The invention concerns an ammunition with a projectile containing no explosive material, which releases a flammable air-fuel mixture when being dismantled at the target. Said mixture is caused to spontaneously react by at least one explosive-free, spark-producing ignition mechanism triggered during impact dismantling. The thus produced optical and thermal target signature can be detected with the naked eye and or with other auxiliary means such as rifle-scopes or other optical systems that can protect fight vehicles from homing missiles, as well as with night vision and thermal imaging devices.
Availability of small, efficient target detection systems results in growing measure in their deployment in the area of infantry weapons such as for example machine-guns or grenade launchers. For training of modern armed forces this results in a corresponding need for suitable ammunition for launcher devices and grenade weapons, portable mortars and shoulder-launchable charges. On the part of the Armed Forces, such ammunition is basically to be given preference for which, in addition to optical perceptibility in the visible range of light, detection is also possible by means of night-vision and/or thermal imaging devices for distances of up to approximately 1500 m.
Pyrotechnical ammunitions based on flash/“boom” effect are suitable for training purposes for visual-optical and acoustical perception, as well as for detection by means of night-vision and thermal imaging devices. One drawback of such pyrotechnical ammunitions is their potential danger by the explosive itself contained in the missiles, as well as by clearing the training areas, which are contaminated by unexploded shells.
During the previous decades, this led to the development of training ammunitions with explosive-free missiles. The visual-optical perceptibility in said type of ammunitions is attained, for example, by the release of colored dust on dismantling at time of impact. For detectability with night-vision devices, appropriate ammunitions were developed which utilize chemo-luminescent effects. The combination of colored dusts and marker units with chemo-luminescent effect ultimately made possible the supply of uniform trainings-ammunitions with explosive-fee missiles for training by day and training by night.
With US 2011/0079164 A1 or WO 2011/044126 A2, a 40 mm training ammunition is proposed for use, among others, in grenade launchers. It has an explosive-free missile, in which is integrated in the area of the missile top a fragile pay-load module. The pay-load module is filled with different materials, or in case of a therein integrated ampoule, with different combinations of materials in order to attain various effects. The lay-out of the ammunition is designed in such manner that it can be provided with different pay-load modules, while construction of the drive, the missile body with substance insert and the missile cover remain the same. In order to attain a visual-optical effect for day-time training, utilization is proposed of coloring substances in powder form or in granulated form or of coloring solutions or in gel-form. If a pay-load module with integrated ampoule is used, it is additionally possible to attain a detectable effect with night-vision and/or thermal imaging devices. In order to attain an effect which is detectable with thermal imaging devices, it is suggested to use a pyrophoric material in the form of powder or in granular form. As a result of combining coloring material and phosphoric material, it is possible to produce a visual-optical and at least by thermal imaging detectable effect.
WO 2011/019695 A1 discloses another 40 mm training ammunition for use, among others, in grenade launchers. Said explosive-free missile has, analogous to the existing “day-time and night-time marking” ammunitions, colored dust for “day-time marking” as well as an encapsulated chemo-luminescent effect for “night-time marking”. As opposed to the known state of the art, a ‘heat Engine” is being proposed here which is integrated in the base of the missile and generates encapsulated thermal energy, said “heat engine” being initiated by the firing load, and which is to heat up, directly or indirectly—via a thermal transfer medium—the chemo-luminescent effect, so that it is detectable at the point of impact dismantling by means of night-vision and thermal imaging devices. The encapsulated heat generated in the “heat engine” has the effect that with the use of pyrophoric materials for generating heat, these are not released and accordingly there is no risk of potential fire hazard. In addition to the use of pyrophoric materials, reactions of anhydrous salts with water or polymerization reactions of organic substances are also suggested for potential generation of thermal energy.
U.S. Pat. No. 7,055,438 B1 deals with ammunitions in calibers from 20 mm to 155 mm, which employ heat generating effect as “explosive-free luminous tracers” and/or long-term target marking—either alone or in combination with a chemo-luminescent effect. Examples are given here, among others, of reactions of (anhydrous) calcium chloride with water or a watery solution or metals in powder form with hydrogen-peroxide solutions. In order to attain longer-term marking effects, the solid matter substances are mixed with binding agents in powder form such as hydroxy-ethyl-cellulose or CAB, with the objective of forming during mixing with the liquid component or the liquid components a gelatinized, adhesive active mass.
With respect to the explosive-free training ammunitions being employed in the area of 40 mm grenade launchers, there currently exist two basic variations of the “day-time marking” by means of colored dusts released during impact, as well as the “day-time and night-time marking”, where the missiles in addition to the colored dust release a chemo-luminescent effect, which is separately installed in the missile. Due to integration of the encapsulated chemo-luminescent effect in the missile, there results a correspondingly reduced colored dust volume, based on weighing, so that the required visual-optical visibility above 1000 m clearly decreases for 40 mm ammunitions, for example.
The possibility of integrating an additional effect for detection by means of thermal imaging devices can only be realized at the cost of detectability of the other effects. As a result, the effectively usable combat fight ranges in the training scenarios become greatly reduced. While this, perhaps, may still suffice for simple firing exercises at close range, a more reality-like combat training is no longer possible with this type of ammunition, e.g. in connection with grenade launchers and/or machine guns on combat vehicles.
All training ammunitions being employed or proposed are, ultimately, based on the original variation of the training ammunition with explosive-free missile with colored dust effect and have the objective of increasing functionality by integration of additional effects. The reduction based on weight of integration of an additional effect or additional effects, is accompanied by a more or less decrease of the effectively usable firing range of the training ammunition. By way of progression, variation or expansion of the preceding mode of action, a solution is not possible relative to the objects on which the invention is based.
The invention is based on the object of providing an ammunition with an explosive-free missile, which generates at dismantling within the target a multi-spectral signature which can be detected with the naked eye or with technical aids, such as rifle-scopes or other optical target detection systems, night-vision and thermal imaging devices.
According to the invention, this object is achieved by the features of first embodiment directed to an ammunition with an explosive-free missile (20, 20′, 30, 30′, 40), with at least one missile body (1, 42) and a missile cover (2, 43) as well as a support structure (3, 44), characterized in that the support structure (3) accepts an explosive-free ignition mechanism (4, 8, 9, 10, 16, 17, 18, 45) and a hollow space (5, 46) formed in the missile (20, 20′, 30, 30′, 40) serves for acceptance of an active mass (12, 14, 15, 47) which consists of a fuel or a fuel mixture, which is released with dismantling at the target as flammable air-fuel mixture, which is spontaneously brought to reaction by the explosive-free, spark-producing ignition mechanism (4, 8, 9, 10, 16, 17, 18, 45) by utilizing the firing energy and/or the kinetic energy. Further, particularly advantageous refinements of the invention are disclosed in the following additional embodiments. For example, in accordance with a second embodiment of the present invention, the first embodiment is modified so that at least one of the components of the ignition mechanism (4) consists of a spark-generating metal or a spark-generating metal alloy or a spark-generating ceramic, whereby the forces occurring during impact dismantling can be used directly for spark generation by at least two reciprocally movable components. In accordance with a third embodiment of the present invention, the second embodiment is modified so that the spark-generating metal or the spark-generating metal alloy constitute suitable materials such as magnesium, cer-ferrous alloys (Auermetal I), cer-ferrous-lanthan alloys (Auermetal II) or Auermetal III, etc.
In accordance with a fourth embodiment of the present invention, the first embodiment is modified so that the ignition mechanism (4, 45) comprises at least one component of a piezo-electrical ignition mechanism made of a non-conductive material or a non-conductive ferro-electrical material or a material with permanent electrical dipole, concerning which the forces occurring during impact dismantling are indirectly used for spark-generation by making use of the piezo-electrical effect. In accordance with a fifth embodiment of the present invention, the fourth embodiment is modified so that the suitable ceramic materials therefore are synthetic, inorganic, ferro-electric and/or poly-crystalline ceramics, such as lead-zircon-titanate or barium-titanate.
In accordance with a sixth embodiment of the present invention, the first embodiment, the second embodiment, the third embodiment, the fourth embodiment or the fifth embodiment is modified so that the active mass (12, 14, 47) constitutes a fuel in powder-, granular or compressed form, or a fuel mixture in powder-, granular or compressed form. In accordance with a seventh embodiment of the present invention, the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment or the sixth embodiment is modified so that that the fuel or fuel mixture is surrounded by a secondary active mass (15) which is spatially separated from the fuel or fuel mixture by means of an insert in the missile (20, 20′). In accordance with an eighth embodiment, the seventh embodiment is modified so that the secondary active mass (15) is a powder-shaped or granulated or compressed active mass with open-flame damping and/or energy-absorbing/moderating properties, which forms, at impact-dismantling point, around the flammable air-fuel mixture (14) an open flame damping and/or energy absorbing cloud, which, in turn, can detectably radiate the absorbed energy. In accordance with a ninth embodiment, the seventh embodiment or the eighth embodiment is modified so that an addition is provided of an inorganic pigment and/or an inorganic colored substance, which creates at impact dismantling an additional visual-optical effect in the form of a colored dust effect.
In accordance with a tenth embodiment of the present invention, the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh embodiment, the eighth embodiment, or the ninth embodiment is modified so that the ignition mechanism (4, 45) consists of a bolt (8), made of a spark-generating material or material mixture, which in turn is surrounded by a piston (9). In accordance with an eleventh embodiment of the present invention, the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh embodiment, the eighth embodiment, or the ninth embodiment is modified so that the ignition mechanism (4, 45) comprises an electronic assembly (16) under which is positioned a piston (17).
In accordance with a twelfth embodiment of the present invention, the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh embodiment, the eighth embodiment, the ninth embodiment, the tenth embodiment or the eleventh embodiment is modified so that the ignition mechanism (4) comprises a safety device (4′, 10, 18) for protection against premature, unintended triggering, which releases the ignition mechanism (4), making use of the centrifugal force, the centripetal force, the Coriolis force of the acceleration or deceleration of the missile (20, 20′, 30, 30′, 40) or the mass inertia of the individual components of the missile (20, 20′, 30, 30′, 40) or of the safety device (4′, 10, 18, 45′) or a combination of the named forces.
The invention is therefore based on the fundamental concept of creating an explosive-free missile, which, with dismantling within the target releases a fuel or fuel mixture in the form of a flammable air-fuel mixture, which, in turn, is spontaneously realized by at least one explosive-free, spark-producing ignition mechanism, triggered at impact dismantling. The multi-spectral signature, generated with the reaction of the flammable air-fuel mixture, can be detected during the day or at night with the naked eye or with technical aids, such as rifle-scopes or other optical target detection systems, as well as with night-vision and thermal imaging devices.
In order to produce the desired effects/signatures in the training ammunition, only one single effect mass is needed, which, moreover, compared with phosphoric materials or chemo-luminescence producing liquid multi-component systems, does not require more complex encapsulation, but also does not exclude same. Consequently, comparatively larger amounts of active material based on weight can be realized and connected therewith, greater effectively usable combat fighting ranges.
The proposed invention-specific ammunition has the benefit that by means at least one safety measure of the ignition mechanism, it can be designed to be manipulation- and application-secure. An unintended, premature triggering effect in ammunitions for machine guns is therefore to be excluded, inasmuch as the safety device of the ignition mechanism for twist-stabilized missiles becomes unlocked only by the forces occurring at firing and the safety device then releases the ignition mechanism. Therefore the proposed invention-specific ammunition concept can also be utilized for mechanically greatly stressed ammunitions for machine guns in the caliber range from 20 mm to 50 mm. In addition to the safety device of the ignition mechanism, the transport-, handling- and application safety also increases by the absence of substances and mixtures of substances in the missile in the form of powder.
By comparison with the use of ammunitions with ‘heat engine” integrated in the missile, the proposed, invention-specific invention additionally provides the benefit that the multi-spectral signature is generated directly with impact dismantling within the target and is therefore largely independent of the temperature and the firing distance.
It is possible to obtain with the proposed, invention-specific ammunition an almost true to nature signature comparable with the corresponding HE combat ammunitions or pyro-technical flash-boom ammunitions. In contrast to the HE combat ammunitions or the pyro-technical flash-boom ammunitions, a reality-close training can be guaranteed with the proposed, invention-specific ammunition with corresponding risk due to unexploded, explosive-containing shells. Depending upon the employed fuel or fuel-mixture, a non-reacted effective mass generally does not present a risk comparable with an explosive-containing unexploded shell. Flammability only exists during a brief window of time at the point of impact dismantling under formation of an air-fuel mixture. Depending upon the utilized fuel or fuel mixture, possible fuel residues can either simply weather on the training grounds or can be collected and disposed of without problem.
Fuels or fuel mixtures integrated into ammunitions for the generation of flash- and or glare effects are thus far only initiated via dismantling charges of explosive (e.g. flash-light bombs for reconnaissance photography) or pyro-technical mixtures (various non-lethal weapons and ammunitions). The concept of the explosive-free creation of a multi-spectral signature with ammunitions comprising explosive-free missiles is not known until now and can be realized in ammunitions with caliber range from 20 mm to 50 mm for grenade launchers and grenade machine weapons, in ammunitions with caliber range from 20 mm to 50 mm for machine guns, in ammunitions ranging in caliber from 40 mm to 81 mm in launching systems, in ammunitions ranging in caliber from 50 mm to 120 mm for mortars, in sub-caliber ammunitions for mortars, in ammunitions for anti-tank missiles (Panzerfaust) and shoulder-fired loads, in sub-caliber ammunitions for anti-tank missiles and shoulder-fired loads, as well as in anti-tank- and in artillery ammunitions. In addition to the use of the proposed invention-specific ammunition as training ammunition for reality-close training, the training ammunition can also find application as “warning shot with optical signature”, as non-lethal ammunition or also as anti-material ammunition.
The multi-spectral signatures to be attained by means of the proposed invention-specific invention can be controlled by the selection of the fuel or fuel mixture, the utilized grain sizes and the weight-based volume. The relevant control possibilities of the multi-spectral signature, which is to be attained, are comparatively larger for the proposed invention-specific invention than for ammunitions having several effective masses arranged separately in the missile in order to attain a corresponding signature. For example, the duration of the multi-spectral signature can be prolonged with the use of aluminum powder in pyrolytic grinding finish quality grade, by addition of an alloy of aluminum and magnesium or by addition of aluminum filters of corresponding grain sizes.
The additionally attained visual-optical effect of smoke development during combustion of the fuel or the fuel mixture can likewise be influenced by the selection of the fuel or the fuel mixture. For example, the formation of smoke can be increased by use of an aluminum powder in pyrolytic grinding finish quality grade, by addition of red phosphorous (white smoke) or by addition of an organic fuel, e.g. naphthalene (whitish-gray to somewhat black smoke). If smoke development is unwelcome, this can be counter-acted by the selection of the fuel or the fuel mixture. For example, if an aluminum powder in pyrolytic grinding finish quality grade is used, smoke development can be reduced by addition of lycopodium (a mixture of natural organic compounds obtained from plants or plant components) or total substitution of the aluminum powder with lycopodium.
The following may be selected as fuel:
The ignition mechanism comprises at least one of the components of a spark generating metal alloy or a spark generating ceramic. As the most suitable materials are specified here magnesium, cerium-ferro alloys (Auermetal I), cerium-iron-lanthanum alloys (Auermetal II), or Auermetal III, without restricting the preferred invention-specific embodiments of the ammunition to these examples. The forces which occur during impact dismantling are directly used for generating sparks by means of at least two counter-mobile components.
An ignition mechanism can alternatively be integrated, which indirectly utilizes the forces occurring at impact dismantling by making use of the piezo-electrical effect. The latter comprises at least one component of the piezo-electric ignition mechanism from a non-conductive material or a non-conductive ferro-electrical material or a material with permanent electrical dipole. As suitable materials are specified here ceramics produced with synthetic, inorganic, ferro-electrical and poly-crystalline ceramic materials, such as lead-zirconate-titanate or barium-titanate, without limiting the preferred invention-specific embodiments of the ammunition to these examples.
For reduction of fire risk which exists due to the generation of open light and heat during reaction of the generated air-fuel mixture upon impact dismantling, the preferred invention-specific embodiments of the ammunition with explosive-free missile, the therein arranged fuel or fuel mixture can be enveloped with an additional, secondary effective mass, which is spatially separated by an insert from the fuel or the fuel mixture. Said secondary effective mass, upon impact dismantling, forms around the flammable air-fuel mixture an open flame and/or energy absorbing or damping cloud, which, in turn can radiate in detectable manner the absorbed energy. Additionally, another, visual-optical effect in the form of the colored dust may be integrated in the secondary effective mass.
In all corresponding invention-specific embodiments, the secondary effective mass consists of:
As examples of inorganic fire suppressants are specified: ammonium phosphate, ammonium hydrogen-phosphate, phosphates and hydrogen-phosphates of the alkaline and alkaline earth metals, ammonium sulfate, ammonium hydrogen sulfate, the sulfates of the alkaline and alkaline earth metals, as well as the carbonates and hydrogen carbonates of the alkaline and alkaline earth metals, without limiting the preferred invention-specific embodiments of the ammunition to these examples.
As examples of inorganic pigments and alloys are specified; iron oxides, aluminum-bronzes and brass, without limiting the preferred invention-specific embodiments of the ammunition to these examples.
The invention is to be explained in more detail based on an exemplary embodiment with drawing.
In a first embodiment according to
The ammunition depicted in
Number | Date | Country | Kind |
---|---|---|---|
10 2012 023 700.6 | Dec 2012 | DE | national |
This is a non-provisional application claiming priority on provisional Application No. 61/760,819, filed Feb. 5, 2013, and German Patent Application No. DE 10 2012 023 700.6, filed Dec. 5, 2012. The entire disclosures of the above patent applications are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61760819 | Feb 2013 | US |