreciated that the invention is considered to extend to an opened ampoule having a rim (typically broken as part of the opening process) around its opening and comprising a closure as described above (optionally including any of the preferred features also described above) fitted against the rim.
According to a further aspect, the invention provides packaging for an ampoule closure, the packaging comprising: a first blister arranged to enclose the ampule closure; and a second blister arranged to receive an ampoule top.
The provision of a second blister to receive the ampoule top provides a convenient way to remove the top of the ampoule safely and with minimal mess. The user can open the second blister (which is empty), place it over the ampoule top and break the ampoule while the top is retained within the second blister. This protects the users fingers from the sharp edges of the broken neck of the ampoule and also allows the ampoule (and any residue from the ampoule contents) to be retained within the blister safely and with minimal mess.
Preferably the second blister is larger than the ampoule top and formed from a sufficiently deformable material that the blister can be twisted so as to retain and seal the ampoule top within the blister. Once the top has been removed, it is desired to retain it and prevent it from falling out of the second blister. Thus the ability to twist the blister so as to effectively reseal the blister quickly allows the sharp top to be kept safely within the blister and out of harm's way. The material from which the second blister is formed is preferably sufficiently pliable and non-springy that it stays in its twisted form readily.
Preferably a removable sealing strip or cover is provided to seal the first blister until use. This keeps the ampoule closure sterile until it is required. Preferably the removable sealing strip also seals the second blister until it is time for use. This ensures that if part of the packaging (i.e. the inside of the second blister) comes into contact with the broken edge, it is a sterile surface that makes contact thereby reducing the chances of contamination. It is also easier for production to seal both blisters at the time of manufacture. In some embodiments the strip may be resealable, allowing the broken top to be resealed inside the second blister by the sealing strip, thus preventing the sharp or serrated edge of the top being a cutting hazard to users.
The invention also extends to a method of sealing an ampoule, comprising: pressing a closure as discussed above (in any of its variations and optionally including any of the preferred or optional features also described above) onto a broken neck of an ampoule; and deploying the skirt portion from the first position to the second position.
The invention also extends to a method of making a closure comprising:
The rolling may be performed by hand or it may be performed by a rolling machine. The rolling may be performed by one or more moving frictional surfaces brought into contact with the skirt portion so as to provide a force on the outer surface of the skirt portion towards the cap portion. The moving frictional surface may be a wheel or a part wheel (e.g. a circular arc) that is rotated so as to roll up the skirt portion. The wheel may be translated axially towards the cap portion as the rolling takes place so as to maintain contact with the rolled skirt as it rolls towards the cap portion.
The first mould piece may be formed from two or more parts which can be separated so as to induce rolling of the skirt portion. The two or more parts may be separated from one another at the ends distal from the cap portion while remaining substantially unseparated at the ends adjacent to the cap portion. This splitting causes the end of the skirt portion distal from the cap portion to stretch more than the end attached to the cap portion and thus encourages the skirt portion to roll towards the narrower diameter and thus towards the cap portion. The two or more parts may be separated by driving a wedge between them substantially along the axis of the skirt from the end distal from the cap portion.
Preferred embodiments of the invention will now be described, by way of example only, and with reference to the accompanying drawings in which:
After the top part 3 has been separated from the main body 2 and before content is extracted from the main body 2, a closure 10 is applied to the broken neck 4 of the main body 2 so as to cover the broken edge and protect the user.
The content transfer channel 13 can also be clearly seen in
In
The sealed ampoule (ampoule body 2 plus closure 10 fitted thereon) and an attached syringe form a closed system. As the syringe draws content out of the ampoule body 2 through the channel 13, the pressure inside the ampoule is lowered. This suction effect pulls the skirt portion 11 and cap portion 12 tighter onto the ampoule body 2 and neck 4 respectively, thus improving the seal and maintaining a sterile environment. This is particularly beneficial where a rapid extraction of content may cause turbulence within the liquid content, requiring a more robust seal. By forming and maintaining a good seal around the ampoule body 2 during content extraction, the ampoule body 2 can be turned upside down for content extraction. Thus the contents (typically liquid) contact the bottom surface of the cap portion 12 and contact the extraction channel 13. This allows a greater quantity (substantially all if desired) of the contents to be extracted easily. Additionally, withdrawing the contents in this manner, any air drawn into the syringe is near the tip and can be expelled readily.
As can be seen in
As shown in
The closure 10 of
These lamellae 314 can accommodate a greater range of ampoule sizes.
The adapter ring 306 need not be a full, solid ring and indeed is preferably a set of projections formed into a ring shape. It is only necessary to provide enough support to prevent the shoulder from hindering the ‘snap’ deployment and therefore a single projection may be enough in some examples. However, some preferred embodiments of the adapter ring 306 are shown in
The lids may be colour coded to indicate certain properties of the closure such as seal type, filter type, presence of valve, etc.
Number | Date | Country | Kind |
---|---|---|---|
1704309.2 | Mar 2017 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/056775 | 3/16/2018 | WO | 00 |